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Robust Fault Estimation Using Relative Information
in Linear Multi-Agent Networks

Prathyush P. Menon and Christopher Edwards

Abstract—In this paper a robust fault estimation method,
based on sliding mode observers, is proposed for a collection of
agents undertaking a shared task and exchanging only relative
information over a communication network. Since the ‘system
of systems’ formed by the agents is not observable with respect
to relative sensing information, by appropriate transformations
and scalings of the inputs and outputs of the actual system,
a meaningful observable subsystem is created. For this new
subsystem, after modal decomposition based on the associated
Laplacian, decoupled sliding mode observers, depending only on
the individual node level dynamics of the network, can be created
exploiting an existing design philosophy. These collectively form
a centralized fault estimation scheme for the original system.

Index Terms—Multi agent networks, Faults, Sliding mode
observer

I. INTRODUCTION

The motivation for the present work is to facilitate an
increased level of autonomy in the framework of a ‘systems
of systems’ i.e. a group of dynamic systems cooperating
over a network, as reported in [1], [2], to perform a shared
common objective. In such an architecture a single unde-
tected fault in one agent could have a severe undesirable
impact on the overall system performance. In this paper the
network represents an interconnection topology over which
individual systems exchange information. Systems operated in
such cooperative and distributed environments, making use of
relative information exchange, are prevalent in many areas of
research, for example mobile robots, cooperating UAV team
operations (surveillance and reconnaissance), formation flying
of UAV’s and satellites, vehicle platoons, and distributed state
estimation applications such as localisation: for details, see [1],
[3], [4]. These systems, with increasing size and complexity,
are intended to operate in a highly autonomous way. Hence,
to ensure safe and reliable operations, these systems, requiring
a high level of autonomy, must be provided with a state
monitoring and fault detection capability.

Since the graph describing the topology of the information
network is the lynch-pin, according to [5], broadly speaking,
state agreement, synchronisation and consensus problems can
be considered from an identical point of view. In [6], an
adaptive sliding mode observer is designed for synchronisation
of coupled nonlinear systems while adaptive sliding mode
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control has been applied in [7] for synchronisation. Both of
these applications adopt a master-slave framework. Recently,
a second order sliding mode observer together with a bank
of wavelet networks has been designed specifically for online
monitoring and fault detection in satellite formations in the
presence of uncertainty [8]. In [9], an observer-controller pair
is proposed for a single unicycle mobile robot. Reference [10]
considers a similar problem giving a sufficient condition for
observability, and proposes an Extended Kalman Filter (EKF)
scheme for the localization problem. The EKF estimates the
states of the leader-follower formation from the measurements
and control signals computed at the leader level. References
[8]–[11] give further examples of the use of observer schemes
in complex applications. Estimation over graphs from relative
measurements are discussed in [12], and recently in [13],
distributed unknown input observers have been designed for
fault estimation in power networks.

Limited research has taken place in the field of fault detec-
tion and isolation (FDI) for large scale systems [14]–[16]. Al-
though some results in this field were published in the 1980’s,
the literature is sparse. Using overlapping decomposition, the
work described in [17] proposed a fault detection approach for
discrete linear large scale systems. Subsequently the detection
of abrupt faults in discrete systems was considered in [18]
and decentralised fault detection schemes have also been
proposed [15], [16]. More recently Patton and co-workers have
proposed a framework for fault detection in networked systems
[19], [20]. A similar problem to that investigated in [21] is
considered in this paper – the methodology however is entirely
different. The work in [21] examines how the fault detection
and isolation ideas of [22] can be extended to a group of agents
exchanging relative information. In this paper fault estimation
(rather than FDI) will be pursued. Fault estimation is a more
stringent requirement compared to traditional FDI problems
which only seek to raise an alarm when a fault is present
in the system (and then isolate the source). Estimating faults
is more useful since the magnitude and ‘shape’ of the fault
is reproduced. As a consequence it is easier to distinguish
the presence of intermittent faults from persistent ones and
also directly assess their severity. Fault estimation methods
typically require stronger assumptions than residual based FDI
methods, but have advantages in terms of performance.

Many monitoring and fault estimation schemes are based
on model based techniques [23], and in general, the focus is
on centralised monitoring schemes which require all the mea-
surements in the entire large scale system. The contribution
of this paper is to propose a framework which, although it is
centralised in its implementation, the design of the observer
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components are entirely decentralised. From a synthesis point
of view this has the benefit that the number of decision
variables in the associated optimisation problem is of the order
of the dimension of a single node, and not of the system
of systems. Furthermore, the proposed method requires only
access to relative measurements and the input signal. This
paper builds on earlier work on sliding mode observers for
fault estimation originally proposed in [24].

The notation used in this paper is standard. The set of real
numbers is denoted by IR. The set of real-valued vectors of
length m is given by IRm. The set of arbitrary real-valued m×
n matrices is given by IRm×n. The expression Col(.) denotes
a column vector and Diag(.) denotes a diagonal matrix. The
symbols N (·) and R(·) represent the null space and range
space of a matrix respectively and 1 represents a column vector
of unity elements.

II. SYSTEM DESCRIPTION

This paper, considers a group of dynamical systems inter-
acting to achieve a collective objective. The overall system
comprises interconnections of N identical dynamical systems
indexed as 1, 2, ..., N . Each system has access to relative
external measurements associated with certain other dynamical
systems which it can sense or interact with. In this paper
whenever there exists interaction, bidirectional communication
is assumed and the configuration is viewed from an undirected
graph perspective [1]. The graph will have N vertices/nodes
and each represents an n−dimensional dynamical system. An
edge in the graph indicates an interaction between the two
corresponding dynamical systems. The dynamics of the ith

individual node are given by

ẋi(t) = Axi(t) +Bui(t) +Dfi(t) + Eξi(t) (1)
zij(t) = C(xi(t)− xj(t)), j ∈ Ji (2)

where xi ∈ IRn and ui ∈ IRm represent the states and the
control inputs of the ith node. The unknown signals ξi(t)
represent uncertainty or exogenous disturbances which are
bounded with a finite L2 norm. The matrices are A ∈ IRn×n,
B ∈ IRn×m, C ∈ IRp×n, D ∈ IRn×q and E ∈ IRn×r. In (1)
the signal fi(t) represents a fault: if fi(t) ≡ 0, the system
is fault free, and if fi(t) ̸= 0 then a fault exists in the ith

node. The quantities zij ∈ IRp represent relative measurements
associated with the other dynamical systems which the ith

node can sense. The set Ji ⊂ {1, . . . , N}/{i} indicates
the dynamical systems with which the ith dynamical system
interacts. Here, it is assumed that none of the Ji are empty
so that every dynamical system interacts with at least one
other. Define an aggregated relative information measurement
associated with the ith node by

zi =
∑
j∈Ji

C(xi − xj) (3)

This notation is consistent with that used in [1] and [2]. The
Laplacian of the graph G formed from the interacting agents,
which will be written as L ∈ IRN×N , is defined as follows:

Lii = |Ji| (4)

Lij =

{
−1, j ∈ Ji

0 j /∈ Ji
(5)

where |Ji| denotes the cardinality of Ji and represents the
degree of the node. The symmetric matrix L is always rank
deficient and positive semi-definite in the case of undirected
graphs. The smallest eigenvalue of L is zero and the corre-
sponding eigenvector is given by 1 [25].

Assumption 1: The triple (A,D,C) is assumed to be a
minimal realisation of the ith node dynamics, with D and C
of full column and row rank respectively where p ≥ q.

Assumption 2: The system (A,D,C) is minimum phase.
Assumption 3: rank(CD)=q for every dynamical system
Assumption 4: The function fi(t) represents an unknown

time varying fault in the ith system which is bounded such
that ∥fi(t)∥ ≤ β0, where β0 is known a-priori.1

The overall system (4)-(5) at the network level can be conve-
niently represented as:

ẋ(t) = (IN ⊗A)︸ ︷︷ ︸
AN

x(t) + (IN ⊗B)︸ ︷︷ ︸
BN

u(t) + (IN ⊗D)︸ ︷︷ ︸
DN

f(t)

+ (IN ⊗ E)︸ ︷︷ ︸
EN

ξ(t) (6)

z = (L⊗ C)︸ ︷︷ ︸
CN

x(t) (7)

where x := Col(x1, ..., xN ), u := Col(u1, ..., uN ),
f := Col(f1, ..., fN ), ξ := Col(ξ1, ..., ξN ) and z :=
Col(z1, z2, ..., zN ). The objective is to design an observer
scheme to reconstruct the faults in the system from the relative
measurements z.

Lemma 1: The pair (L ⊗ C, IN ⊗ A) associated with the
dynamical system at a network level in (6) - (7), defined with
respect to the relative measurement signals, is not observable.

Proof: The pair (L⊗C, IN ⊗A) is observable if and only
if the associated Popov-Belevitch-Hautus (PBH) matrix pencil
for the system in (6)-(7), given by

O(s):=

[
(L⊗ C)

sINn − (IN ⊗A)

]
=

[
(L⊗ C)

IN ⊗ (sIn −A)

]
(8)

is full column rank for all s ∈ C [26]. Since L is symmetric
positive semi-definite, by spectral decomposition L = V ΛV T,
where the orthogonal matrix V ∈ IRN×N constitutes the
eigenvectors of L, and Λ = Diag(λ1, . . . λN ) ∈ IRN×N where
the eigenvalues of L are ordered such that λ1 = 0 < λ2 ≤
. . . ≤ λN . Since L is symmetric it is guaranteed to have N
real eigenvalues. Define two orthogonal scaling matrices

Tl :=

[
(V T ⊗ Ip) 0

0 (V T ⊗ In)

]
and Tr := (V ⊗ In)

Pre and post multiply the PBH matrix O(s) in (8) using Tl

and Tr to create TlO(s)Tr. Since the scaling matrices Tl and
Tr are orthogonal, TlO(s)Tr is full rank if and only if O(s)
is full rank for all s ∈ C. Since V TV = IN and V TLV = Λ, it
follows from the properties of Kronecker products that (V T ⊗
Ip)(L⊗C)(V ⊗ In) = (V TLV ⊗C) = (Λ⊗C) and similarly

1It is reasonable to assume that at least for a finite time interval after its
initial occurrence the fault fi(t) remains bounded, this allows a reasonable
time window in which detection and diagnosis can take place.
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(V T ⊗ In)(IN ⊗ (sIn − A))(V ⊗ In) = (IN ⊗ (sIn − A)).
From these equalities:

TlO(s)Tr =

[
(Λ⊗ C)

IN ⊗ (sIn −A)

]
(9)

Since Λ is diagonal, (Λ ⊗ C) can be written as
Diag(λ1C, . . . , λNC) and therefore from (9)

rank(TlO(s)Tr) =
N∑
i=1

rank

([
λiC

sIn −A

])
(10)

From Assumption 1 the pair (C,A) is observable, implying
[CT (sI−A)T]T is full column rank. However, λ1 = 0 whereas
all other λi, i = 2, . . . N are strictly positive. Consequently

rank

[
λ1C

(sI −A)

]
= rank(sI −A)

and rank(TlO(s)Tr) = (N−1)×n+rank(sI−A). Because
TlO(s)Tr (and hence O(s)) looses rank if s is an eigenvalue
of A, the pair (L⊗ C, IN ⊗A) is not observable. �

Remark 1: The unobservable modes of (L⊗C, IN ⊗A) are
the eigenvalues of A and consequently if the system matrix
A is stable (L ⊗ C, IN ⊗ A) is detectable. The difficulty in
estimating the complete state x from the relative measurements
z is also reported in [21].

To extract the observable-subspace define a coordinate
transformation x → Tx = xo, where T ∈ IRNn×Nn, such
that xo = (T−1

s ⊗ In︸ ︷︷ ︸
T

)x and

T−1
s :=

[
1 0

−1N−1 IN−1

]
(11)

Applying the transformation T to the states x yields

xo = Col(x1, x̄2, x̄3, . . . , x̄N ) = Col(x1, x̄) (12)

where x̄i := xi − x1 for i = 2, . . . , N and
x̄ := Col(x̄2, . . . , x̄N ). As a result of the transformation
(AN , BN , CN , DN , EN ) 7→ (Ao, Bo, Co, Do, Eo) where

Ao:=T (IN ⊗A)T−1 = (IN ⊗A) (13)
Bo:=T (IN ⊗B)=(T−1

s ⊗B)=(IN ⊗B)(T−1
s ⊗Im)(14)

Do:=T (IN ⊗D)=(T−1
s ⊗D)=(IN ⊗D)(T−1

s ⊗Iq) (15)
Eo:=T (IN ⊗ E)=(T−1

s ⊗ E)=(IN ⊗ E)(T−1
s ⊗Ir) (16)

and Co = CNT−1 = (L⊗C)(Ts⊗ In) = (LTs⊗C) In order
to decouple the relative sensing signal, scale z by (Ts

T ⊗ Ip)
to create

zo:=(Ts
T⊗Ip)z=(Ts

T⊗ Ip)(LTs⊗C)xo=(Ts
TLTs⊗C)xo

(17)
From the definition of Ts and the row-sum-equal-to-zero
property of L it is easy to check

Ts
TLTs =

[
0 0
0 Lr

]
(18)

where Lr ∈ IR(N−1)×(N−1) and in fact the matrix Lr in (18)
is a sub-matrix of the original Laplacian matrix with entries
obtained by setting the entire first column and row to zero. In

(18), Lr is a symmetric positive definite matrix. The scaled
relative output measurements in the new coordinate system are

zo =

[
0

(Lr ⊗ C)

]
x̄ (19)

From the definition in (14)

Bou = (IN ⊗B)(T−1
s ⊗ Im)u = (IN ⊗B) Col(u1, ū)︸ ︷︷ ︸

uo

and
Dof(t) = (IN ⊗D)(T−1

s ⊗ Iq)f(t) = (IN ⊗D) Col(f1, f̄)︸ ︷︷ ︸
fo

where ū = Col(ū2, . . . , ūN ) with ūi = ui − u1 and f̄ =
Col(f̄2, . . . , f̄N ) with f̄i = fi − f1 for i = 2, . . . , N . Define
z̄ = (Lr ⊗ C)x̄ then by considering the last (N − 1)n rows
of the partitioned structure of xo, uo and zo, an observable
sub-system can be written as

˙̄x(t) = (IN−1⊗A)︸ ︷︷ ︸
Ā

x̄(t)+(IN−1⊗B)︸ ︷︷ ︸
B̄

ū(t)+(IN−1⊗D)︸ ︷︷ ︸
D̄

f̄(t)

+(IN−1⊗E)︸ ︷︷ ︸
Ē

ξ̄(t) (20)

z̄(t) = (Lr ⊗ C)︸ ︷︷ ︸
C̄

x̄(t) (21)

where ξ̄ := (T−1
s ⊗ Ir)ξ and ξ̄ = Col(ξ̄2, . . . , ξ̄N ).

Lemma 2: The pair (Lr ⊗ C, IN−1 ⊗A) is observable.
Proof: Using arguments similar to those in the proof of

Lemma 1, it can be verified the pair ((Lr ⊗C), (IN−1 ⊗A))
is observable because all the eigenvalues of Lr matrix are
positive. �

Spectral decomposition of symmetric matrix Lr yields

Lr = V̄ Λ̄V̄ T (22)

where Λ̄ = Diag(λ̄2, . . . , λ̄N ) are the eigenvalues s.t. λ̄i >
0, ∀i = 2 . . . N , and V̄ ∈ IR(N−1)×(N−1) is an orthogonal
matrix of the associated eigenvectors. Define a change of
coordinates x̄ → T̄ x̄ = x̃ where T̄ := (V̄ T ⊗ In). In the x̄
coordinates the system matrices (Ā, B̄, D̄, Ē) 7→ (Ã, B̃, D̃, Ẽ)
where

Ã :=T̄ (IN−1⊗A)T̄−1 = (IN−1 ⊗A) (23)
B̃ :=T̄ (IN−1⊗B)=(V̄ T ⊗B)=(IN−1 ⊗B)(V̄ T⊗Im)(24)
D̃ :=T̄ (IN−1⊗D)=(V̄ T ⊗D)=(IN−1⊗D)(V̄ T⊗Iq)(25)

Ẽ :=T̄ (IN−1⊗E)=(V̄ T⊗ E)=(IN−1⊗E)(V̄ T ⊗ Ir)(26)

Define ũ := (V̄ T ⊗ Im)ū and f̃(t) := (V̄ T ⊗ Iq)f̄(t) and scale
z̄ using (Λ̄−1V̄ T ⊗ Ip) to create

z̃ := (Λ̄−1V̄ T ⊗ Ip)z̄ (27)

then it follows z̃ := (Λ̄−1V̄ T ⊗ Ip)(Lr ⊗ C)(V̄ ⊗ In)x̃ =
(IN−1 ⊗ C)︸ ︷︷ ︸

C̃

x̃. Thus, in the new coordinate system (20) - (21)

is equivalent to the decoupled systems
˙̃xi(t) = Ax̃i(t) +Bũi(t) +Df̃i(t) + Eξ̃i(t) (28)
z̃i(t) = Cx̃i(t) (29)

for i = 2, . . . , N where Col(ξ̃2, . . . , ξ̃N ) := ξ̃ and f̃i(t) =∑N−1
j=1 v̄jif̄j(t) where v̄ij is the i, jth element of V̄ .
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III. SLIDING MODE OBSERVER DESIGN

The N − 1 decoupled dynamical systems in (28)-(29) will
be used as the basis for the design of sliding mode observers
to reconstruct (initially) the signals f̃i using the approach
described in [27]. In sliding mode observers the state estima-
tion error is constrained to evolve along a surface associated
with forcing the output estimation error to be identically zero.
The resulting motion – the so-called sliding mode – is of
lower dynamical order, and has the property of invariance to a
certain class of uncertainty [24]. It is assumed that the states
of the system x̃i and the signals f̃i(t), which can be viewed
as ‘virtual faults’, are unknown. Only the signals ũi and z̃i
from (28)-(29) are available to a centralized scheme and can
be obtained by transformations of the control signals u and
relative measurements z.

For each subsystem of the form given in (28)-(29) an
observer of the form

˙̃wi = Aw̃i +Bũi −Glezi +Gnνi (30)

can be created where the local output estimation error ezi :=
Cw̃i− z̃i and z̃i is the relative measurement output from (29).
The nonlinear injection term in (30) is given by

νi = −ρi∥CD∥ ezi
∥ezi∥

, if ezi ̸= 0 (31)

and depends only on ezi .The modulation scalar ρi ∈ R+ must
be chosen to satisfy ρi > β0 + η for some positive scalar η.
The gains Gl and Gn must be computed to ensure a stable
sliding motion on the surface S = {(e2, . . . , eN ) | Cei =
0 for all i = 2 . . . N}. If the uncertainty ξi = 0, necessary
and sufficient conditions for the existence of the gains Gl and
Gn such that the state estimates w̃i(t) → x̃i(t) as t → ∞
despite the presence of the faults f̃i, is that Assumptions 2-4
hold [28]. An estimate for f̃i written as f̃est

i , are then obtained
as

f̃est
i = Wνeq,i, W ∈ IRq×m (32)

for an appropriate choice of W where νeq,i is the so-
called equivalent injection signal associated with the signal in
(31), and represents the average value of the high frequency
switched component νi required to maintain a sliding motion.
For a more detailed explanation see [27]. Since νeq,i ‘compen-
sates’ for the unknown inputs to maintain sliding, it is logical
that proper interrogation of the signal νeq,i yields information
about f̃i. Here, as in (32), the estimate f̃est

i is chosen as a
linear combination of the components of νeq,i (which can be
obtained by low-pass filtering of νi or by approximating (31)
by a sigmoidal signal [27]). Formally the gains Gl, Gn and
W can be synthesised to minimize the L2 gain between ξ̃i and
the estimation error f̃est

i − f̃i. This problem can be efficiently
solved using LMIs [28].

Figure 1 shows the block schematic of the plant and
observer structure at a node level. Note that the available
‘real’ control signals undergo the transformation u ∈ IRNm 7→
uo ∈ IRNm followed by a projection operation to provide
ū ∈ IR(N−1)m. Another transformation followed by de-
multiplexing provides the ũi ∈ IRm for i = 2 . . . N for use as
the available signal in (30).

Fig. 1. Observer architecture

The estimate of the virtual fault at the network level is

f̃est(t) := (IN−1 ⊗W )νeq (33)

where f̃est := Col(f̃est
1 , . . . , f̃est

N−1) and νeq :=
Col(νeq2 , . . . , νeqN ). To obtain f̄est, i.e the estimates of
the relative faults f̄ , the inverse transformation

f̄est(t) := (V̄ ⊗ Iq)f̃
est(t) (34)

is employed and hence

f̄est
i+1(t) =

N−1∑
j=1

v̄ijWνeqj (35)

for i = 1, . . . , N − 1 where v̄ij is the i, j element of v̄. The
expression in (35) reconstructs the relative faults. (Recall that
f̄i(t) = fi(t)− f1(t).) Figure 2 explains the fault estimation.
The original faults can then be reconstructed by appropriate
logic as outlined below:

i) Case 1: When there is no fault (i.e f1(t) ≡ 0) in node 1:
Since by definition f̄i(t) = fi(t)−f1(t), when f1(t) = 0
it follows fi(t) = f̄i(t) for i ≥ 2 and is estimated by
f̄est
i (t).

ii) Case 2: When there is a fault in f1(t) and no faults
exist in any other nodes fi(t) = 0 for i = 2...N .
Since f̄i(t) = fi(t) − f1(t), it follows f̄i(t) = −f1(t)
for i = 2, . . . , N and so all reconstructions f̄est

i (t) for
i = 2, . . . , N provide fault estimations for −f1(t).

iii) Case 3: When there are multiple faults, the situation
cannot necessarily be described generically, and fault iso-
lation though estimation will be more difficult. However,
for example, consider the case when a fault occurs in
nodes 1 and k so that f1(t) ̸= 0 and fk(t) ̸= 0. As argued
above f1(t) will affect f̄est

i (t) for all i = 2, . . . , N .
Furthermore, the fault fk(t) will appear in f̄est

k (t) only
– specifically f̄k(t) := fk(t)− f1(t) and there will be a
‘cumulative effect’. However, f1(t) and fk(t) can still be
estimated sequentially using appropriate logic. In multiple
faults in nodes other than the 1st one, the logic is easier
since there is no cumulative effect and f̄est

i (t) = fi and
f̄est
j (t) = fj for i, j ∈ {2, . . . , N}.

Remark 2: For a network with N nodes, the proposed
observer framework has N−1 observers, and each observer is
designed in a decentralised manner in the coordinates of (28)-
(29). This provides computational tractability in the case of
large scale systems of high order and many nodes. However,
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Fig. 2. Fault reconstruction architecture

the actual implementation of the observers for reconstruction
of the faults, requires a centralised approach.

Remark 3: The centralised approach described above could
be prohibitive in the case of a very large network, and in such
a situation semi-decentralised, decentralised and/or distributed
approaches would be more beneficial. However the ideas
above can also be used to create a semi-decentralised observer
architecture similar to [21]. First define Ni = |Fi| and let
{j1, j2 . . . , jNi} = Fi i.e., the indices of the nodes for which
node i has relative information. Define an augmented state by

x̄i = Col(xi, xj1 , xj2 . . . xjNi
) (36)

Suppose that each node has a control law ui = Kxi, then

˙̄xi(t) = Āx̄i(t) + D̄f̄i(t) (37)

where f̄i = col(fi, fj1 , fj2 . . . , fjNi
) and the matrices Ā =

(INi+1 ⊗ Ac) and D̄ = (INi+1 ⊗D) where Ac = A + BK.
Suppose that instead of summing the relative information zij
as in (3), the information is concatenated as

z̄i = Col(zij1 , zij2 . . . , zijNi
) (38)

The information in z̄i ∈ IRqNi is available at node i and z̄i =
C̄x̄i where

C̄ =


C −C 0 0 0 0
C 0 −C 0 0 0
...

... . . . 0 −C 0
C 0 0 0 0 −C

 (39)

For the system associated with the triple (Ā, D̄, C̄) of order
n(Ni + 1), it can be shown using a similar approach to that
employed in Section II, that the pair (Ā, C̄) is unobservable,
but by applying the state transformation in Lemma 1, an
observable nNi order system can be identified of the form
((INi ⊗Ac), (INi ⊗D), (INi ⊗ C)) associated with relative
faults f̃j = fj − fi for j ∈ Fi. If the triple (A,D,C) satisfies
Assumptions 2-4 then (Ac, D,C) also satisfies Assumptions
2-4 and the sliding mode methodology described above is
directly applicable to estimate the relative faults f̃j . If Ni > 2

then the actual faults can be reconstructed as described in
Section III. Note that the resulting semi-decentralised observer
deployed at node i only requires the measurements in (38)
which are local and available at that node.

IV. SIMULATIONS

A network of twenty five interconnected flexible link robot
dynamical systems is considered, each modelled as [29], [30]:

θ̇im
ω̇i
m

θ̇il
ω̇i
l

 =


0 1 0 0

− Kl
Jm

− B
Jm

Kl
Jm

0
0 0 0 1
Kl
Jl

0 −Kl
Jl

− mgh
Jl

0




θim
ωi
m

θil
ωi
l

+


0

Kτ
Jm

0
0

ui +


0

Kτ
Jm

0
0

 f i +


0
0
0

mgh
Jl

 ξi (40)

zi =
∑
j∈Ji

C(xi − xj) (41)

for i = 1 . . . N where C = [I3 03×1] and the states represent
the angular position and velocity of the motor shaft (θim and
ωi
m) and the angular position and velocity of the link (θil

and ωi
l ). In this example D = B and the scenario which is

considered is concerned with an ‘actuator fault’ occurring in
the motor driving the flexible links. The bounded disturbance
term ξi is associated with the gravity term involving approxi-
mations of sin(θil). Details of the physical parameters in (40)
are given in [29], [30]. A randomly generated bidirectional
graph Laplacian is used.

Following the transformations discussed in Section II, and
depicted in Figure 2, 24 decoupled systems in the form of
(28) - (29) are obtained. Then 24 decoupled sliding mode
observers, as described in (30), are synthesised following the
design procedure described in [28]. The associated observer
gains Gli , Gni ∈ IR4×3 and W ∈ IR1×3 are synthesised using
LMI optimization to minimize the effect of the ξi’s on the
reconstructions [28]. In this example, the gains are

Gl=

 0.1130 −0.0717 0.0472
−0.0581 3.2318 0.4159
0.0571 0.6213 0.1416

−0.5567 2.1673 0.0922

 ,

and

Gn=

 1.1296 −0.5806 0.5710
−0.5806 26.1774 5.0328
0.5710 5.0328 1.7133

−5.5674 17.5551 1.1156


and W =

[
−0.0269 1.2107 0.2328

]
. The L2 gain be-

tween the uncertainty and the fault estimation error is 0.0463.
Here the nonlinear injection signal in (31) is approximated
as νeqi = −ρi

ezi
∥ezi∥+δ where ρ = 50.0 and δ = 0.001. In

the simulations, a variable step integration scheme with the
‘Ode15s’ solver is used, with the maximum step-size fixed
at 1e-3. Due to space restrictions, a single representative case
(multiple faults in the network including node 1) is considered
here.
Faults are introduced in the network in the 1st node (a sum of
sinusoid occurring at 2.5sec), and later in two other nodes (in
one node a rate limited staircase fault signal is introduced and
then a rate limited sawtooth type signal is introduced in the
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Fig. 3. Fault reconstruction with faults introduced in randomly chosen nodes

other). The strategy is to look at the multiple (nearly) identical
reconstruction signals which will correspond to a fault in the
first subsystem. Thus, f1(t) is estimated initially. Subsequently
all the other faults can be reconstructed by correcting the
reconstruction signals so that the estimate of a fault in node
k > 1 is given by f̄est

k + fest
1 where fest

1 is the estimate
of the fault in node 1. Figure 3 shows a scenario involving
the reconstruction of three faults. Figure 3(a) shows all the
reconstructed relative fault signals obtained from (35) (24 in
this case). Clearly multiple nearly identical signals are present.
This is due to the presence of the fault in the first node
which is embedded in all the reconstruction signals. In the
first subplot of Figure 3, the cumulative effect of the two
other faults present in the reconstruction signals can be seen.
First f1(t) is estimated (this is shown in the second subplot -
Figure 3(b)). Subsequently, the effect of the fault in node 1 is
‘removed’ from all the other reconstruction signals (shown in
the last subplot). Note, by doing this, the other two faults are
estimated quite accurately as shown in Figure 3(c) and 3(d).

V. CONCLUSIONS

A robust fault estimation method, based on sliding mode
observers, has been proposed for a collection of agents under-
taking a shared task and exchanging only relative information
over a communication network. The resulting ‘system of sys-
tems’, with respect to relative sensing information, is not ob-
servable; however by appropriate transformations and scalings
of the inputs and outputs of the actual system, a meaningful
observable subsystem can be created. For this new subsystem,
after modal decomposition based on the associated Laplacian,
an available robust fault estimation scheme can be used to
synthesize decentralized observers for fault estimation. These
collectively form a centralized fault estimation scheme for the
original system. The fault estimation framework proposed in
this paper has been applied to a network of flexible link robots
to demonstrate its efficacy.
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