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Robust pole placement with Moore’s algorithm

Robert Schmid, Amit Pandey and Thang Nguyen

Abstract

We consider the classic problem of pole placement by state feedback. We adapt the Moore eigen-

structure assignment algorithm to obtain a novel parametric form for the pole-placing gain matrix, and

introduce an unconstrained nonlinear optimization algorithm to obtain a gain matrix that will deliver

robust pole placement. Numerical experiments indicate thealgorithm’s performance compares favorably

against several other notable robust pole placement methods from the literature.

I. INTRODUCTION

We consider the classic problem of pole placement for LTI systems in state space form

ẋ(t) = Ax(t) +B u(t), (1)

where, for all t ∈ R, x(t) ∈ R
n is the state, andu(t) ∈ R

m is the control input.A and B

are appropriate dimensional constant matrices. We assume that B has full column rank. We

let L = {λ1, . . . , λν} be a self-conjugate set ofn complex numbers, with associated algebraic

multiplicities M = {m1, . . . , mν} satisfyingm1 + · · · + mν = n. The problem ofexact pole

placement by state feedback (EPP) is that of finding a real matrixF such that the closed-loop

matrix A+BF has non-defective eigenvalues inL, i.e F satisfies

(A+BF )X = XΛ (2)

whereΛ is an×n diagonal matrix obtained from the eigenvalues ofL, including multiplicities,

andX is a non-singular matrix of closed-loop eigenvectors of unit length. If (A,B) has any

uncontrollable modes, these are assumed to be included within the setL. The EPP problem has

been studied for several decades, and the existence of such amatrix yielding diagonalΛ requires

themi to satisfy certain inequalities in terms of the controllability indices of the pair(A,B) [2];
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in particularmi ≤ m for all mi ∈ M is required. In this paper we shall assume(A,B,L,M) are

such that at least oneF exists that yields diagonalΛ. Notable early papers offering algorithms

to obtaining the required gain matrixF include [3], which gave a method for single-input single

output (SISO) system, but this was often found to be numerically inaccurate. Varga [4] gave a

numerically reliable method to obtainF for multiple-input multiple output (MIMO) systems.

For SISO systems,F is unique, while for MIMO systems it is not, and this naturally invites

the selection ofF that achieves the desired pole placement and also possessesother desirable

characteristics, such as minimizing the control input amplitude used, and improving numerical

stability. In order to consider optimal selections for the gain matrix, it is important to have

a parametric formula for the set of gain matrices that deliver the desired pole placement,

and numerous such parameterizations have appeared. Bhattacharyya and de Souza [5] gave a

procedure for obtaining the gain matrix by solving a Sylvester equation in terms of an × m

parameter matrix, provided the closed-loop eigenvalues did not coincide with the open loop

ones. Fahmy and O’Reilly [6], gave a parametric form in termsof the inverses of the matrices

A − λiI, which also required the assumption that the closed loop eigenvalues were all distinct

from the open loop ones. Kautskyet al [7] gave a parametric form involving a QR-factorization

for B and a Sylvester equation forX; this formulation did not require the closed-loop poles to

be different from the open-loop poles.

The classic eigenstructure assignment algorithm of B.C. Moore [9] quantified the freedom to

simultaneously assign both the closed-loop eigenvalues, and also select the associated eigenvec-

tors. As such it implicitly solved the EPP problem, but it didnot explicitly provide a parametric

formula for the pole-placing matrix, nor did it address any optimal pole placement problem. In

this paper we adapt Moore’s algorithm to obtain a simple parametric formula for the pole-placing

gain matrix, in terms of ann×m parameter matrix. The method obtains the eigenvector matrix

X by selecting eigenvectors from the nullspaces of the systemmatrices, and thus avoids the

need for coordinate transformations.

The robust exact pole placement problem (REPP) involves solving the EPP problem and also

obtainingF that renders the eigenvalues ofA+BF as insensitive to perturbations inA, B and

F as possible. Numerous results [10] have appeared linking the sensitivity of the eigenvalues to

various measures of the conditioning ofX, in terms of the Euclidean and Frobenius norms. This

classic optimal control problem also has an extensive literature, and typically two approaches
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have been used to obtain good robust conditioning.

Perhaps the best-known method for the REPP is that of Kautskyet al [7], which involved

selecting an initial candidate set of closed-loop eigenvectors and then using a variety of heuris-

tic methods to make these vectors more orthonormal. This method has been implemented as

MATLAB R©’s place command; this implementation includes a heuristic extension to accom-

modate complex conjugate pairs inL. This algorithm is also the basis of MATHEMATICAR©’s

KNVD command. The use of theplace algorithm has become wide-spread in the control systems

literature, and introductory texts advocating its use include [11] and [12], among many others.

Since the publication of [7], many alternative methods havebeen proposed for the REPP. Tits

and Yang [13] revisited the heuristic methods of [7] and offered a range of improvements; the

algorithms were shown to be globally convergent. Byers and Nash [14], Tam and Lam [15] and

Varga [16] cast the problem as an unconstrained nonlinear optimization problem, in terms of

the Frobenius conditioning, to be solved by gradient iterative search methods. [17] introduced

a method for minimizing the ’departure from normality’ robustness measure, which considers

the size of the upper triangular part of the Schur form. Ait Rami et al [18] introduced a global

constrained nonlinear optimal problem in terms of a Sylvester equation and showed that the

solution could be approximated by a convex linear problem for which the authors gave an

LMI-based algorithm.

Various authors have provided surveys comparing the performance of several of these algo-

rithms. Simaet al [19] conducted testing of the algorithms from [4], [7] and [13] on collections

of systems of varying dimensions; they concluded that the method of [13] generally gave superior

Euclidean (2-norm) conditioning and also improved accuracy. [17] considered the eleven bench-

mark systems in the Byers-Nash collection (see Section IV for a discussion of this collection),

and compared the author’s proposed methods, based on the Schur form of the open loop systems,

with those of [7] and [13] against a range of robustness measures. The methods of [17] generally

gave inferior results to those of [7] and [13], with respect to the Frobenius conditioning. [18]

tabulated figures results for the Frobenius conditioning performance of methods [7], [13], [14]

and [16]. However, the conditioning values were compiled directly from these papers. Since some

of these methods were introduced into the literature more than two decades ago, and noting that

computational resources have improved dramatically over this time, using values from original

publications may unfairly disadvantage the earlier methods, in particular [14].
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In this paper we add to this extensive literature in several ways. In Section 2 we introduce our

parametric form for the pole-placing gain matrix that solves the EPP. The formula is an adaptation

of the pole placement method of Moore [9]; the novelty here isto use Moore’s method to obtain

a parametric formula for bothX, the matrix of eigenvectors andF , the pole-placing gain matrix.

We further show the parametric form is comprehensive, in that it generates all possibleX andF

that solve (2), for the case where the eigenvalues have multiplicity of at mostm. In Section 3 we

utilize this parametric form to propose an unconstrained optimization problem to seek solutions

to the REPP, to be solved by gradient search methods. Our approach most closely resembles

that of [14], but with a different parametric formulation for the pole-placing gain matrix.

In Section 4 we select five of the most prominent methods for the REPP [7], [13], [16],

[14] and [18], and conduct extensive numerical testing to compare their performance against

our method. The first three of these were chosen as they are widely used in the forms of the

MATLAB R©toolboxesplace, robpole andsylvplace respectively. [14] has attracted a large number

of citations over more than two decades, and [18] is the most recent publication to offer a novel

approach for the REPP. All methods were implemented in MATLAB R©2012a, running on the

same computing platform. In addition to conditioning, we also compare their accuracy, matrix

gain and runtime. Finally, Section 5 offers some conclusions as to the relative performance of

these six methods; our method will be shown to offer some performance advantages over all the

other methods surveyed.

II. POLE PLACEMENT VIA MOORE’ S ALGORITHM

We now revisit Moore’s method [9] and adapt it to give a simpleparametric formula for a

gain matrixF that solves the pole placement problem, in terms of an arbitrary real parameter

matrix. We begin with some definitions and notation. For eachi ∈ {1, . . . , ν}, we define the

n× (n+m) system matrix

S(λi) = [A− λiIn B] (3)

whereIn is the identity matrix of sizen. We letTi be a basis matrix for the nullspace ofS(λi),

we usesi to denote the dimension of this nullspace, and we denoteT =: [T1 . . . Tν ]. It follows

that si = m, unlessλi is an uncontrollable mode of the pair(A,B), in which case we will

havesi > m. Let M denote any complex matrix partitioned into submatricesM = [M1| . . . |Mν ]
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such that any complex submatrices occur consecutively in complex conjugate pairs. We define a

real matrixRe(M) of the same dimension asM thus: if Mi andMi+1 are consecutive complex

conjugate submatrices ofM , then the corresponding submatrices ofRe(M) are 1

2
(Mi +Mi+1)

and 1

2j
(Mi −Mi+1). Finally, for any real or complex matrixX of with at leastn+m rows, we

define matricesπ(X) andπ(X) by taking the firstn and lastm rows ofX, respectively.

Proposition 2.1: Let the eigenvalues{λ1, . . . , λν} be ordered so that, for some integers, the

first 2s values are complex while the remaining are real, and for all odd i ≤ 2 s we have

λi+1 = λ̄i. Let K := diag(K1, . . . , Kν), where eachKi is of dimensionsi ×mi, and for all odd

i ≤ 2s, we haveKi = K̄i+1. Let M(K) be an(n+m)× n complex matrix given by

M(K) = TK (4)

and let

X(K) = π(M(K)), (5)

V (K) = π(Re(M(K))) (6)

W (K) = π(Re(M(K))) (7)

For almost every choice of the parameter matrixK, the rank ofX is equal ton. The set of all

m× n gain matricesF satisfying (2) is parameterised inK as

F (K) = W (K)V (K)−1 (8)

whereK is such thatrank(X(K)) = n.

Proof: For any givenK, let M(K) be partitioned according to

M(K) =





V ′

1 . . . V ′

ν

W ′

1 . . . W ′

ν



 (9)

where eachV ′

i andW ′

i are matrices of dimensionsn×mi andm×mi respectively, such that

(A− λi In)V
′

i +BW ′

i = 0 (10)

Note that, for oddi ≤ 2s, we have thatV ′

i = V̄ ′

i+1 are conjugate matrices, asKi = K̄i+1.

Moreover, sinceL is symmetric, we also havemi = mi+1. Define real matrices

Vi =



















1

2
(V ′

i + V ′

i+1) if i ≤ 2 s is odd,
1

2j
(V ′

i−1 − V ′

i ) if i ≤ 2 s is even,

V ′

i i > 2 s

(11)
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and defineWi similarly. Then matricesX, V andW in (5)-(7) may be written as

X = [V ′

1 V ′

2 . . . V ′

2 s | V
′

2 s+1 V ′

2 s+2 . . . V ′

ν ], V = [V1 V2 . . . V2 s | V2 s+1 V2 s+2 . . . Vν ].

andW = [W1 W2 . . . W2 s |W2 s+1 W2 s+2 . . . Wν ]. Let

Ri =
1

2





Imi
−jImi

Imi
jImi



 (12)

Then for each oddi ≤ 2s, we have[V ′

i V ′

i+1]Ri = [Vi Vi+1] and [W ′

i W ′

i+1]Ri = [Wi Wi+1].

Now assumeK is such thatrank(X(K)) = n; thenV (K) is non-singular, and we can obtain

F in (8). We obtainF [V ′

i V ′

i+1] = [W ′

i W ′

i+1] for odd i ∈ {1, . . . , 2 s} andFV ′

i = W ′

i for all

i ∈ {2s+ 1, . . . , ν}. Hence (10) can be written as

(A+BF )
[

V ′

i V ′

i+1

]

=
[

V ′

i V ′

i+1

]

diag(λiImi
, λi+1Imi

), for odd i ∈ {1, . . . , 2 s}(13)

(A+B F )V ′

i = V ′

i (λiImi
), for i ∈ {2 s+ 1, . . . , ν}, (14)

Thus we obtain (2). To see that this formula is comprehensive, we letF be any real gain matrix

satisfying (2). The nonsingular eigenvector matrixX is comprised of column vectorsV ′

i of

dimensionn × mi corresponding to each eigenvalue, such that (13) and (14) hold. Applying

F [V ′

i V ′

i+1] = [W ′

i W
′

i+1] for odd i ∈ {1, . . . , 2 s} andFVi = Wi for all i ∈ {2s+ 1, . . . , ν}, we

obtainV ′

i andW ′

i such that (10) holds. Thus each column vector of the matrix[V ′

i W ′

i ]
T lies

in the kernel ofS(λi), and we have a coefficient vectorKi such that[V ′

i W ′

i ]
T = TiKi. The

complex conjugacy ofV ′

i andV ′

i+1, for each oddi ∈ {1, . . . , 2 s}, implies the conjugacy ofKi

andKi+1. Thus we obtainM(K) in (4) yieldingF in (8).

Finally we letK be arbitrary parameter matrix and consider the rank ofX(K). We introduce

Φ = π(T ) and denoteΦ1, . . . ,Φν as a basis forim Φ. If rank(X(K)) is smaller thann, then

one column of the matrix[Φ1K1,1 . . .ΦνKν,mν
] is linearly dependent of all the remaining ones.

(Here we have usedKi,j to denote thej-th column ofKi). For brevity, let us assume this is

the last column. Then there existn− 1 coefficientsα1,1, . . . , αν,mν−1 (not all equal to zero) for

which

ΦνKν,mν
=

ν−1
∑

i=1

mi
∑

j=1

αi,j ΦiKi,j +

mν−1
∑

j=1

αν,j ΦνKν,j (15)

has a unique solution inKν,mν
. As Kν,mν

is ansν-dimensional parameter vector, (15) constrains

Kν,mν
to lie upon an(sν −1)-dimensional hyperplane, which has empty interior. Thus the set of

parametersK that lead to a loss of rank inX(K) is given by the union of at mostn hyperplanes
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of empty interior. This set therefore has empty interior, and thus also zero Lebesgue measure.

Thus we see thatX(K) and henceV (K) are non-singular for almost all choices of the parameter

matrix K.

The above formulation takes its inspiration from the proof of Proposition 1 in [9], and hence

we shall refer to (5)-(8) as theMoore parametric form for X and F . We note however that

[9] only considered the case of distinct eigenvalues, and did not offer any explicit parametric

formula for the pole-placing gain matrix. Moreover, it did not show that all matricesX andF

solving (2) could be parameterized in the above manner.

It is interesting to compare this parametric form with that of [7], in which the eigenvectors

comprisingX were obtained from the nullspaces of the matricesU1(A − λiI), where the

parameterU1 was obtained from the QR-factorization forB = [U0 U1][Z 0]T , and was also

required to satisfyU1(AX − XΛ) = 0. By contrast, the Moore parametric form obtains the

eigenvectors directly from the nullspaces of the system matrices [A− λiIn B].

III. ROBUST AND MINIMUM GAIN POLE PLACEMENT

WhenA + BF hasn distinct eigenvalues, the sensitivity of an eigenvalueλi of A + BF to

perturbations inA, B, andF can be represented by the condition number [10]

ci =
‖yi‖2‖xi‖2
|yTi xi|

(16)

whereyi andxi are the left and right eigenvectors associated withλi. For the case whereA+BF

is non-defective but has repeated eigenvalues, see [20] fora definition of the corresponding

condition numbers. Furthermore, we have [7]

c∞ := max
i

ci ≤ κ2(X) ≤ κfro(X) (17)

whereκ2(X) = ‖X‖2‖X
−1‖2 and κfro(X) = ‖X‖fro‖X

−1‖fro are the condition numbers of

the matrix of eigenvectorsX with respect to the Euclidean and Frobenius norms. Following

[18], [14], [15], we propose to address the REPP problem by minimizing the condition number

of X with respect to Frobenius norm. The objective function to beminimized is

f1(K) = κfro(X(K)) = ‖X(K)‖fro‖X
−1(K)‖fro (18)

where the input parameter matrixK is defined as in Proposition 2.1. Note it is possible to reduce

the Frobenius norm of a matrixX by suitably scaling the lengths of its column vectors. WhenX
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is the solution to (2), such scaling does not improve the eigenvalue conditioning in (16). Hence

we assume that the column vectors ofX have been normalised.

As pointed out in [14], for efficient computation we can studyan alternative objective function

f2(K) = ‖X(K)‖2fro + ‖X−1(K)‖2fro (19)

because the two objective functions are equivalent. An imported related problem is that of

minimizing the norm of the gain matrixF . The minimum gain robust exact pole placement

problem (MGREPP) involves simultaneously minimizing both the conditioning and the matrix

gain via the weighted objective function

f3(K) = ακfro(X(K)) + (1− α)‖F (K)‖fro (20)

where α is a weighting factor, with0 ≤ α ≤ 1. Minimizing f3 involves a gradient search

employing the first and second order derivatives ofκfro(X(K)) and‖F (K)‖fro; expressions for

these were given in [1].

IV. PERFORMANCE COMPARISON OF ROBUST POLE PLACEMENT METHODS

In this section we conduct extensive numerical experimentsto compare the performance of our

method against those of [7], [18], [13], [14] and [16]. To provide a comprehensive contemporary

survey, we implemented these algorithms on the same modern computer, an IntelR© Core
TM

Quad

CPU, Model Q9400 at 2.66 GHz with 3326 MB of RAM running Windows
TM

XP and MATLAB R©

2012a. Implementation of [7] was done with MATLABR©’s place command. For [13] and [16],

we used therobpole andsylvplace MATLAB R© toolboxes, kindly provided to us by the authors.

For [14], [18] and our own method, we wrote MATLABR© toolbox implementations for each.

The [18] algorithm requires an LMI solver; we chose the public-domaincvx toolbox [21]. We

shall refer to these asbyersnash, rfbt and span (our own method). The names are derived from

the names of the respective authors.

To obtain a fair comparison between these methods, we need toconsider the runtime allocated

to them. The methods of [14], [16] and our proposed method allemploy gradient iterative

searches, so the values they deliver are contingent upon theinitial condition (input parameter

matrix K) used. Thesylvplace toolbox randomly generates an initial condition, and thus offers

different outputs (differentF ) each time it is run. To obtain repeatable results, we provided
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the byersnash andspan toolboxes with a pre-specified collection of input parameter matricesK

composed of canonical vectors. The output shown from each ofbyersnash, sylvplace andspan is

the best result from all the initial conditions searched within the allocated runtime. By contrast

place, robpole andrfbt all employ a designated starting point, and hence their runtime is simply

the time taken to execute their method.

A. Robust conditioning comparison using the Byers and Nash benchmark examples

Byers and Nash [14] gave a collection of eleven benchmark example systems, and many

authors, including [13], [16] and [18] used these examples to compare the performance of their

pole placement methods. Following this well-established tradition, our first set of comparisons

employs these well-known examples. The results are given inTable I. We have usedκfro(X)

as the performance measure, and we also show the matrix gain used.

The average runtimes forplace, robpole andrfbt for the 11 sample systems were0.05, 0.095

and14.1 seconds, respectively. Forbyersnash, sylvplace andspan we arbitrarily set the runtime

to ben seconds, wheren is the system dimension, leading to average runtimes of 4.5 seconds,

this being the average of the system dimensions in the collection.

Ignoring differences in the conditioning of smaller than 1%, we conclude thatbyersnash and

span had the best or equal best conditioning in all 11 examples.sylvplace andrfbt had the best or

equal best in 7 cases, whilerobpole had best or equal best in 5 cases. Finallyplace gave the best

or equal best in 4 cases.place androbpole had the shortest runtimes, whilerfbt had noticeably

the longest. We note that the conditioning numbers given here differ significantly from those

that were published in [14] and [18]. This may be explained bythe fact that these authors did

not require the columns ofX to be of unit length. Since methods [7] and [13] normalise the

columns ofX, this is essential for a fair comparison of all six methods.

B. Robust conditioning comparison with sets of higher-dimensional systems

To probe more deeply into the performance delivered by thesesix methods, we need to

move beyond the low-dimensional examples in the Byers and Nash collection. In Survey 2 we

generated three sets of 500 sample systems with(A,B), all of state dimensionn = 20, and

with control input dimensions ofm = 2, m = 4 andm = 8. The pole positionsL were chosen

to be all distinct, with a mixture of real and complex values.The entries ofA, B andL took
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uniformly distributed values within the interval[−2, 2]. To compare the conditioning, accuracy,

and matrix gain of each method, we computed, for each systemj ∈ {1, . . . , 500} and each

method⋆ ∈ {place, robpole, byersnash, sylvplace, rfbt, span},

• κfro(⋆, j): the Frobenius conditioning of method⋆ for the j-th system;

• c∞(⋆, j): the c∞ conditioning of method⋆ for the j-th system;

• ∆(⋆, j): the accuracy of method⋆ on thej-th system, equal to the largest absolute value

difference between each eigenvalue ofA+BF and the correspondingλi in L.

• ‖F‖fro(⋆, j): the Frobenius norm ofF from Method⋆ on systemj.

Noting that place is the industry standard for the REPP, we chose to compare allthe other

methods according to their ability to improve uponplace, and computed comparative performance

indices relative toplace for each method, and for each performance criterion, as follows:

(1− index(⋆, κfro))
500 =

500
∏

j=1

κfro(⋆, j)

κfro(place, j)
(21)

(1− index(⋆, c∞))500 =
500
∏

j=1

c∞(⋆, j)

c∞(place, j)
(22)

(1− index(⋆,∆))500 =

500
∏

j=1

∆(⋆, j)

∆(place, j)
(23)

(1− index(⋆, ‖F‖fro))
500 =

500
∏

j=1

‖F‖fro(⋆, j)

‖F‖fro(place, j)
(24)

For example, in (24), ifindex(robpole, ‖F‖fro) = 0.1, then Methodrobpole gives values of

‖F‖fro that are on average 10% smaller thanplace. Larger indices imply greater improvement

on place, and negative indices indicate performance inferior toplace. The local gradient search

methodsspan, byersnash and sylvplace were each given20 seconds of runtime per sample

system; the results shown in Table II represent the best conditioning performance achieved from

all the initial conditions searched within that time period. For robpole and rfbt, the average

runtime per sample system were0.552 and 125 seconds (m = 2), 0.552 and 82.9 seconds

(m = 4), and0.552 and55.2 seconds (m = 8).

The results show that the best performance for robustness and gain minimisation were given

by span, byersnash and sylvplace. Both sylvplace and rfbt were less accurate thanplace, by

several orders of magnitude in the case ofrfbt, which also required substantially longer runtime.
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While all methods offered improved conditioning with reduced gain overplace, this was reduced

for the larger values ofm, which may be attributed to the improved performance ofplace when

it has more control inputs to work with.

C. Weighted gain minimisation and conditioning problem

Among the methods in our survey, only [16] (sylvplace) considered the MGREPP problem

(20). Our Survey 3 compares the performance ofsylvplace and span for the same 500 sample

systems used in Survey 2, withm = 2, for several different values of the weighting factorα.

We again gavespan and sylvplace 20 seconds of runtime per sample system, and computed

the performance improvement indices (21)-(24) relative tothe gain matrix delivered byplace;

again larger figures indicate greater improvement. The results are shown in Table III. Both

methods were able to offer significant reductions in gain, atthe price of some reduction in the

robustness measures, relative to the pure robustness problem (α = 1). Howeverspan did so with

far superior accuracy. Considering the impact of differentvalues of the weighting factor, we see

that forα = 0.1, there was little difference in the conditioning, and only slight improvement in

the matrix gain. Forα → 0 we observed up considerable reduction in the matrix gain, but this

eventually comes at the cost of significantly inferior conditioning. These results suggest values

aroundα = 0.001 can give a good balance between these two criteria.

D. Systems with uncontrollable modes

The EPP problem remains well-posed for systems with uncontrollable modes, provided these

are included within the setL. The methodsplace, sylvplace, robpole, rfbt all assumed control-

lability of the system, as part of their problem formulation. In principle this involves no loss of

generality, since the application of a Householder staircase transformation can decompose any

system into its controllable and uncontrollable parts. Nonetheless is it is interesting to consider

the ability of these toolboxes to accommodate uncontrollable modes. In our final survey, we

obtained 100 systems(A,B), with n = 3 andm = 2, that contained one uncontrollable mode.

We then choseL to include this mode, plus one pair of complex conjugate modes. We defined

failure to solve the EPP as being any one of (i) an error was returned upon execution of the

algorithm, (ii) any of the closed-loop poles differed by more than5% from their desired location,

and (iii) the gain ofF was undefined or greater than1010. We observed failures as follows:place,
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sylvplace, robpole and rfbt had 100, 98, 30 and 12 failures, respectively; we concluded these

toolboxes in their present form cannot reliably solve the EPP in these conditions.byersnash

and our methodspan had no failures; we attribute their superior reliability totheir usage of

nullspace methods. Uncontrollable modes increase the column dimension of the corresponding

nullspace basis matrix; forbyersnash and span this is readily accommodated by adjusting the

row dimension of the parameter matrix.

V. CONCLUSION

We have introduced a parametric formula for the exact pole placement of linear systems via

state feedback, derived from Moore’s classic eigenstructure method. This parametric form was

used to formulate the robust and minimum gain exact pole placement problem as an unconstrained

optimization problem, to be solved by gradient iterative methods.

The method was implemented as a MATLABR© toolbox calledspan, and its performance

was compared against several other methods from the classicand recent literature. All methods

considered gave superior performance to the widely used MATLAB R© place command, albeit

with somewhat longer runtime. When the Frobenius conditioning of the eigenvector matrix is

used as the robustness measure, the best performance was provided by the our proposed method,

and also the Byers-Nash method. The results suggest that, incomparison with heuristic methods,

gradient iterative methods are best able to take advantage of the high levels of computational

power that are now widely available. They also suggest that methods based on nullspaces of

appropriate system matrices may offer superior accuracy ofpole placement to those adopting

Sylvester matrix transformations.

For a given system(A,B,L,M), byersnash and span will in general yield quite different

gain matrices, offering different performance values, so both methods should be considered for

optimal performance. While Byers and Nash considered only the robustness, our method is able

to accommodate a combined robustness and gain minimizationapproach, enabling the designer

to obtain significantly reduced gain in exchange for somewhat inferior conditioning.

The authors would like to thank Andre Tits and Andreas Varga for providing us with copies

of their robpole and sylvplace toolboxes, and Ben Chen for bringing the classic eigenstructure

assignment paper by B.C. Moore [9] to our attention. We also thank the anonymous reviewers

for some constructive suggestions.
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TABLE I

SURVEY 1: REPPWITH THE BYERS NASH EXAMPLES

Example place[7] byersnash[14] robpole [13]

κfro(X) ‖F‖fro κfro(X) ‖F‖fro κfro(X) ‖F‖fro

1 6.5641 1.364 6.4451 1.4582 7.3214 1.3338

2 57.491 301.37 50.224 355.19 52.972 224.95

3 103.18 105.06 46.238 77.215 55.987 49.104

4 13.431 9.899 13.421 9.4485 13.421 9.4462

5 146.18 4.8496 142.39 4.5561 144.78 5.4168

6 6.0018 21.5 5.9633 23.25 6.0262 20.197

7 12.375 233.64 11.302 326.35 12.017 235.08

8 36.986 15.7600 6.1824 28.033 6.1824 28.599

9 28.682 2356.5 23.915 832.22 23.937 823.70

10 4.0029 1.4897 4.113 5.2687 4 1.5174

11 14618 6692.1 14510 6580.8 14510 6580.7

Example sylvplace[4] rfbt[18] span

κfro(X) ‖F‖fro κfro(X) ‖F‖fro κfro(X) ‖F‖fro

1 6.5997 1.4662 6.5595 1.5253 6.4451 1.4582

2 50.042 327.75 50.185 361.01 50.224 355.17

3 45.741 72.285 45.772 73.582 46.223 77.146

4 13.421 9.4465 13.421 9.366 13.421 9.4432

5 141.99 4.8472 142.82 4.3963 142.39 4.556

6 5.9361 22.474 6.4086 14.771 5.9622 23.318

7 11.353 271.17 12.280 297.85 11.301 271.06

8 6.1824 21.827 9.381 39.300 6.1824 21.102

9 24.23 903.11 23.925 884.84 23.916 831.23

10 4.113 1.513 4 1.5185 4 1.517

11 16571 10716 14475 6642 14510 6581.3
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TABLE II

SURVEY 2: REPPWITH HIGHER-DIMENSIONAL SYSTEMS

System Dimension Metric byersnash[14] robpole [13] sylvplace[4] rfbt[18] span

n = 20, κfro(X)(%) 54.670 9.8815 51.938 41.332 54.603

m = 2, c∞(%) 62.047 10.620 59.759 49.447 61.983

sys = 500 ‖F‖fro(%) 23.555 1.9292 22.310 14.337 23.276

Accuracy (%) 67.356 26.998 -1.0082 -46237 64.344

n = 20, κfro(X)(%) 37.268 9.150 36.725 31.048 37.264

m = 4, c∞(%) 49.418 9.8601 50.226 43.374 49.400

sys =500 ‖F‖fro(%) 15.677 4.3745 15.524 11.163 15.698

Accuracy (%) 45.057 23.760 -65.586 -169100 43.034

n = 20, κfro(X)(%) 15.198 7.7702 11.745 12.849 15.197

m = 8, c∞(%) 23.271 10.067 20.848 20.840 23.236

sys =500 ‖F‖fro(%) 3.7940 4.7471 3.3979 1.7034 3.7860

Accuracy (%) 18.525 17.8859 -44.635 -338240 16.225

TABLE III

SURVEY 3: MGREPPWITH HIGHER DIMENSIONAL SYSTEMS(n = 20, m = 2, SYS =500)

Metric
α = 0.0001 α = 0.001 α = 0.1

span sylvplace[4] span sylvplace[4] span sylvplace[4]

κfro(X)(%) -25.578 23.980 37.641 41.906 53.936 51.699

c∞(%) -13.540 33.929 45.966 51.379 61.213 59.465

‖F‖fro(%) 50.319 38.046 43.577 37.740 27.509 26.404

Accuracy (%) 16.992 -46.326 57.833 -16.025 65.643 -1.0463
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