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Abstract

In many applications of multi-agent systems (MAS), a set of leader agents acts as a control input to the

remaining follower agents. In this paper, we introduce an analytical approach to selecting leader agents

in order to minimize the total mean-square error of the follower agent states from their desired value in

steady-state in the presence of noisy communication links. We show that the problem of choosing leaders

in order to minimize this error can be solved using supermodular optimization techniques, leading to

efficient algorithms that are within a provable bound of the optimum. We formulate two leader selection

problems within our framework, namely the problem of choosing a fixed number of leaders to minimize

the error, as well as the problem of choosing the minimum number of leaders to achieve a tolerated

level of error. We study both leader selection criteria for different scenarios, including MAS with static

topologies, topologies experiencing random link or node failures, switching topologies, and topologies

that vary arbitrarily in time due to node mobility. In addition to providing provable bounds for all these

cases, simulation results demonstrate that our approach outperforms other leader selection methods, such

as node degree-based and random selection methods, and provides comparable performance to current

state of the art algorithms.

1Corresponding author. Email: lb2@uw.edu
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I. INTRODUCTION

Multi-agent systems (MAS) consist of networked, autonomous agents, where each agent

receives inputs from its neighbors, uses the inputs to perform computations and update its

state information, and broadcasts the resulting information as output to its neighbors. The

MAS framework has been used to model and analyze man-made systems in a wide variety

of applications, including the power grid [1], formations of unmanned vehicles [2], sensor

networks [3], and networks of nanoscale devices [4]. Natural phenomena, such as flocking in

birds [5], have also been modeled as MAS.

An important sub-class of MAS consists of leader-follower systems, in which a set of leader

agents act as control inputs to the remaining agents [6]. Each follower agent computes its state

value based on the states of its neighbors, which may include one or more leader agents. Hence,

controlling the states of the leaders influences the dynamics of the follower agents. A leader-

follower system can therefore be viewed as a controlled system, in which the follower agents

act as the plant and the leader agents act as control inputs [7].

Existing control-theoretic work on leader-follower systems has shown that the performance

of the system, including the level of error in the follower node states due to link noise [8], [9],

[10], depends on which agents act as leaders. Errors in a follower agent’s state occur when the

inputs from its neighbors are corrupted by noise, causing the agent to update its state based

on incorrect information. The affected agent will broadcast its updated state information to its

neighbors, which update their states based on the received information, causing state errors to

propagate through the MAS. The choice of leader agents determines the level of error in the

follower agent states due to the propagation of leader inputs through noisy communication links.

In spite of the effect of the choice of leader agents on MAS performance, the design of

algorithms for selecting agents to act as leaders is currently in its early stages. Since the number of

possible leader sets grows exponentially in the number of leaders and the total number of agents,

an exhaustive search over all leader sets is impractical. An analytical approach for choosing

leaders in order to ensure that the MAS is controllable from its leader agents was introduced

in [11]. This approach, however, does not consider the impact of noise in the communication

links between agents, leading to deviations from the desired behavior when even a single link

experiences noise.
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Leader selection algorithms based on convex optimization have been proposed for static

networks in order to minimize the error in the follower agent states due to noise in [12] and [13].

These convex optimization-based algorithms, however, do not provide provable guarantees on

the optimality of the resulting leader set. Currently there is no analytical framework for leader

selection for minimizing error due to noise that provides such guarantees.

In this paper, we present an analytical approach to solve the problem of selecting the leader set

that minimizes the overall system error, defined as the mean-square error of the follower agent

states from their desired steady-state value. We formulate the problem of selecting the optimal set

of leaders as a set optimization problem, and present a solution framework based on supermodular

optimization. Our framework leads to efficient algorithms that provide provable bounds on the

gap between the mean-square error resulting from the leader set under our framework and the

minimum possible error in both static and dynamic networks. We make the following specific

contributions:

• We develop a supermodular optimization framework for choosing leaders in a linear MAS

in order to minimize the sum of the mean-square errors of the follower agent states.

• We prove that the mean-square error due to link noise is a supermodular function of the set

of leader agents by observing that the error of each follower agent’s state is proportional

to the commute time of a random walk between the follower agent and the leader set2. We

then show that the commute time is a supermodular function of the leader set.

• We analyze two classes of the leader selection problem within our framework: the problem

of choosing a fixed number of leaders in order to minimize the error due to noise, and the

problem of finding the minimum number of leaders needed, as well as the identities of the

leaders, in order to meet a given error bound.

• We extend our approach to a broad class of multi-agent system topologies, including systems

with: (1) static network topology, (2) random link and node failures, (3) switching between

predefined topologies, and (4) network topologies that vary arbitrarily in time.

• We compare our results with other leader selection methods, including random heuristics and

choosing high- and average-degree agents, through simulation and show that our supermod-

2The formulation in this paper differs from that of [14], which selected leaders based on minimizing the effective resistance

of an equivalent electrical network.
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ular approach outperforms both schemes. We also show that the supermodular optimization

approach provides comparable performance to state-of-the-art methods based on convex

optimization.

The paper is organized as follows. In Section II, we review related work on leader-follower

MAS. Section III states our basic definitions and assumptions and gives background on su-

permodular functions. In Section IV, we formulate the leader selection problem for the case of

MAS with a static network topology and derive a supermodular optimization solution. In Section

V, we analyze leader selection in networks with time-varying, dynamic topologies. Section VI

evaluates our approach and compares with other widely-used leader selection algorithms through

a simulation study. Section VII presents our conclusions.

II. RELATED WORK

The impact of a given leader set on system performance was considered in [15], where the

states of the follower agents are treated as the plant to be controlled, while the leader states

act as control inputs. In the case of linear MAS, the plant dynamics are given by the graph

Laplacian of the subgraph defined by the follower agents. In [15], it was shown that the leader-

follower system is controllable from the leader agents if and only if the Laplacian eigenvalues

are distinct. An alternative condition for controllability, based on the automorphism group of the

graph, was given in [16]. Controllability of MAS with switching network topology was studied

in [17]. Although these studies characterized the controllability of leader-follower systems with

a given leader set, they have not addressed the question of finding the leader set.

A systematic framework for leader selection in the absence of noise was developed in [11].

The authors showed that leaders chosen according to a matching algorithm on the underlying

communication graph of the MAS satisfy the structural controllability criterion [18], meaning

that the system is controllable from the leaders for any choice of follower dynamics, except in

certain pathological cases. The resulting polynomial-time algorithm returns the minimum number

of leaders, as well as the identities of the leaders, needed to control the system. This approach,

however, does not consider the effect of errors in the agent states that are introduced by noise

in the communication links.

Leader selection in the presence of noise in networks with static topology was considered in

[9]. The authors of [9] introduce the network coherence metric, which measures how close the
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follower agents states are to their desired consensus values, and equals the H2-norm of the leader-

follower system. It is shown that the network coherence is a monotone nonincreasing function

of the leader set, and a greedy algorithm for maximizing the network coherence is presented.

While the network coherence is equivalent to the metric we derive for static networks, provable

bounds on the optimality of the selected leader sets cannot be derived from monotonicity alone.

In [12], [13], the authors propose a semidefinite programming relaxation of the problem of

selecting a set of up to k leaders to minimize the H2-norm defined in [9]. These algorithms,

however, do not provide any guarantees on the optimality of the chosen set of leaders.

Furthermore, while current approaches consider selecting a set of up to k leaders in static

networks in order to minimize the error in the agent states, the problem of selecting the minimum-

size set of leader agents to meet a given bound on the error, as well as leader selection in dynamic

networks, is not studied in [9], [12], [13].

When the leader set is given, the effect of noise on leader-follower MAS protocols, such as

consensus, has been studied using a variety of approaches. For a leader-follower system with

additive link noise, the steady-state error due to noise was shown to be proportional to the

graph effective resistance between the leader and follower agents in [19]. Alternative metrics,

based on the transfer matrix between the noise inputs and the follower states, were proposed and

analyzed in [8]. In [10], decentralized control for vehicular networks with static topology, single-

and double-integrator dynamics, and noise in the agent states was considered, and it was proved

that at least one leader node must be present in the network to achieve stability. In [20], existing

schemes for consensus and vehicle formation control were studied in the H2-norm framework.

While these methods can be used to design and evaluate a leader-follower system with given

leaders, they do not address the question of selecting a leader set in the presence of noise.

The commute time of a random walk on a graph, defined as the expected time for a walk

originating at a node u to reach a node v, has been extensively studied [21]. In [22], it was shown

that the graph effective resistance between two nodes u and v is proportional to the commute

time of a random walk between u and v. To the best of our knowledge, however, our result

that the commute time between a node u and a set S is a supermodular function of S does not

appear in the existing literature.
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III. PRELIMINARIES AND BACKGROUND

In this section, we give preliminary information on the system model, system error, and super-

modular functions.

A. System Model

We consider a MAS consisting of n agents, indexed by the set V = {1, . . . , n}. An edge

(i, j) exists between agents i and j iff i and j are within communication range of each other.

Letting E denote the set of edges, the graph structure of the MAS is given by G = (V,E). For

an agent indexed i, the neighbor set of i, denoted N(i), is defined by N(i) , {j : (j, i) ∈ E}.

The degree of i is defined to be the number of its neighbors |N(i)|. It is assumed that the edges

are undirected and the graph G is connected.

Each agent i has a time-varying state, denoted xi(t), which may, in different contexts, represent

i’s position, velocity, or sensed measurement. Let x ∈ Rn represent the vector of agent states.

The set of leader agents, denoted S, consists of agents who receive their state values directly

from the MAS owner. By broadcasting these state values to their one-hop neighbors, the leaders

influence the dynamics of the follower agents. Without loss of generality, we choose the indices

such that x(t) = [xf (t)
T xl(t)

T ]T , where xf (t) and xl(t) denote the vectors of follower and

leader states, respectively.

The goal of the MAS is for the differences between the states of neighboring agents i and j,

xi−xj , to reach desired values, denoted rij , for all (i, j) ∈ E, so that xi−xj = rij . The desired

state x∗i is defined as the state satisfying x∗i − x∗j = rij for all j ∈ N(i). We assume that rij is

known to agents i and j and the MAS owner, and that there exists at least one value of x∗ such

that x∗i − x∗j = rij for all (i, j) ∈ E.

In the noiseless case, in order to reach the desired state x∗, the follower agent i ∈ V \ S

updates its state according to the linear model

ẋi(t) = −
∑
j∈N(i)

Wij(xi(t)− xj(t)− rij),

where W is a real-valued weight matrix with nonnegative entries. Furthermore, it is assumed

that each link (i, j) is affected by an additive, zero-mean white noise process, denoted εij(t),

with autocorrelation function E(εij(t)εij(t+ τ)) = νijδ(τ), where δ(·) denotes the unit impulse
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function. The noise values on each link are assumed to be independent. This leads to the overall

linear dynamics of agent i ∈ V \ S

ẋi(t) = −
∑
j∈N(i)

Wij(xi(t)− xj(t)− rij + εij(t)). (1)

In order to minimize the effect of noise, it is assumed that the link weights Wij are chosen in

order to generate a best unbiased linear estimate of the leader agent states [19]. The link weights

are therefore chosen as Wij = ν−1
ij /Di, where Di ,

∑
j∈N(i) ν

−1
ij . A detailed derivation of these

dynamics is given in Appendix A.

Define the elements of the weighted Laplacian matrix L by

Lij =


−ν−1

ij , (i, j) ∈ E

Di, i = j

0, else

(2)

which can be further decomposed as

L =

 Lff Lfl

Llf Lll

 ,

where Lff and Lfl characterize the impact of the follower and leader agent states, respectively,

on the follower update dynamics. The dynamics of the follower agent (1) for i ∈ V \ S can be

written in terms of L as

ẋi(t) = −D−1
i

∑
j∈N(i)

ν−1
ij (xi(t)− xj(t)− rij + εij(t))

= −D−1
i

 ∑
j∈N(i)

ν−1
ij xi(t)−

∑
j∈N(i)

ν−1
ij xj(t)−

∑
j∈N(i)

ν−1
ij rij

+ wi(t)

= −D−1
i

Liixi(t) +
∑
j∈N(i)

Lijxj(t) +
∑
j∈N(i)

Lijrij

+ wi(t),

where wi(t) is a zero-mean white noise process. Define matrix B to be an (n − |S|) × |E|

matrix, with Bil = Lij if edge l is given by (i, j) for some j ∈ N(i) and Bil = 0 otherwise.

The dynamics of the follower agents are given in vector form by

ẋf (t) = −D−1
f (Lffxf (t) + Lflxl(t) +Br) + w(t),

where Df is a (n− |S|)× (n− |S|) diagonal matrix with Di as the i-th diagonal entry.
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We assume that the leaders maintain a constant state, xl(t) ≡ x∗l . Based on this assumption,

the desired state of the followers is defined to be x∗f = −L−1
ff (Lflx

∗
l + Br), where we use the

fact that L−1
ff exists when G is connected [23, Lemma 10.36].

B. Quantifying System Error

The mean-square error in the follower agent states due to link noise in steady-state is defined

as follows.

Definition 1. Let x∗f ∈ Rn denote a desired state for the follower agents. The total error of

the follower agents at time t is defined by E||xf (t)− x∗f ||22. The system error, denoted R(S), is

defined as

R(S) , lim
t→∞

E||xf (t)− x∗f ||22.

The following theorem gives an explicit formula for R(S) in terms of the matrix L.

Theorem 1. R(S) is equal to 1
2
Tr(L−1

ff ) = 1
2

∑
u∈V \S (L−1

ff )uu, where (L−1
ff )uu denotes the (u, u)-

entry of L−1
ff .

Proof: In the absence of noise, the follower agent dynamics are given by

ẋf (t) = −D−1
f (Lffxf (t) + Lflx

∗
l +Br). (3)

Since Lff is positive definite when G is connected [23, Lemma 10.36], x∗f = −L−1
ff (Lflx

∗
l +Br)

is a global asymptotic equilibrium of (3). In the presence of noise, xf (t) is given by

xf (t) = e−D
−1
f Lff txf (0)−

∫ t

0

e−D
−1
f Lff (t−τ)D−1

f (Lflx
∗
l +Br) +

∫ t

0

e−D
−1
f Lff (t−τ)w(τ) dτ . (4)

The first two terms converge to x∗f , since x∗f is a global asymptotic equilibrium of (3). Since w

is a zero-mean white process, the expected value of the third term of (4) is zero by linearity of

expectation. Thus limt→∞E(xf (t)− x∗f ) = 0, leading to

R(S) = lim
t→∞

E||xf (t)− x∗f ||22 =
∑
u∈V \S

E((xu(t)− x∗u)2) =
∑
u∈V \S

var(xu(t)), (5)

where (5) follows from the fact that xu(t)− x∗u is zero-mean, where xu(t) denotes the state of

agent u at time t. In [19, Section IV-B], it was shown that limt→∞ var(xu(t)) = 1
2
(L−1

ff )uu (see

Lemma 6 in Appendix A for a proof of this fact), implying that R(S) = 1
2

∑
u∈V \S (L−1

ff )uu, as

desired.
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For u ∈ V \ S, let R(S, u) = 1
2
(L−1

ff )uu, so that R(S) =
∑

u∈V \S R(S, u). Note that L−1
ff can

be computed in worst-case O(n3) time for a given leader set S.

C. Supermodular Functions

Let V be a finite set, and let 2V denote the set of subsets of V . Then a supermodular function

on V is defined as follows.

Definition 2. Let f : 2V → R, and let S ⊆ T ⊆ V . The function f is supermodular if and only

if, for any v ∈ V \ T ,

f(S)− f(S ∪ {v}) ≥ f(T )− f(T ∪ {v}). (6)

Intuitively, this identity implies that adding an element v to a set S results in a larger

incremental decrease in f than adding v to a superset, T . This can be interpreted as diminishing

returns from v as the set S grows larger. A function f is submodular if -f is supermodular. We

first define the notion of a monotone set function.

Definition 3. A function f : 2V → R is monotone nondecreasing (resp. nonincreasing) if, for

any S ⊆ T , f(S) ≤ f(T ) (resp. f(S) ≥ f(T )).

The following two lemmas from [24] will be used in our derivations below.

Lemma 1. Any nonnegative finite weighted sum of supermodular (resp. submodular) functions

is supermodular (resp. submodular).

Lemma 2. Let f : 2V → R be a nonincreasing supermodular function, and let c ≥ 0 be a

constant. Then g(S) = max {f(S), c} is supermodular.

A proof of Lemma 2 can be found in Appendix B.

IV. LEADER SELECTION IN STATIC NETWORKS

In this section, we consider the problem of selecting a leader set in order to minimize the system

error in static networks, in which the set of links E and the error variances νij do not change

over time. We address this problem for two cases. In the first case, no more than k agents can

act as leaders, and the goal is to choose a set of leaders that minimizes the system error. In
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the second case, the system error cannot exceed an upper bound α, and the goal is to find the

minimum number of leaders, as well as the identities of the leader, such that the system error

is less than or equal to α. In both cases, we construct algorithms for leader selection.

A. Case I – Choosing up to k Leaders to Minimize System Error

The problem of choosing a set S of k leaders in order to minimize the system error R(S) is

given by
minimize R(S)

s.t. |S| ≤ k
(7)

Note that problem (7) always has at least one feasible solution when k ≥ 1, for example any

set consisting of a single node. In what follows, we prove that the total system error R(S) is a

supermodular function of the leader set S, leading to efficient algorithms for approximating the

optimal solution to (7) up to a provable bound. We first prove that for each agent u, R(S, u) is

proportional to the commute time of a random walk on the graph G from agent u to the leader

set S, and then show that the commute time is supermodular. The supermodularity of R(S)

follows as a corollary.

Theorem 2. Define a random walk on the graph G starting at node u ∈ V \ S, in which the

probability of transitioning from node i to node j ∈ N(i), denoted P (i, j), is given by

P (i, j) =
ν−1
ij

Di

. (8)

The commute time κ(S, u), defined as the expected number of steps for the random walk to reach

the leader set S and return to u, is proportional to R(S, u) = (L−1
ff )uu.

The proof of Theorem 2 can be found in the appendix.

Theorem 3. The commute time κ(S, u) is a nonincreasing supermodular function of S.

Proof: The nonincreasing property follows from the fact that, if S ⊆ T , then any walk that

reaches S and returns to u has also reached T and returned to u. Thus κ(T, u) ≤ κ(S, u).

By Definition 2, κ(S, u) is a supermodular function of S if and only if, for any sets A and

B with A ⊆ B and for any j /∈ B,

κ(A, u)− κ(A ∪ {j}, u) ≥ κ(B, u)− κ(B ∪ {j}, u). (9)
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Consider the quantity κ(A, u)− κ(A ∪ {j}, u). Define A′ = A ∪ {j}, and define TAu and TA′u

to be the (random) times for a random walk to reach A (respectively A′) and return to u. Then

by definition, κ(A, u) = E(TAu) and κ(A′, u) = E(TA′u). This implies κ(A, u) − κ(A′, u) =

E(TAu − TA′u).

Let τj(A) denote the event where the random walk reaches node j before any of the nodes in

A. Further, let hjAu be the time for the random walk to travel from j to A and then to u, while

hju is the time to travel directly from j to u. We have

κ(A, u)− κ(A′, u) = E(TAu − TA′u|τj(A))Pr(τj(A)) + E(TAu − TA′u|τj(A)c)Pr(τj(A)c)

= E(hjAu − hju)Pr(τj(A))

noting that if the walk reaches A first, then TAu and TA′u are equal. Hence (9) becomes

E(hjAu − hju)Pr(τj(A)) ≥ E(hjBu − hju)Pr(τj(B)) (10)

In order to prove (10) holds, it suffices to prove that hjAu ≥ hjBu and Pr(τj(A)) ≥ Pr(τj(B)).

Let W k
jau denote the event that, after k steps, a random walk starting at j has either not reached

node a ∈ A, or has reached a but has not yet reached u. Define W k
jAu = ∩a∈AW k

jau. Let I(W k
jAu)

denote the indicator function of the set WjAu, and note that

I(W k
jAu) =

∏
a∈A

I(W k
jau) (11)

by the observations above and the definition of indicator functions. hjAu can be rewritten as

hjAu = min {k : I(W k
jAu) = 0} =: k∗

(a)
=

k∗−1∑
k=0

I(W k
jAu)

(b)
=

k∗−1∑
k=0

I(W k
jAu) +

∞∑
k=k∗

I(W k
jAu)

=
∞∑
k=0

∏
a∈A

I(W k
jau)

(c)

≥
∞∑
k=0

∏
a∈A

I(W k
jau)

∏
b∈B\A

I(W k
jbu)


=

∞∑
k=0

∏
b∈B

I(W k
jbu) =

∞∑
k=0

I(W k
jBu) = hjBu

where (a) follows from the definition of I(W k
jAu), (b) follows from the fact that I(W k

jAu) = 0

for k ≥ k∗, and (c) follows from the fact that
(⋂

a∈AW
k
jau

)
∩
(⋂

b∈B\AW
k
jbu

)
⊆
⋂
a∈AW

k
jau.
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In order to show that Pr(τj(A)) ≥ Pr(τj(B)), first let τj(v) denote the event that a random

walk reaches node j 6= v before v. Hence,

τj(B) =
⋂
v∈B

τj(v) =

(⋂
v∈A

τj(v)

)
∩

 ⋂
v∈B\A

τj(v)

 ⊆ ⋂
v∈A

τj(v) = τj(A)

τj(B) ⊆ τj(A) then implies that Pr(τj(B)) ≤ Pr(τj(A)), as desired. Hence (10) holds, thus

proving that the commute time is supermodular as a function of the leader set S.

An alternate proof of Theorem 3 can be found in Appendix D.

Corollary 1. R(S) is a nonincreasing supermodular function of the leader set, S.

Proof: By Theorem 3, κ(S, u) is supermodular as a function of S. Since R(S, u) = (L−1
f )uu

is proportional to κ(S, u), (L−1
f )uu is supermodular as a function of S as well. By Theorem 1,

R(S) =
∑

u∈V \S (L−1
f )uu, hence R(S) is a sum of supermodular functions. R(S) is therefore

supermodular by Lemma 1.

Corollary 1 implies that the problem of selecting up to k leader agents in order to minimize

the system error for a static network (7) is a supermodular optimization problem. Although

supermodular optimization problems of this form are NP-hard in general, a greedy algorithm

will return a set S∗ such that R(S∗) is within a factor of (1−1/e) of the optimum value, denoted

R∗ [25].

We now present a greedy algorithm for selecting a set of k leaders for a static network

topology, which is an approximate solution to (7). Let S∗i denote the set of leader agents at the

i-th iteration of the algorithm. S∗0 is initialized to ∅. At the i-th iteration of the algorithm, the

element s∗i ∈ V is found such that {R(S∗i−1)−R(S∗i−1∪{s∗i })} is maximized. S∗i is then updated

to (S∗i−1 ∪{s∗i }). The algorithm terminates when either R(S∗i ) = R(S∗i ∪{j}) for all j, or when

i = k (i.e., when the number of leaders is equal to k), whichever condition is reached first. A

pseudocode description of the algorithm is given as algorithm static-k.

The following theorem gives a bound on the performance of static-k, making use of the fact

that (7) is a supermodular optimization problem.

Theorem 4. Define Rmax by Rmax , maxiR({i}), which is the worst-case error when a single

agent is chosen as a leader, and let R∗ be the optimal value of (7). Then the algorithm static-k
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Algorithm static-k: Algorithm for choosing up to k leaders
Input: G = (V,E), link error variances νij

Maximum number of leader nodes k
Output: Set of leader nodes S∗

Initialization: S∗ ← ∅, i← 0 1
while i ≤ k 2

s∗i ← argmaxj∈V \S {R(S∗)−R(S∗ ∪ {j})} 3
if R(S∗)−R(S∗ ∪ {s∗i })} ≤ 0 4

return S∗; exit 5
else 6

S∗ ← S∗ ∪ {s∗i } 7
i← i+ 1 8

end 9
end 10
return S∗; exit 11

terminates in polynomial time and returns a set S∗ satisfying

R(S∗) ≤

(
1−

(
k − 1

k

)k)
R∗ +

1

e
Rmax ≈

(
1− 1

e

)
R∗ +

1

e
Rmax

Proof: By Theorem 9.3 of [26, Ch III.3.9], for any nonnegative monotone nondecreasing

submodular function f(S), the greedy algorithm returns a set S∗ satisfying f(S∗) ≥ (1−1/e)f ∗,

where f ∗ is the optimal value of the optimization problem

maximize f(S)

s.t. |S| ≤ k
(12)

Since R(S) is nonincreasing and supermodular by Corollary 1, the function f(S) = Rmax−R(S)

is nonnegative, nondecreasing, and submodular. Maximizing f(S) is thus equivalent to minimiz-

ing R(S). Hence, the set S∗ returned by the greedy algorithm satisfies f(S∗) ≥
(
1− 1

e

)
f ∗.

Substituting the definition of f(S) yields Rmax−R(S∗) ≥
(
1− 1

e

)
(Rmax−R∗) and rearranging

terms gives the desired result.

Algorithm static-k requires k iterations. At each iteration, the function R(S) is evaluated O(n)

times. Since each evaluation of R(S) involves inverting the Laplacian matrix, which requires

O(n3) operations (and can be reduced to O(n2) operations, with some loss in computation

accuracy, if the Laplacian matrix is sparse [9]), the total runtime is O(kn4).

In [27], it was shown that no polynomial-time algorithm that improves on the approximation

bound
(
1− 1

e

)
for an arbitrary problem of the for (12) unless P = NP . There may, however,
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be additional structure to R(S) other than supermodularity that may improve the guarantees of

Theorem 4. This remains an open problem.

B. Case II – Choosing the Minimum-Size Leader Set to Achieve an Error Bound

When the system is required to operate below a given error bound, denoted α, the problem

of choosing a minimal set of leaders that achieves this bound can be stated as

minimize |S|

s.t. R(S) ≤ α
(13)

Note that, for any α ≥ 0, there exists at least one S meeting the condition R(S) ≤ α, namely

the set S = V .

The supermodularity of R(S) enables an efficient approximate solution of (13) by a greedy

algorithm, given as follows. The set of leaders is initialized to S∗0 = ∅. As with the leader

selection algorithm static-k, the node s∗i that maximizes {R(S∗i−1)− R(S∗i−1 ∪ {s∗i })} is added

at the i-th iteration, so that S∗i = S∗i−1 ∪ {s∗i }. The algorithm terminates when R(S∗i ) ≤ α

and returns the set S∗ = S∗i . A pseudocode description of the algorithm is given as algorithm

static-α.

Algorithm static-α: Algorithm for choosing the minimum-size
set of leaders to achieve an error bound α
Input: G = (V,E), link error variances νij

Error at termination α
Output: Set of leader nodes S∗

Initialization: S∗ ← ∅, error ← α+ 1 1
while error > α 2

s∗ ← argmaxj∈V \S R(S
∗)−R(S∗ ∪ {j})} 3

if (R(S∗)−R(S∗ ∪ {s∗})) ≤ 0 4
return S∗; exit 5

else 6
S∗ ← S∗ ∪ {s∗} 7
error ← R(S∗) 8

end 9
end 10
return S∗; exit 11

The following theorem gives bounds on the optimality of the set S∗ returned by static-α.
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Theorem 5. Let k∗ be the smallest integer such that a set S exists with |S| = k and R(S) ≤ α

(i.e., k∗ is the optimal value of (13)). The algorithm static-α terminates in polynomial time in

n. If the algorithm terminates after step k, so that |S∗| = k, then

k

k∗
≤ 1 + log

{
Rmax

R(Sk−1)

}
holds, where Rmax is as defined in Theorem 4.

Proof: Theorem 9.4 of [26, Ch III.3.9] states that the greedy algorithm for solving problems

of the form
minimize S⊆V |S|

s.t. f(S) ≥ λ
(14)

where f(S) is a nondecreasing submodular function returns a set S∗ satisfying

|S∗|
|S ′|
≤ 1 + log

{
f(V )− f(∅)

f(V )− f(Sk−1)

}
,

where S ′ is the optimal solution to (14) and Sk−1 is the set obtained at the (k − 1)-th iteration

of the greedy algorithm. Letting f(S) = Rmax − R(S), we have that f(S) is a nondecreasing

submodular function of S. Since the greedy algorithm for optimizing f(S) is equivalent to

optimizing R(S), we have

|S∗|
|S ′|
≤ 1 + log

{
f(V )− f(∅)

f(V )− f(Sk−1)

}
= 1 + log

{
−f(∅)
−f(Sk−1)

}
= 1 + log

{
Rmax

f(Sk−1)

}
In the worst case, the algorithm will not terminate until S = V , i.e., after n iterations. This will

require O(n2) evaluations of R, each of which requires O(n3) computations, for a total runtime

of O(n5).

V. LEADER SELECTION IN DYNAMIC NETWORKS

Multi-agent systems may undergo changes in topology or link noise characteristics for three

reasons. First, the agents may experience link or device failures [28]. Second, the MAS may

switch between prespecified topologies [29]. Third, the topology may vary arbitrarily over time

due to agent mobility; for example, agents may change positions in order to avoid an obstacle,

affecting both the set of links E and the set of error variances νij [2]. Under each case, the

optimal set of leaders may be different from that of a static network. In this section, we study

leader selection for each of these dynamic networks.
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A. Leader Selection Under Random Link Failures

Random topology changes may occur due to link failures, which are reflected in the weighted

Laplacian matrix L of (2). Since the set of links may not be known in advance under these

circumstances, leaders can be selected to minimize the expected system error based on the

distribution of possible weighted Laplacians.

Let L denote the set of possible weighted Laplacians. Define π to be a probability distribution

on L, so that π(L) is the probability that the Laplacian is L ∈ L. An example distribution is the

random link failure model, in which each link in an underlying link set E fails independently

with equal probability p. The expected system error is defined by

Eπ(R(S)) =
∑
L∈L

R(S|L)π(L),

where R(S|L) denotes the system error when the leader set is S and the Laplacian is L.

The problems of (a) choosing a set of k leaders to minimize the expected error Eπ(R(S))

and (b) choosing the smallest possible leader set S such that the error is within an upper bound

α are formulated as

Choosing up to k leaders Choosing minimum number of leaders

minimize Eπ(R(S))

s.t. |S| ≤ k

minimize |S|

s.t. Eπ(R(S)) ≤ α

(a) (b)

(15)

In order to solve (15a) and (15b), it is necessary to compute Eπ(R(S)) for a given distribution

π and leader set S. The summation, however, can have up to 2|E| possible topologies under the

random link failure model, making exact computation of Eπ(R(S)) difficult. We present two

approaches to approximating Eπ(R(S)): first, a Monte Carlo approximation that is valid for any

distribution π, and second, a gradient-based approximation that is valid when the probability of

link failures is small.

Monte Carlo Approximation: Under the Monte Carlo approach, a set consisting of M Laplacian

matrices {L1, . . . , LM}, each chosen independently according to distribution π, is generated.

Eπ(R(S)) is then approximated by Rmc(S) = 1
M

∑M
i=1R(S|Li).

Theorem 6. For any ε > 0, limM→∞ Pr(|Rmc(S)− Eπ(R(S))| < ε) = 1 for every S ⊆ V .
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Proof: For a given S, each R(S|Li) represents an independent sample from the probability

distribution π. Hence, by the weak law of large numbers,
∑M

i=1R(S|Li) converges in probability

to the expected value Eπ(R(S)).

Gradient Approximation: Consider the random link failure model, and let G̃ = (V, Ẽ), where Ẽ

denotes the set of links that have failed. Define matrix ∆ by

∆ij =


−ν−1

ij , (i, j) ∈ Ẽ∑
(i,j)∈Ẽ ν

−1
ij , i = j

0, else

Let L̃ff , Lf −∆, so that R(S|L̃) =
∑

u∈V \S (L̃−1
ff )uu.

Lemma 3. Suppose that links fail independently and randomly with probability p. Let X =

max(i,j)∈E ν
−1
ij , and let d denote the maximum node degree of the graph G. Define ||∆||2 to be

the maximum singular value of ∆. Then ||∆||2 ≤ 2pdX .

Proof: Since ∆ is symmetric and positive semidefinite, ||∆||2 is equal to the maximum

eigenvalue of ∆. Let Ei denote the set of edges incident on agent i which fail. Then∑
j 6=i

|∆ij| =
∑
j∈Ei

ν−1
ij ≤ X

∑
j∈Ei

1 = X|Ei| ≤ pdX, (16)

for each i ∈ V . Furthermore, ∆ii =
∑

j 6=i |∆ij| ≈ pdX . Hence by the Gershgorin Disc Theorem

[30], the eigenvalues of ∆ must lie in the interval [0, 2pdX].

Lemma 3 leads to the following gradient approximation for Eπ(R(S)).

Theorem 7. Let p, d, and X be as defined above, and let δ = 2pdX . Then

R(S|G̃) = Tr(L̃−1
ff ) ≤ Tr(L−1

ff ) +
(n− |S|)δ
λmin(Lff )2

, (17)

where λmin(Lff ) is the smallest eigenvalue of Lf .

Proof: R(S) can be written as

Tr((Lff −∆)−1) ≈ Tr(L−1
ff ) + Tr(L−1

ff ∆L−1
ff )

≤ Tr(L−1
ff ) + Tr(UΛ−1UT∆UΛ−1UT )

≤ Tr(L−1
ff ) + sup

∆
Tr(UΛ−1UT∆UΛ−1UT )
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where Lf = UΛUT is the eigen-decomposition of Lf . The upper bound occurs when ∆ = UΩUT

for some positive semidefinite diagonal matrix Ω. Together with Lemma 3, this implies that

Tr((Lf −∆)−1) ≤ Tr(L−1
ff ) + Tr(UΛ−1ΩΛ−1UT )

= Tr(L−1
ff )Tr(UTUΛ−1ΩΛ−1) = Tr(L−1

ff ) + Tr(Λ−1ΩΛ−1)

≤ Tr(L−1
ff ) +

(n− |S|)δ
λ2
min

.

Note that the upper bound on R(S) can be used as a worst-case value for R(S) in the presence

of link failures. Once an appropriate method for computing or estimating Eπ(R(S)) has been

chosen, the leader set S can be selected by solving (15a) or (15b). The following lemma can be

used to derive efficient algorithms for both problems.

Lemma 4. Under the random link failure model, for any distribution π on L, the function

Eπ(R(S)) is supermodular.

Proof: By definition, Eπ(R(S)) =
∑

L∈LR(S|L)π(L). Since the set L of possible weighted

Laplacians is finite, this is a nonnegative weighted sum of supermodular functions, and hence

is supermodular by Lemma 1.

As a corollary to Lemma 4, the problem of choosing a set of k leaders to minimize the expected

error (15a), and the problem of selecting the minimum number of leaders to meet a bound on

the expected error (15b), can be solved using algorithms analogous to static-k and static-α

respectively. The modified algorithms take the distribution π as an additional input parameter, and

replace line three in both algorithms with s∗i ← arg maxj∈V \S {Eπ(R(S∗))− Eπ(R(S∗ ∪ {j}))}.

B. Leader Selection Under Switching Between Predefined Topologies

A MAS may switch between a set of predefined topologies T = {G1, . . . , GM}, each with

different link error variances represented by the corresponding weighted Laplacians L1, . . . , LM

(e.g., a set of possible formations) in response to a switching signal from the MAS owner or

environmental changes [29]. Leader selection under switching topologies can be divided into

two cases. In the first case, the set of leaders is updated after each change in topology [31]. For

this case, a different set of leaders Si can be selected for each topology Gi using either static-k
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(if a fixed number k of leaders is chosen to minimize error) or static-α (if the minimum number

of leaders is chosen to achieve an error bound α).

In the second case, the same leader set S is chosen and used for all topologies [17]. Un-

der this strategy, we consider two possible leader selection metrics, namely the average-case

error, given as Ravg(S) = 1
M

∑M
i=1R(S|Li), and the worst-case error, given as Rworst(S) =

max {R(S|Li) : i = 1, . . . ,M}. Ravg(S) is a nonnegative weighted sum of supermodular func-

tions, and hence is supermodular as a function of S by Lemma 1. The problems of selecting

up to k leaders in order to minimize Ravg(S) and selecting the minimum number of leaders to

achieve an error bound α can therefore be solved by modified versions of static-k and static-

α, respectively. The modified versions of both leader selection algorithms take the topologies

{G1, . . . GM} as input, and replace line 3 in both algorithms with s∗i ← arg maxj∈V \S {Ravg(S
∗)

−Ravg(S
∗ ∪ {j})}. Similarly, the problem of selecting the minimum number of leaders to achieve

an error bound α can be solved by a modified version of static-α, also taking {G1, . . . , GM} as

input, and with the same substitution at line 3.

If Rworst(S) is used as a metric, however, note that the maximum of supermodular functions

is, in general, not supermodular [32]. Alternate approaches for leader selection problems are

given as follows.

1) Choosing k leaders to minimize worst-case error: The problem of choosing k leaders in

order to minimize Rworst is stated as

minimize Rworst(S) , maxi=1,...,M R(S|Li)

s.t. |S| ≤ k
(18)

Let S∗ be the solution to (18), and let R∗worst = Rworst(S
∗). R∗worst is bounded below by 0

and bounded above by Rmax = maxi=1,...,M maxu∈V {R({u}|Li)}. As a preliminary, define

Fc(S) ,
1

M

M∑
i=1

max {R(S|Li), c}. (19)

Note that, by Lemmas 1 and 2, Fc(S) is a supermodular function of S.

An algorithm for approximating S∗ is as follows. First, select parameters β ≥ 1 and δ > 0.

The algorithm finds a set S satisfying R(S) ≤ R∗worst and |S| ≤ βk. Parameter δ determines the

convergence speed of the algorithm. Define α0
min = 0 and α0

max = Rmax. At the j-th iteration,

let αj =
αj−1
max+αj−1

min

2
. The goal of the j-th iteration is to determine if there is a set Sj such
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that |Sj| ≤ βk and R(Sj|Li) ≤ αj for all i = 1, . . . ,M . This is accomplished by solving the

optimization problem
minimize |S|

s.t. Fαj(S) ≤ αj
(20)

Since Fαj(S) is supermodular, the solution to (20) can be approximated by an algorithm anal-

ogous to static-α. If the approximate solution to (20), denoted Sj , satisfies |Sj| ≤ βk, then set

αjmax = αj−1 and αjmin = αj−1
min. Otherwise, set αjmax = αj−1

max and αjmin = αj . The algorithm

terminates when |αjmax−α
j
min| < δ and returns the current set Sj . A pseudocode description of

this algorithm is given as algorithm switching-k.

Algorithm switching-k: Algorithm for selecting up to k leaders
to minimize worst-case error under switching topologies
Input: Topologies G1, . . . , GM

Link error variances ν(1)ij , . . . , ν
(M)
ij

Maximum number of leaders βk, threshold δ
Output: Set of leader nodes S∗

Initialization: S∗ ← ∅, j ← 0, αjmin ← 0, αjmax ← Rmax
while αjmax − α

j
min ≥ δ 1

αj ← αj
max+α

j
min

2 2
r ← 0, Sj ← ∅ 3
while Fαj (S) ≤ αj 4
s∗i ← argmaxv∈V \S {Fαj (S)− Fαj (S ∪ {v})} 5
Sj ← Sj ∪ {s∗i }, r ← r + 1 6

end while 7
if r > βk 8
αjmax ← αj , αjmin ← αj−1min 9

else 10
αjmin ← αj , αjmax ← αj−1max 11

j ← j + 1 12
end while 13
S∗ ← Sj , Return S∗ 14

Since αjmax−α
j
min is strictly decreasing as j increases, switching-k converges. The optimality

of switching-k is given by the following theorem.

Theorem 8. When δ = 1
M

and β satisfies

β ≥ 1 + log

(
max
v∈V

{∑
i

R({v}|Li)

})
switching-k returns a set S∗ such that maxi {R(S∗|Li)} ≤ R∗worst and |S∗| ≤ βk.
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Proof: The proof follows from the fact that R(S|Li) is a supermodular function for all i

and Theorem 3 of [32].

2) Choosing leaders to achieve an error bound: In order to choose a minimum-size set of

leaders to achieve an error bound α, the following optimization problem must be solved

minimize |S|

s.t. R(S|Li) ≤ α ∀i = 1, . . . ,M
(21)

The following lemma leads to efficient algorithms for solving (21).

Lemma 5. Problem (21) is equivalent to

minimize |S|

s.t. Fα(S) ≤ α
(22)

where Fα(S) is defined as in (19).

Proof: The proof follows from the facts that the objective functions of (21) and (22) are

the same, as well as the fact that Fα(S) ≤ α if and only if R(S|Li) ≤ α for all i.

Since Fα(S) is a supermodular function of S, this is a supermodular optimization problem

similar to (13), and hence can be solved by an algorithm analogous to static-α.

3) Leader selection for switching topologies under random agent and link failures: As in

the static network case, MAS with switching topologies may experience random link or agent

failures. In this case, the expected values of the average and worst-case system error are of

interest when selecting the leaders.

Under random failures, the i-th topology can be represented as a random variable Gi. Let π

denote the joint distribution of G1, . . . ,GM , so that π(G1, . . . , GM) = Pr(G1 = G1, . . . ,GM =

GM), and let πi(G) = Pr(Gi = G). Note that the Gi’s may not be independent; for example,

under the random failure model of Section V-A, the failure of an agent in any topology implies

failure in all topologies.

The average-case expected error Eπ(Ravg(S)) can be further simplified by

Eπ(Ravg) = Eπ

(
1

M

M∑
i=1

R(S|Li)

)
=

1

M

M∑
i=1

Eπi(R(S|Li)),

which follows from linearity of expectation and the fact that, by definition of πi, Eπ(R(S|Li)) =

Eπi(R(S|Li)). By Lemma 4, Eπi(R(S|Li)) is supermodular as a function of S for all i. Hence,
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Eπ(Ravg(S)) is a nonnegative weighted sum of supermodular functions, and is therefore a

supermodular function of S by Lemma 1.

The problem of minimizing Eπ(Ravg(S)) when the number of leaders cannot exceed k can be

solved using an algorithm analogous to static-k. Similarly, the problem of finding the smallest

leader set S that is within an upper bound α on Eπ(Ravg(S)) can be solved using an algorithm

analogous to static-α. Both modified algorithms take π1, . . . , πM as additional inputs and have

line 3 changed to

s∗i ← arg max
v∈V \S

{
1

M

M∑
i=1

Eπi(R(S|Li)−R(S ∪ {v}|Li))

}
.

Considering the expected worst-case error, Eπ(Rworst(S)), observe that, by Jensen’s inequal-

ity [33],

Eπ

(
max

i=1,...,M
{R(S|Li)}

)
≥ max

i=1,...,M
{Eπ(R(S|Li))} = max

i=1,...,M
{Eπi(R(S|Li))}. (23)

The lower bound (23) is the worst-case expected error experienced when the leader set is S.

Since Eπi(R(S|Li)) is supermodular as a function of S, the function

F̃c(S) = max {Eπi(R(S|Li)), c} (24)

is supermodular in S by Lemma 2. Therefore, the problem of selecting up to k leaders in order

to minimize Eπ(Rworst(S)) can be approximately solved by an algorithm similar to switching-k.

The modified algorithm takes π1, . . . , πM as additional input, and replaces the function Fαj(S)

at line 5 with the function F̃αj(S) defined in (24).

In order to choose the minimum-size set of leaders such that maxi=1,...,M {Eπ(R(S|Li))} is

below an error bound α, a supermodular optimization problem analogous to (21) can be used.

The constraint of the modified problem is given by F̃α(S) ≤ α with F̃α(S) defined as in (24).

C. Leader Selection Under Arbitrarily Time-Varying Topologies

In this section, MAS with topologies that vary arbitrarily in time are considered. We assume

that time is divided into steps, and that at step t, the MAS owner has knowledge of the topologies

G1, . . . , Gt−1 for steps 1, 2, . . . , t − 1, respectively, as well as their corresponding weighted

Laplacians L1, . . . , Lt−1, but does not know the topology Gt for step t. Furthermore, we assume

that, while the topology may vary arbitrarily over time, the variation is sufficiently slow that the

agent dynamics approximate the steady-state for graph topology Gt during the t-th time step.
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Under this model, a fixed set of leaders chosen at step t = 1, may give poor performance for

the subsequent topologies G2, . . . , GT . Instead, it is assumed that, at step t, a new set of leaders

St is selected based on the observed topologies G1, . . . , Gt−1. The error for each topology is

given by R(St|Lt). The leader selection problem for time-varying topologies is stated as

minimizeS1,...,ST

∑T
t=1 R(St|Lt)

s.t. |St| ≤ k
(25)

Problem (25) is an online supermodular optimization problem [34]. The method for choosing

a set of leader nodes S∗t for the t-th time step is as follows. Consider the static-k algorithm.

Since Gt is unknown and random, the node j that maximizes {R(S∗t,i) − R(S∗t,i ∪ {j})} at the

i-th iteration of the algorithm is also random. Let

πt,i(l) = Pr(arg max
j
{R(S∗t,i)−R(S∗t,i ∪ {j})} = l). (26)

Then for step t, instead of selecting s∗t,i deterministically as in Line 3 of static-k, s∗t,i is selected

probabilistically with distribution πt,i in (26).

In general, the exact values of πt,i will not be known during leader selection. To address this,

an online learning technique is used to estimate πt,i based on observations from the previous

t− 1 time steps. Under this approach, a set of weights wt,1, . . . ,wt,k is maintained, where wt,i

is a vector in Rn with wt,i(j) representing the weight assigned to choosing node j as the i-th

leader during step t. Define

soptt,i , arg max
j
{R(S∗t,i−1|Lt)−R(S∗t,i−1 ∪ {j}|Lt)}. (27)

In other words soptt,i in (27) is the best possible choice of s∗t,i for the topology Gt. Then define

the loss lt,i,j associated with choosing s∗t,i = j to be

lt,i,j , 1− R(S∗t |Lt)−R(S∗t ∪ {j}|Lt)
R(S∗t |Lt)−R(S∗t ∪ {s

opt
t,i }|Lt)

. (28)

At the end of step t, the value of wt,i(j) is updated to wt+1,i(j) = βlt,i,jwt,i(j), where β ∈ (0, 1]

is a system parameter that can be tuned to adjust the performance of the learning algorithm. This

is interpreted as penalizing node j for suboptimal performance during interval t. By decreasing

the value of β, nodes experiencing higher losses lt,i,j will be much less likely to be selected

during the (t + 1)-th time step. wt+1,i is then normalized to obtain the estimated distribution

πt+1,i. This process is described in detail in algorithm online-k.
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Algorithm online-k: Algorithm for selecting up to k leaders
for an arbitrarily time-varying topology
Input: Current weights wt,1, . . . ,wt,k

Gt = (V,Et), link error variances νtij
Parameter β ∈ (0, 1]

Maximum number of leader nodes k
Current set of leader nodes S∗t

Output: Updated weights wt+1,1, . . . ,wt+1,k

Set of leader nodes S∗t+1

Initialization: S∗t+1 ← ∅ 1
for i = 1, . . . , k 2

soptt,i ← argmaxj {R(S∗t,i−1)−R(S∗t,i−1 ∪ {j})} 3
for j = 1, . . . , n 4

lt,i,j ← 1− R(S∗
t,i−1)−R(S∗

t,i−1∪{j})
R(S∗

t,i−1)−R(S∗
t,i−1∪{s

opt
t,i })

5

wt+1,i(j)← (wt,i(j))β
lt,i,j 6

end 7
πt+1,i ← wt+1,i/1

Twt+1,i 8
Choose s∗t+1,i randomly with distribution πt+1,i 9
S∗t+1 ← S∗t+1 ∪ {s∗t+1,i} 10

end 11

In analyzing this approach, the total error
∑

tR(St|Gt) can be compared to the error achievable

when all T topologies are known in advance. The following theorem gives a bound on the

difference between these two errors.

Theorem 9. Suppose that the algorithm online-k is executed for T steps, and let G1, . . . , GT

be the topologies during those steps. Let Rmax be defined as in Theorem 4. Define the error K

to be

K , (1− 1/e)
T∑
t=1

R(St|Lt)−

(
max
|S|=k

{
T∑
t=1

R(S|Lt)

})
. (29)

Then K ≤ O(
√
RmaxkT log n).

Proof: R(S|L1), . . . , R(S|LT ) is a sequence of supermodular functions bounded above by

Rmax. Then, by Lemma 4 of [34],

(1− 1/e)
T∑
t=1

R((S∗t |Lt)−

(
max
|S|=k

{
T∑
t=1

R(S|Lt)

})
≤ O(

√
RmaxkT log n) (30)

as desired.

VI. SIMULATION STUDY

In this section, we evaluate the performance of our leader selection algorithms. Simulations are

carried out using Matlab. A network of 100 agents is simulated, with agents placed at random
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positions within a 1000m x 1000m rectangular area. Two agents are assumed to share a link if

they are deployed within 300m of each other. The error variance νij of link (i, j) is assumed to

be proportional to the distance between agents i and j. Each data point in the following figures

represents an ensemble average of 50 trials, unless otherwise indicated.

For comparison, five different leader selection algorithms are simulated. In the first algorithm,

a random subset of agents is chosen to act as leaders. In the second algorithm, the k nodes

with highest degree (i.e., largest number of neighbors) are chosen to act as leaders. In the

third algorithm, the k nodes with degree closest to the average degree are selected. The fourth

algorithm simulated, for the case of selecting up to k leaders in a static topology, is the convex

optimization approach of [12]. The fifth algorithm was our supermodular optimization.

(a) (b)

Fig. 1. (a) A comparison of our supermodular optimization approach to leader selection with the convex optimization approach

of [12], as well as random and degree-based leader selection. Either the supermodular or convex optimization approach provides

minimal error, depending on the number of leader agents. (b) The supermodular optimization approach static-α requires fewer

leaders to satisfy the error constraint than either the degree-based or random heuristics. Error values are normalized to between

0 and 1.

Case 1: MAS with static network topology – Figure 1(a) compares the performance of the

five algorithms considered for the problem of choosing up to k leaders in order to minimize the

total system error. For this comparison, in order to reduce the runtime of the convex optimization

approach, a smaller network of 25 nodes is used. Figure 1(a) shows the error achieved by the

different leader selection algorithms for a fixed network topology and varying leader set size, in

which either the convex or supermodular approaches provide optimal performance depending on

the number of leader agents. When k = 1, 2, 5, 6, our supermodular optimization approach results
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in lower mean-square error, while the convex optimization approach in [12] selects leaders with

lower error when k = 3, 4.

For the problem of choosing the minimum number of leaders to achieve an error bound,

the supermodular optimization approach requires only 40 leaders to achieve normalized error

of 0.7 (for example), compared to 50 leaders for the random heuristic and over 60 leaders for

the maximum degree method (Figure 1(b)). Figure 1(b) also suggests that the random heuristic

consistently outperforms both degree-based algorithms. Selecting the nodes with average degree

also performs better than selecting the maximum-degree nodes to act as leaders.

(a) (b)

Fig. 2. (a) Error experienced by MAS as the number of agents increases. For each network size, the supermodular optimization

approach provides the lowest overall error, followed by random selection, average degree-based selection, and maximum degree-

based selection. Overall error decreases in all cases due to the increase in node density. (b) Effect of random failures on MAS

error when number of agents is 100 and number of leaders is 10. Although all selection schemes experience an increase in error

due to link failures, the increase is smallest for the supermodular approach.

The total system error experienced by the network as a function of network size is explored in

Figure 2(a). The number of leaders is equal to 0.1n, where n is the number of agents. Since the

deployment area remains constant, adding agents to the network increases the number of links,

resulting in smaller overall error. Hence, while the supermodular approach still outperforms the

other methods, the difference in overall error decreases as the node density grows large.

Case 2: MAS experiencing random link failures – Figure 2(b) shows the error experienced

for each method when links fail independently and at random, with probability ranging from 0
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to 0.2. The number of leaders is equal to 10 for each scheme, while the network size is 100. The

supermodular optimization algorithm uses the Monte Carlo approach described in Section V-A.

While each scheme sees a degradation in performance as the probability of failure increases,

this degradation is minimized by the supermodular optimization method.

(a) (b)

Fig. 3. (a) Number of leaders required to achieve system error of 6 when the MAS switches between M randomly generated

topologies, where M varies from 1 to 10. The number of leaders needed increases with the number of topologies; the

supermodular selection method requires the fewest number of leaders. (b) Number of leaders required when the MAS switches

between M randomly generated topologies and links fail independently with probability p = 0.05. The number of leaders

required is greater due to link failures.

Case 3: MAS that switch between predefined topologies – Figure 3(a) shows the number of

leaders needed to achieve an error level of 6 for each algorithm for MAS under switching

topologies. For this evaluation, a set of M topologies, where M varied from 1 to 10, is generated

at random based on the deployment area and node communication range described in the first

paragraph of Section VI. A fixed leader set S is then selected using each heuristic. Each scheme

requires a larger leader set as the number of prespecified topologies increased; however, for the

supermodular optimization approach, a fixed set of 10 leaders provides an error of less than 6

for 10 different topologies. Overall, fewer leaders are needed for the supermodular optimization

approach. Random leader selection requires fewer leaders than the average degree heuristic,

which in turn outperforms selection of the highest-degree nodes as leaders.

The case of MAS with switching topologies and independent, random link failures is shown

in Figure 3(b). Link failures increase the number of leaders required to achieve the error bound

for each value of the number of topologies, M . While the supermodular optimization approach
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continued to perform better than the other heuristics in most cases, the performance improvement

was less significant.

Fig. 4. Leader selection under arbitrary time-varying topologies. Nodes move according to a group mobility model [35] with

speed 30 m/s. A new set of leaders is selected every 10 seconds. While the performance of the four selection algorithms is

comparable, the online supermodular approach online-k performs better over time by incorporating observed network topology

information.

Case 4: MAS with arbitrarily time-varying topology – Figure 4 shows the performance of

leader selection schemes when the topology varies over time due to agent mobility. Nodes are

assumed to move according to a group mobility model, in which nodes attempt to maintain their

positions with respect to a reference point [35]. The reference point varies according to a random

walk with speed 30 m/s. Each node’s position is equal to its specified position relative to the

reference plus a uniformly distributed error. A new set of 10 leaders is selected every 10 seconds.

As in the other cases, the supermodular optimization approach consistently provides the lowest

error, followed by the random, average degree, and maximum degree heuristics. Moreover, the

online-k algorithm improves its performance over time by observing which agents provided the

best performance when chosen as leaders and assigning those agents a higher weight.

VII. CONCLUSIONS

In this paper, the problem of selecting leaders in linear multi-agent systems in order to minimize

error due to communication link noise was studied. We analyzed the total mean-square error

in the follower agent states, and formulated the problem of selecting up to k leaders in order

to minimize the error, as well as the problem of selecting the minimum-size set of leaders to
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achieve a given upper bound on the error. We examined both problems for different cases of

MAS, including MAS with (a) static network topology, (b) topologies that experience random

link failures, (c) switching between predefined topologies, and (d) topologies that vary arbitrarily

over time. We showed that all of these cases can be solved within a supermodular optimization

framework. We introduced efficient algorithms for selecting a set of leaders that approximates

the optimum set up to a provable bound for each of the four cases. Our proposed approach was

evaluated and compared with other methods, including random leader selection, selecting high-

degree agents as leaders, selecting average-degree agents as leaders, and a convex optimization-

based approach through a simulation study. Our study showed that supermodular leader selection

significantly outperformed the random and degree-based leader selection algorithms in static as

well as dynamic MAS while providing provable bounds on the MAS performance, and provides

performance comparable to the convex optimization approach.
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APPENDIX A

DERIVATION OF AGENT DYNAMICS

In this appendix, the dynamics of each agent are derived following the analysis in [19], and a

proof that the error variance is equal to 1
2
tr(L−1

ff ) is provided. The goal of each follower agent i

is to estimate xi− x∗i , the deviation from the desired state. Since x∗i − x∗j = rij , we assume that

x∗i = xj + rij . Each agent i’s relative state estimate for each j ∈ N(i) can therefore be written

as

yij = xi − xj + εij = xi − x∗i + rij + εij.

Letting ŷij = yij− rij = xi−x∗i + εij , the goal of agent i is to estimate xi−x∗i given the system

of equations

ŷij = xi − x∗i + εij, j ∈ N(i),

which can be written in vector form as ŷ = 1(xi − x∗i ) + ε. By the Gauss-Markov Theorem,

the best linear unbiased estimator of xi − x∗i is equivalent to the least squares estimator, which

is given by (1TC1)−11TC−1ŷ, where C is the diagonal covariance matrix of ε. The estimator

reduces to

xi − x∗i ≈

 ∑
j∈N(i)

ν−1
ij

−1 ∑
j∈N(i)

ν−1
ij ŷij,

thus motivating the choice of link weights D−1
i ν−1

ij , where Di =
∑

j∈N(i) ν
−1
ij . The following

lemma, which first appeared in [19], characterizes the asymptotic error variance of the follower

agent states under these dynamics.

Lemma 6. Let X(t) denote the covariance matrix of xf (t). Then limt→∞X(t) = 1
2
L−1
ff .

Proof: The dynamics of xf (t) are given by

ẋf (t) = −D−1
f (Lffxf (t) + Lflx

∗
l +Br) + w(t),
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where w(t) is a zero-mean white process with variance D−1
f . Asymptotically, the covariance

matrix of xf (t) is given as the positive definite solution X to the Lyapunov equation

−D−1
f LffX −XLffD−1

f +D−1
f = 0.

By inspection, X = 1
2
L−1
ff .

APPENDIX B

PROOF OF LEMMA 2

Lemma 2 is restated and proved as follows.

Lemma 7. Let f : 2V → R be a nonincreasing supermodular function, and let c ≥ 0 be

constant. Then g(S) = max {f(S), c} is supermodular.

Proof: It is enough to show that for any c, F (S) , max {f(S), c} is supermodular. The

proof uses the fact that a function F is supermodular if and only if ([24])

F (A) + F (B) ≤ F (A ∪B) + F (A ∩B) (31)

as well as the fact that f(A ∪B) ≤ (f(A), f(B)) ≤ f(A ∩B). There are four cases.

Case 1: α < f(A ∪B): In this case, (31) follows from the supermodularity of f .

Case 2: f(A) < c, f(B) > c: Under this case, (31) is equivalent to f(B) ≤ f(A ∩ B), which

follows from the monotonicity property. The case where f(A) > c and f(B) < c is similar.

Case 3: f(A) < c, f(B) < c, f(A ∩B) > c: For this case, (31) is equivalent to f(A∩B) ≥ α,

which is true by assumption.

Case 4: f(A ∩B) ≤ α: Eq. (31) is trivially satisfied in this case.

APPENDIX C

PROOF OF THEOREM 2

In this appendix, a proof of Theorem 2 is given. Before proving Theorem 2, the following

intermediate lemmas are needed.

Lemma 8. Consider the equation Lv = J . Define v∗ to be the unique vector satisfying Lv∗ = J .

When v∗u = 1, Ji = 0 for i ∈ V \ (S + u), and v∗s = 0 for s ∈ S, (L−1
f )uu is equal to J−1

u .
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Proof: Write v∗ = [v∗Tf 0]T and J = [JTf JTl ]T . The equation Lv∗ = J then reduces to

Lfv
∗
f = Jf , which is equivalent to v∗f = L−1

f Jf . Multiplying both sides of the equation by eTu ,

where eu has a 1 in the u-th entry and 0s elsewhere, yields v∗u = eTuL
−1
f Jf . The right hand side

can be expanded to

(L−1
f )u1J1 + · · ·+ (L−1

f )u(n−|S|)Jn−|S| = 1. (32)

By definition of J , all terms of the left-hand side of (32) are zero except (L−1
f )uuJu. Dividing

both sides by Ju yields the desired result.

Lemma 9. Let v∗ be defined as in Lemma 8. Then v∗ satisfies

v∗i =
∑
j∈N(i)

P (i, j)v∗j ∀i ∈ V \ (S + u), (33)

where P (i, j) is defined as in (8).

Proof: By definition of L and the fact that Ji = 0, ∑
j∈N(i)

L(i, j)

 v∗i =
∑
j∈N(i)

L(i, j)v∗j . (34)

Dividing both sides by
∑

j∈N(i) L(i, j) gives (33).

Lemma 10. Define ṽi(S, u) to be the probability that a random walk starting at i with transition

probabilities given by (8) reaches node u ∈ V \ S before any node in the set S. Then ṽi = v∗i

for all i.

Proof: By definition, ṽi = v∗i for all i ∈ S and for i = u. It remains to show the result for

i ∈ V \ (S + u). By the stationarity of the random walk,

ṽi =
∑
j∈N(i)

P (i, j)ṽj. (35)

Hence, by (35) and Lemma 9, both v∗ and ṽ are harmonic functions of the index i. By the

Maximum Principle [36], v∗ = ṽ.

Proof of Theorem 2: By Lemma 8,

(L−1
f )uu =

 ∑
t∈N(u)

ν−1
ut (1− v∗t )

−1

. (36)
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Hence, it suffices to show that the commute time κ(S, u) is proportional to the right-hand side

of (36). To show this, first observe that the probability Q(u, S) that a random walk originating at

u will reach S before returning to u is given by 1−
∑

t∈N(u) ṽtP (u, t), where ṽ is as in Lemma

10. Proposition 2.3 of [36] gives Q(u, S) as a function of the commute time,

Q(u, S) =
2
∑

(s,t)∈E ν
−1
st

κ(S, u)Du

.

This yields

1−
∑
t∈N(u)

ṽtP (u, t) =
2
∑

(s,t)∈E ν
−1
st

κ(S, u)Du

.

Rearranging terms and applying Lemma 10 gives

κ(S, u) =

2
∑

(s,t)∈E

ν−1
st

Du

1−
∑
t∈N(u)

v∗tP (u, t)

−1

=

2
∑

(s,t)∈E

ν−1
st

 ∑
t∈N(u)

ν−1
uv (1− v∗t )

−1

=

2
∑

(s,t)∈E

ν−1
st

 (L−1
ff )uu,

which proves the theorem.

APPENDIX D

ALTERNATE PROOF OF THEOREM 3

In this section, an alternative proof to Theorem 3 is presented, which uses an illustrative,

graphical approach instead of the derivation with indicator functions in Section IV. We first

restate Theorem 3.

Theorem 10. The commute time κ(S, u) is a nonincreasing supermodular function of S.

Proof: The nonincreasing property follows from the fact that, if S ⊆ T , then any random

walk that reaches S and returns to u has also reached T and returned to u. Thus κ(T, u) ≤

κ(S, u).

By definition of submodularity [24], κ(S, u) is a supermodular function of S if and only

if, for any sets A and B with A ⊆ B and any j /∈ B,

κ(A, u)− κ(A ∪ {j}, u) ≥ κ(B, u)− κ(B ∪ {j}, u). (37)
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Consider the quantity κ(A, u)− κ(A ∪ {j}, u). Define A′ = A ∪ {j}, and define TAu and TA′u

to be the (random) times for a random walk to reach A (respectively A′) and return to u. Then

by definition, κ(A, u) = E(TAu) and κ(A′, u) = E(TA′u). This implies κ(A, u) − κ(A′, u) =

E(TAu − TA′u).

Let τj(A) denote the event where the random walk reaches node j before any of the

nodes in A. Further, let hjAu be the time for the random walk to travel from j to A and then to

u, while hju is the time to travel directly from j to u. We then have

κ(A, u)− κ(A′, u) = E(TAu − TA′u|τj(A))Pr(τj(A)) + E(TAu − TA′u|τj(A)c)Pr(τj(A)c)

= E(hjAu − hju)Pr(τj(A)),

noting that, if the walk reaches A first, then TAu and TA′u are equal. Hence (37) is equivalent to

E(hjAu − hju)Pr(τj(A)) ≥ E(hjBu − hju)Pr(τj(B)). (38)

To complete the proof, it suffices to show that hjAu ≥ hjBu and Pr(τj(A)) ≥ Pr(τj(B)).

If the walk reaches j before B, then it has also reached j before A, since A ⊆ B. Thus

τj(B) ⊆ τj(A), and hence Pr(τj(B)) ≤ Pr(τj(A)).

It remains to show that hjAu ≥ hjBu. We consider three cases, corresponding to different

sample paths of the random walk on G. As a preliminary, let ζab denote the time for a random

walk starting at a to reach node b. Each case is illustrated by a corresponding figure.

Case I – The walk reaches v ∈ A before any node in B \ A: In this case, hjAu is equal

to ζjv + ζvu, while hjBu is equal to the same quantity. Thus hjAu = hjBu. This case is illustrated

in Figure 5.

Fig. 5. Illustration of the proof that the commute time is supermodular, Case I, showing nodes j, u, and sets A and B with

A ⊆ B. In this case the walk, starting at node j, reaches set A before any node in B \A and then continues to node u.
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Case II – The walk reaches t ∈ B \ A, then v ∈ A before u: In this case, the hjAu is

equal to ζjv + ζvu = ζjt + ζtv + ζvu, since the walk reaches t before v. Similarly, hjBu is equal

to ζjt + ζtu = ζjt + ζtv + ζvu, since the walk reaches v after t but before u. Hence hjAu = hjBu

in Case II as well. This case is illustrated in Figure 6.

Fig. 6. Illustration of the proof that the commute time is supermodular, Case II, showing nodes j, u, and sets A and B with

A ⊆ B. In this case the walk, starting at node j, reaches set B \A, then set A, and then node u.

Case III – The walk reaches t ∈ B \ A and then u before v ∈ A: hjAu is equal to ζju +

ζuv. Since the walk reaches t ∈ B \A before u, this is equal to ζjt + ζtu + ζuv. However, since

hjBu is the time for the walk to reach any node in B and then travel to u, hjBu = ζjt + ζtu.

Thus hjAu > hjBu in Case III. Case III is illustrated in Figure 7.

Fig. 7. Illustration of the proof that the commute time is supermodular, Case III, showing nodes j, u, and sets A and B with

A ⊆ B. In this case the walk, starting at node j, reaches set B \A and node u before reaching set A.

Together, these cases imply (38), and hence the supermodularity of κ(S, u) as a function of

S.
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