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A Polyhedral Approximation Framework for
Convex and Robust Distributed Optimization

Mathias Bürger, Giuseppe Notarstefano, and Frank Allgöwer

Abstract

In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization
problems in peer-to-peer networks. In this set-up convex constraint sets are distributed to the network processors who
have to compute the optimizer of a linear cost function subject to the constraints. We propose a novel fully distributed
algorithm, named cutting-plane consensus, to solve the problem, based on an outer polyhedral approximation of
the constraint sets. Processors running the algorithm compute and exchange linear approximations of their locally
feasible sets. Independently of the number of processors in the network, each processor stores only a small number
of linear constraints, making the algorithm scalable to large networks. The cutting-plane consensus algorithm is
presented and analyzed for the general framework. Specifically, we prove that all processors running the algorithm
agree on an optimizer of the global problem, and that the algorithm is tolerant to node and link failures as long as
network connectivity is preserved. Then, the cutting plane consensus algorithm is specified to three different classes
of distributed optimization problems, namely (i) inequality constrained problems, (ii) robust optimization problems,
and (iii) almost separable optimization problems with separable objective functions and coupling constraints. For
each one of these problem classes we solve a concrete problem that can be expressed in that framework and present
computational results. That is, we show how to solve: position estimation in wireless sensor networks, a distributed
robust linear program and, a distributed microgrid control problem.

I. INTRODUCTION

The ability to solve optimization problems by local data exchange between identical processors with
small computation and communication capabilities is a fundamental prerequisite for numerous decision and
control systems. Algorithms for such distributed systems have to work within the following specifications
[1]. All processors running the algorithm are exactly identical and each processor has only a small memory
available. The data assigned by the algorithm to a processor should be independent of the overall network
size or only slowly growing with the degree of the processor node in the network. None of the processors
has global information or can solve the problem independently.

This paper addresses a class of optimization problems in distributed processor networks with asyn-
chronous communication. Distributed, or peer-to-peer, optimization is related to parallel [2] or large-scale
optimization [3], but has to meet further requirements, such as asynchronous communication and lack
of shared memory or coordination units. Distributed optimization has gained significant attention in the
last years. Initially major attention was given to asynchronous distributed subgradient methods [4], [5].
Asynchronous distributed primal and dual subgradient algorithms are important tools in network utility
maximization and have been intensively studied from a communication networks perspective, see [6], [7].

Combined with projection operations, subgradient methods can also solve constrained optimization
problems [8], [6]. In the last years, the research scope has been widened and now several different
distributed algorithms are explored, each suited for particular optimization problems. Distributed Newton
methods are proposed for Network Utility Maximization [9], [10], or unconstrained strongly convex
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problems [11]. Distributed variants of Alternating Direction Method of Multipliers (ADMM) have been
proposed for distributed estimation [12], and in the wider context of machine learning [13]. The ADMM
shows often a good convergence rate. However, one structural difference between ADMM and distributed
algorithms such as subgradient methods or the novel method proposed in this paper has to be emphasized.
In a centralized implementation ADMM requires a coordination step. Distributed ADMM replaces this
central coordination with a consensus algorithm. However, this requires a synchronization between all
processors in the network, i.e., all processors have to switch synchronously between local computations
and the consensus algorithm. Fully distributed algorithms, as the one proposed here, work asynchronously
and every processor can switch between local computations and communications at its own pace.

An alternative research direction was established in [14] and [15], where distributed abstract optimization
problems were considered. A similar approach was explored in [16], [17] for a distributed simplex
algorithm that solves degenerate linear programs and multi-agent assignment problems. Some results
on the use of distributed cutting-plane methods for robust optimization have been presented in [18]. The
results of [18] are presented in the present paper in the wider context of general distributed optimization
using cutting-plane methods.

The contributions of this paper are as follows. Motivated by several important applications, we
consider a general distributed optimization framework in which each processor has knowledge of a convex
constraint set and a linear cost function has to be optimized over the intersection of these constraint sets.
It is worth noting that linearity of the cost function is not a limitation and that strict convexity of the
optimization problem is not required. A novel fully distributed algorithm named cutting plane consensus is
proposed to solve this class of distributed problems. The algorithm uses a polyhedral outer-approximation
of the constraint set. Processors performing the algorithm generate and exchange a small and fixed number
of linear constraints, which provide a polyhedral approximation of the original optimization problem.
Then, each processor updates its local estimate of the globally optimal solution as the minimal 2-norm
solution of the approximate optimization problem. We prove the correctness of the algorithm in the
sense that all processor asymptotically agree on a globally optimal solution. We show that the proposed
algorithm satisfies all requirements of peer-to-peer processor networks. In particular, it requires only a
strictly bounded local memory and the communication is allowed to be asynchronous. We also prove that
the algorithm has an inherent tolerance against the failure of single processors.

To highlight the generality of the proposed polyhedral approximation method, we show how it can solve
three different representations of the general distributed convex program. First, we consider constraint
sets defined by nominal convex inequality constraints. Second, we discuss the method for a class of
uncertain or semi-infinite constraints. We show that the novel algorithm is capable of computing robust
solutions to uncertain problems in peer-to-peer networks. Finally, we show that almost separable convex
programs, i.e., convex optimization problems with separable objective functions and coupling constraints,
can be formulated in the general framework when their dual representation is considered. Applied to this
problem class the Cutting-Plane Consensus algorithm can be seen as a fully distributed version of the
classical Dantzig-Wolfe decomposition, or column generation method, with no central coordinating master
program.

The general algorithm derived in the paper applies directly to each of the three problem classes,
and all convergence guarantees remain valid. We present for each problem class a relevant decision
problem, which can be solved by the novel algorithm. In particular, it is shown that localization in sensor
networks, robust linear programming and distributed control of microgrids can be solved by the algorithm.
Additionally, computational studies are presented which show that the novel algorithm has an advantageous
time complexity.

Relation to other optimization methods: The general problem formulation of this paper is similar to
the formulation considered in [8]. However, while the approach in [8] requires a projection operation, which
might be computationally expensive for some constraint classes, our approach requires only the knowledge
of a polyhedral approximation. Additionally, our method works on general time-varying directed graphs,
and does not require a balanced communication.
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The almost separable optimization problem setup studied in Section VII is the classical setup for large
scale optimization. Dual decomposition methods decompose these problems into a master program and
several subproblems. Cutting-plane methods can be used to solve the master program, leading to algorithms
that originate in the classical Dantzig-Wolfe decomposition [19], [3]. The algorithm we propose differs
significantly from classical decomposition methods. Indeed, our algorithm performs in asynchronous peer-
to-peer networks with identical processors, without any central or coordinating master program.

A distributed ADMM implementation [13] uses an average consensus algorithm to replace the update
of the central master program. While this allows to perform all computations decentralized, it requires
a synchronization between the processors. Additionally, preforming a consensus algorithm repeatedly
might require many communication steps between the processors. In contrast, our method requires neither
synchronized communication nor a repeated averaging.

The remainder of the paper is organized as follows. The optimization problem and the processor
network model are introduced in Section II. In Section III the ideas of polyhedral outer-approximation
and minimal norm linear programming are reviewed. The main contribution of this paper, the Cutting-
Plane Consensus algorithm, is presented in a general form in Section IV, where also the correctness of
the algorithm and its fault-tolerance are proven. The application of the algorithm to inequality constrained
problems and to a localization problem in sensor networks is presented in Section V. In Section VI
it is shown how the algorithm can be used to solve distributed robust optimization problems, and a
computational study is presented, which compares the completion time of the novel algorithm to an
ADMM algorithm. The application of the Cutting-Plane Consensus algorithm to almost separable con-
vex optimization problems and to distributed microgrid control is discussed in Section VII. Finally, a
concluding discussion is given in Section VIII.

II. PROBLEM FORMULATION AND NETWORK MODEL

We consider a set of processors V = {1, . . . , n}, each equipped with communication and computation
capabilities. Each processor i has knowledge of a convex and closed constraint set Zi ⊂ Rd. The processors
have to agree on a decision vector z ∈ Rd maximizing a linear objective over the intersection of all sets
Zi. That is, the processors have to solve the distributed convex optimization problem

maximize cT z

subject to z ∈
n⋂
i=1

Zi.
(1)

We denote the feasible set in the following as Z :=
⋂n
i=1Zi. We assume that Z is non-empty and that

(1) has a finite optimal solution.
The communication between the processors is modeled by a directed graph (digraph) Gc = (V,E),

named communication graph. The node set V = {1, . . . , n} is the set of processor identifiers, and
the edge set E ⊂ {1, . . . , n}2 characterizes the communication among the processors. If the edge-set
does not change over time, the graph is called static otherwise it is called time-varying. We model the
communication with time-varying digraphs of the form Gc(t) = (V,E(t)), where t ∈ N represents a
slotted universal time. A graph Gc(t) models the communication in the sense that at time t there is an
edge from node i to node j if and only if processor i transmits information to processor j at time t. The
time-varying set of outgoing (incoming) neighbors of node i at time t, i.e., the set of nodes to (from)
which there are edges from (to) i at time t, is denoted by NO(i, t) (NI(i, t)). In a static directed graph,
the minimum number of edges between node i and j is called the distance from i to j and is denoted
by dist(i, j). The maximum dist(i, j) taken over all pairs (i, j) is the diameter of the graph Gc and is
denoted by diam(Gc). A static digraph is said to be strongly connected if for every pair of nodes (i, j)
there exists a path of directed edges that goes from i to j. For the time-varying communication graph we
rely on the concept of a jointly strongly connected graph.
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Assumption 2.1 (Joint Strong Connectivity): For every time instant t ∈ N, the union digraph G∞c (t) :=
∪∞τ=tGc(τ) is strongly connected. �

In this paper we develop a distributed, asynchronous algorithm solving problem (1) according to the
network model described above. Each processor stores a small set of data and transmits at each time
instant these data to its out-neighbors NO(i, t). It is worth noting that in general it is impossible to encode
the convex set Zi with finite data. Thus, the information about the sets Zi cannot be explicitly exchanged
among the processors.

III. POLYHEDRAL APPROXIMATION AND MINIMAL NORM LINEAR PROGRAMMING

We start recalling some important concepts form convex and linear optimization. We will work in the
following with half-spaces of the form h := {z : aT z − b ≤ 0}, where a ∈ Rd and b ∈ R. A half-space
is called a cutting-plane if it satisfies the following properties. Given a closed convex set S ⊂ Rd and a
query point zq /∈ S, a cutting-plane h(zq) separates zq from S, i.e., a(zq) 6= 0 and

aT (zq)z ≤ b(zq) for all z ∈ S, and aT (zq)zq − b(zq) = s(zq) > 0. (2)

The concept of cutting-planes leads to the first algorithmic primitive, the cutting-plane oracle.
Cutting-Plane Oracle ORC(zq,S): queried at zq ∈ Rd for the set S. If (i) zq /∈ S then it returns
a cutting-plane h(zq), separating zq and S, otherwise (ii) it asserts that zq ∈ S and returns an
empty h.

We make the following assumption on the cutting plane oracle, following the general cutting-plane
framework of [20].

Assumption 3.1: The cutting-plane oracle ORC(zq,S) is such that (i) ‖a(zq)‖2 <∞ and (ii) zq(t)→ z̄
and s(zq(t))→ 0 implies that z̄ ∈ S.
Note that this assumption is not very restrictive and holds for many important problem formulations. In
fact, we discuss three important problem classes for which the assumption holds.

Given a collection of cutting-planes H = ∪mk=1hk, the polyhedron induced by these cutting-planes
is H = {z : ATHz ≤ bH}, with the matrix AH ∈ Rd×m as AH = [a1, . . . , am], and the vector bH =
[b1, . . . , bm]T .

Remark 3.2 (Cutting plane notation): We refer to both a half-space h and the data inducing the half
space with a small italic letter. A collection of cutting-planes is denoted with italic capital letters, e.g., H =⋃m
k=1 hk. For a collection of cutting-planes, we denote the induced polyhedron with capital calligraphic

letters, e.g., H. Please note the following notational aspect. A collection of cutting-planes B that is a
subset of the cutting-planes contained in H is denoted as B ⊂ H , while the induced polyhedra satisfy
B ⊇ H. �

Assume that each cutting-plane hi is generated as a separating hyperplane for some set Zj , and let H
be a collection of cutting-planes. The linear approximate program

max
z

cT z s.t. ATHz ≤ bH (3)

is then a relaxation of the original optimization problem (1) since the polyhedron H = {z : ATHz ≤ bH} is
an outer approximation of the original constraint set Z =

⋂n
i=1Zi. We denote in the following the optimal

value of (3) as γH , i.e., γH := maxz∈H c
T z. The linear program (3) has in general several optimizers, and

we denote the set of all optimizers of (3) with

ΓH := {z ∈ H : cT z ≥ cTv,∀v ∈ H}. (4)

It is a standard result in linear programming that ΓH is always a polyhedral set. We consider throughout
the paper the unique optimal solution to (3) which has the minimal 2-norm, i.e., we aim to compute

z∗H = arg min
z∈ΓH

‖z‖2. (5)
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Finding a minimal norm solution to a linear program is a classical problem and various solution methods
are proposed in the literature. Starting from the early reference [21] research on this topic is still actively
pursued [22]. The minimal 2-norm solution can be efficiently computed as the solution of a quadratic
program.

Proposition 3.3: Let u∗ ∈ R|H|, α∗ ∈ R, l∗ ∈ Rd be the optimal solution to

min
u,α,l

1

2
(AHu+ αc)T (AHu+ αc) + bTHu+ cT l

s.t. ATH l − αb ≥ 0, u ≥ 0
(6)

then z∗H = −AHu∗ − α∗c solves (5). �
The proof of this result is presented in Appendix A. The minimal 2-norm solution has the important
property that it always maximizes a strongly concave cost function.

Lemma 3.4: Let a set of cutting-planes define the polyhedron H and let z∗H be the minimal 2-norm
solution to (3). Consider the quadratically perturbed linear objective

Jε(z) = cT z − ε

2
‖z‖2

2

parametrized with a constant ε > 0. Then there exists a ε̄ > 0 such that for any ε ∈ [0, ε̄]

z∗H = arg max
z∈H

Jε(z). (7)

�
The proof of this result is very similar to the classical proof presented in [23]. However, since the
considered set-up is slightly different and the result is fundamental for the methodologies developed in
the paper, we present the proof in Appendix B.

Any solution to a (feasible) linear program of the form (3) is fully determined by at most d constraints.
This is naturally also true for the minimal 2-norm solution of a linear program. We formalize this property
with the notion of basis. Given a collection of cutting-planes H , we say that a subset B ⊆ H is a basis
of H if the minimal 2-norm solution to the linear program defined with the constraint set B, say z∗B, is
identical to the minimal 2-norm solution of the linear program defined with the constraint set H , say z∗H ,
i.e., z∗B = z∗H , while for any strict subset of cutting-planes B′ ⊂ B, it holds that z∗B′ 6= z∗B. For a feasible
problem, the cardinality of a basis is bounded by the dimension of the problem, i.e., |B| ≤ d. Throughout
this paper, a basis is always considered to be a basis with respect to the 2-norm solution of the linear
program and a basis computation requires to compute the solution to problem (6). Note, however, that
the active constraints at an optimal point z∗H are always a superset of a basis at this point and are exactly
a basis if the problem is not degenerate. Therefore, in most cases it will be sufficient to find the active
constraints, which are easy to detect.

IV. THE CUTTING-PLANE CONSENSUS ALGORITHM

For a network of processors, we propose and analyze the Cutting-Plane Consensus algorithm to solve
distributed convex optimization problems of the form (1).

The Distributed Cutting-Plane Consensus Algorithm
The algorithm to solve general distributed optimization problems (1) is as follows.

Cutting-Plane Consensus: Processors store and update collections of cutting-planes. The cutting-
planes stored by agent i at iteration t are always a basis of a corresponding linear approximate
program (3), and are denoted by B[i](t). A processor initializes its local collection of cutting-
planes B[i]

0 with a set of cutting-planes chosen such that B[i]
0 ⊃ Zi and max

z∈B[i]0
cT z <∞.

Each processor repeats then the following steps:
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(S1) it transmits its current basis B[i](t) to all its out-neighbors NO(i, t) and receives the basis
of its in-neighbors Y [i](t) =

⋃
j∈NI(i,t) B

[j](t);
(S2) it defines H [i]

tmp(t) = B[i](t)∪Y [i](t), and computes (i) a query point z[i](t) as the minimal
2-norm solution to the approximate program (3), i.e.,

z[i](t) = arg min
z∈Γ

H
[i]
tmp(t)

‖z‖2

and (ii) a minimal set of active constraints B[i]
tmp(t);

(S3) it calls the cutting-plane oracle for the constraint set Zi at the query point z[i](t),

h(z[i](t)) = ORC(z[i](t),Zi);

(S4) it updates its collection of cutting planes as follows: if z[i](t) ∈ Zi then B[i](t + 1) =

B
[i]
tmp(t), otherwise B[i](t+ 1) is set to the minimal basis of B[i]

tmp(t) ∪ h(z[i](t)).

The four steps of the algorithm can be summarized as communication (S1), computation of the query
point (S2), generation of cutting-plane (S3) and dropping of all inactive constraints (S4). The Cutting-
Plane Consensus algorithm is explicitly designed for the use in processor networks. We want to emphasize
here the following four aspects of the algorithm.

Distributed Initialization: Each processor can initialize the local constraint sets as a basis of the artificial
constraint set {z ∈ Rd : −M1 ≤ z ≤ M1} for some M � 1. If M ∈ R>0 is chosen sufficiently
large, the artificial constraints will be dropped during the evolution of the algorithm.

Bounded Communication: Each processor stores and transmits at most (d+ 1)d numbers at a time. In
particular, processors exchange bases of (3), which are defined by not more than d cutting-planes.
Each cutting-plane is fully defined by d+ 1 numbers.

Bounded Local Computations: Each processor has to compute locally the 2-norm solution to a linear
program with d(|NI(i, t)|+ 1) constraints.

Asynchronous Communication: The Cutting-Plane Consensus algorithm does not require a time-synchronization.
Each processor can perform its local computations at any speed and update its local state whenever
it receives data from some of its in-neighbors.

Due to these properties, the Cutting-Plane Consensus algorithm is particularly well suited for optimiza-
tion in large networks of identical processors.

Technical Analysis of the Cutting-Plane Consensus Algorithm
Before starting the proof of the algorithm correctness, we point out three important technical properties

related to its evolution:
• The linear constraints stored by a processor form always a polyhedral outer-approximation of the

globally feasible set Z .
• The cost-function of each processor is monotonically non-increasing over the evolution of the algo-

rithm.
• If the communication graph Gc is a strongly connected static graph, then after diam(Gc) communi-

cation rounds, all processors in the network compute a query-point with a cost not worse than the
best processor at the initial iteration.
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These properties provide an intuition about the functionality of the algorithm and the line we will follow
to prove its correctness. They are formalized and proven rigorously in Lemma A.1 in Appendix B. We
are ready to establish the correctness of the Cutting-Plane Consensus algorithm. We start by formalizing
two auxiliary results which are also interesting on their own. The first result states the convergence of the
query points to the locally feasible sets.

Lemma 4.1 (Convergence): Assume Assumption 3.1 holds. Let z[i](t) be the query point generated by
processor i performing the Cutting-Plane Consensus algorithm. Then, the sequence {z[i](t)}t≥0 has a limit
point in the set Zi, i.e., there exists z̄[i] ∈ Zi such that

lim
t→∞

‖z[i](t)− z̄[i]‖2 → 0. �

The second result shows that all processors in the network will reach an agreement.
Lemma 4.2 (Agreement): Assume the communication network Gc(t) is jointly strongly connected. Let

z[i](t) be query points generated by the Cutting-Plane Consensus algorithm, then

lim
t→∞

‖z[i](t)− z[j](t)‖2 → 0, for all i, j ∈ {1, . . . , n}. �

The correctness of the algorithm is summarized in the following theorem.
Theorem 4.3 (Correctness): Let Gc(t) be a jointly strongly connected communication network with

processors performing the Cutting-Plane Consensus algorithm, and let Assumption 3.1 hold. Let z∗ be
the unique optimizer to (1) with minimal 2-norm, then

lim
t→∞
‖z[i](t)− z∗‖2 → 0 for all i ∈ {1, . . . , n}. �

For the clarity of presentation, the technical proofs of Lemma 4.1, Lemma 4.2, and Theorem 4.3 are
presented in Appendix B.

A major advantage for using the Cutting-Plane Consensus algorithm in distributed systems is its inherent
fault-tolerance. The requirements on the communication network are very weak and the algorithm can well
handle disturbances in the communication like, e.g., packet-losses or delays. Additionally, the algorithm
has an inherent tolerance against processor failures. We say that a processor fails if it stops at some time
tf to communicate with other processors.

Theorem 4.4 (Fault-Tolerance): Suppose that processor l fails at time tf , and that the communication
network remains jointly strongly connected after the failure of processor l. Let z[l](tf ) be the last query
point computed by processor l and define γ[l](tf ) = cT z[l](tf ). Then the query-points computed by all
processors converge, i.e., limt→∞ ‖z[i](t)− z̄−l‖ → 0, with z̄−l satisfying

z̄−l ∈

(⋂
i 6=l

Zi

)
and cT z̄−l ≤ γ[l](tf ).

Proof: Consider the evolution of the algorithm starting at time tf . With Lemma 4.1 and Lemma
4.2 one can conclude that for all processors i 6= l, the query points will converge to the set

(⋂
i 6=lZi

)
.

Additionally, the out-neighbors of the failing processor l have received a basis B[l](tf ) such that the
optimal value of the linear approximate program (3) is γ[l](tf ). Any query point z[i](t), t ≥ tf , subsequently
computed by the out-neighbors of processor l as the solution to (3) must therefore be such that cT z[i](t) ≤
γ[l](tf ) for all t ≥ tf .

This last result provides directly a paradigm for the design of fault-tolerant systems.
Corollary 4.5: Suppose that for all l ∈ V ,

⋂n
i=1,i 6=lZi = Z . Then for all l ∈ V , z̄−l = z∗ with z∗ the

optimal solution to (1). �
The abstract problem formulation (1) and the Cutting-Plane Consensus algorithm provide a general

framework for distributed convex optimization. We show in the following that a variety of important
representations of the constraint sets are covered by this set-up. Depending on the formulation of the
local constraint sets Zi different cutting-plane oracles must be defined, leading to different realizations
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of the algorithm. We specify in the following the Cutting-Plane Consensus algorithm to three important
problem classes. We want to stress that the correctness proofs established here for the general set-up will
hold directly for the three specific problem formulations discussed in the remainder of the paper.

V. CONVEX OPTIMIZATION WITH DISTRIBUTED INEQUALITY CONSTRAINTS

As first concrete setup, we consider the most natural realization of the general problem formulation (1)
with the local constraint set defined by a convex inequality, i.e.,

Zi = {z : fi(z) ≤ 0}. (8)

The functions fi : Rd 7→ R are assumed to be convex, but not necessarily differentiable. Thus, the set-up
(8) includes also the case in which processor i is assigned more that one constraint, say Zi = {z : fi1(z) ≤
0, fi2(z) ≤ 0, . . . , fik(z) ≤ 0}. In fact, one can define fi(z) := maxj∈{1,...k} fij(z) and directly obtain the
formulation (8).

To define a cutting-plane oracle for constraints of the form (8), we use the concept of subdifferential.
Given a query-point zq ∈ Rd, the subdifferential of fi at zq is

∂fi(zq) = {gi ∈ Rd : fi(z)− fi(zq) ≥ gTi (z − zq), ∀z ∈ Rd}.

An element gi ∈ ∂fi(zq) is called a subgradient of fi at zq. If the function fi is differentiable, then its
gradient ∇fi(zq) is a subgradient. A cutting-plane oracle for constraints of the form (8) is now as follows,
see, e.g., [24].

Cutting-plane Oracle: If a query point zq is such that fi(zq) > 0, then

fi(zq) + gTi (z − zq) ≤ 0, (9)

for some gi ∈ ∂fi(z), is returned, .
Note also that Assumption 3.1 is satisfied, since s(zq) = fi(zq) + gTi (zq − zq) = f(zq), and f(zq) = 0
implies zq ∈ Zi. If fi(z) := maxj∈{1,...k} fij(z), then ∂fi(zq) = Co ∪ {∂fij(zq) : fij(zq) = fi(zq)}, where
Co denotes the convex hull. Thus, the method is applicable for constraints where subgradients can be
obtained.

Remark 5.1: An important class of constraints are semi-definite constraints of the form Zi = {z :
Fi(z) := Fi0 + z1Fi1 + · · · + zdFid ≤ 0}, where Fij are real symmetric matrices, and ′ ≤ 0′ denotes
negative semi-definite. The semi-definite constraint can be formulated as inequality constraint

fi(z) := λmax(Fi(z)) ≤ 0,

with λmax the largest eigenvalue of F (z). It is discussed, e.g., in [25], that given a query point zq and a nor-
malized eigenvector v∗q of Fi(zq) corresponding to λmax(Fi(zq)), then the vector gi = [v∗Tq F1v

∗
q , . . . , v

∗T
q Fdv

∗
q ]
T

is a subgradient of fi(z). The Cutting-Plane Consensus algorithm can thus handle semi-definite constraints
and has to be seen in the context of the recent work on cutting-plane methods for semi-definite program-
ming [26], [27]. �

The Cutting-Plane Consensus algorithm is directly applicable to problems where processors are assigned
convex, possibly non-differentiable, inequality constraints. Such distributed problems appear in various
important application. For example, the distributed position estimation problem in wireless sensor networks
can be formulated in the form (1) with convex inequality and semi-definite constraints available only locally
to (some of) the sensor nodes.
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Application Example: Convex Position Estimation in Wireless Sensor Networks
Wide-area networks of cheap sensors with wireless communication are envisioned to be key elements

of modern infrastructure systems. In most applications, only few sensors are equipped with localization
tools, and it is necessary to estimate the position of the other sensors, see [28].

In [29] the sensor localization problem is formulated as a convex optimization problem, which is then
solved by a central unit using semidefinite programming. The semi-definite formulation proposed in [29]
has been later extended in the literature. We formulate the distributed position estimation problem given
in [29] in the general distributed convex optimization framework (1) and show that the general Cutting-
Plane Consensus algorithm can be used for a fully distributed solution, using only local message passing
between the sensors.

Let in the following vi ∈ R2 denote the known position of sensor i ∈ {1, . . . , n}. We want to estimate
the unknown position of an additional sensor z ∈ R2. In [29], two different estimation mechanisms are
considered: (i) laser transmitters at nodes which scan through some angle, leading to a cone set, which
can be expressed by three linear constraints of the form f(z) := aTi z − bi ≤ 0, ai ∈ R2×1 and bi ∈ R,
two bounding the angle and one bounding the distance and (ii) the range of the RF transmitter, leading
to circular constraints of the form ‖z − vi‖2

2 ≤ r2
i . Using the Schur-complement, the quadratic constraint

can be formulated as a semi-definite constraint of the form

Fi(z) := (−1)

[
riI2 (z − vi)

(z − vi)
T ri

]
≤ 0,

where I2 is the 2 × 2 identity matrix. Each sensor i can bound the position of the unknown sensor

zuy

zux

zlx

zly

cx

cy

Fig. 1. Localization of the white node by set estimates of the four gray nodes. The set estimate is given by the bounding box which
determined by the four point zlx, zux , zly, zuy . The four extreme points can be found with the Cutting-Plane Consensus algorithm.

to be contained in the convex set Zi, which is, depending on the available sensing mechanism, a disk
represented by a semi-definite constraint Zi = {z : Fi(z) ≤ 0}, a cone Zi = {z : fij(z) ≤ 0, j = 1, 2, 3},
or a quadrant, Zi = {z : Fij(z) ≤ 0, fij ≤ 0, j = 1, 2, 3}.

The sensing nodes can now compute the smallest box {z ∈ R2 : [zlx, z
l
x]
T ≤ z ≤ [zux , z

u
y ]T} that

is guaranteed to contain the unknown position using the Cutting-Plane Consensus algorithm. As pro-
posed in [29], the minimal bounding box can be computed by solving four optimization problems
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with linear objectives. To compute, for example, zux one defines the objective cx = [1, 0]T and solves
zux := max cTx z, s.t. z ∈

⋂n
i=1Zi. In the same way zlx, z

l
y, z

u
y can be determined. Figure 1 illustrates a

configuration where four nodes estimate the position of one node. A linear version of such a distributed
estimation problem, i.e., with all constraints being linear inequalities, has been considered in the previous
work [15].

VI. ROBUST OPTIMIZATION WITH UNCERTAIN CONSTRAINTS

The general formulation (1) covers also distributed robust optimization problems with uncertain con-
straints. The Cutting-Plane Consensus algorithm can therefore be used to solve a class of robust optimiza-
tion problems in peer-to-peer processor networks.

In particular, we consider constraint sets with parametric uncertainties of the form

Zi = {z : fi(z, θ) ≤ 0, for all θ ∈ Ωi} (10)

where θi is an uncertain parameter, taking values in the compact convex set Ωi. We assume that fi is
convex in z for any fixed θ. If additionally fi is concave in θ and Ωi is a convex set, we say that the
resulting optimization problem (1) is convex [30]. As we will see later on, the first condition is cruicial
for the application of the algorithm. The second condition will ensure that the problem can be solved
exactly by our algorithm.

The problem (1) with constraints of the form (10) is a distributed deterministic robust [31] or distributed
semi-infinite optimization problem [30]. Each processor has knowledge of an infinite number of constraints,
determined by the parameter θ and the uncertainty set Ωi. Obviously, uncertain constraints as (10) appear
frequently in distributed decision problems. Here we focus on a deterministic worst-case optimization
problem, where a solution that is feasible for any possible representation of the uncertainty is sought. A
comprehensive theory for robust optimization in centralized systems has been developed and is presented,
e.g., in [31].

Nowadays, mainly two different approaches are pursued in robust optimization. In one research direction
infinite, uncertain constraints are replaced by a finite number of “sampled” constraints. Sampling methods
select a finite number of parameter values and provide bounds for the expected violation of the uncertain
constraints [32]. In a distributed setup, a sampling approach has been explored in [33]. The other
research direction aims at formulating robust counterparts of the uncertain constraints (10), leading
often to nominal semi-definite problems (see, e.g., [31]). Handling the uncertain constraint from a semi-
infinite optimization point of view (10), allows also to apply exchange methods [34], where the sampling
point is chosen as the solution of a finite approximation of the optimization problem. Recently, cutting-
plane methods have been considered in the context of centralized robust optimization [35]. Robust
optimization in processor networks is a relatively new problem. Robust optimization for communication
networks using dual decomposition is considered in [36]. We connect the robust optimization problem with
uncertain constraints (10) to our general distributed optimization framework, and show that the Cutting-
Plane Consensus algorithm can solve the problem in processor networks. In fact, the novel Cutting-
Plane Consensus algorithm is related to the exchange and cutting-plane methods [34], [35]. We define the
cutting-plane oracle for the distributed robust optimization problem (10) as follows.

Pessimizing Cutting-Plane Oracle: Given a query point zq, the worst-case parameter value θ∗q
is the maximizer of the optimization problem

max
θ

fi(zq, θ) s.t. θ ∈ Ωi. (11)

The query point zq is contained in Zi if and only if the value of (11) is smaller or equal to
zero. If zq /∈ Zi, then cutting-plane is generated as

fi(zq, θ
∗
q) + gTi (z − zq) ≤ 0 (12)

where gTi ∈ ∂fi(zq, θ∗q) is a subgradient of fi.
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To see that (12) is a cutting-plane, note that a query point zq /∈ Zi is cut off, since fi(zq, θ∗q)+gTi (zq−zq) =
fi(zq, θ

∗
q) > 0. Additionally, for any point z ∈ Zi, we have 0 ≥ fi(zi, θ) for all θ ∈ Ωi, and in particular

0 ≥ fi(zi, θ
∗
q) ≥ fi(zq, θ

∗
q) + gTi (z− zq). Note that Assumption 3.1 is satisfied since fi(zq, θ∗q) = 0 implies

that zq ∈ Zi.
The oracle of the robust optimization problem requires to solve an additional optimization problem

for determining the worst case parameter (11). Following [35], we call this the pessimizing step. For the
practical applicability of our algorithm it is important to stress that the pessimizing steps are performed
in parallel on different processors.

The pessimizing step can in general be performed by numerical tools. It can be solved exactly if the
problem is convex, i.e., fi is concave in the uncertain parameter.

However, even if the convexity condition is not satisfied it might still be possible to find an exact
solution. Reference [35] provides a formal discussion about when the pessimizing step can be solved
exactly or even analytically. We review here parts of the discussion. Assume, e.g., that fi is convex in
θi for all z, and Ωi is a bounded polyhedron, with the extreme points {θ1

i , . . . , θ
k
i }. The maximum of

fi(z, u) is then the maximum of fi(z, θ1
i ), . . . , fi(z, θ

k
i ), and (11) can be solved exactly by evaluating

and comparing a finite number of functions. Furthermore, if fi(z, θi) is an affine function in θi, i.e.,
fi(z, θi) = αi(z)θi + βi(z) and the uncertainty set is an ellipsoid, i.e., Ωi = {θ : θ = θ̄i + Piu, ‖u‖2 ≤ 1}
for some nominal parameter value θ̄i and a positive definite matrix Pi, then the worst-case parameter
value can be computed analytically as

θ∗i = θ̄i +
PiP

T
i αi(z)

‖Piαi(z)‖2

. (13)

Finally, if fi is affine in the uncertain parameter and the uncertainty set is a polyhedron, the pessimizing
step (11) becomes a linear program.

Computational Study: Robust Linear Programming
We evaluate in the following the time complexity of the algorithm in a computational study for

distributed robust linear programming. We follow here [37] and consider robust linear programs in the
form (10) with linear uncertain constraints

aTi z ≤ bi, ai ∈ Ai, i ∈ {1, . . . , n}. (14)

The data of the constraints is only known to be contained in a set, i.e., ai ∈ Ai. Although our algorithm
can in principle handle any convex uncertainty set Ai, we restrict us for this computational study to
the important class of ellipsoidal uncertainties Ai = {ai : ai = āi + Piui, ‖ui‖2 ≤ 1}. The uncertainty
ellipsoids are centered at the points āi and their shapes are determined by the matrices Pi ∈ Rd×d. It is
known in the literature that the centralized problem can be solved as a nonlinear conic quadratic program
[37]

max cT z, s.t. āTi z + ‖Piz‖2 ≤ bi, i ∈ {1, . . . , n}. (15)

We will apply our algorithm directly to the uncertain problem model and use the nonlinear problem
formulation (15) only as a reference for the computational study. For the particular problem (14) the
pessimizing step can be performed analytically. Note that supai∈Ai a

T
i zq = āTi zq + sup‖u‖2≤1{uTP T

i zq} =
āTi zq + ‖P T

i zq‖2. The worst-case parameter is therefore given by

a∗i = āi +
PiP

T
i zq

‖Pizq‖2

. (16)

A cutting-plane defined according to (12) takes simply the form a∗i z ≤ bi, i.e., the linear constraint with
the worst case parameter value.
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For the computational study, we generate random linear programs in the following way. The nominal
problem data ai ∈ Rd and c ∈ Rd are independently drawn from a Gaussian distribution with mean 0

and standard deviation 10. The coefficients of the vector b are then computed as bi =
(
aTi ai

)1/2. This
random linear program model has been originally proposed in [38]. The matrices Pi are generated as
Pi = MT

i Mi with the coefficients of Mi ∈ Rd×d chosen randomly according to a normal distribution
with mean 0 and standard deviation 1. All simulations are done with dimension d = 10. We consider the
number of communication rounds required until the query points of all processors are close to the optimal
solution z∗, i.e., we stop the algorithm centrally if for all i ∈ V , ‖z[i](t) − z∗‖2 ≤ 0.1. In Figure 2, the
completion time for two different communication graphs is illustrated. We compare random Erdős-Rényi
graphs, with edge probability p = 1.2 log(n)

n
, and circulant graphs with 5 out-neighbors for each processor.

It can be seen in Figure 2 that the number of communication rounds grows with the network size for the
circulant graph, which have a growing diameter, but remains almost constant for the random Erdős-Rény
graphs, which have always a small diameter. The simulations suggests, that the completion time depends
primarily on the diameter of the communication graph.
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Fig. 2. Average number of communication rounds and 95% confidence interval required to compute the optimal solution to randomly
generated robust linear programs with a precision of ε < 0.1 for Erdős-Rényi graphs (blue) and circulant graphs (red) with the Cutting-
Plane Consensus (CPC) algorithm. The dashed line shows for comparison the number of iterations of the ADMM algorithm with dual
decomposition (dashed line).

We consider for a comparison the ADMM algorithm combined with a dual-decomposition, as described,
e.g., in [13, pp. 48], to solve the nominal conic quadratic problem representation (15) of the robust
optimization problem.1 In one iteration of the ADMM algorithm, all processors must update their local
variables synchronously and then compute the average of all decision variables. Figure 2 (right axis) shows
the number of iterations of the ADMM to compute the solution to the random linear programs with the
same precision as the Cutting-Plane Consensus algorithm. Note that the ADMM algorithm requires almost
three times more iterations than the Cutting-Plane Consensus algorithm requires communication rounds.
Note also that the ADMM algorithm requires for each iteration an averaging of the local solutions,
which can be done by a consensus algorithm. Taking into account that the number of communication
rounds required to compute an average by a consensus algorithm is lower bounded by Ω

(
n2 log(1

δ
)
)
,

where δ is the desired precision [39], it is obvious that processors running the ADMM algorithm need

1We use in the simulations a step-size ρ = 200, see [13, Chapter 7] for the notation. Please note that the choice of the step-size of the
ADMM method has to be done heuristically. We have selected the step-size as the best step-size we found experimentally for the smallest
problem scenario n = 20. Although the convergence speed of the ADMM method might improve with another step-size, in our experience
most heuristic choices led to a significant deterioration of the performance.
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to communicate significantly more often than processors running the Cutting-Plane Consensus algorithm.
Although the simulations do not compare the time-complexity of the algorithms in terms of computation
units, they clearly suggest that the Cutting-Plane Consensus algorithm is advantageous for applications
where communication is costly or time consuming.

VII. SEPARABLE COST OPTIMIZATION WITH DISTRIBUTED COLUMN GENERATION

The general convex problem set-up (1) covers also the very important class of almost separable
optimization problems, i.e., problems where each processor is assigned local decision variables with a
local objective function and the local variables are coupled by a coupling constraint. We sketch here the
application of the Cutting-Plane Consensus algorithm to convex problems with separable costs and linear
coupling constraints of the form

min
n∑
i=1

fi(xi)

s.t.
n∑
i=1

Gixi = h, xi ∈ Xi,
(17)

where xi ∈ Rmi is the decision vector assigned to processor i, fi : Rmi 7→ R is a convex objective function
processor i aims to minimize, and Xi ⊂ Rmi is a convex set, defining the feasible region for the decision
vector xi. For the clarity of presentation, we assume here that all sets Xi are bounded, although this
assumption can be relaxed. The local decision variables xi are all coupled by a linear separable constraint
with a right-hand side vector h ∈ Rr. The coupling linear constraint is of dimension r, and we assume
here that r is small compared to the number of decision variables, i.e., r �

∑n
i=1mi.

The problem formulation (17) is the standard formulation considered for large scale optimization with
decomposition methods [3]. Standard large-scale optimization methods for (17) exploit the separable
structure of the dual problem, and define a coordinating master program and several sub-problems, leading
to a structure as shown in Figure 3(a). In contrast, we are seeking an optimization method without a
master problem using only asynchronous message-passing between neighboring processors, as visualized
in Figure 3(b).

The method we propose here is strongly related to the classical Dantzig-Wolfe (DW) decomposition or
column generation [19], [3]. The DW decomposition is dual to the cutting-plane method, see e.g., [20].
We exploit this duality relation here. Once again we want to stress that the DW decomposition requires
a coordinating master problem, which is not required for our algorithm. In [17] we proposed a similar
algorithm for purely linear programs taking only the primal perspective on the problem.

The problem (17) can be formulated in the general framework (1), when its dual is considered. Let
π ∈ Rr be the dual variable corresponding to the coupling constraint. The dual problem to (17) can then
be written as

max
π
−hTπ +

n∑
i=1

{
min
xi∈Xi

fi(xi) + πTGixi

}
.

One can now define a new variable ui := minxi∈Xi fi(xi)+πTGixi, leading to the alternative representation
of the dual as

max
π,ui

− hTπ +
n∑
i=1

ui

(π, u) ∈ {(π, u) : ui ≤ fi(xi) + πTGixi, ∀xi ∈ Xi}.
(18)
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(a) Structure of the classical Dantzig-Wolfe decomposi-
tion.
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(b) Structure of the Cutting-Plane Consensus algorithm for
separable problems.

Fig. 3. Comparison of the classical master / subproblem structure of the DW decomposition and the peer-to-peer structure of the Cutting-
Plane Consensus algorithm.

This problem is explicitly in the form (1) with z = [πT , u1, . . . , un]T ∈ Rr+n, c = [−hT ,1Tn ]T and
Zi := {(π, ui) : ui ≤ fi(xi)+πTGixi,∀xi ∈ Xi}. The cutting-plane oracle can now be defined as follows.
A query point is denoted as zq = [πTq , uq,1, . . . , uq,n]T and is contained in the set Zi if and only if

uq,i ≤ fi(xi) + πTq Gixi, ∀xi ∈ Xi.

Constraint Generating Oracle: Let x̄i denote the optimal solution vector to

min
xi

fi(xi) + πTq Gixi, s.t. xi ∈ Xi (19)

and let γ∗i be the optimal value of (19). If uq,i > γ∗i then zq /∈ Zi. A cutting plane separating zq
and Zi is then

ui − fi(x̄i)− πTGix̄i ≤ 0. (20)

Clearly, uq,i− fi(x̄i)−πTq Gix̄i > 0 for (πq, uq) /∈ Zi and uq,i− fi(x̄i)−πTq Aix̄i ≤ 0 for all (π, u) ∈ Zi.
Also, Assumption 3.1 holds since s(zq) = uq,i − fi(x̄i)− πTq Gix̄i and s(zq)→ 0 implies (πq, uq) ∈ Zi.

The proposed procedure of constructing a constraint is known as “constraint generation” or, taking the
primal perspective, as “column generation”. We name (19) the local subproblem SPi, since it corresponds
to the subproblem of the DW decomposition. The approximate linear program formed by each processor
is called here local master problem MPi, since it is a local version of the master program of the DW-
decomposition.

It is worth noting that here z = [πT , u1, . . . , un]T and thus the dimension of the problem, d = r + n,
is no longer independent of the number of processors. Additionally, the set-up considered in this section
requires a unique identifier to be assigned to each processor. These two additional restrictions have to be
taken into account for an implementation of the algorithm.

The Cutting-Plane Consensus algorithm is applied here to the dual problem and will compute the dual
solution to (17), i.e.,

lim
t→∞
‖π[i](t)− π∗‖2 → 0.

If all fi(·) in (17) are strictly convex, the solutions of the local subproblems (19) of each processor will
converge to the optimal solution, i.e., limt→∞ ‖x̄[i]

i (t)−x∗i ‖ → 0, for all i ∈ V, where x∗ = [x∗1, . . . , x
∗
n] is

the optimal primal solution to (17), and x̄[i]
i (t) is the solution to (19) computed by processor i at time t.

However, this is not true if some fi(·) are only convex but not strongly convex. Then recovering a primal
optimal solution from the dual solution can be done using the method known from DW decomposition.
We assume that each processor stores the points at which a constraint is generated, x̄[i](τ), where the index
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i indicates which processor computed at time τ the point x̄i(τ) as solution to (19). Define Ḡiτ := Gix̄i(τ)
and f̄iτ := fi(x̄i(τ)). The scalar inequalities of the approximate linear program are all of the form

ui − ḠT
iτπ ≤ f̄iτ . (21)

One can now formulate the linear programming dual to the approximate program (3). Let λjτ ∈ R≥0 be
the Lagrange multiplier to the constraint (21), the linear programming dual to (3) is a linear program with
the following structure:

min
λiτ≥0

n∑
i=1

∑
τ

f̄iτλiτ

n∑
i=1

∑
τ

Ḡiτλiτ = h,
∑
τ

λiτ = 1, i ∈ {1, . . . , n}.
(22)

We assume in the following that all processors have the same set of constraints (21) as their basis.
Please note that this can be achieved by halting the algorithm at some time and running a suitable
agreement mechanism, such as the one proposed in [15]. A processor can now reconstruct its component
of the solution vector as the convex combination x∗i =

∑
τ x̄i(τ)λ∗iτ , where λ∗iτ solves (22). The resulting

solution vector x∗ = [x∗1, . . . , x
∗
n] is globally feasible since

∑n
i=1

∑
τ Ḡiτλ

∗
iτ =

∑n
i=1Gi (

∑
τ x̄i(τ)λ∗iτ ) =∑n

i=1Gix
∗
i = h. Additionally, if all processors have computed the globally optimal solution to (18),

then the recovered x∗i =
∑

k x̄i(τ)λiτ is also the optimal primal solution to (17). To see this note that
strong duality implies that the optimal value of (22) is equivalent to the value of the linear approximate
problem (3), which we denote with f ∗. Thus, f ∗ =

∑n
i=1

∑
τ=1 fi(x̄i(τ))λ∗iτ . Convexity of fi(·) and∑

τ λiτ = 1 implies that f ∗ =
∑n

i=1

∑
τ fi(x̄i(τ))λ∗iτ ≥

∑n
i=1 fi(

∑
τ x̄i(τ)λ∗iτ ) =:

∑n
i=1 fi(x

∗
i ). Since

x∗ = [x∗1, . . . , x
∗
n] is a feasible solution it must hold that

∑n
i=1 fi(x

∗
i ) = f ∗. Please note that the proposed

method requires each processor to store its own local solutions x̄[i]
i (t) to (19) generated during the evolution

of the algorithm, but does not require that the processors exchange those solutions. For a more explicit
discussion on the reconstruction of the feasible solution, we refer the reader to the literature on nonlinear
DW-decomposition [3] or our recent paper [17].

Application Example: Distributed Microgrid Control
The previous discussion shows that the Cutting-Plane Consensus algorithm is applicable for many

important control problems, such as for example distributed microgrid control. Microgrids are local
collections of distributed energy sources, energy storage devices and controllable loads. Most existing
control strategies still use a central controller to optimize the operation [40], while for several reasons,
detailed, e.g., in [40], distributed control strategies, which do not require to collect all data at a central
coordinator, are desirable.

We consider the following optimization model of the microgrid, described recently in [41]. A microgrid
consists of several generators, controllable loads, storage devices and a connection to the main grid over
which power can be bought or sold. In the following, we use the notational convention that energy
generation corresponds to positive variables, while energy consumption corresponds to negative variables.
A generator generates power pgen(t), t ∈ [0, T ] within the absolute bounds p(t) ≤ pgen(t) ≤ p̄(t) and
the rate constraints r(t) ≤ pgen(t + 1) − pgen(t) ≤ r̄(t). The cost to produce power by a generator is
modeled as a quadratic function fgen(t) = αpgen(t) + βp2

gen(t). A storage device can store or release
power pst(t), t ∈ [0, T ] within the bounds −dst ≤ pst(t) ≤ cst. The charge level of the storage device
is then qst(t) = qst,init +

∑t
τ=0 pst(τ) and must be maintained between 0 ≤ qst(t) ≤ qmax. Note that

pst(t) takes negative values if the storage device is charged and positive values if it is discharged. A
controllable load has a desired load profile lcl(t) and incorporates a cost if the load is not satisfied, i.e.,
fcl(t) = α(lcl(t) − pcl(t))+, where (z)+ = max{0, z}. Finally, the microgrid has a single control unit,
which coordinates the connection to the main grid and can trade energy. The maximal energy that can be
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traded is |ptr| ≤ E. The cost to sell or buy energy is modeled as ftr = −cTptr + γT |ptr| where c is the
price vector and γ is a general transaction cost.

The power demand D(t) in the microgrid is predicted over a horizon T . The control objective is to
minimize the cost of power generation while satisfying the overall demand. This control problem can be
directly formulated as in the form (17), with the local objective functions fi =

∑T
t=0 fi(t), the right-hand

side vector of the coupling constraint as the predicted demand h = [D(1), . . . , D(T )]T and Xi as the local
constraints of each unit.

The Cutting-Plane Consensus algorithm can solve this problem in a distributed way. Note that the
objective functions fi considered here are all convex, but not strictly convex. If all objective functions
were strictly convex, one could use the distributed Newtons method [9], which has locally a quadratic
convergence rate. However, the distributed Newton method does not apply to this problem formulation.
The Cutting-Plane Consensus algorithm does not require strict convexity of the cost functions.

We present simulation results for an example set-up with n = 101 decision units, i.e., 60 generators, 20
storage devices, 20 controllable loads and one connection to the main grid. A random demand is predicted
for 15 minute time intervals over a horizon of three hours, based on a constant off-set, a sinusoidal growth
and a random component. The algorithm is initialized with each processor computing a basis out of the
box-constraint set {z : −105 · 1 ≤ z ≤ 105 · 1}, leading to a very high initial objective value. Figure 4
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Fig. 4. Trajectories of the scaled maximal optimal value of the linear approximate programs for different k-regular communication graphs
Gc.

shows the largest objective value over all processors, relative to the best solution found as the algorithm is
continued to perform. The evolution of the objective value is shown for three different k-regular graphs.
It can be clearly seen that the convergence speed depends strongly on the structure of the communication
graph. The convergence for a network with a 2-regular communication structure is significantly slower than
for a network with a higher regular graph. We also want to emphasize the observation that the difference
in the convergence speed between k = 8 and k = 32 is not as big as the increased communication
would let one expect. This shows that the improvement obtained from more communication between the
processors becomes smaller with more communication. A good performance of the algorithm can also
be obtained with little communication between the processors. Please note that for all communication
graphs the Cutting-Plane Consensus algorithm requires only few communication rounds to converge to a
fairly good solution. Although the convergence to an exact optimal solution might take more iterations, a
good sub-optimal solution can be found after very few communication rounds. This property makes the
Cutting-Plane Consensus attractive for control and decision applications.
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VIII. DISCUSSION AND CONCLUSIONS

We proposed a framework for distributed convex and robust optimization using a polyhedral approxi-
mation method. As a general problem formulation, we consider problems where convex constraint sets are
distributed to processors, and the processors have to compute the optimizer of a linear objective function
over the intersection of the constraint sets. We proposed the novel Cutting-Plane Consensus algorithm
as an asynchronous algorithm performing in peer-to-peer networks. The algorithm is well scalable to
large networks in the sense that the amount of data each processor has to store and process is small and
independent of the network size.

The appealing property of the considered outer-approximation method lies in the fact that it imposes
very little requirements on the structure of the constraint sets. Merely the only requirement is that a cutting-
plane oracle exists. We have presented oracles for various formulations of the constraint sets, in particular,
inequality and convex uncertain or semi-infinite constraints. Also, we showed that, as the dual problem
formulation is considered, also almost separable convex optimization problems can be formulated in the
proposed framework. We showed for each of the proposed problem formulations how the cutting-plane
oracle can be defined.

Finally, we illustrated that the proposed set-up is of interest for various decision and control problems.
These include the localization problem in sensor networks. They include also less obvious problems
as, e.g., distributed microgrid control, where the novel algorithm can be applied to the dual problem
formulation. In this context we showed that the application of the algorithm to the dual problem has the
major advantage that a feasible solution can be found in a fully distributed way even before the algorithm
has converged to an optimal solution.

APPENDIX

A. Proofs of Section III
1) Proof of Proposition 3.3 : The minimal 2-norm solution is the solution to

min
z,y

1

2
zT z, s.t. ATHz ≤ bH , AHy = c, cT z − bTHy = 0, y ≥ 0, (23)

where the constraints represent the linear programming optimality conditions (KKT-conditions). The
Lagrangian of (23) can be directly determined to be

L(z, y, u, l, α) =
1

2
zT z + uT (ATHz − bH) + lT (AHy − c) + α(cT z − bTHy), y, u ≥ 0. (24)

It follows now that y∗ = arg miny≥0 L(z, y, u, l, α) = 0 if ATH l−αbH ≥ 0. From z∗ = arg minz ,L(z, y, u, l, α)
follows that z∗ = −AHu−αc. The problem (6) stated in the proposition is now minu≥0,l,α −L(z∗, y∗, u, l, α).
�

2) Proof of Lemma 3.4: The minimal 2-norm solution z∗H is the unique minimizer of

min
z

1

2
‖z‖2, s.t. cT z ≥ γH , A

T
Hz ≤ bH .

and satisfies therefore the feasibility conditions cT z∗H = γH and ATHz
∗
H ≤ bH . Since z∗H is an optimal

solution, there exist multipliers µ∗ ∈ R and λ∗ ∈ R|H|≥0 , such that the KKT conditions are satisfied, i.e.,

z∗H − µ∗c+ AHλ
∗ = 0 (25)

λ∗TATHz
∗
H − λ∗T bH = 0. (26)

Since z∗H is also a solution to the original linear program (3), there also exists a multiplier vector y∗ ∈ R|H|≥0

satisfying the linear programming optimality conditions

−c+ AHy
∗ = 0 (27)

y∗TATHz
∗
H − bTHy∗ = 0. (28)
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We have to show now that the existence of z∗H , µ
∗, λ∗ and y∗ imply, for a sufficiently small ε, the

existence of a multiplier vector π∗ satisfying the optimality conditions of (7), which are

−c+ εz∗H + AHπ
∗ = 0 and π∗TATHz

∗
H − π∗bH = 0. (29)

We distinguish now the two cases µ∗ > 0 and µ∗ = 0. First, assume µ∗ > 0. We can multiply (27) with
t
µ∗

, for arbitrary t ∈ (0, 1], and add to this (27), multiplied by (1− t) to obtain

t

µ∗
z∗H − c+ AH(

t

µ∗
λ∗ + (1− t)y∗) = 0. (30)

The same steps can be repeated with (26) and (28) to obtain

(
t

µ∗
λ∗T + (1− t)y∗T )(ATHz

∗
H − bH) = 0. (31)

With (30) and (31), for any ε ≤ 1
µ∗

, one can define tε = εµ∗. Then π∗ = tε
µ∗
λ∗T + (1− tε)y∗T solves (29).

In the second case µ∗ = 0, one can pick an arbitrary ε > 0, multiply (25) (and (26), respectively) with ε
and add (27) (or (28), respectively) to obtain εz∗H−c+AH(ελ∗+y∗) = 0 and (ελ∗+y∗)(ATHz

∗
H−bH) = 0.

Now, π∗ := (ελ∗ + y∗) solves (29). �

B. Proofs of Section IV: Correctness of the Algorithm
Some technical properties of the algorithm are formalized in the following result.
Lemma A.1: Let z[i](t) be the query point and B[i](t) the corresponding basis. Let B[i](t) ⊂ Rd be the

feasible set induced by B[i](t). Then,
(i) B[i](t) ⊃ Z for all i ∈ {1 . . . , n} and t ≥ 0;

(ii) limt→∞ z
[i](t) = z̄ and z̄ ∈ Z implies z̄ is a minimizer of (1);

(iii) there exists ε > 0 such that for all i ∈ {1, . . . , n} and all t ≥ 0, the query points z[i](t) maximize
the objective function

Jε(z) := cT z − ε

2
‖z‖2

2

over the set of constraints B[i](t) ∪ Y [i](t) (as defined in (S2)) for all ε ∈ [0, ε];
(iv) Jε(z

[i](t+ 1)) ≤ Jε(z
[i](t)) for all i ∈ {1, . . . , n} and all t ≥ 0;

(v) if Gc is a strongly connected static graph, then Jε(z
[j](t + diam(Gc))) ≤ Jε(z

[i](t)) for all i, j ∈
{1, . . . , n} and all t ≥ 0.

Proof: To see (i), note that any cut hk generated by the oracle of processor i, ORC(·,Zi) is such
that the half-space hk contains Zi, and in particular hk contains Z =

⋂n
i=1Zi. Thus any collection of

cuts H =
⋃
k hk, generated by arbitrary processors is such that H ⊃

⋂n
i=1Zi = Z , and in particular

B[i](t) ⊃ Z . The claim (ii) follows since z[i](t) is computed as a maximizer of the linear cost cT z over the
collection of cutting-planes H [i]

tmp(t). The induced polyhedron is such that H[i]
tmp(t) ⊃ Z . Therefore, we

can conclude that cT z[i](t) ≥ cT z∗, where z∗ is an optimizer of (1). By continuity of the linear objective
function, we have that cT z̄ ≥ cT z∗ On the other hand, cT z ≤ cT z∗ for all z ∈ Z . This proves the statement.
The statement (iii) follows from Lemma 3.4. For any approximate program defined by processor i at time
t, there exists a constant ε̄it > 0 such that z[i](t) is the unique maximizer of the family of strictly concave
objective functions Jε(z) := cT z − ε

2
‖z‖2, ε ∈ [0, ε̄it], over the set of constraints B[i](t) ∪ Y [i](t). One

can now always find ε > 0 such that ε ≤ ε̄it for all i ∈ {1, . . . , n} and t ≥ 0. To see claim (iv), note that
adding cutting-planes, either by receiving them from neighbors (S2) or by generating them with the oracle
(S3), can only decrease the value of the strictly concave objective function Jε(·) and the basis computation
in (S4) keeps, by its definition, the value of Jε(·) constant. Finally, (v) can be seen as follows. Starting at
any time t at some processor i, at time t+ 1 all processors in l ∈ NI(i, t) received the basis of processor
i, and compute a query point that satisfies Jε(z[l](t+ 1)) ≤ Jε(z

[i](t)) for all l ∈ NI(i, t). This argument
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can be repeatedly applied to see that, in the static, strongly connected communication graph Gc, at least
after diam(Gc) iterations, all processors in the network have an objective value smaller than Jε(z[i](t)).

Next we present the proof of Lemma 4.1, Lemma 4.2, and Theorem 4.3. The following proofs use the
parameterized cost function Jε(·). However, for the clarity of presentation we will simplify our notation
in the following proofs and write simply J(·) instead of Jε(·).

1) Proof of Lemma 4.1: All z[i](t) are computed as maximizers of the common strictly concave objective
function J(·) (Lemma A.1 (iii)) and J(·) is monotonically non-increasing over the sequence of query
points computed by a processor (Lemma A.1 (iv)). Any sequence {J(z[i](t))}t≥0, i ∈ {1, . . . , n}, has
therefore a limit point, i.e., limt→∞ J(z[i](t)) → J̄ [i]. Since the sequence is convergent, it holds that
limt→∞

(
J(z[i](t))− J(z[i](t+ 1))

)
→ 0. By strict concavity of J(·) follows that J(z[i](t)) − J(z[i](t +

1)) > σ‖z[i](t) − z[i](t + 1)‖2
2 for some σ > 0. Consequently, limt→∞ ‖z[i](t) − z[i](t + 1)‖2 → 0 and

the sequence of query points has a limit point, i.e., limt→∞ ‖z[i](t) − z̄[i]‖2 → 0. Suppose now, to get
a contradiction, that z̄[i] /∈ Zi. Then there exists δ > 0 such that all z satisfying ‖z − z̄[i]‖2 < δ
are not contained in Zi. Since limt→∞ ‖z[i](t) − z̄[i]‖2 → 0, there exists a time instant Tδ such that
‖z[i](t) − z̄[i]‖2 < δ for all t ≥ Tδ, and thus z[i](t) /∈ Zi for t ≥ Tδ. But now, for all t ≥ Tδ the
oracle ORC(z[i](t),Zi) will generate a cutting-plane according to (2), cutting off z[i](t). According to
(2), it must hold that aT (z[i](t))z[i](t) − b(z[i]) = s(z[i](t)) > 0 and aT (z[i](t))z[i](t + 1) − b(z[i]) ≤ 0.
This implies that aT (z[i](t))

(
z[i](t)− z[i](t+ 1)

)
≥ s(z[i](t)) and consequently ‖z[i](t) − z[i](t + 1)‖2 ≥

(‖a(z[i](t))‖2)−1s(z[i](t)). By Assumption 3.1 (i) holds ‖a(z[i](t))‖2 <∞ and thus limt→∞ s(z
[i](t))→ 0.

As a consequence of Ass. 3.1 (ii) follows directly that z̄[i] ∈ Zi, providing the contradiction. �

2) Proof of Lemma 4.2:: Let J̄ [i] := J(z̄[i]) be the objective value of the limit point z̄[i] of the sequence
{z[i](t)}t≥0 computed by processor i. We show first that the limiting objective values J̄ [i] are identical
for all processors. Suppose by contradiction that there exist two processors, say i and j, such that J̄ [i] <
J̄ [j]. Pick now δ0 > 0 such that J̄ [j] − J̄ [i] > δ0. The sequences {J(z[i](t))}t≥0 and {J(z[j](t))}t≥0 are
monotonically increasing and convergent. Thus, for every δ > 0 there exists a time Tδ such that for all
t ≥ Tδ, J(z[i](t)) − J̄ [i] ≤ δ and J(z[j](t)) − J̄ [j] ≤ δ. This implies that there exists Tδ0 such that for all
t ≥ Tδ0 ,

J(z[i](t)) ≤ δ0 + J̄ [i] < J̄ [j].

Additionally, since the objective functions are non-increasing, it follows that for any time instant t′ ≥ 0,
J(z[j](t′)) ≥ J̄ [j]. Thus, for all t ≥ Tδ0 and all t′ ≥ 0,

J(z[i](t)) < J(z[j](t′)). (32)

Pick now t0 ≥ Tδ0 . For all τ ≥ 0 define now an index set Iτ as follows: Set I0 = {i} and for
any τ ≥ 0 define Iτ by adding to Iτ−1 all indices k for which there exist some l ∈ Iτ−1 such that
(k, l) ∈ E(t0 + τ). Since, by assumption G∞c (t0) is strongly connected, the set Iτ will eventually include
all indices 1, . . . , n, and in particular there is τ ∗ such that j ∈ Iτ∗ . The algorithm is such that for all
l ∈ Iτ , J(z[l](t0 + τ)) ≤ J(z[i](t0)) and thus

J(z[j](t0 + τ ∗)) ≤ J(z[i](t0)). (33)

But (33) contradicts (32), proving that J̄ [i] = J̄ [2] = · · · = J̄ [n] =: J̄ . Thus, it must hold that for all
i, j ∈ {1, . . . , n}, limt→∞ |J(z[i](t)) − J(zj(t))| → 0. From the strict concavity of J(·) follows that
|J(z[i](t))−J(z[j](t))| > σ‖z[i](t)−z[j](t)‖2

2, for some σ > 0. Therefore, limt→∞ ‖z[i](t)−z[j](t)‖2 →∞,
which proves the theorem. �
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3) Proof of Theorem 4.3: It follows from Lemma 4.2 that the query points of all processors converge
to the same query point, i.e., z̄[i] = z̄ for all processors i. Now, we can conclude from Lemma 4.1 that
z̄ ∈ Zi for all i and thus z̄ ∈ Z . It follows now from Lemma A.1, part (ii), that z̄ is an optimal solution to
(1). It remains to show that z̄ is the optimal solution with minimal 2-norm. Let z∗ be the optimal solution
with minimal 2-norm. Then there exists an ε > 0 such that the parameterized objective function satisfies
Jε(z

∗) > Jε(z) for all z ∈ Z and Jε(z
[i](t)) ≥ Jε(z

∗) for all t. With the same argumentation used for
Lemma A.1, part (ii), we conclude that z̄ is the unique solution maximizing Jε(·) over Z , i.e., z̄ is the
optimal solution to (1) with minimal 2-norm. �
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[17] M. Bürger, G. Notarstefano, and F. Allgöwer, “Locally constrained decision making via two-stage distributed simplex,” in Proc. IEEE

Conference on Decision and Control, European Control Conference, Orlando, Dec. 2011, pp. 5911 – 5916.
[18] ——, “Distributed robust optimization via cutting-plane consensus,” in Proc. IEEE Conference on Decision and Control, Maui, Hawaii,

Dec. 2012.
[19] G. Dantzig and P. Wolfe, “The decomposition algorithm for linear programs,” Econometrica, vol. 29, no. 4, pp. 767 – 778, 1961.
[20] B. C. Eaves and W. I. Zangwill, “Generalized cutting plane algorithms,” SIAM Journal of Control and Optimization, vol. 9, no. 4, pp.

529 – 542, 1971.
[21] O. L. Mangasarian, “Least-norm linear programming solution as an unconstrained optimization problem,” Journal of Mathematical

Analysis and Applications, vol. 92, pp. 240 – 251, 1983.
[22] Y.-B. Zhao and D. Li, “Locating the least 2-norm solution of linear programs via a path-following method,” SIAM Journal on

Optimization, vol. 12, no. 4, pp. 893 – 912, 2002.
[23] O. L. Mangasarian and R. R. Meyer, “Nonlinear perturbation of linear programs,” SIAM Journal on Optimization, vol. 17, no. 6, pp.

745 – 752, 1979.
[24] J. E. Kelley, “The cutting plane method for solving convex programs,” SIAM Journal on Applied Mathematics, vol. 8, pp. 703 – 712,

1960.
[25] C. Scherer and S. Weiland, “Linear matrix inequalities in control,” Delft Center for Systems and Control, Delft University of Technology,

The Netherlands, Tech. Rep., 2004.
[26] K. Krishnan and J. Mitchell, “A unifying framework for several cutting plane methods for semidefinite programming,” Optimization

Methods and Software, vol. 21, pp. 57 – 74, 2006.

http://coordinationbook.info


21

[27] H. Konno, N. Kawadai, and H. Tuy, “Cutting-plane algorithms for nonlinear semi-definite programming problems with applications,”
Journal of Global Optimization, vol. 25, pp. 141 – 155, 2003.

[28] J. Bachrach and C. Taylor, Handbook of sensor networks. John Wiley and Sons, Inc., 2005, ch. Localization in Sensor Networks, pp.
277–310.

[29] L. Doherty, K. Pister, and L. E. Ghaoui, “Convex position estimation in wireless sensor networks,” in 20th IEEE Conference on
Computer Communications Societies, vol. 3, 2001, pp. 1655 –1663.

[30] M. Lopez and G. Still, “Semi-infinite programming,” European Journal of Operational Research, vol. 180, pp. 491–518, 2007.
[31] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, Robust Optimization. Princeton University Press, 2009.
[32] G. Calafiore, “Random convex programs,” SIAM Journal on Optimization, vol. 20, no. 6, pp. 3427 – 3464, 2010.
[33] L. Carlone, V. Srivastava, F. Bullo, and G. C. Calafiore, “Distributed random convex programming via constraints consensus,” SIAM

Journal of Control and Optimization, Jul. 2012, submitted.
[34] R. Reemtsen, “Some outer approximation methods for semi-infinite optimization problems,” Journal of Computational and Applied

Mathematics, vol. 53, pp. 87 – 108, 1994.
[35] A. Mutapcic and S. Boyd, “Cutting-set methods for robust convex optimization with pessimizing oracles,” Optimization Methods and

Software, vol. 24, pp. 381– 406, 2009.
[36] K. Yang, Y. Wu, J. Huang, X. Wang, and S. Verdu, “Distributed robust optimization for communication networks,” in INFOCOM 2008.

The 27th Conference on Computer Communications. IEEE, 2008, pp. 1157–1165.
[37] A. Ben-Tal and A. Nemirovski, “Robust solutions of uncertain linear programs,” Operations Research Letters, vol. 25, pp. 1–13, 1999.
[38] J. R. Dunham, D. G. Kelly, and J. W. Tolle, “Some experimental results concerning the expected number of pivots for solving randomly

generated linear programs,” University of North Carolina and Chapel Hill, Tech. Rep. 77-16, 1977.
[39] A. Olshevsky and J. Tsistiklis, “Convergence speed in distributed consensus and averaging,” SIAM Journal of Control and Optimization,

vol. 48, no. 1, pp. 33–55, 2009.
[40] R. Zamora and A. K. Srivastava, “Controls for microgrids with storage: Review, challenges and research needs,” Renewable and

Sustainable Energy Reviews, vol. 14, pp. 2009–2018, 2010.
[41] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Message passing for dynamic network energy management,” Stanford University, Tech.

Rep., 2012. [Online]. Available: http://www.stanford.edu/$∼$boyd/papers/pdf/decen dyn opt.pdf

 http://www.stanford.edu/ $~$boyd/papers/pdf/decen_dyn_opt.pdf 

	I Introduction
	II Problem Formulation and Network Model
	III Polyhedral Approximation and Minimal Norm Linear Programming
	IV The Cutting-Plane Consensus Algorithm
	V Convex Optimization with Distributed Inequality Constraints
	VI Robust Optimization with Uncertain Constraints
	VII Separable Cost Optimization with Distributed Column Generation
	VIII Discussion and Conclusions
	Appendix
	A Proofs of Section ??
	A1 Proof of Proposition ?? 
	A2 Proof of Lemma ??

	B Proofs of Section IV: Correctness of the Algorithm
	B1 Proof of Lemma ??
	B2 Proof of Lemma ??:
	B3 Proof of Theorem ??


	References

