
1

Explicit Characterization of Stability Region

for Stationary Multi-Queue Multi-Server

Systems

Hassan Halabian, Ioannis Lambadaris, Chung-Horng Lung

Department of Systems and Computer Engineering

Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

Email: {hassanh, ioannis, chlung}@sce.carleton.ca

Abstract

In this paper, we characterize the network stability region (capacity region) of multi-queue multi-

server (MQMS) queueing systems with stationary channel distribution and stationary arrival processes.

The stability region is specified by a finite set of linear inequalities. We first show that the stability

region is a polytope characterized by the finite set of its facet defining hyperplanes. We explicitly

determine the coefficients of the linear inequalities describing the facet defining hyperplanes of the

stability region polytope. We further derive the necessary and sufficient conditions for the stability of

the system for general arrival processes with finite first and second moments. For the case of stationary

arrival processes, the derived conditions characterize the system stability region. Furthermore, we obtain

an upper bound for the average queueing delay of Maximum Weight (MW) server allocation policy

which has been shown in the literature to be a throughput optimal policy for MQMS systems. Using a

similar approach, we can characterize the stability region for a fluid model MQMS system. However,

the stability region of the fluid model system is described by an infinite number of linear inequalities

since in this case the stability region is a convex surface. We present an example where we show that in

some cases depending on the channel distribution, the stability region can be characterized by a finite

set of non-linear inequalities instead of an infinite number of linear inequalities.

I. INTRODUCTION

Optimal stochastic network control is one of the primary goals in the design of emerging

wireless networks. One of the objectives of stochastic control in wireless networks is to enable
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cross layer designs to achieve stochastically optimal resource allocation in the physical and MAC

layers, coupled with flow control/utility optimization strategies in transport layer and routing in

the network layer. Examples of network resources at the MAC layer of wireless systems are

OFDM subcarriers and CDMA codes and at the physical layer is transmission power. Apart

from the resource allocation problem in physical and MAC layers, flow control plays a crucial

role in ensuring the system stability while achieving a level of network fairness. A flow control

strategy must decide how much fraction of the injected traffic to the system must be admitted to

assure the stability of queues in the network layer while achieving the optimal network fairness

among users. A quantitative measure of fairness which is widely used in literature (e.g. [1]–[9])

is to define a set of utility functions fn(r) which illustrate the grade of satisfaction for each user

n while it transmits data traffic at rate r. Consider a general network (wired or wireless) with N

source nodes. Suppose that λn, n = 1, 2, ..., N be the traffic arrival rate of each user n. For such

a network, the stability region or network capacity region is defined as the closure of the set of

all arrival rate vectors for which there exists a resource allocation policy that can stabilize the

system [1], [2], [10]. Let us denote the network stability region by Λ. The flow control strategy

determines the admitted rates rn from each user n by solving the following flow maximization

problem.

Maximize:
N∑

n=1

fn(rn) (1)

Subject to: r = (r1, r2, ..., rN) ∈ Λ

0 ≤ rn ≤ λn ∀n = 1, 2, ..., N

By solving the above maximization problem, each node adjusts its admitted traffic rate to the

computed optimal point from (1). We assume that functions fn(rn) are non-decreasing and

concave. The choice of functions fn(rn) depends on the desired fairness properties in the network.

For example, choosing the utility function f(r) = log(1+βr) (for some large constant parameter

β > 0) will result in proportional fairness behaviour [2], [4].

To solve the optimization problem in (1), we need to have the stability region of the system.

Note that the stability region is unique for each network and independent of the resource

allocation policy. Although stability region has been described and characterized for a general

network in [1], [2], [10], [11] as given by the convex hull of a set of fixed points, such an
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implicit characterization cannot be directly used to define the constraints of network optimization

problem (1). The main goal of this paper is to introduce a linear algebraic characterization of

the stability region for stationary Multi-Queue Multi-Server (MQMS) queueing systems. Such

queueing systems can be used to model practical multi-user wireless networks with multiple

orthogonal sub-channels such as OFDM sub-carriers. In such networks, there is a set of users

generating random packet arrivals and a set of shared orthogonal sub-channels (servers) that are

assigned to users according to certain rules. Because of users mobility, environmental changes,

fading, etc., the channel quality of each user to each server is changing randomly with time.

Therefore, resource allocation in such networks can be modeled as a server allocation problem in

multi-queue multi-server queueing systems with time varying channel conditions [12]–[18]. Our

focus in this paper would be on the server allocation problem in MQMS systems with stationary

channel distribution for which we will introduce a linear algebraic representation of the network

stability region (i.e., Λ). Specifically, we will determine explicitly all the coefficients of the linear

inequalities that describe the stability region. These inequalities then can be tabulated and used

as the constraints of flow optimization problems similar to (1).

The stability problem in wireless queueing networks was mainly addressed in [1], [2], [10],

[11], [19]. In [10], authors introduced the notion of stability region of a queueing network.

They considered a time slotted system in their work and assumed that arrival processes are

i.i.d. sequences and the queue length process is a Markov process. In [19], they characterized

the network stability region of multi-queue single-server systems with time varying ON-OFF

connectivities. They also proved that for a symmetric system (with the same arrival and con-

nectivity statistics for all the queues), LCQ (Longest Connected Queue) policy maximizes the

stability region and also provides the optimal performance in terms of average queue occupancy

(or equivalently average queueing delay). In [1], [2] and [20], the notion of network stability

region of a wireless network was introduced for more general arrival and queue length processes.

Furthermore, Lyapunov drift techniques were applied in [1] and [2] to analyze the stability of

the proposed policies for stochastic optimization problems in wireless networks.

The problem of server allocation in multi-queue multi-server systems with time varying

connectivities was mainly addressed in [12], [13], [15], [16], [18]. In [13], Maximum Weight

(MW) policy was proposed as a throughput optimal server allocation policy for MQMS systems

with stationary channel process. However, in [13] the conditions on the arrival traffic to guarantee
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the stability of MW were not explicitly mentioned. In our previous work in [18], we characterized

the network stability region of multi-queue multi-server systems with time varying ON-OFF

channels. We also obtained an upper bound for the average queueing delay of AS/LCQ (Any

Server/Longest Connected Queue) policy which is the throughput optimal server allocation policy

for such systems.

References [12], [14]–[16] study the optimal server allocation problem in terms of average

queueing delay. In [12], [14], [15], the authors argue that in general, achieving instantaneous

throughput and load balancing is impossible in a general MQMS system. However, they showed

that this goal is attainable in the special case with ON-OFF channel processes. They also

introduced MTLB (Maximum-Throughput Load-Balancing) policy and showed that this policy is

minimizing a class of cost functions including total average delay for the case of two symmetric

queues. The work in [16] considers this problem for general number of symmetric queues and

servers. Authors in [16] characterized a class of Most Balancing (MB) policies among all work

conserving policies which are minimizing, in stochastic ordering sense, a class of cost functions

including total average delay. They used stochastic ordering and dynamic coupling arguments

to show the optimality of MB policies for symmetric systems.

In this paper, we will characterize the stability region of multi-queue multi-server queueing

system with stationary channel and arrival processes. Toward this, the necessary and sufficient

conditions for the stability of the system are derived for general arrival processes with finite first

and second moments. For stationary arrival processes, these conditions establish the network

stability region of such systems. Our contribution in this work is to characterize the stability

region as a convex polytope specified by a finite set of linear inequalities that can be numerically

tabulated and used to solve network optimization problems similar to (1) (Refer to Lemmas 3 to

7 and Theorems 1 and 2). Later in the paper, we further introduce an upper bound for the average

queueing delay of MW policy [13] which is a throughput optimal policy for MQMS systems.

We also study the stability of fluid model MQMS systems for which using the same approach

as what we use in the packetized system, we characterize the linear algebraic representation of

the stability region. We show that the stability region in this case is characterized by an infinite

number of linear inequalities. However, by an example we show that depending on the channel

distribution and the dimension of the system, we may characterize the stability region by a

limited number of non-linear inequalities instead of infinite number of linear inequalities.
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The rest of this paper is organized as follows. In section II, we introduce the notation required

throughout this paper. Section III describes the queueing model we focused on. In section IV, we

discuss about the notion and definition of strong stability in queueing networks. We also briefly

elaborate on the Lyapunov drift technique used to prove the system stability [1], [2]. Moreover,

we review some fundamental properties of polytopes in section IV. In section V, we will derive

necessary and sufficient conditions for the stability of our model. We determine the coefficients

of the linear inequalities describing the facets of the stability region polytope. We also find an

upper bound for the average queue occupancy (or average queueing delay). Finally, we introduce

fluid model MQMS systems and study the stability region of such queueing systems. Section

VI presents the conclusions of our work.

II. NOTATION

In this section, we introduce basic notation used throughout the paper. Additional notation

will be introduced when necessary. All the vectors are considered to be row vectors. By 1K

(0K), we denote a row vector of size K whose elements are all identically equal to “1” (“0”).

The time average of a function f(t) is denoted by f(t), i.e., f(t) = limt→∞
1
t

∑t
τ=1 f(τ). The

operator “~ ” is used for entry-wise multiplication of two matrices. The expectation of random

processes (or random variables) is denoted by E[·]. The cardinality of a set is denoted by | · |.
The operator for inner product of two vectors is 〈·, ·〉. The boundary of a set is represented by

bound(·). For any vector α = (α1, α2, ..., αN) and a non-empty ordered (sub)set of indices U =

{u1, u2, ..., u|U|} ⊆ {1, 2, ..., N} and u1 < u2 < ... < u|U|, we define αU = (αu1 , αu2 , ..., αu|U|).

III. MODEL DESCRIPTION

We consider a time slotted queueing system with equal length time slots and equal length

packets. The model consists of a set of parallel queues N = {1, 2, ..., N} and a set of identical

servers K = {1, 2, ..., K}. Each server can serve at most one queue at each time slot, i.e., we do

not allow server sharing in the system. At each time slot t, the capacity of the link between each

queue n ∈ N and server k ∈ K is assumed to be Cn,k(t) packets/time slot (Figure 1), i.e., during

time slot t, server k can serve at most Cn,k(t) packets of queue n successfully if it is allocated to

queue n at that time slot. We assume that Cn,k(t) ∈M where M = {m ∈ Z+ | m ≤M}, for a

given M . Therefore, at each time slot t, the channel state may be expressed by an N×K matrix
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2

K

1
C1,1(t)

C1,2(t)
C1,K(t)

CN,1(t)

CN,2(t)

CN,K(t)

X1(t)

X2(t)

XN(t)

A1(t)

A2(t)

AN(t)

Fig. 1: Multi-queue multi-server queueing system with stationary channel distribution

C(t) = (Cn,k(t)) , n ∈ N , k ∈ K, Cn,k(t) ∈ M. The channel process is defined as {C(t)}∞t=1

with the state space S. Note that S is a finite set with |S| = (M + 1)NK . We will label each

element of S by a positive integer index s ∈ {1, 2, ..., (M + 1)NK}. Suppose that the channel

state matrix associated to the channel state s is denoted by Cs. The channel process is assumed

to have stationary distribution with stationary probabilities πs = Pr(C(t) = Cs).

Queues are fed by exogenous packet arrival processes An(t), n = 1, 2, ..., N , i.e., the number

of packet arrivals to queue n during time slot t is represented by An(t). The arrival vector at

time slot t is denoted by A(t) = (A1(t), A2(t), ..., AN(t)). For these processes, suppose that

E[A2
n(t)] ≤ A2

max < ∞ for all t. We assume that each queue has an infinite buffer space.

We also assume that new arrivals are added to each queue at the end of each time slot. Let

X(t) = (X1(t), ..., XN(t)) be the queue length vector at the end of time slot t after adding new

arrivals to the queues1.

A server scheduling policy at each time slot should decide how to allocate servers from set

K to the queues in set N . This must be accomplished based on the available information about

the channel state of the system at time slot t (i.e., C(t)) and also the queue length state at the

beginning of time slot t (i.e., X(t − 1)). Therefore, at the beginning of each time slot t the

1We assume that at each time slot departures occur first and then at the end of the time slot new arrivals are added to the

queues.
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scheduler has to determine an allocation matrix I(t) ∈ I where

I =

{
IN×K = (In,k) , In,k ∈ {0, 1} |

N∑

n=1

In,k ≤ 1 ∀k ∈ K
}
.

and I is called allocation matrix space. We observe that each matrix in I can have at most a

single “1” in each of its columns. The queue length vector evolves with time according to the

following rule.

XT(t) =
(
XT(t− 1)− (C(t) ~ I(t)) 1T

K

)+
+ AT(t) (2)

where (·)+ is defined as follows: For an arbitrary vector v of size |v|, (v)+ is a vector of the

same size whose i’th element, (v)+
i , is defined by

(v)+
i =





0 if vi < 0

vi if vi ≥ 0
. (3)

IV. BACKGROUND

A. Strong Stability Definition

We now introduce the definition of strong stability for a queueing system [1], [2]. Other

definitions can be found in [10], [19], [21], [22]. Consider a discrete time single queue system

with an arrival process A(t) and service process µ(t). As we mentioned earlier, the arrivals are

added to the system at the end of each time slot. We can see that the queue length process X(t)

evolves with time according to the following recursion;

X(t) = (X(t− 1)− µ(t))+ + A(t) (4)

Definition 1: A queue evolving with time according to (4) is said to be strongly stable [2] if

lim sup
t→∞

1

t

t−1∑

τ=0

E[X(τ)] <∞. (5)

Definition 2: A queueing network is said to be strongly stable [2] if all the queues in the

system are strongly stable.

In this paper, we will employ the definition of strong stability and in what follows we use the

terms “stability” and “strong stability” interchangeably. In [1], [2], it was proved that if a queue

is strongly stable and if for all t either E[A(t)] ≤ A or E[µ(t)−A(t)] ≤ D where A and D are

finite given non-negative constants, then

lim
t→∞

1

t
E[X(t)] = 0. (6)
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B. Lyapunov Drift

A very important and useful mathematical tool used in network stability analysis and stochastic

control/optimization of wireless networks is the Lyapunov Drift technique introduced in [1], [2],

[20], [22], [23]. The main idea behind the Lyapunov stability method is to define a nonnegative

function of queue backlogs which can be seen as a measure of the total aggregated backlog

in the system at time slot t. Then, we evaluate the “drift” of such function in two successive

time slots by taking the effect of control decisions (scheduling or resource allocation policy)

into account. If the expected value of the drift is negative as the backlog goes beyond a fixed

threshold, then the system is stable. This method was used in [1], [2], [20], [22], [23] to prove

the stability of a number of queueing systems.

For a queueing system with N queues and queue length vector X(t) = (X1(t), ..., XN(t)),

the following quadratic function has been usually used in literature ( [1], [2], [20], [22], [23])

as a Lyapunov function.

L(X) =
N∑

n=1

X2
n(t) (7)

Assume that E[Xn(0)] < ∞, ∀n ∈ N and X(t) evolves with some probabilistic law (not

necessarily Markovian). Then, the following holds [2].

Lemma 1: If there exist constants B > 0 and δ > 0 such that for all time slots t we have

E[L(X(t+ 1))− L(X(t)) | X(t)] ≤ B − δ
N∑

n=1

Xn(t), (8)

then the system is strongly stable and further we have

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E[Xn(τ)] ≤ B

δ
. (9)

The proof of the lemma can be found in [1], [2]. The left hand side of expression (8) is usually

called Lyapunov drift function which is a measure of the expected value of changes in the backlog

in two successive time slots. From Lemma 1, we can easily see the idea behind Lyapunov method

in stabilizing queueing systems. It is not hard to show that, when the aggregated backlog in the

system goes beyond the bound B
δ

, the Lyapunov drift in the left hand side of (8) will be negative,

meaning that the system receives a negative drift on the expected aggregated backlog in two

successive time slots. In other words, the system tends toward lower backlogs and this results

in its stability.
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C. Fundamental Concepts of Polytopes

We present a brief review on convex polytopes and fundamental properties of them. These

concepts will be needed for specifying the stability region of MQMS system in section V.

Definition 3: A convex polytope is defined as the convex hull of a finite set of points [24],

[25].

According to Weyl’s Theorem [24], a polytope in RN always can be expressed by a set

P =
{
x ∈ RN | α`xT ≤ β` for ` = 1, 2, ..., L

}
for some positive integer L and α` ∈ RN and

β` ∈ R.

Definition 4: The dimension of a polytope P is represented by dim(P) and is defined as one

less than the maximum number of affinely independent points in P [24], [25].

A polytope P ⊂ RN is said to be full dimensional if dim(P) = N .

Dimension Theorem: For a polytope P ⊂ RN , dimension of P is equal to N minus the

maximum number of linearly independent equations satisfied by all the points in P .

Definition 5: For given a and b, equality axT ≤ b is called valid for polytope P if for every

point x0 ∈ P , axT
0 ≤ b.

Definition 6: A face of polytope P is defined as F = {x ∈ P | axT = b} where inequality

axT ≤ b is a valid inequality for P .

We call the valid inequality axT
0 = b a face defining hyperplane for P if its associated face

is not empty. Therefore, axT
0 = b is a face defining hyperplane for P if it intersects with P at

least at one point. Note that P has finitely many faces. However, the face defining hyperplanes

of a polytope can be infinite.

Definition 7: A facet of polytope P is a maximal face distinct2 from P [25]. Hence, all faces

of P with dimension dim(P)− 1 are called facets of P .

For a polytope P =
{
x ∈ RN | α`xT ≤ β` for ` = 1, 2, ..., L

}
an inequality is redundant if

polytope P remains unchanged by removing the inequality.

Redundancy Theorem in Polytopes [24]: Face defining hyperplanes describing faces of dimen-

sion less than dim(P)− 1 are redundant.

Redundancy theorem states that to describe a polytope completely, only facet defining hyper-

planes are sufficient.

2Maximal relative to inclusion
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V. LINEAR ALGEBRAIC REPRESENTATION OF STABILITY REGION PLOYTOPE

In this section, we first introduce the convex hull representation of the stability region [1], [2].

Then, we derive the necessary and sufficient conditions for the stability of MQMS system with

stationary channel processes and general arrival processes with finite first and second moments. It

will be shown that for stationary packet arrival processes, these conditions establish the stability

region polytope. We determine a linear algebraic representation of the stability region in which

we explicitly determine the coefficients of the linear inequalities describing the stability region.

A. Stability Region Geometry

Consider the class of deterministic policies G where at each state of the system, each policy

g ∈ G allocates the servers according to a predetermined allocation matrix depending on the

channel state matrix (i.e., matrix C(t)). More specifically, for each policy g ∈ G, there exists a

one to one mapping from the channel state space S to the allocation matrix space I, namely

I(g) : S 7−→ I. Therefore, each deterministic policy g is specified by |S| allocation matrices

I
(g)
s , s ∈ S. The scheduler observes the state of the system and then based on the observed state

s, it allocates the servers according to an allocation matrix I
(g)
s . Note that set I is a finite set

and since the channel state space is also finite, set G is finite.

Each deterministic policy g provides an average transmission rate for each queue n. Let R(g)
n

denote the time averaged transmission rate provided to queue n and R(g) = (R
(g)
1 , R

(g)
2 , ..., R

(g)
N )

the vector of average transmission rates. By conditioning on the channel state of the system, it

is not hard to see that for each deterministic server allocation policy g, we have

R(g) =

(∑

s∈S

πs
(
Cs ~ I(g)

s

)
1T
K

)T

. (10)

Note that each rate vector R(g) determines a single point in RN
+ . Now, consider the convex

hull of all the points R(g), g ∈ G in RN
+ , i.e.,

R = conv.hull
g∈G

(R(g)). (11)

Each point in R, let say R? can be represented by a convex combination of a finite set of

points, R(g), g ∈ G, i.e.,

R? =

|G|∑

i=1

piR
gi , gi ∈ G ,

|G|∑

i=1

pi = 1, pi ≥ 0. (12)
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Hence, R contains all the achievable transmission rate vectors of MQMS system. To achieve the

transmission rate vector R? ∈ R it is enough to select policy gi with probability pi, i.e., in pi

fraction of time slots. In other words, all the transmission rate vectors R? ∈ R are achievable by

applying a randomized policy that at each time slot selects policy gi with probability pi. Thus,

the following Lemma follows.

Lemma 2: The set of achievable transmission rate vectors R is specified by a polytope.

Proof: The lemma follows directly from the definition of polytope in (3), equation (11) and

the fact that set G is finite.

We will denote the achievable transmission rate polytope by P . According to the definition of

stability region and the discussion in [1], [2], [11], [20] regarding the network stability region,

we can conclude that polytope P specifies the stability region of MQMS queueing system with

stationary channel distribution and stationary arrival processes (in this case E[An(t)] = λn and

λ = (λ1, λ2, ..., λN)). Specifically, it has been shown that if the system is stable, we should

have λ ∈ P and also if λ ∈ P − bound(P), then there exists a server allocation policy that can

stabilize the system.

Although stability region of MQMS system is described by (12), it cannot be applied as

the constraints of utility optimization problem (1). In fact, (12) only provides us an implicit

description of stability region. To solve network optimization problems like (1), we should

characterize the stability region by a set of linear/non-linear convex inequalities (or equalities)

which is given in the following.

B. Necessary Conditions for the Stability of MQMS System

We first give an outline of the steps we take to find the necessary conditions for the stability

of the system.

• Using Lemmas 3-5, we will characterize all the face defining hyperplanes of the stability

region polytope. More specifically, we will determine the normal vector associated to each

hyperplane as well as a single point where the hyperplane touches the stability region

polytope. We show that each vector in RN
+ is associated to a face defining hyperplane.

• The stability region is a polytope and therefore can be characterized by the finite set of

its facet defining hyperplanes. We will introduce a subset of RN
+ , namely V ⊂ RN

+ and in

Lemma 6 we show that the vectors outside set V cannot be associated to a facet defining
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hyperplanes of the stability region polytope. Note that set V is an infinite set itself.

• In Lemma 7, we will show that although set V is an infinite set, it is finite up to multiplication

of vectors by positive scalars, i.e., all the vectors in V can be produced by multiplying a

positive scalar to a vector in a finite set V̂ .

• Using Lemmas 3 to 7, we will prove Theorem 1 which states the necessary conditions for

the stability of the system. We also argue that the derivation of set V̂ becomes difficult for

large N and M . We introduce a finite superset of set V̂ whose elements can be specified

easily.

We introduce the departure matrix HN×K(t) = (Hn,k(t)), n ∈ N , k ∈ K in which Hn,k(t)

(Hn,k(t) ≤ Cn,k(t)) represents the total number of packets served by server k from queue n at

time slot t. Thus, the departure process from queue n at time slot t would be
∑K

k=1 Hn,k(t). The

following equality illustrates the evolution of queue length process with time.

Xn(t) = Xn(t− 1)−
K∑

k=1

Hn,k(t) + An(t) ∀n ∈ N (13)

For a strongly stable MQMS queueing system we can prove the following Lemma.

Lemma 3: If the MQMS system is strongly stable, then for any vector α = (α1, α2, ..., αN) ∈
RN we have

αE[A(t)]T = αE[H(t)]1T
K . (14)

Proof: The recursion (13) will result into

Xn(t) = Xn(0)−
t∑

τ=1

K∑

k=1

Hn,k(τ) +
t∑

τ=1

An(τ). (15)

By multiplying vector α to the queue length vector X(t) we have

αXT(t) = αXT(0)−
t∑

τ=1

αH(τ)1T
K +

t∑

τ=1

αAT(τ). (16)

Taking the expectation from both sides, dividing by t and then taking the limit as t goes to

infinity, we will have the following.

lim
t→∞

1

t
αE[X(t)]T = lim

t→∞

1

t
αE[X(0)]T − lim

t→∞

1

t

t∑

τ=1

αE[H(τ)]1T
K + lim

t→∞

1

t

t∑

τ=1

αE[A(τ)]T (17)

According to (6) and the assumption that E[X(0)] < ∞, the left hand side term and the first

term in the right hand side term are equal to zero and therefore the result follows.
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A direct result of Lemma 3 for a single queue n is the following.

E[An(t)] = E

[
K∑

k=1

Hn,k(t)

]
(18)

In other words, for a strongly stable queue n, the time averaged total expected arrival to queue

n is equal to the time averaged total expected departure from queue n.

Lemma 4: If the MQMS system is strongly stable, then E[A(t)] ∈ P .

Proof: The proof follows directly by considering (18) and the fact that

∀ H(t), ∃R ∈ P : E

[
K∑

k=1

Hn,k(t)

]
≤ Rn ∀n ∈ N . (19)

Based on Lemmas 3 and 4, we can prove the following Lemma.

Lemma 5: If the MQMS system is strongly stable, then for all α ∈ RN
+

αE[A(t)]T ≤
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
(20)

Proof: Consider α ∈ RN . Since the system is strongly stable, from Lemma 3 we have

lim
t→∞

1

t

t∑

τ=1

αE[A(τ)]T = lim
t→∞

1

t

t∑

τ=1

αE[H(τ)]1T
K (21)

By conditioning on the channel state process, we will have

lim
t→∞

1

t

t∑

τ=1

αE[H(τ)]1T
K

= lim
t→∞

1

t

t∑

τ=1

∑

s∈S

πsαE[H(τ) | S(τ) = s]1T
K

≤ lim
t→∞

1

t

t∑

τ=1

∑

s∈S

πs(α)+E [Cs ~ I(τ)] 1T
K

≤ lim
t→∞

1

t

t∑

τ=1

∑

s∈S

πs max
I∈I

(
(α)+(Cs ~ I)1T

K

)

=
∑

s∈S

πs max
I∈I

(
(α)+(Cs ~ I)1T

K

)
(22)

Now, consider two different cases:

• α ∈ RN
+ : The result follows directly from (21) and (22) since (α)+ = α.

November 8, 2018 DRAFT



14

• α /∈ RN
+ : In this case, from (21) and (22) we have the following inequality.

αE[A(t)]T ≤
∑

s∈S

πs max
I∈I

(
(α)+(Cs ~ I)1T

K

)
(23)

However, since (α)+ ∈ RN
+ and according to the previous case we also have

(α)+E[A(t)]T ≤
∑

s∈S

πs max
I∈I

(
(α)+(Cs ~ I)1T

K

)
. (24)

Noting (24) and the fact that E[A(t)] ∈ RN
+ , we conclude that (23) is a redundant inequality.

Since α ∈ RN
+ , the set of inequalities in (20) forms an infinite set. Each inequality in (20)

determines a valid inequality for polytope P .

Fact: The hyperplanes associated to the valid inequalities of (20) are all face defining hyper-

planes of polytope P .

To show this fact, let Iα denote a set of allocation matrices {Iαs , s ∈ S} that maximize the

right hand side of (20), i.e.,

Iαs = arg max
I∈I

α(Cs ~ I)1T
K . (25)

Iα is not unique and there may be more than one set of allocation matrices of Iα whose elements

maximize α(Cs~I)1T
K . According to (10) and (11),

(∑
s∈S πs (Cs ~ Iαs ) 1T

K

)T ∈ P . On the other

hand, since
∑

s∈S πsα(Cs~Iαs )1T
K = α

∑
s∈S πs(Cs~I

α
s )1T

K , point
∑

s∈S πs(Cs~I
α
s )1T

K is located

on the hyperplane associated to (20). Therefore, the set of inequalities in (20) determines all

the non-empty faces of polytope P . To clarify what we proved in Lemmas 3 to 5 consider the

following example.

Example: Consider a system with N = 2, M = 1 (ON-OFF channels) and K = 1 (see

Figure 2). Assume that queues 1 and 2 are connected to the server with probabilities p1 and p2,

respectively. This system with N ≥ 2 queues was studied in [19] when studying dynamic server

allocation to a set of parallel queues. Here we consider a system with just 2 queues so that we

can illustrate the stability region in two dimensions. For such a system it was proven that the

stability region is described by the following set of inequalities.

λ1 ≤ p1

λ2 ≤ p2

λ1 + λ2 ≤ p1 + p2 − p1p2 (26)
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λ1

λ2

X1(t)

X2(t) S

p1

p2

Fig. 2: Two-queue single-server example

In Lemmas 3 to 5, we characterized the stability region by an infinite number of its face

defining hyperplanes. Figure 3 depicts the stability region given in (26) as well as some of its

face defining hyperplanes derived according to (20) for some sample values of α = (α1, α2).

λ1

λ2

p1

p2

Fig. 3: Stability region for the queueing system of Figure 2

According to the redundancy theorem in polytopes (refer to Section IV-C), not all the face

defining hyperplanes of a polytope are required to describe a polytope. In particular, just the

inequalities corresponding to the facets of a polytope are sufficient to characterize a polytope. In

the following, we will characterize the facets of polytope P . The analysis follows and constitutes

the main contribution of the paper.

Let V denote the set of vectors α ∈ RN
+ with the following property, i.e.,

V :=
{
α ∈ RN

+ | ∀ (U ⊂ N ,U 6= ∅, αU 6= 0|U|, αUc 6= 0|Uc|)

∃ (i ∈ U , j ∈ U c, m, n ∈M, αi, αj,m, n 6= 0) : αim = αjn} . (27)

A vector α belongs to set V if for any partitioning of elements of vector α into two non-empty

disjoint (sub)vectors in which all the elements of each vector are not identically equal to zero,

there exists at least one non-zero element in each (sub)vector, the ratio of which is equal to
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the ratio of two non-zero elements of set M. To clarify the definition of set V consider the

following example.

Example: Let M = {0, 1, 2} and N = 4. Now, consider vector α1 = (1, 2, 5, 10). We can

partition α1 to α1{1,2} = (1, 2) and α1{3,4} = (5, 10). Note that there exist no two elements one in

α1{1,2} and the other in α1{3,4} whose ratio is 1 or 2 and therefore, α1 /∈ V . Another example is

vector α2 = (0, 2.5, 0, 0) in which for any partitioning of the vector into two non-empty disjoint

(sub)vectors one will always have all the elements identically equal to zero. Therefore, α2 ∈ V .

In the following, we will show that any vector in RN
+ − V cannot form a facet defining

hyperplane for polytope P and therefore the inequalities derived by the vectors of set RN
+ − V

are redundant. This is shown in the following lemma.

Lemma 6: If α ∈ RN
+ − V , the hyperplane associated to the valid inequality of (20) is not a

facet defining hyperplane of P .

The proof is brought in Appendix A.

Note that V is an infinite set. However, we can show that set V is finite up to multiplication of

vectors by positive scalars. To show this, we define setW =
{
z ∈ Z+ | z =

∏N−1
j=1 mj, mj ∈M

}

and WN = {(α1, α2, ..., αN) | αn ∈ W}. Then, we can prove the following Lemma.

Lemma 7: There exists V̂ ⊆ WN such that any vector α ∈ V can be written as α = qβ for

some vector β ∈ V̂ and scalar q > 0.

The proof is given in Appendix B.

Recalling the two-queue single-server example of Figure 2, using Lemmas 6 and 7 we

can characterize a finite subset of R2
+ that can produce all the normal vectors of the facet

defining hyperplanes of the stability region polytope. For the aforementioned example since

M = 1 we have W = {0, 1} and therefore W2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and therefore

V̂ ⊆ {(0, 1), (1, 0), (1, 1)}. For this simple example since M = 1 (as we will see in Corollary

2 below), we have V̂ =WN − {0N}. The facet defining hyperplanes of the stability region for

this example as described by the vectors in the set V̂ are shown with bold red lines in Figure 3.

Fact: The size of W is |W| =
(
M+N−2
N−1

)
+ 1.

In order to prove this fact, note that M has M non-zero elements. Each non-zero element

of W comes from the multiplication of N − 1 non-zero elements of M. This is equivalent

to the counting problem of choosing N − 1 balls from M distinctly marked balls without

ordering and with replacement which is equal to |W| =
(
M+N−2
N−1

)
[26]. Since 0 ∈ W we
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must increase this number by 1. Hence, |WN | =
((
M+N−2
N−1

)
+ 1
)N

. Since V̂ ⊆ WN − {0N},
therefore |V̂ | ≤ |WN | − 1 (excluding 0N as it results into the obvious equality 0 = 0).

In the theorem that follows, we introduce the necessary conditions for the stability of MQMS

system with stationary channel distribution.

Theorem 1: If there exists a server allocation policy under which the system is stable, then

αE[A(t)]T ≤
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
, α ∈ V̂ . (28)

Proof: The proof follows directly from Lemmas 5 to 7. In fact, from Lemma 5 we can

characterize polytope P by an infinite number of inequalities (α ∈ RN
+ ). In Lemmas 6 and 7

we showed that not all of such α vectors are necessary to describe the facets of polytope P .

More specifically, we proved that just α ∈ V̂ (|V̂ | <∞) are sufficient to describe the facets of

polytope P and other α vectors make redundant inequalities and therefore the theorem follows.

According to Theorem 1, in order to characterize polytope P , we have to specify all the

elements of set V̂ which can be obtained after considering all the possible vectors α ∈ WN−{0N}
and removing redundancies following (27). This can be achieved numerically. We may also avoid

the numerical computation to derive set V̂ and instead use set WN − {0N} which is a finite

superset of V̂ that contains redundancies (produces redundant inequalities). Although by using

WN −{0N} we may obtain some redundant inequalities, since |WN −{0N}| <∞ we still have

a finite number of inequalities to describe polytope P . Table I depicts V̂ and |WN |−1 for some

sample cases N = 2, 3 and M = 1, 2, 3, 4.

TABLE I: |V̂ | and |WN | − 1 for N = 2, 3 and M = 1, 2, 3, 4

M = 1 M = 2 M = 3 M = 4

|V̂ |, |WN | − 1
N = 2 3, 3 5, 8 9, 15 12, 24

N = 3 7, 7 25, 63 109, 342 253, 1330

Corollary 1: For an MQMS system with stationary arrival processes, we have E[A(t)] = λ =

(λ1, λ2, ..., λN) and the necessary conditions for the stability of the system would be

αλT ≤
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
, α ∈ V̂ . (29)

November 8, 2018 DRAFT



18

Corollary 2: For an MQMS system with ON-OFF channels, we have W = {0, 1} and

therefore the necessary conditions for the stability of the system would be

αE[A(t)]T ≤
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
, α ∈ {0, 1}N − {0N}. (30)

In a special case considered in [18] where the channels are modeled by independent Bernoulli

random variables with E[Cn,k(t)] = pn,k, the necessary conditions for the stability of the system

are given by
∑

n∈Q

E[An(t)] ≤ K −
K∑

k=1

∏

n∈Q

(1− pn,k) ∀Q ⊆ N . (31)

In this case, the total number of inequalities needed to describe polytope P is equal to 2N − 1.

C. Sufficient Conditions for the Stability of MQMS System

Consider a server allocation policy which determines the allocation matrix at each time slot

t by solving the following maximization problem.

I(t) = arg max
I∈I

X(t− 1)(C(t) ~ I)1T
K (32)

This policy is called Maximum Weight (MW) and was introduced in [10], [13]. According to the

constraints on allocation matrix I , we can easily conclude that MW policy allocates the servers

by the following rule: At each time slot t, each server k is allocated to the queue n that achieves

the maximum Xn(t− 1)Cn,k(t).

In the special case where the channels are ON-OFF, the policy is the same as AS/LCQ (Any

Server/Longest Connected Queue) introduced in [18]. In the following, we derive the sufficient

conditions for the stability of our model and prove that MW stabilizes the system as long as

condition (33) below is satisfied. We also derive an upper bound for the time averaged expected

number of packets in the system.

Theorem 2: The MQMS system is stable under MW policy if for all t

αE[A(t)]T <
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
, α ∈ V̂ . (33)

Furthermore, the following bound for the average expected “aggregate” occupancy holds.

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E[Xn(τ)] ≤ NA2
max + (MK)2

2δ
(34)
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In (34), δ is the maximum positive number such that for all t we have E[A(t)] + δ1N ∈ P .

The detailed proof is given in Appendix C.

Corollary 3: For an MQMS system with stationary arrival processes, we have E[A(t)] =

λ and the sufficient conditions for the stability of the system under MW policy are αλT <
∑

s∈S πs maxI∈I
(
α(Cs ~ I)1T

K

)
, α ∈ V̂ .

According to Corollaries 1 and 3 and the definition of network stability region, we can conclude

that for an MQMS system with stationary channel distribution and stationary arrival processes,

the stability region is characterized by (29). The stability region described in (29) is a polytope

which can be imagined for 2 and 3 dimensional systems, i.e., N = 2, 3. Figure 4 shows the

stability region for N = 2, 3 and M = 1, 2, 3, 4. In all the cases K = 3.

Consider an MQMS system with ON-OFF channels. For such a system, MW policy is

equivalent to AS/LCQ policy introduced in [18]. AS/LCQ policy takes an arbitrary ordering

of servers (to be allocated to the queues) and then for each server allocates it to its longest

connected queue (LCQ). Note that in such a system, W = {0, 1} and therefore we have the

following corollary.

Corollary 4: The MQMS system with ON-OFF channels is stable under AS/LCQ if for all t

αE[A(t)]T <
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
, α ∈ {0, 1}N − {0N}. (35)

In a special case where the channels are modeled by independent Bernoulli random variables

with E[Cn,k(t)] = pn,k, AS/LCQ stabilizes the system if for all t
∑

n∈Q

E[An(t)] < K −
K∑

k=1

∏

n∈Q

(1− pn,k) ∀Q ⊆ N . (36)

D. Numerical Example

In this section, we will consider a simple numerical example of MQMS system with N = 2,

K = 3 and M = 3. For such as system the size of channel state space is 46 = 4096. We have

chosen the channel distribution randomly. We also assume that the utility functions associated

to queues 1 and 2 are log(1 + 10r1) and 10r2, respectively3. Therefore the total utility function

is f(r1, r2) = log(1 + 10r1) + 10r2. We also assume that the packet arrival processes to queues

1 and 2 are Poisson distributed with rate 5 packets/time slot. First, we are going to characterize

3Linear and logarithmic utility functions were studied in [1], [2].
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(a) N = 2, M = 1 (b) N = 3, M = 1

(c) N = 2, M = 2 (d) N = 3, M = 2

(e) N = 2, M = 3 (f) N = 3, M = 3

(g) N = 2, M = 4 (h) N = 3, M = 4

Fig. 4: Stability region for N = 2, 3, M = 1, 2, 3, 4 and K = 3
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the stability region for this example using the theorems given in the previous subsections. Then,

we will correlate our findings with the results from [1], [2], [6].

For the described system we can easily check that W = {0, 1, 2, 3}. Thus, W2 − {(0, 0)} =

{(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)}
whose size is 15 (as mentioned in Table I). Note that some of these vectors make redundant in-

equalities. For example using (1, 1), (2, 2) and (3, 3) as the vector α in (29) will result in the same

inequalities. By removing the redundant vectors we obtain set V̂ = {(0, 1), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. Using (29), the stability region is characterized by the following

set of inequalities which is also shown in Figure 5.

r1 ≤ 4.4792 r1 + 2r2 ≤ 10.2893 2r1 + 3r2 ≤ 16.4564

r2 ≤ 4.4912 r1 + 3r2 ≤ 14.6002 3r1 + r2 ≤ 14.5803

r1 + r2 ≤ 6.3577 2r1 + r2 ≤ 10.2874 3r1 + 2r2 ≤ 16.4639 (37)

Therefore, the utility optimization problem is specified as

Maximize: log(1 + 10r1) + 10r2 (38)

Subject to: All the constraints in (37)

0 ≤ r1 ≤ 5 , 0 ≤ r2 ≤ 5.

The solution to the above problem is r? = (r?1, r
?
2) = (1.1266, 4.4912) and is indicated by the star

in bold in Figure 5. As we expect the optimal point is located on the boundary of the stability

region. For each queue, we can use a leaky bucket and adjust the admitted rate to each queue

to the optimal value we obtained from the optimization problem.

We have also simulated the flow control strategy CLC2b (Cross-Layer Control 2-b) which was

introduced in [1], [2], [6] (Due to lack of space the reader is suggested to refer to the literature

regarding this algorithm). CLC2b was proposed as a flow control strategy for a general queueing

system for which the stability region is unknown. The algorithm assumes that An(t) ≤ Rmax
n for

all t. Assume that the backlog in the transport layer of queue n at the beginning of time slot

t is denoted by Ln(t). CLC2b algorithm is a dynamic flow control algorithm in the transport

layer in which at each time slot it determines how many packets to admit to queue n (in the

network layer) from the transport layer (i.e., from Ln(t) packets in the transport layer waiting
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Fig. 5: Stability region for N = 2, K = 3, M = 3 with a random channel distribution (the

optimal solution and the solution of CLC2b algorithm are also depicted in this figure)

for admission). Assume that this number is denoted by rn(t). Therefore, the goal of CLC2b

algorithm is to determine rn(t) such that f(r̄) is maximized while the queues are kept stable.

CLC2b algorithm incorporates two novel notions, namely auxiliary variables and virtual cost

queues. In the following, we will briefly review them.

The utility optimization in (1) can be transformed into the following stochastic optimization

problem by introducing the auxiliary variables γn, n ∈ N [1], [2], [6].

Maximize:
γ,r

N∑

n=1

fn(γn) (39)

Subject to: rn ≥ γn

r = (r1, r2, ..., rN) ∈ Λ

0 ≤ rn ≤ λn ∀n = 1, 2, ..., N.

For each queue n a virtual cost queue with virtual arrival process γn(t) and virtual service

process rn(t) is defined (See Figure 6 and refer to [2]). Note that the service process of the

virtual queue n is exactly equal to the admitted packet process to the actual queue n. Assuming

that the length of this virtual queue is denoted by Yn(t) at time slot t, the following equation

reveals the evolution of this process by time.

Yn(t) = (Yn(t− 1)− rn(t))+ + γn(t) (40)
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Ln(t)

Yn(t)

Xn(t)
An(t)

rn(t)

Transport Layer

Network Layerγn(t)

Fig. 6: CLC2b algorithm framework

It was shown in [1], [2] that if a control strategy stabilizes both the actual and virtual queues

then the resulting averages rn and γn will satisfy the constraints of the optimization problem

(39). The flow control strategy of CLC2b is specified as follows.

• Every timeslot and for each queue n observe Xn(t− 1) and Yn(t− 1) and determine

rn(t) =





min{Ln(t) + An(t), Rmax
n } if ηYn(t− 1) > Xn(t− 1)

0 otherwise
(41)

• Choose γn(t) (the input process of queue n’s virtual queue) as the solution of the following

optimization problem and update Yn(t) following (40).

Maximize:
γ

V fn(γ)− ηYn(t− 1)γ (42)

Subject to: 0 ≤ γ ≤ Rmax
n .

• Use the MW policy for resource (server) allocation and update Xn(t).

fn(·) is the utility function associated to queue n and η is a positive weight that satisfies 0 <

η ≤ 1. It determines the relative weight of the virtual queue in stabilizing the system. V is

a control parameter that affects the proximity of rn (the solution of CLC2b algorithm) to the

optimal point r?. It was shown that CLC2b can stabilize both the actual and virtual queues while

guaranteeing a lower bound for the achieved utility function (given by (43)) and also an upper

bound for the system backlog in the network layer (given by (44)).

lim inf
t→∞

f(r) ≥ f(r?)− D

V
(43)

lim sup
t→∞

1

t

t∑

τ=0

N∑

n=1

Xn(τ) ≤ D + V G

µ
(44)

Where D, G and µ are positive constants and are dependent to the statistical properties of the

system. We can observe that as the control parameter V increases the difference between f(r)
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and the optimal utility f(r?) decreases as 1
V

. However, the closer f(r) and f(r?) are the larger

the backlog is in the system!

We have simulated the CLC2b algorithm with η = 1. Furthermore, we performed a simulation

where the admitted rates to the queues are controlled by leaky buckets outputting the optimal

rates r? = (1.1266, 4.4912) as determined by our analysis earlier. We compared the two systems

by computing the following measures versus V .

• Difference of the average queue occupancy of the systems, i.e., XCLC2b − Xopt shown in

Figure 7a.

• Percentage of the normalized difference of the utility function for r and r?, i.e., f(r?)−f(rCLC2b)
f(r?)

×
100 shown in Figure 7b.

We can see from the graphs that the queue occupancy under CLC2b algorithm is growing with V

linearly (as expected by [1], [2]) while the utility associated to the CLC2b algorithm is converging

to the optimal point like 1
V

. The solution of CLC2b algorithm for different V parameters are

also shown in Figure 5 (shown by the various asterisks). We can observe that as V gets larger

the solution of CLC2b algorithm converges to the optimal point.
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Fig. 7: Comparison of the performances of CLC2b algorithm with the optimal solution

E. Stability Region for Fluid Model MQMS Systems with Stationary Continuous Channel Dis-

tribution

We will consider a time slotted fluid model MQMS system with stationary channel distribution.

In this case, the amount of work that arrives into (and departs from) the queues is considered
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to be a continuous process. We also assume that the channel state of the link from each queue

to each server is modeled by a continuous random variable. The channel state matrix in the

fluid model MQMS system is defined as C(t) = (Cn,k(t)) , n ∈ N , k ∈ K, Cn,k(t) ∈ R+. We

assume that the channel process follows a stationary distribution fC(t)(c) where C(t), c ∈ RN×K
+ ;

i.e., fC(·) is the joint distribution of all Cn,k(t) variables. We can easily check that in the fluid

model MQMS system, set V̂ is equivalent to RN
+ as in the fluid model MQMS system, set M

is replaced with R+. Therefore, stability region for the fluid model system is characterized by

the following set of inequalities.

αλT ≤
∫ ∞

cn,k=0

∫ ∞

cn,k−1=0

· · ·
∫ ∞

c1,1=0

max
I∈I

(
α(c~ I)1T

K

)

×fC(t)(c) dc1,1 · · · dcn,k−1 dcn,k α ∈ RN
+ (45)

Note that in order to characterize the stability region of the fluid model system we need

to compute an infinite number of nested integrals in (45). In fact, the stability region of fluid

model system is characterized by an infinite number of half spaces, hence the stability region

is a convex surface. In this case, depending on the channel distribution and dimension of the

system, we may characterize the stability region by a finite number of non-linear inequalities

instead of infinite number of linear inequalities as we show in the following example.

Example: Consider a fluid model MQMS system with two queues and one server. Assume

that the channel state variables C1,1(t) and C2,1(t) are independent and follow exponential distri-

bution with means µ1 and µ2, respectively. Such a model may be used for slow Rayleigh fading

channels in low SNR regimes where SNR follows exponential distribution and the approximation

log(1+x) ' x is used for small positive x. According to (45), the stability region is characterized

by

α1λ1 + α2λ2 ≤
1

µ1µ2

∫ ∞

c1,1=0

∫ ∞

c2,1=0

max{α1c1,1, α2c2,1}e−
c1,1
µ1 e

−
c2,1
µ2 dc2,1dc1,1 ∀α1, α2 ∈ R+ (46)

We can write the right hand side of (46) as

1

µ1µ2

∫ ∞

c1,1=0

∫ α1
α2
c1,1

c2,1=0

α1c1,1e
−
c1,1
µ1 e

−
c2,1
µ2 dc2,1dc1,1

+
1

µ1µ2

∫ ∞

c1,1=0

∫ ∞

c2,1=
α1
α2
c1,1

α2c2,1e
−
c1,1
µ1 e

−
c2,1
µ2 dc2,1dc1,1

=
α1

µ1µ2

∫ ∞

c1,1=0

c1,1e
−
c1,1
µ1

∫ α1
α2
c1,1

c2,1=0

e
−
c2,1
µ2 dc2,1dc1,1
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Fig. 8: Stability region for µ1 = 2 and µ2 = 1

+
α2

µ1µ2

∫ ∞

c1,1=0

e
−
c1,1
µ1

∫ ∞

c2,1=
α1
α2
c1,1

c2,1e
−
c2,1
µ2 dc2,1dc1,1

= α1

(
µ1 −

α2
2µ

2
2µ1

(α1µ1 + α2µ2)2

)
+ α2

(
α1α2µ

2
2µ1

(α1µ1 + α2µ2)2
+

α2µ
2
2

α1µ1 + α2µ2

)
(47)

Therefore, all the ordered pairs (λ1, λ2) =
(
µ1 − α2

2µ
2
2µ1

(α1µ1+α2µ2)2
,

α1α2µ22µ1
(α1µ1+α2µ2)2

+
α2µ22

α1µ1+α2µ2

)
char-

acterize the boundary of the stability region. However, we can write λ2 based on λ1, µ1 and µ2

as follows.

µ1 −
α2

2µ
2
2µ1

(α1µ1 + α2µ2)2
= λ1

So,

α2µ2

α1µ1 + α2µ2

=

√
1− λ1

µ1

and
α1µ1

α1µ1 + α2µ2

= 1−
√

1− λ1

µ1

Therefore,

λ2 = µ2

(√
1− λ1

µ1

)(
2−

√
1− λ1

µ1

)
(48)

As we can see from equation (48), the stability region in this example is characterized by

just one non-linear inequality λ2 ≤ µ2

(√
1− λ1

µ1

)(
2−

√
1− λ1

µ1

)
and two linear inequalities

λ1 ≥ 0 and λ2 ≥ 0. The stability region for this example for µ1 = 2 and µ2 = 1 is illustrated in

Figure 8. The characterization of the general fluid model stability region is beyond the scope of

the paper and left as a possible future research problem.

November 8, 2018 DRAFT



27

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a linear algebraic representation of the network stability region

(capacity region) polytope of multi-queue multi-server (MQMS) queueing system with stationary

channel distribution and stationary arrival processes. To this end, we obtained the necessary and

sufficient conditions for the stability of the system for a general arrival process with finite

first and second moments. For stationary arrival processes, we showed that these conditions

establish the network stability region of the system given by (29). For the stability region

polytope, we explicitly determined all the coefficients α ∈ V̂ of all the half spaces which

are required to characterize the stability region polytope. We also argued that in general it may

be (computationally) hard to quantify set V̂ . In this case, although we may add some redundant

inequalities, we can use a superset of V̂ , namely the set WN −{0N} (V̂ ⊆ WN −{0N}) instead

of V̂ in (29). An upper bound was also obtained for the average queueing delay of Maximum

Weight (MW) server allocation policy which is a throughput optimal policy for MQMS system.

We finally considered the stability region for a fluid model MQMS. In this case, we determine

the stability region by an infinite set of linear inequalities given by (45). By use of an example we

showed that depending on the channel distribution and the number of queues, we may characterize

the stability region by a finite set of non-linear inequalities instead of infinite number of linear

inequalities. However, the general problem of stability region characterization for the fluid model

MQMS can be considered as a possible future research problem.

APPENDIX A

PROOF OF LEMMA 6

Proof: As we explained before, Iα denotes a set of allocation matrices of {Iαs , s ∈ S} that

maximize the right hand side of (20) and we discussed that Iα is not a unique solution of (25)

and there may be more than one set of allocation matrices of Iα whose elements maximize (25).

Let Iα = {Iαi , 1 ≤ i ≤ |Iα|} denote the set of all distinguished solutions of (25). Obviously

|Iα| < ∞, since set I is finite. Note that each solution Iαi = {Iαs,i, s ∈ S}, 1 ≤ i ≤ |Iα| is

corresponding to a deterministic policy with the average transmission rate vector

Rα
i =

(∑

s∈S

πs
(
Cs ~ Iαs,i

)
1T
K

)T

(49)
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and therefore, according to (11) each solution of (25) is associated with a vertex of polytope

P . Since there are |Iα| distinguished solution of (25), |Iα| vertices of polytope P are on the

hyperplane associated to half space (20), i.e.,

αE[A(t)]T =
∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
(50)

Therefore, each face of P defined by hyperplane (50) is represented by Fα = conv.hull1≤i≤|Iα|R
α
i .

Since polytope P is full dimensional, according to Definition 7, each facet of P must be of

dimension N − 1. In the following, we will show that the dimension of face Fα is less than

N − 1 if α ∈ RN
+ − V and therefore the hyperplane (50) associated to such α is not a facet

defining hyperplane.

Consider a vector α ∈ RN
+ − V . For α we have the following property:

∃ (U ⊂ N ,U 6= ∅, αU 6= 0|U|, αUc 6= 0|Uc|) :

∀ (i ∈ U , j ∈ U c, m, n ∈M, αi, αj,m, n 6= 0) αim 6= αjn (51)

In other words, there exists a partitioning of vector α into two (sub)vectors αU and αUc such that

no non-zero element of αU is proportional to no non-zero element of αUc by the ratio of two

non-zero elements in M. Assume that U0 denotes the subset U satisfying (51). Now, consider

inequality (20). The right hand side of (20) can also be expressed as

∑

s∈S

πs max
I∈I

(
α(Cs ~ I)1T

K

)
=
∑

s∈S

πs

K∑

k=1

max
J∈J

〈
α, ((C↓ks )T ~ J)

〉
, (52)

where C↓ks is the k’th column of matrix Cs and J is the set of all binary vectors of size N with

〈J, 1N〉 = 1, i.e.,

J := {J = (J1, J2, ..., JN) | Jn ∈ {0, 1} ∀n ∈ N , 〈J, 1N〉 = 1}. (53)

Each Jks (α) = arg maxJ∈J
〈
α, ((C↓ks )T ~ J)

〉
is corresponding to the k’th column of an Iαs in

some Iα ∈ Iα. Note that maxJ∈J
〈
α, ((C↓ks )T ~ J)

〉
≥ 0. There are K|S| of such maximization

terms in the right hand side of (52). Each of the K|S| maximization terms may have multiple

solutions (non-unique solutions). Suppose that ψks (α) denotes the set of all distinct solutions to

Jks (α) = arg maxJ∈J
〈
α, ((C↓ks )T ~ J)

〉
, i.e.,

ψks (α) = {Jks (α) = arg max
J∈J

〈
α, ((C↓ks )T ~ J)

〉
∀s ∈ S, k ∈ K} (54)
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For a given s ∈ S, k ∈ K with
〈
α,
(
(C↓ks )T ~ Jks (α)

)〉
> 0, we can easily observe that for

all the elements of ψks (α) either we have
∑

u∈U0 J
k
s,u(α) = 1 or

∑
u∈Uc0

Jks,u(α) = 1. This result

comes directly from (51) and states that for a given s ∈ S, k ∈ K, for all the solutions

of Jks (α) = arg maxJ∈J
〈
α, ((C↓ks )T ~ J)

〉
with maxJ∈J

〈
α, ((C↓ks )T ~ J)

〉
> 0, the index

associated to element “1” of Jks (α) is either in U0 or U c0 . In other words, it is not possible

to have the index of element “1” in U0 for some solutions and in U c0 for other solutions of

Jks (α) = arg maxJ∈J
〈
α, ((C↓ks )T ~ J)

〉
. Using this property, we can partition set of all ψks (α)

with
〈
α, ((C↓ks )T ~ Jks (α))

〉
> 0 into two disjoint subsets. We denote the set of all solution sets

ψks (α) with
〈
α, ((C↓ks )T ~ Jks (α))

〉
> 0 and

∑
u∈U0 J

k
s,u(α) = 1 as Aα and set of all solution

sets ψks (α) with
〈
α, ((C↓ks )T ~ Jks (α))

〉
> 0 and

∑
u∈Uc0

Jks,u(α) = 1 as Bα. We introduce N

dimensional vectors α′U0 and α′Uc0 as follows.

α′U0 = (α′1, α
′
2, ..., α

′
N) : α′n =





αn if n ∈ U
0 if n /∈ U

α′Uc0 = (α′1, α
′
2, ..., α

′
N) : α′n =





αn if n ∈ U c

0 if n /∈ U c

Now, let us introduce the following two hyperplanes.

α′U0E[AU(t)]T =
∑

k,s:ψks (α)∈Aα

πs max
J∈J

〈
α, ((C↓ks )T ~ J)

〉
(55)

α′Uc0E[AUc(t)]T =
∑

k,s:ψks (α)∈Bα

πs max
J∈J

〈
α, ((C↓ks )T ~ J)

〉
(56)

In the following, we will prove that all the vertices Rα
i , 1 ≤ i ≤ |Iα| in (49) satisfy both (55)

and (56). In other words, all the vertices Rα
i are located on both hyperplanes (55) and (56) and

therefore on the intersection of both. The hyperplanes of (55) and (56) are in an N dimensional

space whose dimensions are at most N − 1. Thus, dimension of their intersection is at most

N − 2. In other words, dimFα = dim(conv.hull1≤i≤|Iα|R
α
i ) < N − 1. Therefore Fα is not a

facet for P .

Note that columns of any allocation matrix Iαs are vectors Jks (α) ∈ ψks (α) for all k ∈ K.

Consider a particular transmission rate vector Rα
i (equation (49)) located on hyperplane (50).

As we discussed before, each allocation matrix Iαs,i in (49) is created by concatenation of a
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set of vectors Jks,i(α) ∈ ψks (α) as the columns of Iαs,i. Now, we can check that all the vertices

Rα
i , 1 ≤ i ≤ |Iα| in (49) satisfy both (55) and (56) as follows.

α′U0

(∑

s∈S

πs
(
Cs ~ Iαs,i

)
1T
K

)

=
∑

s∈S

πs

K∑

k=1

〈
α′U0 , ((C

↓k
s )T ~ Jks,i(α))

〉
=

∑

k,s:ψks (α)∈Aα

πs max
J∈J

〈
α, ((C↓ks )T ~ J)

〉
(57)

and

α′Uc0

(∑

s∈S

πs
(
Cs ~ Iαs,i

)
1T
K

)

=
∑

s∈S

πs

K∑

k=1

〈
α′Uc0 , ((C

↓k
s )T ~ Jks,i(α))

〉
=

∑

k,s:ψks (α)∈Bα

πs max
J∈J

〈
α, ((C↓ks )T ~ J)

〉
(58)

Thus, all the vertex (49) satisfy both (55) and (56) and therefore their intersection. This shows

that Fα has dimension less than N − 1 and therefore is not a facet of P .

APPENDIX B

PROOF OF LEMMA 7

Proof: Consider vector α = (α1, α2, ..., αN) ∈ V . From (27), it is obvious that any vector

derived by the multiplication of a positive scalar to α also belongs to V , i.e.,

α ∈ V =⇒ qα ∈ V ∀q ∈ R+ (59)

Also note that vectors α and qα will result in the same inequalities in (20) and therefore the

same face defining hyperplanes of polytope P . Thus, we say that α and qα are equivalent and

we write α ≡ qα.

Consider a vector α ∈ V . Vector α may be a zero vector in which case it does not contributes

to a face of P as the inequality (20) will result in an obvious equality 0 = 0. Hence, we assume

that α is not a zero vector.

Now, we perform the following process on vector α. Pick a non-zero elements of α, let say αe1
and form α{e1} and αN−{e1}. The size of these vectors are 1 and N − 1, respectively. According

to (27), the vector αN−{e1} should be either a zero vector in which case we stop or there should

be a non-zero element αe2 in αN−{e1} and non-zero m1, n1 ∈ M such that αe2 = αe1
m1

n1
. If so,

we will continue and form α{e1,e2} and αN−{e1,e2}. According to (27), the vector αN−{e1,e2} is
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either a zero vector in which case we will stop or there should exist a non-zero αe3 ∈ αN−{e1,e2}
and non-zero m2, n2 such that either αe3 = αe1

m2

n2
or αe3 = αe2

m2

n2
= αe1

m1

n1

m2

n2
. We repeat this

procedure until either for some ν < N the vector αN−{e1,e2,...,eν} is a zero vector or we form

vector α{e1,e2,...,eN} in which case ν = N . In both cases, we can see that all the non-zero elements

of α may be expressed by the multiplication of α1 and the rational numbers derived by non-zero

elements of set M. By dividing the vector α by scalar αe1 and multiplying it by
∏ν−1

j=1 nj , we

will obtain an equivalent vector for α named β whose elements belong to the set of all integers

which were derived by multiplication of N − 1 elements of set M, i.e.,

α ≡ β , βn ∈ W =

{
z ∈ Z+ | z =

N−1∏

j=1

mj, mj ∈M
}
∀n ∈ {1, 2, ..., N} (60)

Therefore, each vector α ∈ V is equivalent to a vector β whose elements come from set W .

We define the set of all β vectors with the above property as V̂ . Note that V̂ ⊆ WN and is a

finite set since W is finite. Thus, for each vector α ∈ V there exists an equivalent vector β ∈ V̂
and the result follows.

APPENDIX C

PROOF OF THEOREM 2

Proof: We will start with the Lyapunov function evaluation. we will use the quadratic

function (7) as our Lyapunov function. The Lyapunov drift for two successive time slots has the

following form.

D(t+ 1) = E[L(X(t+ 1))− L(X(t)) | X(t)]

= E

[
N∑

n=1

X2
n(t+ 1)−X2

n(t) | X(t)

]
= E

[
N∑

n=1

(Xn(t+ 1)−Xn(t))2 | X(t)

]

+ 2E

[
N∑

n=1

Xn(t)(Xn(t+ 1)−Xn(t)) | X(t)

]
(61)

For the the first term we have:

E

[
N∑

n=1

(Xn(t+ 1)−Xn(t))2 | X(t)

]

= E

[
N∑

n=1

(An(t+ 1)−
K∑

k=1

Hn,k(t+ 1))2 | X(t)

]
= E

[
N∑

n=1

A2
n(t+ 1) | X(t)

]
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−2E

[
N∑

n=1

K∑

k=1

An(t+ 1)Hn,k(t+ 1) | X(t)

]
+ E




N∑

n=1

(
K∑

k=1

Hn,k(t+ 1)

)2

| X(t)




≤ NA2
max +

N∑

n=1

E



(

K∑

k=1

Hn,k(t+ 1)

)2

| X(t)


 (62)

For the second term in (61) we have

E

[
N∑

n=1

Xn(t)(Xn(t+ 1)−Xn(t)) | X(t)

]

= E

[
N∑

n=1

Xn(t)

(
An(t+ 1)−

K∑

k=1

Hn,k(t+ 1)

)
| X(t)

]

=
N∑

n=1

Xn(t)E[An(t+ 1)]−
N∑

n=1

E

[
Xn(t)

K∑

k=1

Hn,k(t+ 1) | X(t)

]
(63)

Therefore, the Lyapunov drift D(t+ 1) can be bounded by

D(t+ 1) ≤ NA2
max +

N∑

n=1

E



(

K∑

k=1

Hn,k(t+ 1)

)2

| X(t)




+ 2
N∑

n=1

Xn(t)E[An(t+ 1)]− 2
N∑

n=1

E

[
Xn(t)

K∑

k=1

Hn,k(t+ 1) | X(t)

]
(64)

In the following, we show that the Lyapunov drift in (64) is bounded as follows.

D(t+ 1) ≤ NA2
max +

N∑

n=1

E



(

K∑

k=1

Cn,k(t+ 1)In,k(t+ 1)

)2

| X(t)




+ 2
N∑

n=1

Xn(t)E[An(t+ 1)]− 2
N∑

n=1

E

[
Xn(t)

K∑

k=1

Cn,k(t+ 1)In,k(t+ 1) | X(t)

]
(65)

To prove (65), note that for each queue n ∈ N one of the following conditions is satisfied.

•
∑K

k=1Hn,k(t+ 1) =
∑K

k=1 Cn,k(t+ 1)In,k(t+ 1): In this case, we can easily check that for

all n ∈ N

E[X2
n(t+ 1)−X2

n(t) | X(t)] ≤ NA2
max

+E



(

K∑

k=1

Cn,k(t+ 1)In,k(t+ 1)

)2

| X(t)




+2Xn(t)E[An(t+ 1)]− 2E

[
Xn(t)

K∑

k=1

Cn,k(t+ 1)In,k(t+ 1) | X(t)

]
(66)
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•
∑K

k=1Hn,k(t + 1) <
∑K

k=1Cn,k(t + 1)In,k(t + 1): In this case,
∑K

k=1 Hn,k(t + 1) = Xn(t)

and Xn(t+ 1) = An(t+ 1) as there are not enough packets in queue n to be server at time

slot t+ 1. It is not hard to check that inequality (66) is also satisfied in this case.

According to the above discussion, we can observe that inequality (66) is satisfied for all the

queues and therefore (65) follows.

Using the the fact that
K∑

k=1

Cn,k(t+ 1)In,k(t+ 1) ≥ 0, we get the following inequality.

N∑

n=1

(
K∑

k=1

Cn,k(t+ 1)In,k(t+ 1)

)2

≤
(

N∑

n=1

K∑

k=1

Cn,k(t+ 1)In,k(t+ 1)

)2

≤ (MK)2 (67)

Hence, the Lyapunov drift (65) is bounded by

D(t+ 1) ≤ NA2
max + (MK)2 + 2

N∑

n=1

Xn(t)E[An(t+ 1)]

− 2
N∑

n=1

E

[
Xn(t)

K∑

k=1

Cn,k(t+ 1)In,k(t+ 1) | X(t)

]
(68)

By conditioning the last term of (68) on the channel state at time slot t+ 1, we will have

D(t+ 1) ≤ NA2
max + (MK)2

+2E

[
X(t)

(
AT(t+ 1)−

∑

s∈S

πs (Cs ~ I(t+ 1)) 1T
K

)
| X(t)

]
(69)

Note that the allocation matrix I in (69) depends on the selected policy. According to (32), we

can see that by selecting MW policy, the second term of (69) will be minimized and therefore

the right hand side term in (69) will be minimized over all the existing server allocation policies.

In other words, for MW policy and any arbitrary server allocation policy ∆ we have

DMW (t+ 1) ≤ NA2
max + (MK)2

+ 2E

[
X(t)

(
AT(t+ 1)−

∑

s∈S

πs
(
Cs ~ IMW (t+ 1)

)
1T
K

)
| X(t)

]

≤ NA2
max + (MK)2

+ 2E

[
X(t)

(
AT(t+ 1)−

∑

s∈S

πs
(
Cs ~ I∆(t+ 1)

)
1T
K

)
| X(t)

]
(70)

where IMW (t+1) and I∆(t+1) are the allocation matrices of policies MW and ∆, respectively

and DMW (t+ 1) is the Lyapunov drift of policy MW at time slot t+ 1.
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It is important to note that the set of inequalities in (33) determines an open polytope P ′

for which we have P ′ = P − bound(P). In fact, Theorem 2 states that if the vector E[A(t)]

at each time slot t is strictly inside polytope P then the system is stable. Now, consider an

MQMS system with arrival processes for which we have E[A(t)] ∈ P ′ at each time slot t.

Suppose that δ > 0 is a positive real number such that E[A(t)] + δ1N ∈ bound(P). Therefore,

E[A(t)] + δ ∈ P ∀t. According to our discussion about randomized policies, there exists a

randomized policy Irnd = {Irnd(t)}∞t=1 for which we will have

E



(∑

s∈S

πs
(
Cs ~ Irnd(t+ 1)

)
1T
K

)T

 = E[A(t+ 1)] + δ1N (71)

Therefore,

E

[
X(t)

(
AT(t+ 1)−

∑

s∈S

πs
(
Cs ~ I∆(t+ 1)

)
1T
K

)
| X(t)

]
= −δ

N∑

n=1

Xn(t) (72)

Putting together from (69) to (72), we conclude that

DMW (t+ 1) ≤ NA2
max + (MK)2 − 2δ

N∑

n=1

Xn(t) (73)

and according to (8) the stability of MQMS system is demonstrated.
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