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Product of Random Stochastic Matrices

Behrouz Touri and Angelia Nedić∗

Abstract

The paper deals with the convergence properties of the products of random (row-)stochastic
matrices. The limiting behavior of such products is studied from a dynamical system point of
view. In particular, by appropriately defining a dynamic associated with a given sequence of
random (row-)stochastic matrices, we prove that the dynamics admits a class of time-varying
Lyapunov functions, including a quadratic one. Then, we discuss a special class of stochastic
matrices, a class P∗, which plays a central role in this work. We then introduce balanced
chains and using some geometric properties of these chains, we characterize the stability of
a subclass of balanced chains. As a special consequence of this stability result, we obtain an
extension of a central result in the non-negative matrix theory stating that, for any aperiodic
and irreducible row-stochastic matrix A, the limit limk→∞A

k exists and it is a rank one
stochastic matrix. We show that a generalization of this result holds not only for sequences
of stochastic matrices but also for independent random sequences of such matrices.

1 Introduction

Averaging dynamics or distributed averaging dynamics has played a fundamental role in the recent
studies of various distributed systems and algorithms. Examples of such distributed problems and
algorithms include distributed optimization [34, 21, 20, 11], distributed control of robotic networks
[3], and study of opinion dynamics in social networks [13, 8].

The study of averaging dynamics is closely related to the study of products of stochastic
matrices. Such products have been studied from two perspectives: the theory of Markov chains
and the distributed averaging settings. The notable works in the domain of the theory of Markov
chain are the early studies of Hajnal and Wolfowitz in [7] and [35], respectively, where sufficient
conditions are derived for the convergence of the products of row-stochastic matrices to a rank one
matrix. The exploration of this domain from the distributed averaging perspective was started by
the work of [5] and the seminal work of J. Tsitsiklis [33].

Products of random stochastic matrices have also attracted many mathematicians as such
products are examples of convolutions of probability measures on semigroups [17, 24, 6, 23]. Due
to the technicalities involved, such studies are confined to identically independently distributed
(i.i.d.) random chains or their generalizations in the domain of stationary ergodic chains. From
the engineering perspective, this area have been recently explored in [26, 27, 32, 29, 28, 30, 31].
In [26], a necessary and sufficient condition for ergodicity of products of i.i.d. stochastic matrices
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has been derived. A generalization of such result for stationary and ergodic chains is discussed
[27]. In a sequence of papers, [32, 30, 29, 28], we have defined fundamental concepts of infinite
flow property, infinite flow graph, and ℓ1-approximation. We have showed that these properties are
very closely related to the convergence properties of the product of random stochastic matrices
that are not necessarily identically distributed. The current work is a continuation of the line of
the aforementioned papers.

In particular, in this paper, we derive a set of necessary and sufficient conditions for ergodicity
and convergence of a product of independent random stochastic matrices. Specifically, we study a
class of random stochastic matrices, which we refer to as balanced chains and show that this class
contains many of the previously studied chains of random and deterministic stochastic matrices.
This property was first introduced in our earlier work [29] for discrete-time dynamics and in [9]
for continuous-time dynamics. Much research has been done on such a criterion since then (see
e.g. [25, 16, 2]). Unlike the prior work, our work adopts dynamical system point of view for the
averaging dynamics: we first draw the connection between the products of random stochastic
matrices and the random dynamics driven by such matrices. Then, we show that every dynamics
driven by a chain of independent random stochastic matrices admits a time-varying quadratic

Lyapunov function. In fact, we show more by establishing that for any convex function, there
exists a Lyapunov function adjusted to such a convex function. This result opens up a new window
for the study of averaging dynamics and distributed algorithms, as quadratic Lyapunov function
has proven to be a powerful tool to study such dynamics for different sub-classes of stochastic
chains (see e.g., [18] and [32]). However, the non-existence of quadratic time-invariant Lyapunov
functions was suspected for general class of averaging dynamics [10], and it was proven later in
[22].

After proving the existence of time-varying quadratic Lyapunov functions for averaging dynam-
ics, we introduce a special class of stochastic chains, P∗ chains, and we show that the products
of matrices drawn from this sub-class converge almost surely. We then provide the definition of
balanced-ness for random stochastic chains and we show that many previously studied classes of
stochastic chains are examples of such balanced chains. Finally, using a geometric property of the
balanced chains, we show that such chains are examples of P∗ chains, which leads to the main
result of this paper which can be interpreted as a generalization of the known convergence of Ak

to a rank-one stochastic matrix (for aperiodic and irreducible stochastic matrix A) to the case
of inhomogeneous chains of stochastic matrices, as well as independent random chains of such
matrices.

The contribution of this work is as follows: 1) we prove the existence of a family of time-varying
Lyapunov functions for random averaging dynamics; 2) we introduce class P∗ of random stochas-
tic chains, and provide necessary and sufficient conditions for the stability of the corresponding
dynamics; 3) we introduce balanced chains and we use them to establish some necessary and suffi-
cient conditions for the stability of the resulting dynamics; and 4) we provide an extension of the
fundamental convergence result in the non-negative matrix theory.

The paper is organized as follows: in Section 2, we formulate and provide the random setting
for our study of the products of random stochastic matrices which will be considered throughout
the paper. In Section 3, we study the dynamics related to such matrices and draw the connection
between the study of such products and the associated dynamics, and we prove that the dynamics
admits a class of time-varying Lyapunov functions, including a quadratic one. Then, we discuss
the class P∗ in Section 4 which plays a central role in our development. We then introduce the
class of balanced chains and using the geometric structure of these chains, as well as the developed
results in the preceding sections, we characterize the stability of a subclass of those chains. Finally,
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in Section 6, we apply the developed results to prove an extension of a central result in the non-
negative matrix theory on the convergence of Ak to a rank-one matrix. We conclude this work by
a discussion in Section 7.

2 Problem Setting

We work exclusively with row-stochastic matrices, so we simply refer to them as stochastic matrices.
Let (Ω,F ,Pr ) be a probability space and let {W (k)} be a chain of m × m random stochastic
matrices, i.e. for all k ≥ 1, the matrix W (k) is a stochastic almost surely and Wij(k) : Ω → R is
a Borel-measurable function for all i, j ∈ [m], where [m] = {1, . . . , m}. Throughout this paper,
we denote random sequences of stochastic matrices by last alphabet letters such as {W (k)} and
{U(k)}, and we use the first alphabet letters such as {A(k)} and {B(k)} to denote deterministic
sequences of stochastic matrices. We also refer to a sequence of stochastic matrices as a stochastic
chain, or just simply as a chain.

Let {W (k)} be an independent random chain. Then, we say that {W (k)} is strongly aperiodic
if there exists a γ ∈ (0, 1] such that

E[Wii(k)Wij(k)] ≥ γE[Wij(k)] for all i 6= j ∈ [m] and all k ≥ 1.

Note that if Wii(k) ≥ γ almost surely for all i ∈ [m] and all k ≥ 1, then such a chain is strongly
aperiodic. Also, note that by summing both sides of the above inequality over j 6= i, we obtain

E[Wii(k)] ≥ E[Wii(k)(1−Wii(k))] ≥ γ(1− E[Wii(k)]).

Hence, E[Wii(k)] ≥
γ

1−γ
for all i ∈ [m] and all k ≥ 1. Thus, for a strongly aperiodic chain {W (k)},

the expected chain {E[W (k)]} is strongly aperiodic. It follows that a deterministic chain {A(k)}
is strongly aperiodic if and only if Aii(k) ≥ γ̃ for some γ̃ > 0, and for all i ∈ [m] and k ≥ 1.

For the subsequent use, for an m ×m random (or deterministic) matrix W and a non-trivial
index set S ⊂ [m] (i.e. S 6= ∅ and S 6= [m]), we define the quantity WSS̄ =

∑

i∈S,j∈S̄ Wij , where S̄

is the complement of the index set S.
We say that an independent random chain {W (k)} is balanced if there exists some α > 0 such

that

E[WSS̄(k)] ≥ αE[WS̄S(k)] for all nontrivial S ⊂ [m] and all k ≥ 1. (1)

From this definition, it can be seen that α ≤ 1.
Finally, with a given random chain {W (k)}, let us associate a random graph G∞ = ([m], E∞)

with the vertex set [m] and the edge set E∞ given by

E∞(ω) =

{

{i, j} |
∞
∑

k=1

(Wij(k, ω) +Wji(k, ω)) = ∞

}

.

We refer to G∞ as the infinite flow graph of {W (k)}. By the Kolmogorov’s 0-1 law, the infinite flow
graph of an independent random chain {W (k)} is almost surely equal to a deterministic graph.
It has been shown that this determinstic graph is equal to the infinite flow graph of the expected
chain {E[W (k)]} ([30], Theorem 5).

For a matrix W , let Wi and W j denote the ith row vector and the jth column vector of W ,
respectively. Also, for a chain {W (k)}, we let

W (k : t0) = W (k) · · ·W (t0 + 1) for k > t0 ≥ 0,

3



with W (k : k) = I for all k ≥ 0. With these preliminary definitions and notation in place, we can
state the main result of the current study.

Theorem 1. Let {W (k)} be an independent random stochastic chain which is balanced and strongly
aperiodic. Then, for any t0 ≥ 0, the product W (k : t0) = W (k) · · ·W (t0 + 1) converges to a
random stochastic matrix W (∞ : t0) almost surely. Furthermore, for all i, j in the same connected
component of the infinite flow graph of {W (k)}, we have Wi(∞ : t0) = Wj(∞ : t0) almost surely.

To prove Theorem 1, we develop some auxiliary results in the forthcoming sections, while
deferring the proof to the last section.

As an immediate consequence of Theorem 1, it follows that W (∞ : t0) has rank at most τ

where τ is the number of the connected components of the infinite flow graph G∞ of {W (k)}.
Thus, if G∞ is a connected graph, the limiting random matrix W (∞ : t0) = limk→∞W (k : t0) is a
rank-one random stochastic matrix almost surely, i.e. W (∞ : t0) = evT (t0) almost surely for some
stochastic vector v(t0). This and Theorem 1 imply that: if an independent random chain {W (k)}
is balanced and strongly aperiodic, then {W (k)} is almost surely strongly ergodic (as defined in
[5]) if and only if the infinite flow graph of {W (k)} is connected.

3 Dynamic System Perspective

In order to prove Theorem 1, we establish some intermediate results, some of which are applicable
to a more general category of random stochastic chains, namely adapted random chains. For this,
let {W (k)} be a random chain adapted to a filtration {Fk}. For an integer t0 ≥ 0 and a vector
v ∈ R

m, consider the trivial random vector x(t0) : Ω → R
m defined by x(t0, ω) = v for all ω ∈ Ω.

Now, recursively define:

x(k + 1) = W (k + 1)x(k) for all k ≥ t0. (2)

Note that x(t0) is measurable with respect to the trivial σ-algebra {∅,Ω} and hence, it is measurable
with respect to Ft0 . Also, since {W (k)} is adapted to {Fk}, it follows that for any k > t0, x(k)
is measurable with respect to Fk. We refer to {x(k)} as a random dynamics driven by {W (k)}
started at the initial point (t0, v) ∈ Z

+×R
m. We say that a given property holds for any dynamics

{x(k)} driven by {W (k)} if that property holds for any initial point (t0, v) ∈ Z
+ × R

m.
If limk→∞W (k : t0) = W (∞ : t0) exists almost surely, then the random dynamics {x(k)}

converges to W (∞ : t0)v almost surely for any initial point (t0, v) ∈ Z
+ × R

m. Also, note
that for any i, j ∈ [m], we have limk→∞ ‖Wi(k, t0) − Wj(k, t0)‖ = 0 almost surely if and only
if limk→∞ (xi(k)− xj(k)) = 0 almost surely for any initial point. When verifying the latter rela-
tion, due to the linearity of the dynamics, it suffices to check that limk→∞ (xi(k)− xj(k)) = 0 for
all the initial points of the form (t0, eℓ) with ℓ ∈ [m], where {e1, . . . , em} is the standard basis for
R

m.
In order to study the limiting behavior of the productsW (k : t0), we study the limiting behavior

of the dynamics {x(k)} driven by {W (k)}. This enables us to use the dynamic system’s tools and
its stability theory to draw conclusions about the limiting behavior of the products W (k : t0).

3.1 Why the Infinite Flow Graph

In this section we provide a result showing the relevance of the infinite flow graph to the study
of the product of stochastic matrices. Let us consider a deterministic chain {A(k)} of stochastic
matrices and let us define mutual ergodicity and an ergodic index as follows.
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Definition 1. For an m×m chain {A(k)} of stochastic matrices, we say that an index i ∈ [m] is
ergodic if limk→∞Ai(k : t0) exists for all t0 ≥ 0. Also, we say that two disctinct indices i, j ∈ [m]
are mutually ergodic if limk→∞ ‖Ai(k : t0)− Aj(k : t0)‖ = 0.

From the definition it immediately follows that an index i ∈ [m] is ergodic for a chain {A(k)}
if and only if limk→∞ xi(k) exists for any dynamics {x(k)} driven by {A(k)}. Similarly, indices
i, j ∈ [m] are mutually ergodic if and only if limk→∞ (xi(k)− xj(k)) = 0 for any dynamics driven
by {A(k)}.

The following result illustrates the relevance of the infinite flow graph to the study of the
products of stochastic matrices.

Lemma 1. ([30], Lemma 2) Two distinct indices i, j ∈ [m] are mutually ergodic only if i and j

belong to the same connected component of the infinite flow graph G∞ of {A(k)}.

Generally, if i and j are mutually ergodic indices, it is not necessarily true that they are ergodic
indices. As an example, consider the 4× 4 stochastic chain {A(k)} defined by:

A(2k) =









1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 1









, A(2k + 1) =









1 0 0 0
0 0 0 1
0 0 0 1
0 0 0 1









for all k ≥ 1.

It can be verified that for any starting time t0 ≥ 0 and any k > t0, we have A(k : t0) = A(k). Thus,
it follows that indices 2 and 3 are mutually ergodic, while limk→∞A2(k : t0) and limk→∞A3(k : t0)
do not exist.

The following result shows that under special circumstances, we can assert that some indices
are ergodic if we know that a certain mutual ergodicity pattern exists in a chain.

Lemma 2. Let S be a connected component of the infinite flow graph G∞ of a chain {A(k)}.
Suppose that indices i and j are mutually ergodic for all distinct i, j ∈ S. Then, every index i ∈ S

is ergodic.

Proof. Without loss of generality let us assume that S = {1, . . . , i∗} for some i∗ ∈ [m]. Let S̄ be
the complement of S. For the given chain {A(k)} and the connected component S, let the chain
{B(k)} be defined by:

Bij(k) =















Aij(k) if i 6= j and i, j ∈ S or i, j ∈ S̄,

0 if i 6= j and i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S,

Aii(k) +
∑

ℓ∈S̄ Aiℓ(k) if i = j ∈ S,

Aii(k) +
∑

ℓ∈S Aiℓ(k) if i = j ∈ S̄.

Then, B(k) has the block diagonal structure of the following form

B(k) =

[

B1(k) 0
0 B2(k)

]

for all k ≥ 1.

By construction the chain {B(k)} is stochastic. It can be verified that
∑∞

k=1 |Aij(k)−Bij(k)| < ∞
for all i, j ∈ [m]. Thus, {B(k)} is an ℓ1-approximation of {A(k)} as defined in [30]. Then, by
Lemma 1 in [30], it follows that indices i and j are mutually ergodic for the chain {B(k)} for all
distinct i, j ∈ S. By the block diagonal form of {B(k)}, it follows that i and j are mutually ergodic
for the |S| × |S| chain {B1(k)} and all i, j ∈ S. This, however, implies that the chain {B1(k)}
is weakly ergodic (as defined in [5]) and, as proven in Theorem 1 in [5], this further implies that
{B1(k)} is strongly ergodic, i.e. any index i ∈ S is ergodic for {B1(k)}. Again, by the application
of Lemma 1 in [30], we conclude that any index i ∈ S is ergodic for {A(k)}. Q.E.D.
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3.2 Time-varying Lyapunov Functions

Here, we show that under general conditions, a rich family of time-varying Lyapunov functions
exists for the dynamics {x(k)} driven by a random chain {W (k)}.

Let us define an absolute probability process for an adapted chain {W (k)}, which is an extension
of the concept of the absolute probability sequence introduced by A. Kolmogorov for deterministic
chains in [12].

Definition 2. We say that a random (vector) process {π(k)} is an absolute probability process for
a random chain {W (k)} adapted to {Fk} if

1. the random process {π(k)} is adapted to {Fk},

2. the vector π(k) is stochastic almost surely for all k ≥ 1, and

3. the following relation holds almost surely

E
[

πT (k + 1)W (k + 1) | Fk

]

= πT (k) for all k ≥ 0.

When an absolute probability process exists for a chain, we say that the chain admits an
absolute probability process.

For a deterministic chain of stochastic matrices {A(k)}, Kolmogorov showed in [12] that there
exists a sequence of stochastic vectors {v(k)} such that vT (k + 1)A(k + 1) = vT (k) for all k ≥ 0.
Note that, for an independent random chain, any absolute probability sequence for the expected
chain is an absolute probability process for the random chain. Thus, the existence of an absolute
probability process for an independent random chain of stochastic matrices follows immediately
from the Kolmogorov’s existence result. As another non-trivial example of random chains that
admit an absolute probability process, one may consider an adapted random chain {W (k)} that is
doubly stochastic almost surely. In this case, the static sequence { 1

m
e} is an absolute probability

process for {W (k)}, where e ∈ R
m is the vector with all components equal to 1.

Now, suppose that we have an adapted chain {W (k)} which admits an absolute probability
sequence {π(k)}. Also, let g : R → R be an arbitrary convex function. Let us define the function
Vg,π : Rm × Z

+ → R, as follows:

Vg,π(x, k) =

m
∑

i=1

πi(k)g(xi)− g(πT (k)x) for all x ∈ R
m and all k ≥ 0. (3)

From the definition of an absolute probability process, it follows that Vg,π(x(k), k) is measurable
with respect to Fk for any dynamics {x(k)} driven by a chain {W (k)} that is adapted to {Fk}.
Also, since π(k) is almost surely stochastic vector and g is a convex function, it follows that for
any x ∈ R

m, we have Vg,π(x, k) ≥ 0 almost surely for all k ≥ 0.
Next, we show that Vg,π is a time-varying Lyapunov function for the dynamics (2) for any

convex function g. In particular, we prove that {Vg,π(x(k), k)} is a super-martingale sequence
irrespective of the initial point for the dynamics {x(k)}.

Theorem 2. Let {W (k)} be an adapted chain that admits an absolute probability process {π(k)}.
Then, for the dynamics (2) started at any initial point (t0, v) ∈ Z

+ × R
m, we have

E[Vg,π(x(k + 1), k + 1) | Fk] ≤ Vg,π(x(k), k) for all k ≥ t0.
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Proof. By the definition of Vg,π in (3), we have almost surely

Vg,π(x(k + 1), k + 1) =

m
∑

i=1

πi(k + 1)g(xi(k + 1))− g(πT (k + 1)x(k + 1))

=

m
∑

i=1

πi(k + 1)g([W (k + 1)x(k)]i)− g(πT (k + 1)x(k + 1))

≤
m
∑

i=1

πi(k + 1)
m
∑

j=1

Wij(k + 1)g(xj(k))− g(πT (k + 1)x(k + 1)), (4)

where in the second equality we use [·]i to denote the ith component of a vector, while the in-
equality is obtained by using the convexity of g(·) and the fact that matrix W (k) is stochas-
tic almost surely. Since {π(k)} is an absolute probability process for {W (k)}, it follows that
E
[

πT (k + 1)W (k + 1) | Fk

]

= πT (k). Also, since x(k) is measurable with respect to Fk, by taking
the conditional expectation with respect to Fk on both sides of Eq. (4), we obtain almost surely

E[Vg,π(x(k + 1), k + 1) | Fk] ≤
m
∑

j=1

πj(k)g(xj(k))− E
[

g(πT (k + 1)x(k + 1)) | Fk

]

≤
m
∑

j=1

πj(k)g(xj(k))− g(E
[

πT (k + 1)x(k + 1) | Fk

]

),

where the last inequality follows by the convexity of g and Jensen’s inequality. The result follows
by using x(k + 1) = W (k + 1)x(k) and the definition of absolute probability process. Q.E.D.

Theorem 2 shows that the dynamics (2) admits infinitely many time-varying Lyapunov func-
tions, provided that {W (k)} admits an absolute probability process.

Since Vg,π(x(k), k) ≥ 0 almost surely for all k ≥ 0, it follows that {Vg,π(x(k), k)} is a bounded
super-martingale. Hence, it is convergent almost surely irrespective of the initial point of the
dynamics {x(k)} and the choice of the convex function g.

Corollary 1. Let {W (k)} be an adapted chain that admits an absolute probability process {π(k)}.
Then, for any dynamics {x(k)} driven by {W (k)} and for any convex function g : R → R, the
limit limk→∞ Vg,π(x(k), k) exists almost surely.

3.3 Time-varying Quadratic Lyapunov Function

In the sequel, we focus on the particular choice of function g(s) = s2 in relation (3). For conve-
nience, we let

Vπ(x, k) =

m
∑

i=1

πi(k)(xi − πT (k)x)2 =

m
∑

i=1

πi(k)x
2
i − (πT (k)x)2.

For this function, we can provide a lower bound for the decrease of the conditional expectations
E[Vg(x(k + 1), k + 1) | Fk], which is exact under certain conditions.

7



Theorem 3. Let {W (k)} be an adapted random chain with an absolute probability process {π(k)}.
Then, for any dynamics {x(k)} driven by {W (k)}, we have almost surely

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)−
∑

i<j

Hij(k)(xi(k)− xj(k))
2 for all k ≥ t0,

where H(k) = E
[

W T (k + 1)diag(π(k + 1))W (k + 1) | Fk

]

with diag(v) denoting the diagonal ma-
trix induced by a vector v (i.e., with components vi on the main diagonal), and

∑

i<j =
∑m

i=1

∑m

j=i+1.

Furthermore, if πT (k+1)W (k+1) = πT (k) almost surely, then the inequality holds as an equality.

Proof. We have for all k ≥ t0,

Vπ(x(k), k) =
m
∑

i=1

πi(k)x
2
i (k)− (πT (k)x(k))2 = xT (k)diag(π(k))x(k)− (πT (k)x(k))2. (5)

Thus, by letting ∆(x(k), k) = Vπ(x(k), k)−Vπ(x(k+1), k+1) and using x(k+1) = W (k+1)x(k),
we obtain for all k ≥ t0,

∆(x(k), k) = xT (k)diag(π(k))x(k)− (πT (k)x(k))2

−
{

xT (k + 1)diag(π(k + 1))x(k + 1)− (πT (k + 1)x(k + 1))2
}

= xT (k)
[

diag(π(k))−W T (k + 1)diag(π(k + 1))W (k + 1)
]

x(k)

+
{

(πT (k + 1)x(k + 1))2 − (πT (k)x(k))2
}

= xT (k)L(k)x(k) +
{

(πT (k + 1)x(k + 1))2 − (πT (k)x(k))2
}

,

where L(k) = diag(π(k))−W T (k + 1)diag(π(k + 1))W (k + 1).
Note that the sequence {πT (k)x(k)} is a martingale, implying that {−(πT (k)x(k))2} is a super-

martingale. Thus, by taking the conditional expectation on both sides of the preceding equality
and noticing that x(k) is measurable with respect to Fk, we have almost surely

E[∆(x(k), k) | Fk] ≥ E
[

xT (k)L(k)x(k) | Fk

]

= xT (k)E[L(k) | Fk] x(k) for all k ≥ t0. (6)

Further, letting e ∈ R
m be the vector with all components equal to 1, from the definition of

L(k) we almost surely have for all k ≥ t0:

E[L(k) | Fk] e = E
[

diag(π(k))e−W T (k + 1)diag(π(k + 1))W (k + 1)e | Fk

]

= π(k)− E
[

W T (k + 1)π(k + 1) | Fk

]

= 0,

which holds since W (k) is stochastic almost surely and {π(k)} is an absolute probability process for
{W (k)}. Thus, the random matrix E[L(k) | Fk] is symmetric and E[L(k) | Fk] e = 0 almost surely.
It can be shown that for a symmetric matrix A with Ae = 0, we have xTAx = −

∑

i<j Aij(xi−xj)
2.

Then, it follows that almost surely

xT (k)E[L(k) | Fk]x(k) = −
∑

i<j

Hij(k)(xi(k)− xj(k))
2,

where H(k) = E
[

W T (k + 1)diag(π(k + 1))W (k + 1) | Fk

]

. Using this relation in inequality (6),
we conclude that almost surely

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)−
∑

i<j

Hij(k)(xi(k)− xj(k))
2 for all k ≥ t0. (7)

8



In the proof of inequality (7), the inequality sign appears due to relation (6) only. If πT (k +
1)W (k + 1) = πT (k)W (k) almost surely, then we have πT (k + 1)x(k + 1) = πT (k)x(k) almost
surely. Thus, relation (6) holds as an equality and, consequently, so does relation (7). Q.E.D.

One of the important implications of Theorem 3 is the following result.

Corollary 2. Let {W (k)} be an adapted random chain that admits an absolute probability process
{π(k)}. Then, for any random dynamics {x(k)} driven by {W (k)}, we have for all t0 ≥ 0,

E

[

∞
∑

k=t0

∑

i<j

Lij(k) (xi(k)− xj(k))
2

]

≤ E[Vπ(x(t0), t0)] < ∞,

where L(k) = W T (k + 1)diag(π(k + 1))W (k + 1).

Proof. By taking expectation on both sides of the relation in Theorem 3, we obtain for all k ≥ t0:

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− E

[

∑

i<j

E[Lij(k) | Fk] (xi(k)− xj(k))
2

]

. (8)

Since x(k) is measurable with respect to Fk, it follows that

E[Lij(k) | Fk] (xi(k)− xj(k))
2 = E

[

Lij(k)(xi(k)− xj(k))
2 | Fk

]

= E
[

Lij(k)(xi(k)− xj(k))
2
]

.

Using this relation in Eq. (8), we see that for all k ≥ t0:

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− E

[

∑

i<j

Lij(k)(xi(k)− xj(k))
2

]

.

Hence,
∑∞

k=t0
E

[

∑

i<j Lij(k)(xi(k)− xj(k))
2
]

≤ E[Vπ(x(t0), t0)] for any t0 ≥ 0. Q.E.D.

4 Class P∗

In this section, we introduce a class of random chains, which we refer to as the class P∗, and we
prove one of the central results of this work. In particular, we show that the claim of Theorem 1
holds for any chain that is in the class P∗ and satisfies some form of aperiodicity.

Definition 3. The class P∗ is the class of random adapted chains that admit an absolute probability
process {π(k)} which is uniformly bounded away from zero almost surely, i.e., πi(k) ≥ p∗ almost
surely for some scalar p∗ > 0, and for all k ≥ 0 and all i ∈ [m]. We write this concisely as
{π(k)} ≥ p∗ > 0.

It may appear that the definition of the class P∗ is a rather restrictive. Later on, we show that
in fact the class P∗ contains a broad family of deterministic and random chains.

To establish the main result of this section, we make use of the following intermediate result.

Lemma 3. Let {A(k)} be a deterministic chain with the infinite flow graph G∞ = ([m], E∞). Let
(t0, v) ∈ Z

+ × R
m be an initial point for the dynamics driven by {A(k)}. If

lim
k→∞

(xi0(k)− xj0(k)) 6= 0,
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for some i0, j0 belonging to the same connected component of G∞, then we have

∞
∑

k=t0

∑

i<j

[(Aij(k + 1) + Aji(k + 1))(xi(k)− xj(k))
2] = ∞.

Proof. Let i0 and j0 be in the same connected component of G∞ and such that

lim sup
k→∞

(xi0(k)− xj0(k)) = α > 0.

Without loss of generality we may assume that x(t0) ∈ [−1, 1]m, for otherwise we can consider the
dynamics started at y(t0) =

1
‖x(t0)‖∞

x(t0). Let S be the vertex set of the connected component in

G∞ containing i0, j0, and without loss of generality assume that S = {1, 2, . . . , q} for some q ∈ [m],
q ≥ 2. Then, by the definition of the infinite flow graph, there exists a large enough K ≥ t0 such
that

∞
∑

k=K

AS(k + 1) ≤
α

32q
,

where AS(k + 1) = ASS̄(k + 1) + AS̄S(k + 1). Furthermore, since lim supk→∞ (xi0(k)− xj0(k)) =
α > 0, there exists a time instance t1 ≥ K such that xi0(t1)− xj0(t1) ≥

α
2
.

Let σ : [q] → [q] be a permutation such that xσ(1)(t1) ≥ xσ(2)(t1) ≥ · · · ≥ xσ(q)(t1), i.e. σ is an
ordering of {xi(t1) | i ∈ [q]}. Since xi0(t1) − xj0(t1) ≥

α
2
, it follows that xσ(1)(t1) − xσ(q)(t1) ≥

α
2

and, therefore, there exists ℓ ∈ [q] such that xσ(ℓ)(t1)− xσ(ℓ+1)(t1) ≥
α
2q
. Let

T1 = argmin
t>t1

t
∑

k=t1

∑

i,j∈[q]
i≤ℓ,ℓ+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1)) ≥
α

32q
.

Since S is a connected component of the infinite flow graph G∞, we must have T1 < ∞; otherwise,
S could be decomposed into two disconnected components {σ(1), . . . , σ(l)} and {σ(l+1), . . . , σ(q)}.

Now, let R = {σ(1), . . . , σ(l)}. We have for any k ∈ [t1, T1]:

T1−1
∑

k=t1

AR(k + 1) =

T1−1
∑

k=t1









∑

i,j∈[q]
i leqℓ,ℓ+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1))

+
∑

i≤ℓ,j∈S̄

Aσ(i)j(k + 1) +
∑

i∈S̄,j≤l

Aiσ(j)(k + 1)





≤
T1−1
∑

k=t1

∑

i,j∈[q]
i≤ℓ,ℓ+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1)) +
∞
∑

k=K

AS(k + 1) ≤
α

16q
,

which follows by the definition of T1 and the choice of t1 ≥ K. By Lemma 1 in [32], it follows that
for k ∈ [t1, T1],

max
i∈R

xi(k) ≤ max
i∈R

xi(t1) + 2
α

16q
, min

i∈S\R
xi(k) ≥ min

i∈S\R
xi(t1)− 2

α

16q
.
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Thus, for any i, j ∈ [q] with i ≤ l and j ≥ l + 1, and for any k ∈ [t1, T1], we have

xσ(i)(k)− xσ(j)(k) ≥ 2

(

2
α

16q

)

=
α

4q
.

Therefore,

T1
∑

k=t1

∑

i,j∈[q]
i≤ℓ,ℓ+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1))(xσ(i)(k)− xσ(j)(k))
2

≥ (
α

4q
)2

T1
∑

k=t0

∑

i,j∈[q]
i≤l,j≥l+1

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1)) ≥

(

α

4q

)2
α

32q
= β > 0.

Further, it follows that:

T1
∑

k=t1

∑

i<j

(Aij(k + 1) + Aji(k + 1))(xi(k)− xj(k))
2

≥
T1
∑

k=t1

∑

i,j∈[q]
i≤ℓ,ℓ+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1))(xσ(i)(k)− xσ(j)(k))
2 ≥ β.

Since lim supk→∞ (xi0(k)− xj0(k)) = α > 0, there exists a time t2 > T1 such that xi0(t2) −

xj0(t2) ≥
α
2
. Then, using the above argument, there exists T2 > t2 such that

∑T2

k=t2

∑

i<j(Aij(k +

1) + Aji(k + 1))(xi(k)− xj(k))
2 ≥ β. Hence, using the induction, we can find time instances

· · · > Tξ+1 > tξ+1 > Tξ > tξ > Tξ−1 > tξ−1 > · · · > T1 > t1 ≥ t0,

such that
∑Tξ

k=tξ

∑

i<j(Aij(k + 1) + Aji(k + 1))(xi(k) − xj(k))
2 ≥ β for any ξ ≥ 1. The intervals

[tξ, Tξ] are non-overlapping subintervals of [t0,∞), implying that

∞
∑

k=t0

∑

i<j

(Aij(k + 1) + Aji(k + 1))(xi(k)− xj(k))
2 = ∞.

Q.E.D.

For our main result, let us define the weak aperiodicity for an adapted random chain.

Definition 4. We say that an adapted random chain {W (k)} is weakly aperiodic if for some γ > 0,
and for all distinct i, j ∈ [m] and all k ≥ 0,

E
[

W iT (k + 1)W j(k + 1) | Fk

]

≥ γE[Wij(k + 1) +Wji(k + 1) | Fk] .

Now, we establish the main result of this section.

Theorem 4. Let {W (k)} ∈ P∗ be an adapted chain that is weakly aperiodic. Then, limk→∞W (k :
t0) = W (∞ : t0) exists almost surely for any t0 ≥ 0. Moreover, the event under which Wi(∞ :
t0) = Wj(∞ : t0) for all t0 ≥ 0 is almost surely equal to the event that i, j are belonging to the
same connected component of the infinite flow graph of {W (k)}.
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Proof. Since {W (k)} is in P∗, {W (k)} admits an absolute probability process {π(k)} such that
{π(k)} ≥ p∗ > 0 almost surely. Thus, it follows that

p∗E
[

W T (k + 1)W (k + 1) | Fk

]

≤ E
[

W T (k + 1)diag(π(k + 1))W (k + 1) | Fk

]

= H(k + 1).

On the other hand, by the weak aperiodicity, we have

γE[Wij(k + 1) +Wji(k + 1) | Fk] ≤ E
[

W iT (k + 1)W j(k + 1) | Fk

]

,

for some γ ∈ (0, 1] and for all distinct i, j ∈ [m]. Thus, we have p∗γE[Wij(k + 1) +Wji(k + 1) | Fk] ≤
Hij(k + 1). By Corollary 2, for the random dynamics {x(k)} driven by {W (k)} and started at
arbitrary (t0, v) ∈ Z

+ × R
m, it follows that

p∗γ

∞
∑

k=t0

E

[

∑

i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2

]

≤ E[Vπ(x(t0), t0)] .

As a consequence,

∞
∑

k=t0

∑

i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2 < ∞ almost surely.

Therefore, by Lemma 3, we conclude that limk→∞ (xi(k, ω)− xj(k, ω)) = 0 for any i, j belonging to
the same connected component of G∞(ω), for almost all ω ∈ Ω. By Lemma 2 it follows that every
index i ∈ [m] is ergodic for almost all ω ∈ Ω. By considering the initial conditions (t0, eℓ) ∈ Z

+×R
m

for all ℓ ∈ [m], the assertion follows. Q.E.D.

Theorem 4 shows that the dynamics in (2) is convergent almost surely for aperiodic chains
{W (k)} ∈ P∗. Moreover, the theorem also characterizes the limiting points of such a dynamics as
well as the limit matrices of the products W (k : t0) as k → ∞.

5 Balanced Chains

In this section, we characterize a subclass of P∗ chains, namely the class of strongly aperiodic
balanced chains. We first show that this class includes many of the chains that have been studied
in the existing literature. Then, we prove that any aperiodic balanced chain belongs to the class
P∗. We also show that a balanced independent random chain is strongly aperiodic, thus concluding
Theorem 1.

Before continuing our analysis on balanced chains, let us discuss some of the well-known sub-
classes of such chains:

1. Balanced Bidirectional Chains: We say that an independent chain {W (k)} is a balanced
bidirectional chain if there exists some α > 0 such that E[Wij(k)] ≥ αE[Wji(k)] for all k ≥ 1
and i, j ∈ [m]. These chains are in fact balanced, since for any S ⊂ [m] we have:

E[WSS̄(k)] = E





∑

i∈S,j∈S̄

Wij(k)



 ≥ E





∑

i∈S,j∈S̄

αWji(k)



 = αE[WS̄S(k)] .
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Examples of such chains are bounded bidirectional deterministic chains, which are the chains
such that Aij(k) > 0 implies Aji(k) > 0 for all i.j ∈ [m] and all k ≥ 1, and the positive
entries are uniformly bounded from below by some γ > 0 (i.e., Aij(k) > 0 implies Aij(k) ≥ γ

for all i, j ∈ [m] and all k ≥ 1). In this case, for Aij(k) > 0, we have Aij(k) ≥ γ ≥ γAji(k)
and for Aij(k) = 0, we have Aji(k) = 0 and, hence, in either of the cases Aij(k) ≥ γAji(k).
Therefore, bounded bidirectional chains are examples of balanced bidirectional chains. Such
chains have been considered in [15, 1, 4] and, among others, include the Hegselman-Krause
model for opinion dynamics [13, 8].

2. Chains with Common Steady State π > 0: This ensemble consists of independent
random chains {W (k)} such that E

[

πTW (k)
]

= E
[

πT (k)
]

for some stochastic vector π > 0
and all k ≥ 1, which are generalizations of doubly stochastic chains, where we have π = 1

m
e

(e is a vector of ones). Doubly stochastic chains and the chains with a common steady state
π > 0 have been studied in [19, 32, 30].

To show that a chain with a common steady state π > 0 is a balanced chain, let us prove the
following lemma.

Lemma 4. Let A be a stochastic matrix and π > 0 be a stochastic left-eigenvector of A correspond-
ing to the unit eigenvalue, i.e., πTA = πT . Then, ASS̄ ≥ πmin

πmax
AS̄S for any non-trivial S ⊂ [m],

where πmax = maxi∈[m] πi and πmin = mini∈[m] πi.

Proof. Let S ⊂ [m]. Since πTA = πT , we have

∑

j∈S

πj =
∑

i∈[m],j∈S

πiAij =
∑

i∈S,j∈S

πiAij +
∑

i∈S̄,j∈S

πiAij. (9)

On the other hand, since A is a stochastic matrix, we have πi

∑

j∈[m]Aij = πi. Therefore,

∑

i∈S

πi =
∑

i∈S

πi

∑

j∈[m]

Aij =
∑

i∈S,j∈S

πiAij +
∑

i∈S,j∈S̄

πiAij . (10)

Comparing Eq. (9) and Eq. (10), we see that
∑

i∈S̄,j∈S πiAij =
∑

i∈S,j∈S̄ πiAij . Therefore,

πminAS̄S ≤
∑

i∈S̄,j∈S

πiAij =
∑

i∈S,j∈S̄

πiAij ≤ πmaxASS̄.

Hence, we have ASS̄ ≥ πmin

πmax
AS̄S for any non-trivial S ⊂ [m]. Q.E.D.

The above lemma shows that a chain with a common steady state π > 0 is balanced with
balancedness coefficient α = πmin

πmax
. In fact, the lemma yields a much more general result, as

provided below.

Theorem 5. Let {W (k)} be an independent random chain with a sequence {π(k)} of stochastic
left-eigenvectors for the expected chain corresponding to the unit eigenvalue, i.e., πT (k)E[W (k)] =
πT (k) for all k ≥ 1. If {π(k)} ≥ p∗ for some scalar p∗ > 0, then {W (k)} is a balanced chain with
a balancedness coefficient α = p∗

1−(m−1)p∗
.
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Proof. Since πT (k)E[W (k)] = πT (k) for all k ≥ 1, by Lemma 4 we have

E[WSS̄(k)] ≥
πmin(k)

πmax(k)
E[WS̄S(k)] for any non-trivial S ⊂ [m] and all k ≥ 1,

By {π(k)} ≥ p∗ > 0, it follows thatπmin(k) ≥ p∗ for all k ≥ 1. Since π(k) is a stochastic vector, it
further follows πmax(k) ≤ 1− (m− 1)πmin(k) ≤ 1− (m− 1)p∗. Therefore, for all k ≥ 1,

E[WSS̄(k)] ≥
πmin(k)

πmax(k)
E[WS̄S(k)] ≥

p∗

1− (m− 1)p∗
E[WS̄S(k)] ,

for any non-trivial S ⊂ [m]. Thus, {W (k)} is balanced with a balancedness coefficient α =
p∗

1−(m−1)p∗
. Q.E.D.

Theorem 5 not only characterizes a class of balanced chains, but it also provides an alternative
characterization of the balancedness for these chains. Thus, instead of verifying Definition 1 for
every nontrivial subset S ⊂ [m], for balancedness of independent random chains, it suffices to find
a sequence {π(k)} of stochastic (unit) left-eigenvectors of the expected chain {E[W (k)]} such that
the entries of the sequence do not vanish as time goes to infinity.

5.1 Absolute Probability Sequence for Balanced Chains

In this section, we show that any independent random chain that is strongly aperiodic and balanced
must be in the class P∗. The road map to prove this result is as follows: we first show that this
result holds for deterministic chains with uniformly bounded positive entries. Then, using this
result and geometric properties of the set of strongly aperiodic balanced chains, we prove the
statement for deterministic chains, which immediately implies the result for independent random
chains. To show the result for deterministic chains with uniformly bounded positive entries, we
employ the technique that is used to prove Proposition 4 in [15]. However, the argument given in
[15] needs some extensions to fit in our more general assumption of balanced-ness.

Let {A(k)} be a deterministic chain of stochastic matrices. Let Sj(k) be the set of indices
corresponding to the positive entries in the jth column of A(k : 0), i.e.,

Sj(k) = {ℓ ∈ [m] | Aℓj(k : 0) > 0} for all j ∈ [m] and all k ≥ 0.

Also, let µj(k) be the minimum value of these positive entries, i.e.,

µj(k) = min
ℓ∈Sj(k)

Aℓj(k : 0) > 0.

Lemma 5. Let {A(k)} be a strongly aperiodic balanced chain such that the positive entries in
each A(k) are uniformly bounded from below by a scalar γ > 0. Then, Sj(k) ⊆ Sj(k + 1) and
µj(k) ≥ γ|Sj(k)|−1 for all j ∈ [m] and k ≥ 0.

Proof. Let j ∈ [m] be arbitrary but fixed. By induction on k, we prove that Sj(k) ⊆ Sj(k + 1) for
all k ≥ 0 as well as the desired relation for µj(k). For k = 0, we have A(0 : 0) = I by the definition,
so Sj(0) = {j}. Then, A(1 : 0) = A(1) and by the strongly aperiodic assumption on the chain
{A(k)} we have Ajj(1) ≥ γ, implying {j} = Sj(0) ⊆ Sj(1). Furthermore, we have |Sj(0)| − 1 = 0
and µj(0) = 1 = γ0. Hence, the claim is true for k = 0.
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Now suppose that the claim is true for some k ≥ 0, and consider k+1. Then, for any i ∈ Sj(k),
we have:

Aij(k + 1 : 0) =
m
∑

ℓ=1

Aiℓ(k + 1)Aℓj(k : 0) ≥ Aii(k + 1)Aij(k : 0) ≥ γµj(k) > 0.

Thus, i ∈ Sj(k + 1), implying Sj(k) ⊆ Sj(k + 1).
To show the relation for µj(k + 1), we consider two cases:

Case ASj(k)S̄j(k)(k + 1) = 0: In this case for any i ∈ Sj(k), we have:

Aij(k + 1 : 0) =
∑

ℓ∈Sj(k)

Aiℓ(k)Aℓj(k : 0) ≥ µj(k)
∑

ℓ∈Sj(k)

Aiℓ(k + 1) = µj(k), (11)

where the inequality follows from i ∈ Sj(k) and ASj(k)S̄j(k)(k + 1) = 0, and the definition of
µj(k). Furthermore, by the balancedness of A(k) and ASj(k)S̄j(k)(k + 1) = 0, it follows that
0 = ASj(k)S̄j(k)(k + 1) ≥ αAS̄j(k)Sj(k)(k + 1) ≥ 0. Hence, AS̄j(k)Sj(k)(k + 1) = 0. Thus, for any

i ∈ S̄j(k), we have

Aij(k + 1 : 0) =

m
∑

ℓ=1

Aiℓ(k + 1)Aℓj(k : 0) =
∑

ℓ∈S̄j(k)

Aiℓ(k + 1)Aℓj(k : 0) = 0,

where the second equality follows from Aℓj(k : 0) = 0 for all ℓ ∈ S̄j(k). Therefore, in this case we
have Sj(k+1) = Sj(k), which by (11) implies µj(k+1) ≥ µj(k). In view of Sj(k+1) = Sj(k) and
the inductive hypothesis, we further obtain

µj(k) ≥ γ|Sj(k)|−1 = γ|Sj(k+1)|−1,

implying µj(k + 1) ≥ γ|Sj(k+1)|−1.
Case ASj(k)S̄j(k)(k + 1) > 0: Since the chain is balanced, we have

AS̄j(k)Sj(k)(k + 1) ≥ αASj(k)S̄j(k)(k + 1) > 0,

implying that AS̄j(k)Sj(k)(k) > 0. Therefore, by the uniform boundedness of {A(k)}, there exists

ξ̂ ∈ S̄j(k) and ℓ̂ ∈ Sj(k) such that Aξ̂ℓ̂(k + 1) ≥ γ. Hence, we have

Aξ̂j(k + 1 : 0) ≥ Aξ̂ℓ̂(k + 1)Aℓ̂j(k : 0) ≥ γµj(k) = γ|Sj(k)|,

where the equality follows by the induction hypothesis. Thus, ξ̂ ∈ Sj(k + 1) while ξ̂ 6∈ Sj(k),
which implies |Sj(k + 1)| ≥ |Sj(k)| + 1. This, together with Aξ̂j(k + 1 : 0) ≥ γ|Sj(k)|, yields

µj(k + 1) ≥ γ|Sj(k)| ≥ γ|Sj(k+1)|−1. Q.E.D.

The bound on µj(k) of Lemma 5 implies that the bound for the nonnegative entries given in
Proposition 4 of [15] can be reduced from γm2−m+2 to γm−1.

Note that Lemma 5 holds for products A(k : t0) starting with any t0 ≥ 0, (with appropriately
defined Sj(k) and µj(k)). An immediate corollary of Lemma 5 is the following result.

Corollary 3. Under the assumptions of Lemma 5, we have for all k > t0 ≥ 0,

1

m
eTA(k : t0) ≥ min(

1

m
, γm−1)eT ,

where e is the vector of ones and the inequality is to be understood entry-wise.
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Proof. Without loss of generality, let us assume that t0 = 0. Then, by Lemma 5 we have 1
m
eTAj(k :

0) ≥ 1
m
|Sj(k)|γ

|Sj(k)|−1 for any j ∈ [m], where Aj denotes the jth column of A. For γ ∈ [0, 1], the
function t 7→ tγt−1 defined on [1, m] attains its minimum at either t = 1 or t = m. Therefore,
1
m
eTA(k : 1) ≥ min( 1

m
, γm−1)eT . Q.E.D.

Now, we relax the assumption on the bounded entries in Corollary 3.

Theorem 6. Let {A(k)} be a balanced and strongly aperiodic chain. Then, there is a scalar
γ ∈ (0, 1] such that 1

m
eTA(k : 0) ≥ min( 1

m
, γm−1)eT for all k ≥ 1.

Proof. Let α > 0 be a balancedness coefficient for {A(k)} and let Aii(k) ≥ β > 0 for all i ∈ [m]
and k ≥ 1. Further, let Bα,β be the set of balanced matrices with the balancedness coefficient α

and strongly aperiodic matrices with a coefficient β > 0, i.e.,

Bα,β :=
{

Q ∈ R
m×m | Q ≥ 0, Qe = e, (12)

QSS̄ ≥ αQS̄S for all non-trivial S ⊂ [m], Qii ≥ β for all i ∈ [m]} .

The description in relation (12) shows that Bα,β is a bounded polyhedral set in R
m×m. Let

{Q(ξ) ∈ Bα,β | ξ ∈ [nα,β ]} be the set of extreme points of this polyhedral set indexed by the
positive integers between 1 and nα,β, which is the total number of extreme points of Bα,β.

Since A(k) ∈ Bα,β for all k ≥ 1, we can write A(k) as a convex combination of the extreme
points in Bα,β, i.e., there exist coefficients λξ(k) ∈ [0, 1] such that

A(k) =

nα,β
∑

ξ=1

λξ(k)Q
(ξ) with

nα,β
∑

ξ=1

λξ(k) = 1. (13)

Now, consider the following independent random matrix process defined by:

W (k) = Q(ξ) with probability λξ(k) for all k ≥ 1.

In view of this definition any sample path of {W (k)} consists of extreme points of Bα,β. Thus,
every sample path of {W (k)} has a coefficient bounded by the minimum positive entry of the
matrices in {Q(ξ) ∈ Bα,β | ξ ∈ [nα,β]}, denoted by γ = γ(α, β) > 0, where γ > 0 since nα,β is
finite. Therefore, by Corollary 3, we have 1

m
eTW (k : t0) ≥ min( 1

m
, γm−1)eT for all k > t0 ≥ 0.

Furthermore, by Eq. (13) we have E[W (k)] = A(k) for all k ≥ 1, implying

1

m
eTA(k : t0) =

1

m
eTE[W (k : t0)] ≥ min

(

1

m
, γm−1

)

eT ,

which follows from {W (k)} being independent. Q.E.D.

Based on the above results, we are ready to prove the main result for deterministic chains.

Theorem 7. Any balanced and strongly aperiodic chain {A(k)} is in the class P∗.

Proof. As pointed out in [12] for any chain {A(k)}, there exists a sequence {tr} of time indices,
such that for all k ≥ 0, limr→∞A(tr : k) = Q(k) exists and, for any stochastic vector π ∈ R

m, the
sequence {QT (k)π} is an absolute probability sequence for {A(k)}. Since {A(k)} is a balanced
and strongly aperiodic chain, by Theorem 6 it follows that

1

m
eTQ(k) =

1

m
lim
r→∞

eTA(tr : k) ≥ p∗eT for all k ≥ 0,

with p∗ = min( 1
m
, γm−1) > 0. Thus, { 1

m
eTQ(k)} is a uniformly bounded absolute probability

sequence for {A(k)}. Q.E.D.
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The main result of this section follows immediately from Theorem 7.

Theorem 8. Any balanced and strongly aperiodic independent random chain is in the class P∗.

Proof. The proof follows immediately by noticing that, for an independent random chain, {W (k)},
any absolute probability sequence for the expected chain {E[W (k)]} is an absolute probability
process for {W (k)}. Q.E.D.

As a result of Theorem 8 and Theorem 4, the proof of Theorem 1 follows immediately. In
particular by Theorem 8, any independent random chain that is balanced and strongly aperiodic
belongs to the class P∗. Thus, the result follows by Theorem 4.

6 Connection to Non-negative Matrix Theory

In this section, we show that Theorem 1 is a generalization of the following well-known result in
the non-negative matrix theory which plays a central role in the theory of ergodic Markov chains.

Lemma 6. ([14], page 46) For an aperiodic and irreducible stochastic matrix A, the limit limk→∞Ak

exists and it is equal to a rank one stochastic matrix.

Recall that a stochastic matrix A is irreducible if there is no permutation matrix P such that

P TAP =

[

X Y

0 Z

]

,

where X, Y, Z are i× i, i× (m− i), and (m− i)× (m− i) matrices for some i ∈ [m− 1] and 0 is
the (m− i)× i matrix with all entries equal to zero.

Let us reformulate irreducibility using the tools we have developed in this paper.

Lemma 7. A stochastic matrix A is an irreducible matrix if and only if the static chain {A} is
balanced and its infinite flow graph is connected.

Proof. By the definition, a matrix A is irreducible if there is no permutation matrix P such that

P TAP =

[

X Y

0 Z

]

.

Since A is a non-negative matrix, we have that A is reducible if and only if there exists a subset
S = {1, . . . , i} for some i ∈ [m− 1], such that

0 = [P TAP ]S̄S =
∑

i∈S̄,j∈S

ei[P
TAP ]ej =

∑

i∈S̄,j∈S

Aσiσj
=

∑

i∈R̄,j∈R

Aij ,

where σi = {j ∈ [m] | Pei = ej} (which is a singleton since P is a permutation matrix) and
R = {σi | i ∈ S}. Thus, A is irreducible if and only if ASS̄ > 0 for all non-trivial S ⊂ [m].
Therefore, by letting

α = min
S⊂[m]
S 6=∅

ASS̄

AS̄S

,

and noting that α > 0, we conclude that {A} is balanced with a balancedness coefficient α.
Furthermore, since ASS̄ + AS̄S ≥ ASS̄ > 0 for all nontrivial S ⊂ [m], it follows that the infinite
flow graph of {A} is connected.
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Now, suppose that {A} is balanced and its infinite flow graph of {A} is connected. Then,
ASS̄ > 0 or AS̄S > 0 for all non-trivial S ⊂ [m]. By the balancedness of the chain it follows that
min(ASS̄, AS̄S) > 0 for any non-trivial S ⊂ [m], implying that A is irreducible. Q.E.D.

Note that for an aperiodic A, we can always find some h ≥ 1 such that Ah
ii ≥ γ > 0 for all

i ∈ [m]. Thus, based on Theorem 1, we have the following extension of Lemma 6 for independent
random chains.

Theorem 9. Let {W (k)} be a balanced and strongly aperiodic independent random chain with a
connected infinite flow graph. Then, for any t0 ≥ 0, the product W (k : t0) converges to a rank
one stochastic matrix almost surely (as k goes to infinity). Moreover, if {W (k)} does not have the
infinite flow property, the product W (k : t0) almost surely converges to a (random) matrix that has
rank at most τ for any t0 ≥ 0, where τ is the number of connected components of the infinite flow
graph of {E[W (k)]}.

Proof. The result follows immediately from Theorem 1. Q.E.D.

An immediate consequence of Theorem 9 is a generalization of Lemma 6 to inhomogeneous
chains.

Corollary 4. Let {A(k)} be a balanced and strongly aperiodic stochastic chain. Then, A(∞ : t0) =
limk→∞A(k : t0) exists for all t0 ≥ 0. Moreover, A(∞ : t0) is a rank one matrix for all t0 ≥ 0 if
and only if the infinite flow graph of {A(k)} is connected.

7 Conclusion

In this paper we studied the limiting behavior of the products of random stochastic matrices from
the dynamic system point of view. We showed that any dynamics driven by such products admits
time-varying Lyapunov functions. Then, we defined a class P∗ of random chains which possess a
well-behaved limits. We have introduced balanced chains and discussed how many of the previously
well-studied random chains are examples of such chains. We have established a general stability
result for product of random stochastic matrices and showed that this result extends a classical
convergence result for time-homogeneous irreducible and aperiodic Markov chains.
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