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Abstract—In distributed model predictive control (DMPC),
where a centralized optimization problem is solved in distributed
fashion using dual decomposition, it is important to keep the
number of iterations in the solution algorithm, i.e. the amount
of communication between subsystems, as small as possible.
At the same time, the number of iterations must be enough
to give a feasible solution to the optimization problem and to
guarantee stability of the closed loop system. In this paper,
a stopping condition to the distributed optimization algorithm
that guarantees these properties, is presented. The stopping
condition is based on two theoretical contributions. First, since
the optimization problem is solved using dual decomposition,
standard techniques to prove stability in model predictivecontrol
(MPC), i.e. with a terminal cost and a terminal constraint set
that involve all state variables, do not apply. For the case without
a terminal cost or a terminal constraint set, we present a new
method to quantify the control horizon needed to ensure stability
and a prespecified performance. Second, the stopping condition
is based on a novel adaptive constraint tightening approach.
Using this adaptive constraint tightening approach, we guarantee
that a primal feasible solution to the optimization problem is
found and that closed loop stability and performance is obtained.
Numerical examples show that the number of iterations needed
to guarantee feasibility of the optimization problem, stability
and a prespecified performance of the closed-loop system can
be reduced significantly using the proposed stopping condition.

Index Terms—Distributed model predictive control, perfor-
mance guarantee, stability, feasibility

I. I NTRODUCTION

Distributed model predictive control (DMPC) can be divided
into two main categories. In the first category, local opti-
mization problems that are solved sequentially and that take
neighboring interaction and solutions into account, are solved
in each subsystem. This is done in [1] for linear systems and in
[2] for nonlinear systems. In [3] a DMPC scheme is presented
in which stability is proven by adding a constraint to the
optimization problem that requires a reduction of an explicit
control Lyapunov function. In [4], [5] stability is guaranteed
for systems satisfying a certain matching condition and if the
coupling interaction is small enough. In the second category,
to which the current paper belong, a centralized optimization
problem with a sparse structure is solved using a distributed
optimization algorithm. This approach is taken in [6] where
stability is guaranteed in every algorithm iteration. A drawback
to this method is that full model knowledge is assumed in
each node. Other approaches in the DMPC literature rely on
dual decomposition to solve the centralized MPC problem in

distributed fashion. This approach is taken in, e.g. [7], [8],
[9], where a (sub)gradient algorithm is used to solve the dual
problem and in [10] where the algorithm is based on the
smoothing technique presented in [11]. Among these, the only
stability proof is given in [12], [9], where a terminal point
constraint is set to the origin, which is very restrictive.

One reason for the lack of stability results in DMPC based
on dual decomposition, is that the standard techniques to prove
stability in MPC do not apply. In MPC, terminal costs and
terminal constraint sets that involve all state variables are used
to show stability of the closed loop system, see [13], [14].
This is not compatible with dual decomposition. However,
results for stability in MPC without a terminal constraint
set or a terminal set, which fits also the DMPC framework
used here, are available [15], [16]. In [16], a method to
quantify the minimal control horizon that guarantees stability
and a prespecified performance is presented. This is based on
relaxed dynamic programming [17], [18] and a controllability
assumption on the stage costs. In the current paper, we take
a similar approach to quantify the control horizon needed
to guarantee stability and a prespecified performance. The
advantages of our approach over the one in [16] are twofold;
we can, by solving a mixed integer linear program (MILP),
verify our controllability assumption, further we get an explicit
expression that relates the parameter in the controllability
assumption with the obtained closed loop performance.

Besides the stability result, the main contribution of this
paper is a stopping condition for DMPC controllers that use
a distributed optimization algorithm based on dual decompo-
sition. We use the distributed algorithm presented in [19],but
any duality-based distributed algorithm, such as the standard
dual ascent or ADMM [20], can be used. These duality
based algorithms suffer from that primal feasibility is only
guaranteed in the limit of iterations. Constraint tightening,
which was originally proposed for robust MPC in [21], can
also be used to generate feasible solutions within finite number
of iterations, see [22]. However, the introduction of constraint
tightening complicates stability analysis since the optimal
value function without constraint tightening is used to show
stability, while the optimization is performed with tightened
constraints. This problem is addressed in [22] by assuming
that the difference between the optimal value functions with
and without constraint tightening is bounded by a constant.
However, to actually compute such a constant is very difficult.
The stopping condition in this paper is based on a novel adap-
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tive constraint tightening approach that ensures feasibility w.r.t.
the original constraint set with a finite number of algorithm
iterations. In addition, the amount of constraint tightening
is adapted until the difference between the optimal value
functions with and without constraint tightening is bounded
by a certain amount. This adaptation makes it possible to
guarantee, besides feasibility of the optimization problem, also
stability of the closed-loop system, without stating additional,
unquantifiable assumptions.

The paper is organized as follows. In Section II we introduce
the problem and present the distributed optimization algorithm
in [19]. In Section III the stopping condition is presented and
feasibility, stability, and performance is analyzed. Section IV
is devoted to computation of a controllability parameter inthe
controllability assumption. A numerical example that shows
the efficiency of the proposed stopping condition, is presented
in Section V. Finally, in Section VI we conclude the paper.

II. PROBLEM SETUP AND PRELIMINARIES

We consider linear dynamical systems of the form

xt+1 = Axt +But, x0 = x̄ (1)

wherext ∈ R
n and ut ∈ R

m denote the state and control
vectors at timet and the pair(A,B) is assumed controllable.
We introduce the following state and control variable partitions

xt = [(x1
t )

T , (x2
t )

T , . . . , (xM
t )T ]T , (2)

ut = [(u1
t )

T , (u2
t )

T , . . . , (uM
t )T ]T (3)

where the local variablesxi
t ∈ Rni andui

t ∈ Rmi . TheA and
B matrices are partitioned accordingly

A =







A11 · · · A1M

...
. . .

...
AM1 · · · AMM






, B =







B11 · · · B1M

...
. . .

...
BM1 · · · BMM






.

These matrices are assumed to have a sparse structure, i.e.,
someAij = 0 andBij = 0 and the neighboring interaction is
defined by the following sets

Ni = {j ∈ {1, . . . ,M} | if Aij 6= 0 or Bij 6= 0}
for i = 1, . . . ,M . This gives the following local dynamics

xi
t+1 =

∑

j∈Ni

(

Aijx
j
t +Biju

j
t

)

, xi
0 = x̄i

for i = 1, . . . ,M . The local control and state variables are
constrained, i.e.,ui ∈ Ui andxi ∈ Xi. The constraint sets,Xi,
Ui are assumed to be bounded polytopes containing zero in
their respective interiors and can hence be represented as

Xi = {xi ∈ R
ni | Ci

xx
i ≤ dix},

Ui = {ui ∈ R
mi | Ci

uu
i ≤ diu}

whereCi
x ∈ R

nc
xi

×ni , Ci
u ∈ R

nc
ui

×mi , dix ∈ R
nc

xi

>0 anddiu ∈
R

nc
ui

>0 . We also denote the total number of linear inequalities
describing all constraint sets bync :=

∑M

i=1

(

nc
xi

+ nc
ui

)

.
The global constraint sets are defined from the local ones
through

X = X1 × . . .×XM , U = U1 × . . .× UM .

We use a separable quadratic stage cost

ℓ(x, u) =
M
∑

i=1

ℓi(x
i, ui) =

1

2

(

M
∑

i=1

(xi)TQix
i + (ui)TRiu

i

)

where Qi ∈ S
ni

++ and Ri ∈ S
mi

++ for i = 1, . . . ,M and
Sn++ denotes the set of symmetric positive definite matrices
in Rn×n. The optimal infinite horizon cost from initial state
x̄ ∈ X is defined by

V∞(x̄) := min
x,u

∞
∑

t=0

ℓ(xt, ut)

s.t. xt ∈ X , ut ∈ U
xt+1 = Axt +But

x0 = x̄.

(4)

Such infinite horizon optimization problems are in general
intractable to solve exactly. A common approach is to solve
the problem approximately in receding horizon fashion. To this
end, we introduce the predicted state and control sequences
{zτ}N−1

τ=0 and{vτ}N−1
τ=0 and the corresponding stacked vectors

z = [zT0 , . . . , z
T
N−1]

T , v = [vT0 , . . . , v
T
N−1]

T

wherezτ andvτ are predicted states and controlsτ time steps
ahead. The predicted state and control variableszτ , vτ are
partitioned into local variables as in (2) and (3) respectively.
We also introduce the following stacked local vectors

zi = [(zi0)
T , . . . , (ziN−1)

T ]T , vi = [(vi0)
T , . . . , (viN−1)

T ]T .

Further, we introduce the tightened state and control constraint
sets

(1 − δ)Xi = {xi ∈ R
ni | Ci

xx
i ≤ (1− δ)dix},

(1− δ)Ui = {ui ∈ R
mi | Ci

uu
i ≤ (1− δ)diu}

where δ ∈ (0, 1) decides the amount of relative constraint
tightening. The following optimization problem, which has
neither a terminal cost nor a terminal constraint set, is solved
in the DMPC controller for the current statēx ∈ Rn

V δ
N (x̄) := min

zt,vt

N−1
∑

τ=0

ℓ(zτ , vτ )

s.t. zτ ∈ (1− δ)X , τ = 0, . . . , N − 1
vτ ∈ (1− δ)U , τ = 0, . . . , N − 1
zτ+1 = Azτ +Bvτ , τ = 0, . . . , N − 2
z0 = x̄.

(5)
By stacking all decision variables into one vector

y = [zT0 , . . . , z
T
N−1, v

T
0 , . . . , v

T
N−1]

T ∈ R
(n+m)N (6)

the optimization problem (5) can more compactly be written
as

V δ
N (x̄) := min

y

1
2y

THy

s.t. Ay = bx̄
Cy ≤ (1− δ)d

(7)

where H ∈ S
(n+m)N
++ ,A ∈ Rn(N−1)×(n+m)N ,b ∈

R
n(N−1)×n,C ∈ R

ncN×(n+m)N and d ∈ R
Nnc

>0 are built
accordingly. Such sparse optimization problems can be solved



3

in distributed fashion using, e.g., the classical dual ascent, the
alternating direction of multipliers method (ADMM) [20], or
the recently developed algorithm in [19]. The algorithm in
[19] is a dual accelerated gradient algorithm and is used in
the current paper for simplicity. Distribution of these methods
are enabled by solving the dual problem to (5).

The dual problem to (7) is created by introducing dual
variablesλ ∈ Rn(N−1) for the equality constraints and dual
variablesµ ∈ R

Nnc

≥0 for the inequality constraints. As shown
in [19], the dual problem can explicitly be written as

max
λ,µ≥0

−1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd(1− δ) (8)

and we define the minimand in (8) as the dual function for
initial condition x̄ ∈ Rn, i.e.,

Dδ
N (x̄,λ,µ) := −1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd(1− δ). (9)

The distributed algorithm presented in [19] that solves (7), is
a dual accelerated gradient method described by the following
global iterations

yk = −H−1(ATλk +CTµk) (10)

ȳk = yk +
k − 1

k + 2
(yk − yk−1) (11)

λk+1 = λk +
k − 1

k + 2
(λk − λk−1) +

1

L
(Aȳk − bx̄) (12)

µk+1 = max

(

0,µk +
k − 1

k + 2
(µk − µk−1)+

+
1

L
(Cȳk − d (1− δ))

)

(13)

where k is the iteration number and L =
‖[AT ,CT ]TH−1[AT ,CT ]‖, which is the Lipschitz constant
to the gradient of the dual function (9). The reader is referred
to [19] for details on how to distribute the algorithm (10)-(13).

A. Notation

We defineN≥T the set of natural numberst ≥ T . The norm
‖ · ‖ refers to the Euclidean norm or the induced Euclidean
norm unless otherwise is specified and〈·, ·〉 refers to the inner
product in Euclidean space. The norm‖x‖M =

√
xTMx.

The optimal state and control sequences to (5) for initial
valuex and constraint tighteningδ are denoted{z∗τ (x, δ)}N−1

τ=0

and {v∗τ (x, δ)}N−1
τ=0 respectively and the optimal solution

to the equivalent problem (7) byy∗(x, δ). The state and
control sequences for iterationk in (10)-(13) are denoted
{zkτ (x, δ)}N−1

τ=0 and {vkτ (x, δ)}N−1
τ=0 respectively. The initial

state and constraint tightening arguments(x, δ) are dropped
when no ambiguities can arise.

B. Definitions and assumptions

We adopt the convention thatV δ
N (x̄) =∞ for states̄x ∈ R

n

that result in (7) being infeasible. We define byX∞ the set

for which (4) is feasible and we define the minimum of the
stage-costℓ for fixed x as

ℓ∗(x) := min
u∈U

ℓ(x, u) =
1

2
xTQx.

Further,κ is the smallest scalar such thatκQ − ATQA � 0.
The state sequence resulting from applying{vτ}N−1

τ=0 to (1) is
denoted by{ξτ}N−1

τ=0 , i.e.,

ξτ+1 = Aξτ +Bvτ , ξ0 = x̄. (14)

We introduceξ = [(ξ0)
T , . . . , (ξN−1)

T ]T and define the
primal cost

PN (x̄,v) :=



















N−1
∑

τ=0

ℓ(ξτ , vτ ) if ξ ∈ XN andv ∈ UN

and (14) holds
∞ else

(15)

whereXN andUN are the state and control constraints for the
full horizon. We also introduce the shifted control sequence
vs = [(v1)

T , . . . , (vN−1)
T , 0T ]T . We havePN (x̄,vk) ≥

VN (x̄) andPN (Ax̄+Bvk0 ,v
k
s ) ≥ VN (Ax̄+Bvk0 ) for every al-

gorithm iterationk. We denote by{ξkτ }N−1
τ=0 the state sequence

that satisfies (14) using controls{vkτ}N−1
τ=0 . The definition of

the cost (15) implies

PN (x̄,vk) = PN (Ax̄+Bvk0 ,v
k
s ) + ℓ(x̄, vk0 )− ℓ∗(AξkN−1)

(16)
if vk0 ∈ U , x̄ ∈ X andAξkN−1 ∈ X .

III. STOPPING CONDITION

Rather than finding the optimal solution in each time step
in the MPC controller, the most important task is to find
a control action that gives desirable closed loop properties
such as stability, feasibility, and a desired performance.Such
properties can sometimes be ensured well before convergence
to the optimal solution. To benefit from this observation, a
stopping condition is developed that allows the iterationsto
stop when the desired performance, stability, and feasibility
can be guaranteed. Before the stopping condition is introduced,
we briefly go through the main ideas below.

A. Main ideas

The distributed nature of the optimization algorithm makes
it unsuitable for centralized terminal costs and terminal con-
straints. Thus, stability and performance need to be ensured
without these constructions. We define the following infinite
horizon performance for feedback control lawν

V∞,ν(x̄) =

∞
∑

t=0

ℓ(xt, ν(xt)) (17)

where xt+1 = Axt + Bν(xt) and x0 = x̄. For a given
performance parameterα ∈ (0, 1] and control lawν, it is
known (cf. [17], [18], [16]) that the following decrease in the
optimal value function

V 0
N (xt) ≥ V 0

N (Axt +Bν(xt)) + αℓ(xt, ν(xt)) (18)
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for everyt ∈ N≥0 gives stability and closed loop performance
according to

αV∞,ν(x̄) ≤ V∞(x̄). (19)

Analysis of the control horizonN needed for an MPC con-
trol law without terminal cost and terminal constraints such
that (18) holds, is performed in [18], [16] and also in this
paper. Once a control horizonN is known such that (18) is
guaranteed, the performance result (19) relies on computation
of the optimal solution to the MPC optimization problem
in every time step. An exact optimal solution cannot be
computed and the idea behind this paper is to develop stopping
conditions that enable early termination of the optimization
algorithm with maintained feasibility, stability, and perfor-
mance guarantees. The idea behind our stopping condition
is to compute a lower bound toV 0

N (x) through the dual
functionD0

N (x,λk,µk) and an upper bound to the next step
value functionV 0

N (Ax + Bvk0 ) through a feasible solution
PN (Ax + Bvk0 ,v

k
s ). If at iteration k the following test is

satisfied

D0
N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v

k
s ) + αℓ(x̄, vk0 ) (20)

the performance condition (18) holds since

V 0
N (x̄) ≥ D0

N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v
k
s ) + αℓ(x̄, vk0 )

≥ V 0
N (Ax̄+Bvk0 ) + αℓ(x̄, vk0 ).

This implies that stability and the performance result (19)
can be guaranteed with finite algorithm iterationsk by using
control actionvk0 .

The test (20) includes computation ofPN (Ax̄ + Bvk0 ,v
k
s )

which is a feasible solution to the optimization problem in the
following step. A feasible solution cannot be expected with
finite number of iterationsk for duality-based methods since
primal feasibility is only guaranteed in the limit of iterations.
Therefore we introduce tightened state and control constraint
sets (1 − δ)X , (1 − δ)U with δ ∈ (0, 1) and use these in
the optimization problem. By generating a state trajectory
{ξkτ }N−1

τ=0 from the control trajectory{vkτ }N−1
τ=0 that satisfies the

equality constraints (14), we will see that{ξkτ }N−1
τ=0 satisfies the

original inequality constraints with finite number of iterations.
Thus, a primal feasible solutionPN (Ax̄ + Bvk0 ,v

k
s ) can be

generated after a finite number of algorithm iterationsk.
However, since the optimization now is performed over a
tightened constraint set, the dual function valueDδ

N (x̄,λ,µ)
is not a lower bound toV 0

N (x̄) and cannot be used directly in
the test (20) to ensure stability and the performance specified
by (19). In the following lemma we show a relation between
the dual function value when using the tightened constraint
sets and the optimal value function when using the original
constraint sets.

Lemma 1:For everyx̄ ∈ R
n, λ ∈ R

n(N−1) andµ ∈ R
Nnc

≥0

we have that

V 0
N (x̄) ≥ Dδ

N (x̄,λ,µ)− δµTd.

Proof. From the definition of the dual function (9) we get that

Dδ
N (x̄,λ,µ) = D0

N (x̄,λ,µ) + δdTµ.

By weak duality we get

V 0
N (x̄) ≥ D0

N (x̄,λ,µ) = Dδ
N (x̄,λ,µ)− δdTµ.

This completes the proof. �

The presented lemma enables computation of a lower bound
to V 0

N (x̄) at algorithm iterationk that depends onδµTd. By
adapting the amount of constraint tighteningδ to satisfy

δ(µk)Td ≤ ǫℓ∗(x̄) (21)

for someǫ > 0 and use this together with the following test

Dδ
N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v

k
s ) + αℓ(x̄, vk0 ) (22)

we get from Lemma 1 and if (21) and (22) holds that

V 0
N (x̄) ≥ Dδ

N (x̄,λk,µk)− δ(µk)Td

≥ PN (Ax̄+Bvk0 ,v
k
s ) + αℓ(x̄, vk0 )− ǫℓ∗(x̄)

≥ V 0
N (Ax̄+Bvk0 ) + (α− ǫ)ℓ(x̄, vk0 ).

This is condition (18), which guarantees stability and perfor-
mance specified by (19) ifα > ǫ.

B. The stopping condition

Below we state the stopping condition, whereafter parameter
settings are discussed.

Algorithm 1: Stopping condition

Input : x̄
Set:k = 0, l = 0, δ = δinit
Initialize algorithm (10)-(13) with:
λ0 = λ−1 = 0,µ0 = µ−1 = 0 andy0 = y−1 = 0.
Do

If Dδ
N (x̄,λk,µk) ≥ PN (x̄,vk)− ǫ

l+1 ℓ
∗(x̄)

or δdTµk > ǫℓ∗(x̄)
Setδ ← δ/2 // reduce constraint tightening
Set l← l+ 1
Setk = 0 // reset step size and iteration counter

End
Run∆k iterations of (10)-(13)
Setk ← k +∆k

Until Dδ
N(x̄,λk,µk) ≥ PN (Ax̄ +Bvk0 ,v

k
s ) + αℓ(x̄, vk0 ) and

δdTµk ≤ ǫℓ∗(x̄)
Output : vk0

In Algorithm 1, four parameters need to be set. The first is
the performance parameterα ∈ (0, 1] which guarantees closed
loop performance as specified by (19). The largerα, the better
performance is guaranteed but a longer control horizonN
will be needed to guarantee the specified performance. The
second parameter is an initial constraint tightening parameter,
which we denote byδinit ∈ (0, 1], from which the constraint
tightening parameterδ will be adapted (reduced), to satisfy
(21). A generic value that always works isδinit = 0.2, i.e.,
20% initial constraint tightening. The third parameter is the
relative optimality toleranceǫ > 0 whereǫ < α. The ǫ must
be chosen to satisfy (25). Finally,∆k, which is the number
of algorithm iterations between every stopping condition test,
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should be set to a positive integer, typically in the range 5 to
20.

Except for the initial condition̄x, Algorithm 1 is always
identically initialized and follows a deterministic scheme.
Thus, for fixed initial condition the same control action is
always computed. This implies that Algorithm 1 defines a
static feedback control law, which we denote byνN . We get
the following closed loop dynamics

xt+1 = Axt +BνN (xt), x0 = x̄.

The objective of this section is to present a theorem stating
that the feedback control law functionνN satisfiesdom(νN ) ⊇
int(X0

N ), where

X
δ
N := {x̄ ∈ R

n | V δ
N (x̄) <∞ andAz∗N−1(x̄, 0) ∈ int(X )}

(23)
which satisfiesXδ1

N ⊆ X
δ2
N for δ1 > δ2. First, however we state

the following definition.
Definition 1: The constantΦN is the smallest constant such

that the optimal solution{z∗τ (x̄, 0)}N−1
τ=0 , {v∗τ (x̄, 0)}N−1

τ=0 to (5)
for every x̄ ∈ X0

N satisfies

ℓ∗(z∗N−1(x̄, 0)) ≤ ΦN ℓ(x̄, v∗0(x̄, 0))

for the chosen control horizonN .
The parameterΦN is a measure that compares the first and

last stage costs in the horizon. In Section IV a method to
computeΦN is presented.

Remark 1: In [15], [16] an exponential controllability on
the stage costs is assumed, i.e., that forC ≥ 1 andσ ∈ (0, 1)
the following holds forτ = 0, . . . , N − 1

ℓ∗(z∗τ (x̄, 0), v
∗
τ (x̄, 0)) ≤ Cστ ℓ(x̄, v∗0(x̄, 0)).

This impliesΦN ≤ CσN−1.
We also need the following lemmas, that are proven in Ap-
pendix-A, Appendix-B and Appendix-C respectively, to prove
the upcoming theorem.

Lemma 2:Suppose thatǫ > 0 and δ ∈ (0, 1]. For every
x̄ ∈ Xδ

N we have for some finitek that

Dδ
N (x̄,λk,µk) ≥ PN (x̄,vk)− ǫℓ∗(x̄). (24)

Lemma 3:Suppose thatǫ > 0 and δ ∈ (0, 1]. For every
x̄ ∈ Xδ

N and algorithm iterationk such that (24) holds we
have forτ = 0, . . . , N − 1 that

1

2

∥

∥

∥

∥

[

ξkτ (x̄, δ)
vkτ (x̄, δ)

]

−
[

z∗τ (x̄, 0)
v∗τ (x̄, 0)

]∥

∥

∥

∥

2

H

≤ ǫℓ∗(x̄) + δ(µk)Td

whereH = blkdiag(Q,R).
Lemma 4:Suppose thatǫ > 0 andδ ∈ (0, 1]. For x̄ ∈ X0

N

but x̄ /∈ Xδ
N we have thatδ(µk)Td > ǫℓ∗(x̄) with finite k.

We are now ready to state the following theorem, which is
proven in Appendix-D.

Theorem 1:Assume thatǫ > 0, δinit ∈ (0, 1] and

α ≤ 1− ǫ− κ(
√
2ǫ+

√

ΦN )2(
√
2ǫ+ 1)2. (25)

Then the feedback control lawνN , defined by Algorithm 1,
satisfiesdom(νN ) ⊇ int(X0

N ). Further

V 0
N (x̄) ≥ V 0

N (Ax̄ +BνN (x̄)) + (α− ǫ)ℓ(x̄, νN (x̄)) (26)

holds for everyx̄ ∈ dom(νN).
Corollary 1: Suppose thatα ≤ 1−κΦN and thatν∗N (x̄) =

v∗0(x̄, 0). Then

V 0
N (x̄) ≥ V 0

N (Ax̄ +Bν∗N (x̄)) + αℓ(x̄, ν∗N(x̄)).

holds for everyx̄ ∈ X0
N .

Proof. For everyx̄ ∈ X0
N we have

V 0
N (x̄) =

N−1
∑

τ=0

ℓ(z∗τ , u
∗
τ) + ℓ(Az∗N−1, 0)− ℓ(Az∗N−1, 0)

≥ V 0
N (Ax̄+ Bν∗N (x̄)) + ℓ(x̄, v∗0)− ℓ(Az∗N−1, 0)

≥ V 0
N (Ax̄+ Bν∗N (x̄)) + ℓ(x̄, v∗0)− κℓ(z∗N−1, 0)

≥ V 0
N (Ax̄+ Bν∗N (x̄)) + (1 − κΦN)ℓ(x̄, v∗0)

where the first inequality holds sinceAz∗N−1 ∈ X by con-
struction ofX0

N , the second due to the definition ofκ and the
third due to the definition ofΦN . �

Remark 2:By setting ǫ = 0 in Theorem 1 we getα ≤
1− κΦN as in Corollary 1.

C. Feasibility, stability and performance

The following proposition shows one-step feasibility when
using the feedback control lawνN .

Proposition 1: Suppose thatα satisfies (25). For everyxt ∈
int(X0

N ) we have thatxt+1 = Axt +BνN (xt) ∈ X .

Proof. From Theorem 1 we have thatxt ∈ dom(νN ) and
from Algorithm 1 we have thatPN (xt+1,v

k
s ) <∞ which, by

definition, implies thatxt+1 ∈ X . �

The proposition shows thatxt+1 is feasible ifxt ∈ dom(νN ).
We define the recursively feasible set as the maximal set such
that

Xrf = {x ∈ X | Ax+BνN (x) ∈ Xrf}
In the following theorem we show thatXrf is the region of
attraction and that the control lawνN achieves a prespecified
performance as specified by (17).

Theorem 2:Suppose thatα > ǫ satisfies (25). Then for
every initial conditionx̄ ∈ Xrf we have that‖xt‖ → 0 as
t→∞ and that the closed loop performance satisfies

(α − ǫ)V∞,νN (x̄) ≤ V∞(x̄). (27)

Further,Xrf is the region of attraction.

Proof. From the definition ofXrf we know that̄x = x0 ∈ Xrf

implies xt ∈ Xrf for all t ∈ N≥0. Since, by construction,
Xrf ⊆ int(X0

N ) ⊆ dom(νN ) we have from Theorem 1 that
(26) holds for allxt, t ∈ N≥0. In [18, Proposition 2.2] it
was shown, using telescope summation, that (26) implies (27).
Further, since the stage costℓ satisfies [16, Assumption 5.1]
we get from [16, Theorem 5.2] that‖xt‖ → 0 as t→∞.

What is left to show is thatXrf is the region of attraction.
Denote byXroa the region of attraction usingνN . We have
above shown thatXrf ⊆ Xroa. We next show thatXroa ⊆ Xrf

by a contradiction argument to conclude thatXrf = Xroa.
Assume that there exist̄x ∈ Xroa such thatx̄ /∈ Xrf . If
x̄ ∈ Xroa the closed loop state sequence{xt}∞t=0 is feasible
in every step (and converges to the origin) and consequently
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{Axt+BνN (xt)}∞t=0 is feasible in every step. This is exactly
the requirement to havēx ∈ Xrf , which is a contradiction.
ThusXrf ⊆ Xroa ⊆ Xrf which implies thatXrf = Xroa.

This completes the proof. �

To guarantee a priori that the control lawνN achieves
the performance (27) specified byα, we need to find a
control horizonN such that the corresponding controllability
parameterΦN satisfies (25). This requires the computation of
controllability parameterΦN which is the topic of the next
section.

IV. OFFLINE CONTROLLABILITY VERIFICATION

The stability and performance results in Theorem 2 rely
on Definition 1. For the results to be practically meaningful
it must be possible to computeΦN in Definition 1. In this
section we will show that this can be done by solving a
mixed integer linear program (MILP). For desired performance
specified byα, we get a requirement on the controllability
parameter through (25) for Theorem 1 and Theorem 2 to hold.
We denote byΦα the largest controllability parameter such
that Theorem 1 and Theorem 2 holds for the specifiedα. This
parameter is the one that gives equality in (25), i.e., satisfies

α = 1− ǫ− κ(
√
2ǫ+

√

Φα)
2(
√
2ǫ+ 1)2 (28)

for the desired performanceα and optimality toleranceǫ. The
parametersα and ǫ must be chosen such thatΦα > 0. The
objective is to find a control horizonN such that the cor-
responding controllability parameterΦN satisfiesΦN ≤ Φα.
First we show that for long enough control horizonN there
exist aΦN ≤ Φα.

Lemma 5:Assume thatα andǫ are chosen such thatΦα >
0 whereΦα is implicitly defined in (28). Then there exists
control horizonN and corresponding controllability parameter
ΦN ≤ Φα.

Proof. SinceXrf is the region of attraction we haveXrf ⊆
X∞. This in turn implies that (7) is feasible for every control
horizonN ∈ N≥1 due to the absence of terminal constraints.
We have

VN (x̄) =

N−2
∑

τ=0

ℓ(z∗τ , v
∗
τ ) + ℓ(z∗N−1, v

∗
N−1)

≥ VN−1(x̄) + ℓ(z∗N−1, v
∗
N−1).

Since the pair(A,B) is assumed controllable and since (7)
has neither terminal constraints nor terminal cost we have for
some finiteM thatM ≥ V∞(x̄) ≥ VN (x̄) ≥ VN−1(x̄). Thus
the sequence{VN (x̄)}∞N=0 is a bounded monotonic increasing
sequence which is well known to be convergent. Thus, for
N ≥ N̄ where N̄ is large enough the differenceVN (x̄) −
VN−1(x̄) is arbitrarily small. Especiallyℓ(z∗N−1, v

∗
N−1) =

ℓ∗(z∗N−1) ≤ VN (x̄) − VN−1(x̄) ≤ Φαℓ(x̄, v
∗
0) sinceΦα > 0.

That is, for long enough control horizonN ≥ N̄ , ΦN ≤ Φα.
This completes the proof. �

The preceding Lemma shows that there exists a control
horizon N such thatΦN ≤ Φα if Φα > 0 for the chosen
performanceα and toleranceǫ. The choice of performance
parameterα gives requirements on howǫ can be chosen to

give Φα > 0. Larger ǫ requires smallerΦα to satisfy (28)
which in turn requires longer control horizonsN sinceΦN

must satisfyΦN ≤ Φα. In the following section we address
the problem of how to compute the control horizonN and
correspondingΦN such that the desired performance specified
by α can be guaranteed.

A. Exact verification of controllability parameter

In the following proposition we introduce an optimization
problem that tests if the controllability parameterΦN cor-
responding to control horizonN satisfiesΦN ≤ Φα for
the desired performance specified byα. Before we state the
proposition, the following matrices are introduced

T = blkdiag(0, . . . , 0,−Q,ΦαR, 0, . . . , 0,−R)

S = blkdiag(0, . . . , 0, I, 0, . . . , 0)

whereQ andR are the cost matrices for states and inputs and
Φα is the required controllability parameter for the chosenα.
Recalling the partitioning (6) ofy implies that

yTTy = Φαv
T
0 Rv0 − zTN−1QzN−1 − vTN−1RvN−1

Sy = zN−1

Proposition 2: Assume thatΦα > 0 satisfies (28) for the
chosen performance parameterα and optimality toleranceǫ.
Further assume that the control horizonN is such that

0 = min
x̄

1

2

(

Φαx̄
TQx̄+ yTTy

)

(29)

s.t. x̄ ∈ X
0
N

y = argminV 0
N (x̄)

thenΦN ≤ Φα.

Proof. First we note that̄x = 0 givesy = 0 andΦαx̄
TQx̄+

yTTy = 0, i.e., we have that 0 is always a feasible solution.
Further, (29) implies for everȳx ∈ X0

N that

0 ≤ Φαx̄
TQx̄+ yTTy = Φαℓ(x̄, v

∗
0)− ℓ(z∗N−1, v

∗
N−1)

= Φαℓ(x̄, v
∗
0)− ℓ∗(z∗N−1)

sincev∗N−1 = 0. This is exactly the condition in Definition 1.
SinceΦN is the smallest such constant, we haveΦN ≤ Φα

for the chosen control horizonN and desired performanceα
and optimality toleranceǫ. �

The optimization problem (29) is a bilevel optimization
problem with indefinite quadratic cost (see [23] for a survey
on bilevel optimization). Such problems are in general NP-
hard to solve. The problem can, however, be rewritten as an
equivalent MILP as shown in the following proposition which
is a straightforward application of [24, Theorem 2].

Proposition 3: Assume thatΦα satisfies (28) for the chosen
performance parameterα and optimality toleranceǫ. If the
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control horizonN is such that the following holds

0 = min − 1

2

(

dTx µ
U1 + dTxµ

U2 + dTµUL1
)

(30)

s.t. βL
i ∈ {0, 1} , βU1

i ∈ {0, 1} , βU2
i ∈ {0, 1}

Upper level
























































Primal and dual feasibility












Cxx̄− dx − sx = 0
sx ≤ 0 , µU1 ≥ 0
CxASy − dx − sz = 0
sz ≤ 0 , µU2 ≥ 0

Stationarity
















ΦαQx̄+ (Cx)
TµU1 − bTλUL2 = 0

Ty+HTλUL1 +ATλUL2 +CTµUL1

+(CxAS)
TµU2 = 0

AλUL1 = 0
CλUL1 − µUL2 = 0

Complementarity








βL
i = 1⇒ µUL2

i = 0 , βL
i = 0⇒ µUL1

i = 0
βU1
i = 1⇒ sxi = 0 , βU1

i = 0⇒ µU1
i = 0

βU2
i = 1⇒ szi = 0 , βU2

i = 0⇒ µU2
i = 0

Lower level




























Primal and dual feasibility








Ay − bx̄ = 0
Cy − d− s = 0
s ≤ 0 , µL ≥ 0

Stationarity
⌊

Hy +ATλL +CTµL = 0
Complementarity
⌊

βL
i = 1⇒ si = 0 , βL

i = 0⇒ µL
i = 0

where allβ, µ, λ, s andx̄,y are decision variables, thenΦα ≥
ΦN .

Proof. The setX0
N can equivalently be written as

X
0
N = {x ∈ R

n | Ay∗(x, 0) = bx,Cy∗(x, 0) ≤ d,

CxASy
∗(x, 0) ≤ dx, Cxx ≤ dx}. (31)

We express the setX0
N in (29) using (31). The equivalence

between the optimization problems (30) and (29) is established
in [24, Theorem 2]. The remaining parts of the proposition
follow by applying Proposition 2. �

The transformation from (29) to (30) is done by expressing
the lower level optimization problem in (29) by its sufficient
and necessary KKT conditions to get a single level indefi-
nite quadratic program with complementarity constraints.The
resulting indefinite quadratic program with complementarity
constraints can in turn be cast as a MILP to get (30).

Remark 3:Although MILP problems are NP-hard, there are
efficient solvers available such as CPLEX and GUROBI. There
are also solvers available for solving the bilevel optimiza-
tion problem (29) directly, e.g., the functionsolvebilevelin
YALMIP, [25].

If the chosen control horizonN is not long enough for
ΦN ≤ Φα, different heuristics can be used to choose a new
longer horizon to be verified. One heuristic is to assume
exponential controllability as in Remark 1, i.e., that there exist

constantsC ≥ 1 andσ ∈ (0, 1) such that

Cστ ℓ(x̄, vk0 ) ≥ ℓ(zkτ , v
k
τ ) (32)

for all τ = 0, . . . , N − 1. TheC andσ-parameters should be
determined using the optimal solutiony to (7) for thex that
minimized (30) in the previous test. Under the assumption
that (32) holds asN increases, a new guess on the control
horizonN can be computed by finding the smallestN such
thatCσN−1 ≤ Φα.

B. Controllability parameter estimation

The test in Proposition 3 verifies if the control horizon
N is long enough for the controllability assumption to hold
for the required controllability parameterΦα. Thus, an initial
guess on the control horizon is needed. A guaranteed lower
bound can easily be computed by solving (7) for a variety
of initial conditions x̄ and compute the worst controllability
parameter, denoted bŷΦN , for these sample points. If the
estimated controllability parameter̂ΦN ≥ Φα, we know that
the control horizon need to be increased for (30) to hold. If
insteadΦ̂N ≤ Φα the control horizonN might serve as a
good initial guess to be verified by (30).

Remark 4:For large systems, (30) may be too complex to
verify the desired performance. In such cases, the heuristic
method mentioned above can be used in conjunction with
an adaptive horizon scheme. The adaptive scheme keeps the
horizon fixed for all time-steps until the controllability as-
sumption does not hold. Then, the control horizon is increased
to satisfy the assumption and kept at the new level until the
controllability assumption does not hold again. Eventually the
control horizon will be large enough forΦN ≤ Φα and the
horizon need not be increased again.

V. NUMERICAL EXAMPLE

We evaluate the efficiency of the proposed distributed feed-
back control lawνN by applying it to a randomly generated
dynamical system with sparsity structure that is specified in
[26, Supplement A.1]. The random dynamics matrix is scaled
such that the magnitude of the largest eigenvalue is 1.1. The
system has 3 subsystems with 5 states and 1 input each.
All state variables are upper and lower bounded by random
numbers in the intervals[0.5, 1.5] and [−0.15,−0.05] respec-
tively and all input variables are upper and lower bounded by
random numbers in the intervals[0.5, 1.5] and [−0.5,−1.5]
respectively. The stage cost is chosen to be

ℓi(xi, ui) = xT
i xi + uT

i ui

for i = 1, 2, 3. The suboptimality parameter is chosen
α = 0.01. According to Theorem 1, to quantify the control
horizon N(α), the optimality toleranceǫ must be chosen
and κ computed, whereκ is the smallest constant such that
κQ � ATQA. We getκ = 1.22 and chooseǫ = 0.005. Using
(25), we getΦN(0.01) ≤ 0.51. Verification by solving the
MILP in (30) gives that the smallest control horizonN(0.01)
that satisfiesΦN(0.01) ≤ 0.51 is N(0.01) = 6.

Table I presents the results. The first column specifies
the stopping condition used, “stop. cond.” for the stopping
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TABLE I
EXPERIMENTAL RESULTS FOR DIFFERENT PERFORMANCE REQUIREMENTS

α AND DIFFERENT INITIAL CONSTRAINT TIGHTENINGSδinit.

Algorithm comparison,α = 0.01, N = 6

condition ǫ δinit avg.# iters max# iters avg. δ
stop. cond. 0.005 0.001 288.3 506 0.001
stop. cond. 0.005 0.01 151.5 260 0.01
stop. cond. 0.005 0.05 73.7 237 0.049
stop. cond. 0.005 0.1 70.7 236 0.057
stop. cond. 0.005 0.2 72.8 236 0.060
stop. cond. 0.005 0.5 69.2 234 0.076
opt. cond. 0.005 0.001 324.5 506 0.001
opt. cond. 0.005 0.01 171.5 260 0.01

condition presented in Algorithm 1 and “opt. cond.” for a
optimality conditions. The second column specifies the duality
gap toleranceǫ and the third column specifies the initial
constraint tighteningδinit for the stopping condition and the
relative accuracy requirement for the constraints when using
optimality conditions.

Columns four, five and six contain the simulation results.
The results are obtained by simulating the system with 1000
randomly chosen initial conditions that are drawn from a
uniform distribution onX . Column four and five contain the
mean and max numbers of iterations needed and column six
presents the average constraint tighteningδ used at termination
of Algorithm 1.

We see that the adaptive constraint tightening approach
gives considerably less iterations for a larger initial tightening.
However, for more than10% initial constraint tightening
(δinit = 0.1), the number of iterations is not significantly
affected. It is remarkable to note that50% initial constraint
tightening (δinit = 0.5) is as efficient as, e.g.,5% (δinit =
0.05) considering that more reductions in the constraint tight-
ening need to be performed. This indicates early detection
of infeasibility. We also note that for a suitable choice of
initial constraint tightening, the average number of iterations
is reduced significantly.

VI. CONCLUSIONS

We have equipped the duality-based distributed optimization
algorithm in [19], when used in a DMPC context, with a
stopping condition that guarantees feasibility of the optimiza-
tion problem and stability and a prespecified performance of
the closed-loop system. A numerical example is provided that
shows that the stopping condition can reduce significantly the
number of iterations needed to achieve these properties.
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A. Proof for Lemma 2

We divide the proof into two parts, the first for̄x = 0 and
the second for̄x 6= 0. For x̄ = 0 we have at iterationk = 0
that y0 = 0 which is the optimal solution. Hence (24) holds
for k = 0 since all terms are 0 and0 = Aξ0N−1 ∈ X .

Next, we show the result for̄x 6= 0. Whenever (7) is feasible
we have convergence in primal variables [19, Theorem 1]. This
together with the linear relation through whichξ is defined
(14) givesξkτ → z∗τ for τ = 0, . . . , N − 1 as k → ∞. We
have z∗τ ∈ (1 − δ)X and since(1 − δ)X ⊂ X for every
δ ∈ (0, 1] this implies that there exists finitekx0 such that
ξkτ ∈ X for all k ≥ kx0 . Equivalent convergence reasoning
holds forvkτ . Together this implies that there exists finitekP0
such thatPN (x̄,vk) < ∞ and thatPN (x̄,vk) → V δ

N (x̄) for
all k ≥ kP0 . Together with convergence in dual function value
[19, Theorem 1] gives that

Dδ
N (x̄,λk,µk) ≥ PN (x̄,vk)− ǫℓ∗(x̄)

holds with finitek sinceℓ∗(x̄) > 0 andǫ > 0. This concludes
the proof. �

B. Proof for Lemma 3

We introduce yk = [(ξk(x̄, δ))T (vk(x̄, δ))T ]T , where
ξk(x̄, δ) and vk(x̄, δ) satisfies the dynamic equations (14).
Whenever (24) holds we have thatξkτ (x̄, δ) ∈ X and
vkτ (x̄, δ) ∈ U for τ = 0, . . . , N − 1. We also introduce
y∗ = [(z∗(x̄, 0))T (v∗(x̄, 0))T ]T . This implies

1

2
(yk − y∗)TH(yk − y∗) =

=
1

2
(yk)THyk − 1

2
(y∗)THy∗ − 〈Hy∗,yk − y∗〉

≤ PN (x̄,vk)− V 0
N (x̄) ≤ Dδ

N (x̄,λk,µk) + ǫℓ∗(x̄)− V 0
N (x̄)

≤ δ(µk)Td+ ǫℓ∗(x̄)

where the first inequality comes from the first order opti-
mality condition [27, Theorem 2.2.5] and by definition of
V 0
N and PN . The second inequality is due to (24) and the

last inequality follows from Lemma 1. Further, sinceH =
blkdiag(Q, . . . , Q,R, . . . , R) we have forτ = 0, . . . , N − 1
that

1

2

∥

∥

∥

∥

[

ξkτ (x̄, δ)
vkτ (x̄, δ)

]

−
[

z∗τ (x̄, 0)
v∗τ (x̄, 0)

]∥

∥

∥

∥

2

H

≤ 1

2
(yk − y∗)TH(yk − y∗)

≤ δ(µk)Td+ ǫℓ∗(x̄)

whereH = blkdiag(Q,R), whenever (24) holds. This com-
pletes the proof. �

C. Proof for Lemma 4

Sincex ∈ X
0
N but x /∈ X

δ
N we have thatV 0

N (x̄) < ∞ and
V δ
N (x̄) =∞. Further, from the strong theorem of alternatives

[28, Section 5.8.2] we know that sinceV δ
N (x̄) = ∞ for the

current constraint tighteningδ the dual problem is unbounded.
Hence there existλf , µf such that

δµT
f d ≥ Dδ

N (x̄,λf ,µf )− V 0
N (x̄) ≥ 2ǫℓ∗(x̄) (33)

where Lemma 1 is used in the first inequality. Further, the
convergence rate in [29, Theorem 4.4] for algorithm (10)-(13)
is

Dδ
N(x̄,λ∗,µ∗)−Dδ

N(x̄,λk,µk) ≤ 2L

(k + 1)2

∥

∥

∥

∥

[

λ∗

µ∗

]

−
[

λ0

µ0

]∥

∥

∥

∥

2

.

By inspecting the proof to [29, Theorem 4.4] (and [29, Lemma
2.3, Lemma 4.1]) it is concluded that the optimal point
λ∗,µ∗ can be changed to any feasible pointλf ,µf and the
convergence result still holds, i.e.,

Dδ
N(x̄,λf ,µf )−Dδ

N(x̄,λk,µk) ≤ 2L

(k + 1)2

∥

∥

∥

∥

[

λf

µf

]

−
[

λ0

µ0

]∥

∥

∥

∥

2

.

That is, there exists a feasible pair(λf ,µf ) such that with
finite k we have

Dδ
N (x̄,λk,µk) > Dδ

N(x̄,λf ,µf )− ǫℓ∗(x̄). (34)

This implies

δdTµk ≥ Dδ
N(x̄,λk,µk)− V 0

N (x̄)

> Dδ
N(x̄,λf ,µf )− V 0

N (x̄)− ǫℓ∗(x̄) ≥ ǫℓ∗(x̄)

where Lemma 1 is used in the first inequality, (34) in the sec-
ond inequality and (33) in the final inequality. This completes
the proof. �

D. Proof for Theorem 1

To prove the assertion we need to show that the do loop will
exit for everyx̄ ∈ int(X0

N ). For every point̄x ∈ int(X0
N ) there

exists δ̄ ∈ (0, 1) such that x̄
1−δ̄
∈ int(X0

N ). Sinceint(X0
N ) ⊆

X0
N , we have thatV 0

N ( x̄
1−δ̄

) < ∞ and the optimal solution
y( x̄

1−δ̄
, 0) satisfiesAy∗( x̄

1−δ̄
, 0) = b x̄

1−δ̄
andCy∗( x̄

1−δ̄
, 0) ≤

d. We create the following vector

ȳ(x̄) := (1− δ̄)y∗(
x̄

1 − δ̄
, 0) (35)

which satisfies

Aȳ(x̄) = Ay∗(
x̄

1− δ̄
, 0)(1− δ̄) = bx̄

1− δ̄

1− δ̄
= bx̄ (36)

Cȳ(x̄) = Cy∗(
x̄

1 − δ̄
, 0)(1− δ̄) ≤ d(1− δ̄). (37)

Hence, by definition (23) ofXδ
N we conclude that for every

x̄ ∈ int(X0
N ) there existδ̄ ∈ (0, 1) such thatx̄ ∈ Xδ̄

N . This
implies that for everȳx ∈ int(X0

N ) we have that either̄x ∈ Xδ
N

for the current constraint tighteningδ ∈ (0, 1) or x̄ /∈ X
δ
N but

x̄ ∈ X0
N . Thus, from Lemma 2 and Lemma 4 we conclude
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that either the do loop is terminated orδ is reduced andl
is increased for everȳx ∈ int(X0

N ) with finite number of
algorithm iterationsk.

To guarantee that the do loop will terminate for everyx̄ ∈
int(X0

N ), we need to show that the conditions in the do loop
will hold for small enoughδ and with finitek. That is, we
need to show that the following two conditions will hold.

1) For small enoughδ, i.e., large enoughl, we have that

δ(µk)Td ≤ ǫℓ∗(x̄) (38)

whereδ = 2−lδinit holds for every algorithm iteration
k.

2) For small enoughδ, i.e., large enoughl, the condition

Dδ
N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v

k
s )+αℓ(x̄, vk0 ) (39)

with α satisfying (25) holds with finitek whenever

Dδ
N(x̄,λk,µk) ≥ PN (x̄,vk) +

ǫ

l + 1
ℓ(x̄, vk0 ) (40)

holds.

We start by showing argument 1. From the convergence rate
of the algorithm [19] it follows that there existsD > −∞
such thatDδ

N (x̄,λk,µk) ≥ D for every algorithm iteration
k ≥ 0. This is used below where we extend the result from
[30, Lemma 1] to handle the presence of equality constraints.
For algorithm iterationk ≥ 0, x̄ ∈ int(X0

N ) and δ ≤ δ̄/2 we
have

D ≤ Dδ
N (x̄,λk,µk)

= inf
y

1

2
yTHy + (λk)T (Ay − bx̄)+

+ (µk)T (Cy − (1 − δ)d)

≤ 1

2
(ȳ(x̄))THȳ(x̄) + (λk)T (Aȳ(x̄)− bx̄)+

+ (µk)T (Cȳ(x̄)− (1 − δ)d)

≤ (1 − δ̄)2V 0
N (

x̄

1− δ̄
) + (µk)T (Cȳ(x̄)− (1− δ̄)d)+

+ (µk)Td(δ − δ̄)

≤ V 0
N (

x̄

1− δ̄
) + (µk)Td(δ − δ̄)

≤ V 0
N (

x̄

1− δ̄
)− 1

2
(µk)Tdδ̄

where the equality is by definition, the second inequality holds
since any vector̄y(x̄) is gives larger value than the infimum,
the third and fourth inequalities are due to (35), (36) and (37)
and since(1− δ̄) ∈ (0, 1) and the final inequality holds since
δ ≤ δ̄/2. This implies that

(µk)Td ≤
2(V 0

N ( x̄
1−δ̄

)−D)

δ̄

which is finite. We denote byld the smallestl such thatδ̄ ≥
2−ldδinit. Sinceδ = 2−lδinit this implies that

δ(µk)Td ≤ δ
2(V 0

N ( x̄
1−δ̄

)−D)

δ̄
≤ 2−lδinit

2(V 0
N ( x̄

1−δ̄
)−D)

2−ldδinit

≤ 2−l+ld+1(V 0
N (

x̄

1− δ̄
)−D)→ 0 (41)

as l → ∞. Especially, with finitel we have that (38) holds
for every algorithm iterationk. This proves argument 1.

Next we prove argument 2. We start by showing for large
enough but finitel that PN (Ax̄ + BνN (x̄),vk

s ) is finite
whenever (40) holds. From the definition ofPN andvk

s we
have thatPN (Ax̄+BνN (x̄),vk

s ) is finite wheneverPN (x̄,vk
s )

is finite and if AξkN−1(x̄, δ) ∈ X . For algorithm iterationk
such that (40) holds we have

‖A(ξkN−1(x̄, δ)− z∗N−1(x̄, 0))‖2 ≤

≤ ‖A‖2
λmin(H)

‖ξkN−1(x̄, δ)− z∗N−1(x̄, 0)‖2H

≤ 2‖A‖2
λmin(H)

(δ(µk)Td+
ǫ

l+ 1
ℓ∗(x̄))

≤ 2‖A‖2
λmin(H)

(

2−l+ld+1(V 0
N (

x̄

1− δ̄
)−D) +

ǫ

l+ 1
ℓ∗(x̄)

)

→ 0

(42)

as l → ∞ where H = blkdiag(Q,R) and the smallest
eigenvalueλmin(H) > 0 since H is positive definite. The
first inequality follows from Cauchy-Schwarz inequality and
Courant-Fischer-Weyl min-max principle, the second inequal-
ity comes from Lemma 3 and the third comes from (41).
By definition of Xδ

N we haveAz∗N−1(x̄, 0) ∈ int(X ) which
through (42) implies thatAξkN−1(x̄, δ) ∈ X for some large
enough by finitel, i.e., small enoughδ, and for algorithm
iterationk such that (40) holds.

What is left to show is that (39) holds for everyα ≤ 1 −
2ǫ− κ(

√
2ǫ+

√
ΦN)2(

√
2ǫ + 1)2 for large enough but finite

l whenever (40) holds. From Lemma 3 and (41) we know for
large enoughl and any algorithm iterationk such that (40)
holds that

1

2

∥

∥

∥

∥

[

ξkτ
vkτ

]

−
[

z∗τ
v∗τ

]∥

∥

∥

∥

2

H

≤ δ(µk)Td+
ǫ

l+ 1
ℓ∗(x̄)

= 2−lδinit(µ
k)Td+

ǫ

l+ 1
ℓ∗(x̄) ≤ 2ǫℓ∗(x̄)

for anyτ = 0, . . . , N − 1, whereH = blkdiag(Q,R). Taking
the square-root and applying the reversed triangle inequality
gives

∣

∣

∣

∣

∥

∥

∥

∥

[

ξkτ
vkτ

]∥

∥

∥

∥

H

−
∥

∥

∥

∥

[

z∗τ
v∗τ

]∥

∥

∥

∥

H

∣

∣

∣

∣

≤
∥

∥

∥

∥

[

ξkτ
vkτ

]

−
[

z∗τ
v∗τ

]∥

∥

∥

∥

H

≤ 2
√

ǫℓ∗(x̄).

(43)
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This implies that
∥

∥

∥

∥

[

ξkN−1

vkN−1

]∥

∥

∥

∥

H

≤
∥

∥

∥

∥

[

z∗N−1

v∗N−1

]∥

∥

∥

∥

H

+ 2
√

ǫℓ∗(x̄)

=
√
2
√

ℓ(z∗N−1, v
∗
N−1) + 2

√

ǫℓ∗(x̄)

≤
√

2ΦN

√

ℓ(z∗0 , v
∗
0) + 2

√

ǫℓ∗(x̄)

≤ (
√

2ΦN + 2
√
ǫ)
√

ℓ(z∗0 , v
∗
0)

= (
√

ΦN +
√
2ǫ)

∥

∥

∥

∥

[

z∗0
v∗0

]∥

∥

∥

∥

H

≤ (
√

ΦN +
√
2ǫ)

(∥

∥

∥

∥

[

ξk0
vk0

]∥

∥

∥

∥

H

+ 2
√

ǫℓ∗(x̄)

)

≤ (
√

ΦN +
√
2ǫ)(1 +

√
2ǫ)

∥

∥

∥

∥

[

ξk0
vk0

]∥

∥

∥

∥

H

where we have used (43),z∗0 = ξk0 = x̄, ‖[zTvT ]T ‖H =
√

zTQz + vTRv =
√

2ℓ(z, v) and Definition 1. Squaring
both sides gives through the definition ofκ that

1

κ
ℓ∗(AξkN−1) ≤ ℓ∗(ξkN−1) = ℓ(ξkN−1, v

k
N−1)

≤ (
√

ΦN +
√
2ǫ)2(1 +

√
2ǫ)2ℓ(ξk0 , v

k
0 ). (44)

We get for large enoughl and fork such that (40) holds that

Dδ
N(x̄,λk,µk) ≥
≥ PN (x̄,vk)− ǫ

l + 1
ℓ∗(x̄)

≥ PN (x̄,vk)− ǫℓ∗(x̄)

= PN (Ax̄ +Bvk0 ,v
k
s ) + (1 − ǫ)ℓ(ξk0 , v

k
0 )− ℓ∗(AξkN−1)

≥ PN (Ax̄ +Bvk0 ,v
k
s )+

+
(

1− ǫ− κ(
√

ΦN +
√
2ǫ)2(1 +

√
2ǫ)2

)

ℓ(x̄, vk0 )

≥ PN (Ax̄ +Bvk0 ,v
k
s ) + αℓ(x̄, vk0 )

where the first inequality comes from (40), the second since
l ≥ 0, the equality is due to (16), the third inequality comes
from (44), and the final inequality comes from (25). This
concludes the proof for argument 2. Thus, the do loop will
terminate with finitel andk. This implies thatνN is defined
for every x̄ ∈ int(X0

N ), i.e. thatdom(νN ) ⊇ int(X0
N ).

Finally, to show (26) we have that

V 0
N (x̄) ≥ Dδ

N(x̄,λk,µk)− δdTµk

≥ PN (Ax̄+Bvk0 ,v
k
s )− ǫℓ∗(x̄) + αℓ(x̄, vk0 )

≥ V 0
N (Ax̄+Bvk0 ) + (α − ǫ)ℓ(x̄, vk0 )

where the first inequality comes from Lemma 1, the second
from (38) and (39) which obviously hold also for anȳx ∈
dom(νN ), and the third holds sincePN (Ax̄ + Bvk0 ,v

k
s ) ≥

VN (Ax̄ + Bvk0 ) and by definition ofℓ∗. This concludes the
proof. �
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