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Abstract—A saturated controller is developed for a class of uncertain,
second-order, nonlinear systems which includes time-varying and nonlin-
early parameterized functions with bounded disturbances using a contin-
uous control law with smooth saturation functions. Based on the robust
integral of the sign of the error (RISE) control methodology, the developed
controller is able to utilize the benefits of high gain control strategies while
guaranteeing saturation limits are not surpassed. The bounds on the con-
trol are known a priori and can be adjusted by changing the feedback gains.
The saturated controller yields asymptotic tracking despite model uncer-
tainty and added disturbances in the dynamics. Experimental results using
a two-link robot manipulator demonstrate the performance of the devel-
oped controller.

Index Terms—Nonlinear control systems, RISE control, robust control,
saturated control.

I. INTRODUCTION

Robust, high-gain controllers can be effective methods to compen-
sate for nonlinear systems with unstructured parametric uncertainties
and bounded disturbances. In general, robust control techniques (in-
cluding all previous RISE methods) do not take into account the fact
that the commanded input may require more actuation than is phys-
ically possible by the system (e.g., due to large initial condition off-
sets, an aggressive desired trajectory, or large perturbations). For ex-
ample, the typical RISE structure uses a sufficiently large gain mul-
tiplied by an integral term, which could potentially exceed actuator
capabilities under some conditions. Motivated by these issues, some
efforts have focused on developing saturated controllers for the reg-
ulation problem (cf. [1]–[3]) and the more general tracking problem
(cf. [4]–[10]). In [11], the authors developed an adaptive, full-state
feedback controller to yield asymptotic tracking while compensating
for unknown parametric uncertainties using multiple embedded hyper-
bolic saturation functions. The authors of [4] were able to extend the
PID-based work of [1] to the tracking control problem by utilizing a
general class of saturation functions to achieve a global uniform asymp-
totic tracking result for a linearly parameterizable system. The work
was based on prior results in [12] and [5] which incorporated hyper-
bolic saturation functions into the saturated PD+ control strategy de-
veloped in [6]. The works of [4], [5], [12] exploit saturation-avoidance
strategies. Anti-windup schemes have been developed in results such as
[13] to compensate for saturation nonlinearities in nonlinear Euler-La-
grange systems using PID-like control structures. Results in [14] and
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[15] achieve global regulation of saturated nonlinear systems using a
PID-like control structure and a passivity-based analysis. To compen-
sate for uncertain dynamics and the evaluation of an unknown gravity
term, the results in [7] includes an additional saturated integral term and
uses energy shaping and damping injection methods to yield asymp-
totic tracking. More recently, a saturated PID controller was developed
in [8] which uses sigmoidal functions to achieve global asymptotic reg-
ulation to a setpoint; however, it is unclear how the result can be ex-
tended to the tracking problem due to the inclusion of stationary values
of an auxiliary signal. While each of the mentioned contributions de-
veloped saturated controllers with asymptotic tracking regulation, pre-
vious results have not been developed that include both uncertain dy-
namics and additive unmodeled disturbances. Control methods which
include these considerations were developed by authors in [16] and
[17] via saturated adaptive robust control (SARC) algorithms, which
yield ultimately bounded tracking results.
Motivated to achieve an asymptotic result, Corradini, et al. devel-

oped a discontinuous saturated sliding mode controller [10] for linear
plant models in the presence of bounded matched uncertainties. In [9],
two control algorithms are developed for robust stabilization of space-
craft in the presence of control input saturation, parametric uncertainty,
and external disturbances using a discontinuous variable structure con-
trol design. However, while each of these saturated robust techniques
are able to address uncertain nonlinear systems with additive distur-
bances, the discontinuous nature of the results motivates the design
of continuous saturated robust control techniques. Robust control de-
signs utilizing nested saturation functions for uncertain feedforward
nonlinear systems [18]–[20] can yield global asymptotic stability de-
spite unmodeled dynamic disturbances.
Based on the preliminary work in [21] focused on Euler-Lagrange

systems, this technical note focuses on a new RISE-based closed-loop
error system development that consists of a saturated, continuous
tracking controller for a class of uncertain, second-order nonlinear
systems which includes time-varying and nonlinearly parameterized
functions and unmodeled dynamic effects. The technical challenge
presented by this objective is the need to introduce saturation bounds
on the integral signum term while maintaining its functionality to
implicitly learn the system disturbances. To achieve the result, a new
auxiliary filter structure is designed using hyperbolic functions that
work in tandem with the redesigned continuous saturated RISE-like
control structure. While the controller is continuous, the closed-loop
error system contains discontinuities which are examined through a
differential inclusion framework. The resulting controller is bounded
by the magnitude of an adjustable control gain, and yields asymptotic
tracking.

II. DYNAMIC SYSTEM

Consider a class of second order MIMO nonlinear systems of the
following form:1

(1)

where are the generalized system states, is the
generalized control input, is an unknown
nonlinear function, and denotes a generalized, sufficiently
smooth, nonvanishing nonlinear disturbance (e.g., unmodeled effects).
The subsequent development is based on the assumption that and
are measurable outputs. Additionally, the following assumptions will

be exploited.

1The result in this technical note can be extended to th-order nonlinear sys-
tems following a similar development to those presented in [22], [23].
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Assumption 1: The nonlinear disturbance term and its first two time
derivatives (i.e., ) exist and are bounded by known constants.2

Assumption 2: The desired trajectory is designed such that
exist and are bounded.3

Remark 1: To aid the subsequent control design and analysis, the
vector and the matrix are defined as

(2)

(3)

where . Based on these definitions, the fol-
lowing inequalities hold [25]:

(4)

Throughout the technical note, denotes the standard Euclidean
norm.

III. CONTROL OBJECTIVE

The objective is to design an amplitude-limited, continuous con-
troller which ensures the system state tracks a desired trajectory .
To quantify the control objective, a tracking error denoted by
is defined as

(5)

Embedding the control in a bounded trigonometric term is an ob-
vious way to limit the control authority below an a priori limit; how-
ever, by injecting these terms, difficulty arises in the closed-loop sta-
bility analysis. This challenge is exacerbated by the presence of inte-
gral control functions that are included to compensate for added dis-
turbances as in this result. Motivated by these stability analysis com-
plexities and through an iterative analysis procedure, two measurable
filtered tracking errors are designed which include smooth saturation
terms. Specifically, the filtered tracking errors , are defined
as

(6)

(7)

where denote constant positive control gains, and
is an auxiliary signal whose dynamics are given by

(8)

and are constant positive control gains. The auxiliary signal
is introduced to facilitate the stability analysis and is not used in the
control design since the expression in (7) depends on the unmeasur-
able generalized state . The structure of the error systems (and in-
cluded auxiliary signals) is motivated by the need to inject and cancel
terms in the subsequent stability analysis, and will become apparent in
Section V.

2Many practical disturbance terms are continuous including friction (see
[24]), wind disturbances, wave/ocean disturbances, unmodeled sufficiently
smooth disturbances, etc.
3Many guidance and navigation applications utilize smooth, high-order dif-

ferentiable desired trajectories. Curve fitting methods can also be used to gen-
erate sufficiently smooth time-varying trajectories.

IV. CONTROL DEVELOPMENT

An open-loop tracking error can be obtained by utilizing the filtered
tracking error in (7) and substituting (1), (5), (6), and (8) to yield

(9)

where the auxiliary function is defined as

(10)

and is a desired trajectory dependent auxiliary
term.
Based on the form of (9) and through an iterative stability analysis,

the continuous controller, , is designed as4

(11)

where is a Filippov solution to the following differential equa-
tion

(12)

where is a positive constant control gain and
is defined as

.
In review of (5)–(10), the control strategy in (11) and (12) entails

several components including the development of the filtered error sys-
tems in (6) and (7), which are composed of saturated hyperbolic tangent
functions designed from the Lyapunov analysis. The motivation for the
design of (8) stems from the need to inject a signal into the
closed-loop error system and to cancel terms in the analysis. Based on
the stability analysis methods associated with the RISE control strategy
(cf. [26], [27]), an extra derivative is applied to the closed-loop error
system. The time derivative of (11) will include a term.
The design of (12) is motivated by the desire to cancel the
term, enabling the remaining terms to provide the desired feedback and
cancel nonconstructive terms and disturbances as dictated by the sub-
sequent stability analysis.
The closed-loop tracking error system can be developed by taking

the time derivative of (9), and using the time derivative of (11) to yield

(13)

where and are defined as

(14)

(15)

The structure of (13) is motivated by the desire to segregate terms that
can be upper bounded by state-dependent terms and terms that can be
upper bounded by constants. By applying the Mean Value Theorem, an
upper bound can be developed for the expression in (14) as

(16)

4An important feature of the controller in (11) is its applicability to the case
where constraints exist on the available control. Note that the control law is
upper bounded by the adjustable control gain as where is
the dimension of .
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where the bounding function is a positive, strictly increasing
function,5 and is defined as

(17)

From Assumptions 1 and 2, the following inequality can be developed
based on the expression in (15):

(18)

where , are known positive constants.

V. STABILITY ANALYSIS

To facilitate the stability analysis, let be the
open and connected set defined as

, where and are subsequently defined.
Let be defined as

(19)

and be defined as

(20)

In (20), the auxiliary function is defined as a Filippov solution
to the following differential equation

(21)

where the subscript denotes the -th element of the
vector. Provided the sufficient condition for in (24) is satisfied,
[21]. Let be a positive-definite, locally Lipschitz,

regular function defined as

(22)

where and denote the -th element of the vector and , re-
spectively. The Lyapunov function candidate in (22) satisfies the fol-
lowing inequalities:

(23)

Based on (4) and (22), the continuous, positive definite, strictly in-
creasing functions in (23) are defined as

, . Additionally, let denote

a set defined as .

5The proof in [28, App A] can be used to show that there exists a positive,
nondecreasing bounding function for . Any positive nondecreasing func-
tion can be upper bounded by a positive strictly increasing function, .

Theorem 1: Given the dynamics in (1), the controller given by (11)
and (12) ensures local6 asymptotic tracking in the sense that all Filippov
solutions, such that , are bounded, and satisfy

provided the control gains are selected sufficiently large based on the
initial conditions of the states and the following sufficient conditions:

(24)

where is defined as
, denotes the initial con-

ditions of the state, and are subsequently defined adjustable
positive constants.

Proof: Let for denote a Filippov so-
lution to the differential equation such that

, where denotes
the right hand side of the closed-loop error signals. Using Fil-
ippov’s theory of differential inclusions [29], [30], the exis-
tence of solutions can be established for , where

, where
denotes the intersection of all sets of Lebesgue measure zero,
denotes convex closure, and

[31], [32]. The time derivative of (22) along the Filippov trajectories
exists almost everywhere (a.e.), i.e., for almost all , and

where

and is the generalized gradient of [33]. Since is a contin-
uously differentiable

(25)

where

Using the calculus for from [32], and substituting (5)–(8), and
(13) into (25), yields

(26)

6For arbitrarily large initial conditions or arbitrarily large disturbances, the
control gains required to satisfy the sufficient gain conditions in (24) may de-
mand an input that is not physically deliverable by the system (i.e., the gain
may be required to be larger than the saturation limit of the actuator). Despite
gain dependency on the system’s initial conditions, this result does not satisfy
the standard semi-global result because, under the consideration of input con-
straints, cannot be arbitrarily increased and consequently the region of attrac-
tion cannot be arbitrarily enlarged to include all initial conditions. This outcome
is not surprising from a physical perspective in the sense that such demands may
yield cases where the actuation is insufficient to stabilize the system.
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where [32]. Substituting (21), (7), (16), and
(18), the expression in (26) reduces to the scalar inequality

(27)

where the set in (26) reduces to the scalar equality in (27) since
the RHS is continuous a.e., i.e, the RHS is continuous except for
the Lebesgue negligible set of times when

[31], [34].7 Young’s Inequality can be applied
to select terms in (27) as

(28)

To facilitate the subsequent stability analysis, let be selected as
, where are positive gain constants. Utilizing (28),

completing the squares on and grouping terms, the expression in (27)
can be upper bounded by

(29)

Provided the sufficient conditions in (24) are satisfied, (17) and (19)
can be used to conclude that

(30)

where is defined as ,

was defined in (24), and is a continuous,
positive semi-definite function for some positive constant .
The inequalities in (23) and (30) can be used to show that

in , hence, in . From (2),
and from (6) and (7),

in . From (11), . From Assumption 2 and by utilizing the
fact that , in . From (17), in .
Assumption 1, (13), (16) and (18) can be used to show that
in . Utilizing (8) and the fact that in , the product

in . Thus, in , and it can be shown
that is uniformly continuous (UC) in . Since is UC,
is UC. The definitions of and can be used to prove that is UC
in .
Since and are strictly increasing functions, the region of attrac-

tion can be increased by increasing the gains. The fact that
for some implies that in order to obtain a non-trivial

region of attraction, the saturation bound has to be large enough so
that . From (30), [36, Corollary 1] can be invoked to show
that as . Based on the definition of
in (19), as .

7The set of times
is

equivalent to the set of times . From (7), this set
can also be represented by . Provided is
continuously differentiable, it can be shown that the set of time instances

is isolated, and thus, measure zero. This
implies that the set is measure zero [35].

VI. EXPERIMENTAL RESULTS

To examine the performance of the saturated RISE approach, the
controller in (11) and (12) was implemented on a planar manipulator
testbed.8 Themanipulator can bemodeled as an Euler-Lagrange system
with the following dynamics

(31)

where denotes the inertia matrix,
denotes the unknown centripetal-Coriolis matrix, de-
notes a continuously differentiable friction model given in [24] as

where are unknown positive constants that are re-
lated to friction coefficients. Additionally, in (31), denote
the link position, velocity and acceleration, and denotes the
control torque. The Euler-Lagrange dynamics can be rewritten as

(32)

where , ,

, and
. From (32) and [24], the friction disturbance satis-

fies Assumption 1. Other disturbances such as wind, ocean currents,
etc. can also be shown to satisfy Assumption 1 for other electro-
mechanical and aerospace systems. Moreover, given known bounds
on the desired trajectory, and conservative upper bound estimates for
the constant inertial parameters and friction constants, the inequalities
in (24) can also be satisfied. The auxiliary term can be
combined with -like terms in .
The control objective is to track a desired link trajectory, selected

as . The ini-
tial conditions for the manipulator were selected a complete rotation
away from the initial conditions of the desired trajectory as

and . The control torque was arbitrarily
selected to be artificially limited (well-within the capabilities of the ac-
tuator) to , . Specifically, the feedback
gains for the proposed controller were selected as ,

, , ,
, , is selected as

and is selected such that .9

The performance of the saturated RISE control design was compared
against two controllers available in literature: a classical PID controller
with conditional integral clamping anti-windup [37] and an adaptive
full-state feedback controller with bounded inputs [25]. Each controller
was tuned to achieve the best possible performance, given the satura-
tion bounds. Since each controller has a different structure, it is dif-
ficult to comment on the comparative nature of the gains which were
implemented. Starting with the same large initial condition offset, the
tracking errors of each controller are depicted in Fig. 1. The control
torques for each controller are shown in Fig. 2 and each remain within
the prescribed bounds.
The results show that the PIDw/AW [37] achieves steady-state RMS

errors of 8.3857 deg and 1.4096 deg for each joint, respectively. The

8The manipulator consists of a two-link direct drive revolute robot consisting
of two aluminum links, mounted on 240.0 N-m (base joint) and 20.0 N-m
(second joint) switched reluctance motors. The motor resolvers provide rotor
position measurements with a resolution of 614 400 pulses/revolution, and a
standard backwards difference algorithm is used to numerically determine ve-
locity from the encoder readings. Data acquisition and control implementation
were performed in real-time using QNX at a frequency of 1.0 kHz.
9It is important to note that for the given Euler-Lagrange system, the imple-

mented controller is . Thus, the bound on the implemented control
will include the (known) bound on the inertia matrix. For this experiment, the
inertia matrix can be bounded by .
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Fig. 1. Tracking errors versus time for (a) classical PID with integral clamping
anti-windup, (b) adaptive full-state feedback controller, and (c) the proposed
saturated RISE controller.

Fig. 2. Control torques versus time for (a) classical PID with integral clamping
anti-windup, (b) adaptive full-state feedback controller, and (c) the proposed
saturated RISE controller. Despite starting an entire revolution away from the
desired trajectory, the controller only saturates at the preset artificial saturation
limits briefly.

steady-state RMS torque for each joint was found to be 14.5630 Nm
and 1.8732 Nm, respectively. The Adaptive FSFB [25] steady-state
RMS errors and torques for each joint were 3.8232 deg, 1.6537 deg,
14.9367 Nm and 1.2360 Nm, respectively. The proposed Saturated
RISE steady-state RMS errors and torques for each joint were 0.1607
deg, 0.2889 deg, 14.3363 Nm and 1.1883 Nm, respectively. The results
illustrates that for comparable RMS torque values, the saturated RISE
controller exhibits improved steady-state performance when compared
to the other control designs.

VII. CONCLUSION

A continuous saturated controller is developed for a class of uncer-
tain nonlinear systemswhich includes time-varying and nonlinearly pa-
rameterized functions and additive bounded disturbances. The bound
on the control is known a priori and can be adjusted by changing the
feedback gains. The saturated controller is shown to guarantee local
asymptotic tracking despite uncertainty in the dynamics using smooth
hyperbolic functions. Experimental results using a two-link robot ma-
nipulator demonstrate the performance of the proposed controller.
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Sensitivity Reduction by Stable Controllers for MIMO
Infinite Dimensional Systems via the Tangential

Nevanlinna-Pick Interpolation
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Abstract—We study the problem of finding a stable stabilizing controller
that satisfies a desired sensitivity level for an MIMO infinite dimensional
system. The systems we consider have finitely many simple transmission
zeros in , but they are allowed to possess infinitelymany poles in .We
compute both upper and lower bounds of the minimum sensitivity achiev-
able by a stable controller via the tangential Nevanlinna-Pick interpolation.
We also obtain stable controllers attaining such an upper bound. To illus-
trate the results, we discuss a repetitive control system as an application of
the proposed method.

Index Terms— control, infinite dimensional systems, strong stabi-
lization, tangential interpolation.

I. INTRODUCTION

The purpose of this note is to find stable controllers achieving a de-
sired sensitivity level for MIMO infinite dimensional systems. Let us
first note that even for stable plants, optimization may produce un-
stable controllers. However, such controllers have difficulties with ro-
bustness and hardware implementation. Indeed, an unstable controller
can lead to instability of the closed-loop system if a component such
as a sensor or an actuator fails [1] or saturates [2]. See also [3]–[5] for
theoretical and practical significance of stabilization by a stable con-
troller. Applications of stable controllers can be found in flexible
structures [6], DC servo motors [7], data-communication networks [8],
etc.
For SISO infinite dimensional systems, the Nevanlinna-Pick inter-

polation [9], [10] enables us to design stable controllers providing the
minimum sensitivity [11] or robust stability [12]. The point of this ap-
proach is that a stable controller stabilizes the plant if and only if a unit
element in satisfies certain interpolation conditions at the unstable
zeros of the plant. On the other hand, for MIMO infinite dimensional
systems, the stable controller design problem is still largely open.
This is due to the difficulty of multivariable zeros.
We have studied sensitivity reduction by a stable controller for

MIMO systems with infinitely many unstable poles in [13]. We have
shown there that the matrix-valued Nevanlinna-Pick interpolation [3],
[14] gives a sufficient condition and also a necessary condition for
this problem. However the results in [13] are subject to the rather
stringent assumption that all unstable zeros of the plant be blocking
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