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Abstract

Numerical solutions for the optimal feedback stabilization of discrete time dynamical systems is the focus of

this paper. Set-theoretic notion of almost everywhere stability introduced by the Lyapunov measure, weaker than

conventional Lyapunov function-based stabilization methods, is used for optimal stabilization. The linear Perron-

Frobenius transfer operator is used to pose the optimal stabilization problem as an infinite dimensional linear program.

Set-oriented numerical methods are used to obtain the finite dimensional approximation of the linear program. We

provide conditions for the existence of stabilizing feedback controls and show the optimal stabilizing feedback control

can be obtained as a solution of a finite dimensional linear program. The approach is demonstrated on stabilization

of period two orbit in a controlled standard map.

Index Terms

Almost everywhere stability, optimal stabilization, numerical methods.

I. INTRODUCTION

Stability analysis and stabilization of nonlinear systems are two of the most important, extensively studied

problems in control theory. Lyapunov functions are used for stability analysis and control Lyapunov functions (CLF)

are used in the design of stabilizing feedback controllers. Under the assumption of detectability and stabilizability

of the nonlinear system, a positive valued optimal cost function of an optimal control problem (OCP) can also be

used as a control Lyapunov function. The optimal controls of OCP are obtained as the solution of the Hamilton

Jacobi Bellman (HJB) equation. The HJB equation is a nonlinear partial differential equation and one must resort to

approximate numerical schemes for its solution. Numerical schemes typically discretize the state-space; hence, the

resulting problem size grows exponentially with the dimension of the state-space. This is commonly referred to as

the curse of dimensionality. The approach is particularly attractive for feedback control of nonlinear systems with

lower dimensional state space. The method proposed in this paper also suffers from the same drawback. Among the

vast literature available on the topic of solving the HJB equation, we briefly review some of the related literature.

Vinter [1] was the first to propose a linear programming approach for nonlinear optimal control of continuous

time systems. This was exploited to develop a numerical algorithm, based on semidefinite programming and density

function-based formulation by Rantzer and co-workers in [2], [3]. Global almost everywhere stability of stochastic
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systems was studied by van Handel [4], using the density function. Lasserre, Hernández-Lerma, and co-workers [5],

[6] formulated the control of Markov processes as a solution of the HJB equation. An adaptive space discretization

approach is used in [7]; a cell mapping approach is used in [8] and [9], [10] utilizes set oriented numerical methods

to convert the HJB to one of finding the minimum cost path on a graph derived from transition. In [11], [12],

[13], solutions to stochastic and deterministic optimal control problems are proposed, using a linear programming

approach or using a sequence of LMI relaxations. Our paper also draws some connection to research on optimization

and stabilization of controlled Markov chains discussed in [14]. Computational techniques based on the viscosity

solution of the HJB equation is proposed for the approximation of value function and optimal controls in [15]

(Chapter VI).

Our proposed method, in particular the computational approach, draws some similarity with the above discussed

references on the approximation of the solution of the HJB equation [8], [9], [10], [15]. Our method, too, relies on

discretization of state space to obtain globally optimal stabilizing control. However, our proposed approach differs

from the above references in the following two fundamental ways. The first main difference arises due to adoption

of non-classical weaker set-theoretic notion of almost everywhere stability for optimal stabilization. This weaker

notion of stability allows for the existence of unstable dynamics in the complement of the stabilized attractor set;

whereas, such unstable dynamics are not allowed using the classical notion of Lyapunov stability adopted in the

above references. This weaker notion of stability is advantageous from the point of view of feedback control design.

The notion of almost everywhere stability and density function for its verification was introduced by Rantzer in [16].

Furthermore, Rantzer proved, that unlike the control Lyapunov function, the co-design problem of jointly finding

the density function and the stabilizing controller is convex [17]. The Lyapunov measure used in this paper for

optimal stabilization can be viewed as a measure corresponding to the density function [18], [19]. Hence, it enjoys

the same convexity property for the controller design. This convexity property, combined with the proposed linear

transfer operator framework, is precisely exploited in the development of linear programming-based computational

framework for optimal stabilization using Lyapunov measures. The second main difference compared to references

[14] and [15] is in the use of the discount factor γ > 1 in the cost function (refer to Remark 9). The discount factor

plays an important role in controlling the effect of finite dimensional discretization or the approximation process

on the true solution. In particular, by allowing for the discount factor, γ, to be greater than one, it is possible to

ensure that the control obtained using the finite dimensional approximation is truly stabilizing the nonlinear system

[20], [21].

In a previous work [20] involving Vaidya, the problem of designing deterministic feedback controllers for

stabilization via control Lyapunov measure was addressed. The authors proposed solving the problem by using

a mixed integer formulation or a non-convex nonlinear program, which are not computationally efficient. There

are two main contributions of this paper. First, we show a deterministic stabilizing feedback controller can be

constructed using a computationally cheap tree-growing algorithm (Algorithm 1, Lemma 11). The second main

contribution of this paper is the extension of the Lyapunov measure framework introduced in [18] to design optimal

stabilization of an attractor set. We prove the optimal stabilizing controllers can be obtained as the solution to a



linear program. Unlike the approach proposed in [20], the solution to the linear program is guaranteed to yield

deterministic controls. This paper is an extended version of the paper that appeared in the 2008 American Control

Conference [22].

This paper is organized as follows. In Section II, we provide a brief overview of key results from [18] and [20] for

stability analysis, and stabilization of nonlinear systems using the Lyapunov measure. The transfer operators-based

framework is used to formulate the OCP as an infinite dimensional linear program in Section III. A computational

approach, based on set-oriented numerical methods, is proposed for the finite dimensional approximation of the

linear program in Section IV. Simulation results are presented in Section V, followed by conclusions in Section VI.

II. LYAPUNOV MEASURE, STABILITY AND STABILIZATION

The Lyapunov measure and control Lyapunov measure were introduced in [18], [20] for stability analysis and

stabilizing controller design in discrete-time dynamical systems of the form,

xn+1 = F (xn), (1)

where F : X → X is assumed to be continuous with X ⊂ Rq , a compact set. We denote by B(X) the Borel-σ

algebra on X and M(X), the vector space of a real valued measure on B(X). The mapping, F , is assumed to

be nonsingular with respect to the Lebesgue measure `, i.e., `(F−1(B)) = 0, for all sets B ∈ B(X), such that

`(B) = 0. In this paper, we are interested in optimal stabilization of an attractor set defined as follows:

Definition 1 (Attractor set): A set A ⊂ X is said to be forward invariant under F , if F (A) = A. A closed

forward invariant set, A, is said to be an attractor set, if it there exists a neighborhood V ⊂ X of A, such that

ω(x) ⊂ A for all x ∈ V , where ω(x) is the ω limit set of x [18].

Remark 2: In the following definitions and theorems, we will use the notation, U(ε), to denote the ε > 0

neighborhood of the attractor set A and m ∈ M(X), a finite measure absolutely continuous with respect to

Lebesgue.

Definition 3 (Almost everywhere stable with geometric decay): The attractor set A ⊂ X for a dynamical system

(1) is said to be almost everywhere (a.e.) stable with geometric decay with respect to some finite measure, m ∈

M(X), if given any ε > 0, there exists M(ε) <∞ and β < 1, such that m{x ∈ Ac : Fn(x) ∈ X\U(ε)} < M(ε)βn.

The above set-theoretic notion of a.e. stability is introduced in [18] and verified by using the linear transfer

operator framework. For the discrete time dynamical system (1), the linear transfer Perron Frobenius (P-F) operator

[23] denoted by PF :M(X)→M(X) is given by,

[PFµ](B) =

∫
X

χB(F (x))dµ(x) = µ(F−1(B)), (2)

where χB(x) is the indicator function supported on the set B ∈ B(X) and F−1(B) is the inverse image of set B.

We define a sub-stochastic operator as a restriction of the P-F operator on the complement of the attractor set as

follows:

[P1
Fµ](B) :=

∫
Ac

χB(F (x))dµ(x), (3)



for any set B ∈ B(Ac) and µ ∈ M(Ac). The condition for the a.e. stability of an attractor set A with respect to

some finite measure m is defined in terms of the existence of the Lyapunov measure µ̄, defined as follows [18]

Definition 4 (Lyapunov measure): The Lyapunov measure is defined as any non-negative measure µ̄, finite outside

U(ε) (see Remark 2), and satisfies the following inequality, [P1
F µ̄](B) < γ−1µ̄(B), for some γ ≥ 1 and all sets

B ∈ B(X \ U(ε)), such that m(B) > 0.

The following theorem from [24] provides the condition for a.e. stability with geometric decay.

Theorem 5: An attractor set A for the dynamical system (1) is a.e. stable with geometric decay with respect to

finite measure m, if and only if for all ε > 0 there exists a non-negative measure µ̄, which is finite on B(X \U(ε))

and satisfies

γ[P1
F µ̄](B)− µ̄(B) = −m(B) (4)

for all measurable sets B ⊂ X \ U(ε) and for some γ > 1.

Proof: We refer readers to Theorem 5 from [21] for the proof.

We consider the stabilization of dynamical systems of the form xn+1 = T (xn, un), where xn ∈ X ⊂ Rq and

un ∈ U ⊂ Rd are the state and the control input, respectively. Both X and U are assumed compact. The objective

is to design a feedback controller, un = K(xn), to stabilize the attractor set A. The stabilization problem is solved

using the Lyapunov measure by extending the P-F operator formalism to the control dynamical system [20]. We

define the feedback control mapping C : X → Y := X×U as C(x) = (x,K(x)). We denote by B(Y ) the Borel-σ

algebra on Y and M(Y ) the vector space of real valued measures on B(Y ). For any µ ∈ M(X), the control

mapping C can be used to define a measure, θ ∈M(Y ), as follows:

θ(D) := [PCµ](D) = µ(C−1(D))

[PC−1θ](B) := µ(B) = θ(C(B)), (5)

for all sets D ∈ B(Y ) and B ∈ B(X). Since C is an injective function with θ satisfying (5), it follows

from the theorem on disintegration of measure [25] (Theorem 5.8) there exists a unique disintegration θx of

the measure θ for µ almost all x ∈ X , such that
∫
Y
f(y)dθ(y) =

∫
X

∫
C(x)

f(y)dθx(y)dµ(x), for any Borel-

measurable function f : Y → R. In particular, for f(y) = χD(y), the indicator function for the set D, we obtain

θ(D) =
∫
X

∫
C(x)

χD(y)dθx(y)dµ(x) = [PCµ](D). Using the definition of the feedback controller mapping C, we

write the feedback control system as xn+1 = T (xn,K(xn)) = T ◦ C(xn). The system mapping T : Y → X can

be associated with P-F operators PT :M(Y )→M(X) as [PT θ](B) =
∫
Y
χB(T (y))dθ(y). The P-F operator for

the composition T ◦ C : X → X can be written as a product of PT and PC . In particular, we obtain [21]

[PT◦Cµ](B) =

∫
Y

χB(T (y))d[PCµ](y)

= [PTPCµ](B) =

∫
X

∫
C(x)

χB(T (y))dθx(y)dµ(x).



The P-F operators, PT and PC, are used to define their restriction, P1
T : M(Ac × U) → M(Ac), and P1

C :

M(Ac)→M(Ac×U) to the complement of the attractor set, respectively, in a way similar to Eq. (3). The control

Lyapunov measure introduced in [20] is defined as any non-negative measure µ̄ ∈M(Ac), finite on B(X \U(ε)),

such that there exists a control mapping C that satisfies [P1
TP1

C µ̄](B) < βµ̄(B), for every set B ∈ B(X \U(ε)) and

β ≤ 1. Stabilization of the attractor set is posed as a co-design problem of jointly obtaining the control Lyapunov

measure µ̄ and the control P-F operator PC or in particular disintegration of measure θ, i.e., θx. The disintegration

measure θx, which lives on the fiber of C(x), in general, will not be absolutely continuous with respect to Lebesgue.

For the deterministic control map, K(x), the conditional measure, θx(u) = δ(u−K(x)), the Dirac delta measure.

However, for the purpose of computation, we relax this condition. The purpose of this paper and the following

sections are to extend the Lyapunov measure-based framework for the optimal stabilization of nonlinear systems.

One of the key highlights of this paper is the deterministic finite optimal stabilizing control is obtained as the

solution for a finite linear program.

III. OPTIMAL STABILIZATION

The objective is to design a feedback controller for the stabilization of the attractor set, A, in a.e. sense, while

minimizing a suitable cost function. Consider the following control system,

xn+1 = T (xn, un), (6)

where xn ∈ X ⊂ Rq and un ∈ U ⊂ Rd are state and control input, respectively, and T : X × U =: Y → X . Both

X and U are assumed compact. We define X1 := X \ U(ε).

Assumption 6: We assume there exists a feedback controller mapping C0(x) = (x,K0(x)), which locally

stabilizes the invariant set A, i.e., there exists a neighborhood V of A such that T ◦ C0(V ) ⊂ V and xn → A for

all x0 ∈ V ; moreover A ⊂ U(ε) ⊂ V .

Our objective is to construct the optimal stabilizing controller for almost every initial condition starting from X1.

Let C1 : X1 → Y be the stabilizing control map for X1. The control mapping C : X → X × U can be written as

follows:

C(x) =

 C0(x) = (x,K0(x)) for x ∈ U(ε)

C1(x) = (x,K1(x)) for x ∈ X1.
(7)

Furthermore, we assume the feedback control system T ◦C : X → X is non-singular with respect to the Lebesgue

measure, m. We seek to design the controller mapping, C(x) = (x,K(x)), such that the attractor set A is a.e.

stable with geometric decay rate β < 1, while minimizing the following cost function,

CC(B) =

∫
B

∞∑
n=0

γnG ◦ C(xn)dm(x), (8)

where x0 = x, the cost function G : Y → R is assumed a continuous non-negative real-valued function, such that

G(A, 0) = 0, xn+1 = T ◦ C(xn), and 0 < γ < 1
β . Note, that in the cost function (8), γ is allowed greater than

one and this is one of the main departures from the conventional optimal control problem, where γ ≤ 1. However,



under the assumption that the controller mapping C renders the attractor set a.e. stable with a geometric decay rate,

β < 1
γ , the cost function (8) is finite.

Remark 7: To simplify the notation, in the following we will use the notion of the scalar product between

continuous function h ∈ C0(X) and measure µ ∈M(X) as 〈h, µ〉X :=
∫
X
h(x)dµ(x) [23].

The following theorem proves the cost of stabilization of the set A as given in Eq. (8) can be expressed using the

control Lyapunov measure equation.

Theorem 8: Let the controller mapping, C(x) = (x,K(x)), be such that the attractor set A for the feedback

control system T ◦ C : X → X is a.e. stable with geometric decay rate β < 1. Then, the cost function (8) is well

defined for γ < 1
β and, furthermore, the cost of stabilization of the attractor set A with respect to Lebesgue almost

every initial condition starting from set B ∈ B(X1) can be expressed as follows:

CC(B) =
∫
B

∑∞
n=0 γ

nG ◦ C(xn)dm(x)

=
∫
Ac×U G(y)d[P1

C µ̄B ](y) =
〈
G,P1

C µ̄B
〉
Ac×U , (9)

where, x0 = x and µ̄B is the solution of the following control Lyapunov measure equation,

γP1
T · P1

C µ̄B(D)− µ̄B(D) = −mB(D), (10)

for all D ∈ B(X1) and where mB(·) := m(B ∩ ·) is a finite measure supported on the set B ∈ B(X1).

Proof: The proof is omitted in this paper, due to limited space but can be found in the online version of the

paper [21] (Theorem 8).

By appropriately selecting the measure on the right-hand side of the control Lyapunov measure equation (10) (i.e.,

mB), stabilization of the attractor set with respect to a.e. initial conditions starting from a particular set can be

studied. The minimum cost of stabilization is defined as the minimum over all a.e. stabilizing controller mappings,

C, with a geometric decay as follows:

C∗(B) = min
C
CC(B). (11)

Next, we write the infinite dimensional linear program for the optimal stabilization of the attractor set A. Towards

this goal, we first define the projection map, P1 : Ac×U → Ac as: P1(x, u) = x, and denote the P-F operator corre-

sponding to P1 as PP1
:M(Ac×U)→M(Ac), which can be written as [P1

P1
θ](D) =

∫
Ac×U χD(P1(y))dθ(y) =∫

D×U dθ(y) = µ(D). Using this definition of projection mapping, P1, and the corresponding P-F operator, we can

write the linear program for the optimal stabilization of set B with unknown variable θ as follows:

min
θ≥0
〈G, θ〉Ac×U , s.t. γ[P1

T θ](D)− [P1
P1
θ](D) = −mB(D), (12)

for D ∈ B(X1).

Remark 9: Observe the geometric decay parameter satisfies γ > 1. This is in contrast to most optimization

problems studied in the context of Markov-controlled processes, such as in Lasserre and Hernández-Lerma [5].

Average cost and discounted cost optimality problems are considered in [5], [15]. The additional flexibility provided



by γ > 1 guarantees the controller obtained from the finite dimensional approximation of the infinite dimensional

program (12) also stabilizes the attractor set for system (6). For a more detailed discussion on the role of γ on the

finite dimensional approximation, we refer readers to the online version of the paper [21].

IV. COMPUTATIONAL APPROACH

The objective of the present section is to present a computational framework for the solution of the finite-

dimensional approximation of the optimal stabilization problem in (12). There exists a number of references related

to the solution of infinite dimensional linear programs (LPs), in general, and those arising from the control of Markov

processes. Some will be described next. The monograph by Anderson and Nash [26] is an excellent reference on

the properties of infinite dimensional LPs.

Our intent is to use the finite-dimensional approximation as a tool to obtain stabilizing controls to the infinite-

dimensional system. First, we will derive conditions under which solutions to the finite-dimensional approximation

exist.

Following [18] and [20], we discretize the state-space and control space for the purposes of computations as

described below. Borrowing the notation from [20], let XN := {D1, ..., Di, ..., DN} denote a finite partition of the

state-space X ⊂ Rq . The measure space associated with XN is RN . We assume without loss of generality that the

attractor set, A, is contained in DN , that is, A ⊆ DN . Similarly, the control space, U , is quantized and the control

input is assumed to take only finitely many control values from the quantized set, UM = {u1, . . . , ua, . . . , uM},

where ua ∈ Rd. The partition, UM , is identified with the vector space, RN×M . The system map that results from

choosing the controls uN is denoted as TuN
and the corresponding P-F operator is denoted as PTuN

∈ RN×N .

Fixing the controls on all sets of the partition to ua, i.e., uN (Di) = ua, for all Di ∈ XN , the system map that

results is denoted as Ta with the corresponding P-F operator denoted as PTa
∈ RN×N . The entries for PTa

are

calculated as: (PTa)(ij) :=
m(Ta

−1(Dj)∩Di)
m(Di)

, where m is the Lebesgue measure and (PTa)(ij) denotes the (i, j)-th

entry of the matrix. Since Ta : X → X , we have PTa
is a Markov matrix. Additionally, P 1

Ta
: RN−1 → RN−1

will denote the finite dimensional counterpart of the P-F operator restricted to XN \ DN , the complement of the

attractor set. It is easily seen that P 1
Ta

consists of the first (N − 1) rows and columns of PTa
.

In [18] and [20], stability analysis and stabilization of the attractor set are studied, using the above finite

dimensional approximation of the P-F operator. The finite dimensional approximation of the P-F operator results

in a weaker notion of stability, referred to as coarse stability [18], [21]. Roughly speaking, coarse stability means

stability modulo attractor sets with domain of attraction smaller than the size of cells within the partition.

With the above quantization of the control space and partition of the state space, the determination of the control

u(x) ∈ U (or equivalently K(x)) for all x ∈ Ac has now been cast as a problem of choosing uN (Di) ∈ UM for

all sets Di ⊂ XN . The finite dimensional approximation of the optimal stabilization problem (12) is equivalent to

solving the following finite-dimensional LP:

min
θa,µ≥0

M∑
a=1

(Ga)
′
θa, s.t. γ

M∑
a=1

(PTa)
′
θa −

M∑
a=1

θa = −m, (13)



where we have used the notation (·)′ for the transpose operation, m ∈ RN−1 and (m)(j) > 0 denote the support

of Lebesgue measure, m, on the set Dj , Ga ∈ RN−1 is the cost defined on XN \ DN with (Ga)(j) the cost

associated with using control action ua on set Dj ; θa ∈ RN−1 are, respectively, the discrete counter-parts of

infinite-dimensional measure quantities in (12). In the LP (13), we have not enforced the constraint,

(θa)(j) > 0 for exactly one a ∈ {1, ...,M}, (14)

for each j = 1, ..., (N − 1). The above constraint ensures the control on each set in unique. We prove in the

following the uniqueness can be ensured without enforcing the constraint, provided the LP (13) has a solution. To

this end, we introduce the dual LP associated with the LP in (13). The dual to the LP in (13) is,

max
V

m
′
V, s.t. V ≤ γP 1

Ta
V +Ga ∀a = 1, ...,M. (15)

In the above LP (15), V is the dual variable to the equality constraints in (13).

A. Existence of solutions to the finite LP

We make the following assumption throughout this section.

Assumption 10: There exists θa ∈ RN−1 ∀ a = 1, . . . ,M , such that the LP in (13) is feasible for some γ > 1.

Note, Assumption 10 does not impose the requirement in (14). For the sake of simplicity and clarity of presentation,

we will assume that the measure, m, in (13) is equivalent to the Lebesgue measure and G > 0. Satisfaction of

Assumption 10 can be verified using the following algorithm.

Algorithm 1 1) Set I := 1, ..., N − 1, I0 := N , L = 0. 2) Set IL+1 := ∅. 3) For each i ∈ I\{I0∪. . .∪IL} do a)

Pick the smallest a ∈ 1, ...,M such that (PTa
)(ij) > 0 for some j ∈ IL. b) If a exists then, set uN (Di) := ua,

IL+1 := IL+1 ∪ {i}. 4) End For 5) If I0 ∪ . . . ∪ IL = I then, set L = L+ 1. STOP. 6) If IL+1 = ∅ then,

STOP. 7) Set L = L+ 1. Go to Step 2.

The algorithm iteratively adds to IL+1, set Di, which has a non-zero probability of transition to any of the sets

in IL. In graph theory terms, the above algorithm iteratively builds a tree starting with the set DN ⊇ A. If the

algorithm terminates in Step 6, then we have identified sets I \ {I0 ∪ . . . ∪ IL} that cannot be stabilized with the

controls in UM . If the algorithm terminates at Step 5, then we show in the Lemma below that a set of stabilizing

controls exist.

Lemma 11: Let XN = {D1, . . . , Dn} be a partition of the state space, X , and UM = {u1, . . . , uM} be a

quantization of the control space, U . Suppose Algorithm 1 terminates in Step 5 after Lmax iterations, then the

controls uN identified by the algorithm renders the system coarse stable.

Proof: Let PTuN
represent the closed loop transition matrix resulting from the controls identified by Algorithm

1. Suppose µ ∈ RN−1, µ ≥ 0, µ 6= 0 be any initial distribution supported on the complement of the attractor set

XN \DN . By construction, µ has a non-zero probability of entering the attractor set after Lmax transitions. Hence,
N−1∑
i=1

(µ′(P 1
TuN

)L
max

)(i) <

N−1∑
i=1

(µ)(i) =⇒ lim
n→∞

(P 1
TuN

)nL
max

−→ 0.

Thus, the sub-Markov matrix P 1
TuN

is transient and implies the claim.



Algorithm 1 is less expensive than the approaches proposed in [20], where a mixed integer LP and a nonlinear

programming approach were proposed. The strength of our algorithm is that it is guaranteed to find deterministic

stabilizing controls, if they exist. The following lemma shows an optimal solution to (13) exists under Assumption

10.

Lemma 12: Consider a partition XN = {D1, . . . , DN} of the state-space X with attractor set A ⊆ DN and a

quantization UM = {u1, . . . , uM} of the control space U . Suppose Assumption 10 holds for some γ > 1 and for

m,G > 0. Then, there exists an optimal solution, θ, to the LP (13) and an optimal solution, V , to the dual LP (15)

with equal objective values, (
M∑
a=1

(Ga)
′
θa = m′V ) and θ, V bounded.

Proof: From Assumption 10, the LP (13) is feasible. Observe the dual LP in (15) is always feasible with a

choice of V = 0. The feasibility of primal and dual linear programs implies the claim as a result of LP strong

duality [27].

Remark 13: Note, existence of an optimal solution does not impose a positivity requirement on the cost function,

G. In fact, even assigning G = 0 allows determination of a stabilizing control from the Lyapunov measure equation

(13). In this case, any feasible solution to (13) suffices.

The next result shows the LP (13) always admits an optimal solution satisfying (14).

Lemma 14: Given a partition XN = {D1, . . . , DN} of the state-space, X , with attractor set, A ⊆ DN , and a

quantization, UM = {u1, . . . , uM}, of the control space, U . Suppose Assumption 10 holds for some γ > 1 and for

m,G > 0. Then, there exists a solution θ ∈ RN−1 solving (13) and V ∈ RN−1 solving (15) for any γ ∈ [1, γN ).

Further, the following hold at the solution: 1) For each j = 1, ..., (N − 1), there exists at least one aj ∈ 1, ...,M ,

such that (V )(j) = γ(P 1
Taj

V )(j) + (Gaj )(j) and (θaj )(j) > 0. 2) There exists a θ̃ that solves (13), such that for

each j = 1, ..., (N − 1), there is exactly one aj ∈ 1, ...,M , such that (θ̃aj )(j) > 0 and (θ̃a
′
)(j) = 0 for a′ 6= aj .

Proof:

From the assumptions, we have that Lemma 12 holds. Hence, there exists θ ∈ RN−1 solving (13) and V ∈ RN−1

solving (15) for any γ ∈ [1, γN ). Further, θ and V satisfy following the first-order optimality conditions [27],
M∑
a=1

θa − γ
M∑
a=1

(P 1
Ta

)′θa = m

V ≤ γP 1
Ta
V +Ga ⊥ θa ≥ 0 ∀a = 1, ...,M.

(16)

We will prove each of the claims in order.

Claim 1: Suppose, there exists j ∈ 1, ..., (N − 1), such that (θa)(j) = 0 for all a = 1, ...,M . Substituting in the

optimality conditions (16), one obtains,

γ

M∑
a=1

((P 1
Ta

)′θa)(j) = −(m)(j)

which cannot hold, since, P 1
Ta

has non-negative entries, γ > 0 and θa ≥ 0. Hence, there exists at least one aj such

that (θaj )(j) > 0. The complementarity condition in (16) then requires that (V )(j) = (γP 1
Taj

V )(j) + (Gaj )(j). This

proves the first claim.



Claim 2: Denote a(j) = min{a|(θa)(j) > 0} for each j = 1, ..., (N − 1). The existence of a(j) for each j

follows from statement 1. Define P 1
Tu
∈ R(N−1)×(N−1) and Gu ∈ RN−1 as follows:

(P 1
Tu

)(ji) := (P 1
Ta(j)

)(ji) ∀i = 1, ..., (N − 1)

(Gu)(j) := (Ga(j))(j)
(17)

for all j = 1, ..., (N − 1). From the definition of P 1
Tu

, Gu and the complementarity condition in (16), it is easily

seen that V satisfies

V = γP 1
Tu
V +Gu = lim

n→∞
((γP 1

Tu
)nV +

n∑
k=0

(γP 1
Tu

)kGu). (18)

Since V is bounded and Gu > 0, it follows that ρ(P 1
Tu

) < 1/γ. Define θ̃ as,
(θ̃a(1))(1)

...

(θ̃a(N−1))(N−1)

 = (IN−1 − γ(P 1
Tu

)
′
)−1m (19a)

(θ̃a)(j) = 0 ∀j = 1, ..., (N − 1), a 6= a(j). (19b)

The above is well-defined, since we have already shown that ρ(P 1
Tu

) < 1/γ.

From the construction of θ̃, we have that for each j there exists only one aj , namely a(j), for which (θ̃a(j))(j) > 0.

It remains to show that θ̃ solves (13). For this, observe
M∑
a=1

(Ga)
′
θ̃a

(19b)
=

N−1∑
j=1

(G
a(j)
j θ̃a(j))(j)

(19a)
= (Gu)

′
(IN−1 − γ(P 1

Tu
)
′
)−1m

= ((IN−1 − γP 1
Tu

)−1Gu)
′
m

(18)
= V

′
m.

(20)

The primal and dual objectives are equal with the above definition of θ̃. Hence, θ̃ solves (13). The claim is proved.

The following theorem states the main result.

Theorem 15: Consider a partition XN = {D1, . . . , DN} of the state-space, X , with attractor set, A ⊆ DN , and a

quantization, UM = {u1, . . . , uM}, of the control space, U . Suppose Assumption 10 holds for some γ > 1 and for

m,G > 0. Then, the following statements hold: 1) there exists a bounded θ, a solution to (13) and a bounded V , a

solution to (15); 2) the optimal control for each set, j = 1, ..., (N − 1), is given by u(Dj) = ua(j), where a(j) :=

min{a|(θa)(j) > 0}; 3) µ satisfying γ(P 1
Tu

)
′
µ − µ = −m , where (P 1

Tu
)(ji) = (P 1

Ta(j)
)(ji) is the Lyapunov

measure for the controlled system.

Proof: Assumption 10 ensures that the linear programs (13) and (15) have a finite optimal solution (Lemma

(12)). This proves the first claim of the theorem and also allows the applicability of Lemma 14. The remaining

claims follow as a consequence.

Although the results in this section assumed the measure, m, is equivalent to Lebesgue, this can be easily relaxed

to the case where m is absolutely continuous with respect to Lebesgue and is of interest where the system is not

everywhere stabilizable. If it is known there are regions of the state-space not stabilizable, then m can be chosen

such that its support is zero on these regions. If the regions are not known a priori then, (13) can be modified to



Fig. 1: Dynamics of the standard map.

minimize the l1-norm of the constraint residuals. This is similar to the feasibility phase commonly employed in LP

algorithms [28].

V. EXAMPLES

The results in this section have been obtained using an interior-point algorithm, IPOPT [29]. IPOPT is an open-

source software available through the COIN-OR repository [30], developed for solving large-scale non-convex

nonlinear programs. We solved the linear programs using the Mehrotra predictor-corrector algorithm [31] for linear

and convex quadratic programs implemented in IPOPT.

A. Standard Map

The standard map is a 2D map also known as the Chirikov map. It is one of the most widely studied maps in

dynamical systems [32].

The standard map is obtained by taking a Poincare map of one degree of freedom Hamiltonian system forced

with a time-periodic perturbation and by writing the system in action-angle coordinates. The standard map forms

a basic building block for studying higher degree of freedom Hamiltonian systems. The control standard map is

described by the following set of equations [32]:

xn+1 = xn + yn +Ku sin 2πxn (mod 1)

yn+1 = yn +Ku sin 2πxn (mod 1), (21)

where (x, y) ∈ R := {[0, 1)× [0, 1)} and u is the control input. The dynamics of the standard map with u ≡ 1 and

K = 0.25 is shown in Fig. 1. The phase space dynamics consists of a mix of chaotic and regular regions. With the

increase in the perturbation parameter, K, the dynamics of the system become more chaotic.

For the uncontrolled system (i.e., u ≡ 0), the entire phase space is foliated with periodic and quasi-periodic

orbits. In particular, every y = constant line is invariant under the system dynamics, and consists of periodic

and quasi-periodic orbits for rational and irrational values of y, respectively. Our objective is to globally stabilize



the period two orbit located at (x, y) = (0.25, 0.5) and (x, y) = (0.75, 0.5), while minimizing the cost function

G(x, y, u) = x2 + y2 + u2. To construct the finite dimensional approximation of the P-F operator, the phase space,

R, is partitioned into 50 × 50 squares: each cell has 10 sample points. The discretization for the control space is

chosen to be equal to ua = [−0.5 : 0.05 : 0.5]. In Figs. 2a and 2b, we show the plot for optimal cost function and

control input, respectively. We observe in Fig. 2b the control values used to control the system are approximately

antisymmetric about the origin. This antisymmetry is inherent in the standard map and can also be observed in the

uncontrolled standard map plot in Fig. 2b.

(a) (b)

Fig. 2: a) Optimal cost function; b) Optimal control input.

VI. CONCLUSIONS

Lyapunov measure is used for the optimal stabilization of an attractor set for a discrete time dynamical system.

The optimal stabilization problem using a Lyapunov measure is posed as an infinite dimensional linear program.

A computational framework based on set oriented numerical methods is proposed for the finite dimensional

approximation of the linear program.

The set-theoretic notion of a.e. stability introduced by the Lyapunov measure offers several advantages for the

problem of stabilization. First, the controller designed using the Lyapunov measure exploits the natural dynamics

of the system by allowing the existence of unstable dynamics in the complement of the stabilized set. Second, the

Lyapunov measure provides a systematic framework for the problem of stabilization and control of a system with

complex non-equilibrium behavior.
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