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Abstract

The relation between nonanticipative Rate Distortion Function (RDF) and filtering theory is dis-

cussed on abstract spaces. The relation is established by imposing a realizability constraint on the

reconstruction conditional distribution of the classical RDF. Existence of the extremum solution of

the nonanticipative RDF is shown using weak∗-convergence on appropriate topology. The extremum

reconstruction conditional distribution is derived in closed form, for the case of stationary processes.

The realization of the reconstruction conditional distribution which achieves the infimum of the nonan-

ticipative RDF is described. Finally, an example is presented to illustrate the concepts.

Index Terms

Nonanticipative Rate Distortion Function (RDF), filtering, realization, weak∗-convergence, optimal

reconstruction conditional distribution

I. INTRODUCTION

Shannon’s information theory [2] for reliable communication evolved over the years without

much emphasis on nonanticipation imposed on the communication sub-systems. In particular, the
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classical rate distortion function (RDF) for source data compression or quantization deals with

the characterization of the optimal reconstruction conditional distribution subject to a fidelity

criterion [3], [4], without regard to nonanticipation.

On the other hand, filtering theory is developed by imposing real-time realizability on the

estimators with respect to measurement data. Although, both reliable communication and filtering

(state estimation for control) are concerned with reconstruction of processes, the main underlying

assumptions characterizing them are different.

In this paper, the intersection of rate distortion function (RDF) and real-time realizable filtering

theory is established by invoking a nonanticipative constraint on the reconstruction conditional

distribution to be realizable via real-time operations, while the optimal nonanticipative reconstruc-

tion conditional distribution is derived. Consequently, the connection between nonanticipative

RDF, its characterization via the optimal reconstruction conditional distribution, and real-time

realizable filtering theory is established under very general conditions on the source (including

Markov sources).

The fundamental advantage of the new filtering approach based on nonanticipative RDF, is

the ability to ensure average or probabilistic estimation error constraints, which is non-trivial

task if Bayesian filtering techniques are employed to formulate such constraints. The motivations

includes nonanticipative data compression over noisy channels, such as control over networks,

where the controlled system and controller may be connected via a noisy channel [5]–[10]. In

such applications, filtering via nonanticipative RDF approximates sensor measurements by the

reconstruction process taking values in a set of smaller cardinality, while the approximation

is quantified by the distortion function. Given the recent interest in developing controller and

estimator architectures processing quantized information and, in general, communication schemes

for control applications, nonanticipative RDF is necessary for developing zero-delay or limited

delay quantization schemes. Moreover, nonanticipative RDF is necessary for the realization of

the compression channel by communication systems processing information causally.

The first relation between information theory and filtering via distortion rate function is

discussed by R. S. Bucy in [11], by carrying out the computation of a realizable (nonanticipative)

distortion rate function with square criteria for two samples of the Ornstein-Uhlenbeck Gaussian

process. Related work on nonanticipative rate distortion theory is pursued by A. K. Gorbunov

and M. S. Pinsker in [12], [13]. Specifically, [12] discussed nonanticipative RDF for general
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stationary processes and establishes existence of the infinite horizon limit, while [13] computes

a closed form expression for nonanticipative RDF (called ε-entropy) for stationary Gaussian

processes using power spectral methods. Further elaborations on the similarities and differences

between [11]–[13] and this paper will be discussed in subsequent parts of the paper. Moreover,

over the years several papers appeared in the literature in which controller or estimator are

designed based on information theoretic measures [14]–[16]. An earlier work designing filters

via information theoretic measures is [17], while [18] analyzes mutual information for Gaussian

processes.

In this paper, the connection between nonanticipative rate distortion theory and filtering theory

is further examined, under a nonanticipative condition defined by the family of conditional

distributions (reconstructions), for general distortion functions and random processes on abstract

Polish spaces. The connection is established via optimization on the space of conditional distri-

butions with average distortion constraint and almost sure (a.s.) constraints to account for the

nonanticipative condition on the reconstruction conditional distribution. The main results are the

following.

(1) Existence of the nonanticipative RDF using the topology of weak∗-convergence;

(2) Closed form expression for reconstruction conditional distribution minimizing the nonan-

ticipative RDF for stationary processes;

(3) Realization procedure of the filter based on the nonanticipative RDF;

(4) Example to demonstrate the realization of the filter.

It is important to point out that items (1)-(4) above are not addressed in the related papers [11]–

[13]. Moreover, (2) together with (3) are important in reliable communication for filtering and

control applications, because one can develop communication architectures which operate with

zero-delay or limited delay, as opposed to the classical RDF which is anticipative.

Next,we give a high level discussion on Bayesian filtering theory and nonanticipative RDF, and

we present some aspects of the problem pursued in this paper. Consider a discrete-time process

Xn , {X0, X1, . . . , Xn} ∈ X0,n , ×ni=0Xi, and its reconstruction Y n , {Y0, Y1, . . . , Yn} ∈

Y0,n , ×ni=0Yi, where Xi and Yi are Polish spaces (complete separable metric spaces). The

objective is to reconstruct Xn by Y n via nonanticipative operations subject to a distortion or

fidelity criterion. That is, for each i = 0, 1, . . ., the reconstruction Yi of Xi should depend on

past and present information {X0, Y0, X1, Y1, . . . , Xi−1, Yi−1, Xi}. Once this mapping is found a
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procedure is introduced to realize the filter of Yi from auxiliary1 measurements.

A. Bayesian Estimation Theory

In classical filtering [19], one is given a mathematical model that generates the process

Xn, via its conditional distribution {PXi|Xi−1 (dxi|xi−1) : i = 0, 1, . . . , n} or via discrete-

time recursive dynamics, a mathematical model that generates observed data obtained from

sensors, say, Zn, {PZi|Zi−1,Xi (dzi|zi−1, xi) : i = 0, 1, . . . , n}, while Y n are the causal es-

timates of some function of the process Xn based on the observed data Zn. Note that for

a memoryless channel that generates the observation sequence {Zi : i = 0, 1, . . . , n} then

PZi|Zi−1,Xi(dzi|zi−1, xi) = PZi|Xi(dzi|xi)− a.s., i = 0, 1, . . . , n.

In Bayesian estimation one is interested in causal estimators of some function Φ : Xn 7−→ R,

Yn , Φ(Xn) based on the observed data Zn−1 , {Z0, Z1, . . . , Zn−1}. With respect to minimizing

the least-squares error pay-off, the best estimate of Φ(Xi) given Zi−1, denoted by Φ̂(Xi), is given

by the conditional mean

Φ̂(Xi) , E
{

Φ(Xi)|Zi−1
}

=

∫
Xi

Φ(x)PXi|Zi−1(dx|zi−1), i = 0, 1, . . . , n.

For non-linear problems, Bayesian filtering is often addressed via the conditional distribution

{PXi|Zi−1(dxi|zi−1) : i = 0, 1, . . . , n} or its unnormalized versions which satisfy discrete-

recursions [19], and forms a sufficient statistic for the filtering problem.

Consider the simplified example of the multi-dimensional Gaussian-Markov processes modeled

by  Xk+1 = AkXk +BkWk, X0∼N(0; Σx0), k = 0, 1, . . . , n− 1

Zk = CkXk +DkVk, k = 0, 1, . . . , n
(I.1)

where {Ak, Bk, Ck, Dk} are time-varying matrices having appropriate dimensions, Wk∼N(0; ΣWk
)

(Gaussian with mean zero and covariance ΣWk
), Vk∼N(0; ΣVk), k = 0, 1, . . . , n, while the

processes {Wk : k = 0, 1, . . . , n − 1}, {Vk : k = 0, 1, . . . , n} are mutually independent, and

independent of X0. The classical Kalman Filter [19] is a well-known example for which the op-

timal reconstruction X̂i = E[Xi|Zi−1], i = 0, 1, . . . , n, is the conditional mean which minimizes

the average least-squares estimation error. Thus, in classical filtering theory both models which

1This point is explained in Subsection I-B.
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generate the unobserved and observed processes, Xn and Zn, respectively, are given á priori,

and the estimator X̂i is a nonanticipative function of the past information Zi−1, i = 0, 1, . . . , n.

Fig. I.1 illustrates the cascade block diagram of the Bayesian filtering problem.

Fig. I.1. Block Diagram of Bayesian Filtering Problem

B. Nonanticipative Rate Distortion Theory and Estimation

In nonanticipative rate distortion theory one is given the process Xn, which induces the con-

ditional distributions {PXi|Xi−1(dxi|xi−1) : i = 0, 1, . . . , n} and determines the nonanticipative

reconstruction conditional distribution {PYi|Y i−1,Xi(dyi|yi−1, xi) : i = 0, 1, . . . , n} which mini-

mizes the mutual information between Xn and Y n subject to a distortion or fidelity constraint,

via a nonanticipative or realizability constraint. The filter or estimate {Yi : i = 0, 1, . . . , n} of

{Xi : i = 0, 1, . . . , n} is found by realizing the reconstruction distribution {PYi|Y i−1,Xi(dyi|yi−1,

xi) : i = 0, 1, . . . , n} via a cascade of sub-systems as shown in Fig. I.2. The point to be

Fig. I.2. Block Diagram of Filtering via Nonanticipative Rate Distortion Function

made here is that the auxiliary random sequence {Z0, Z1, . . .} which is the analogue of sensor

measurements (in the above discussion of Bayesian estimation) is identified during the realization

of the optimal reconstruction distribution {PYi|Y i−1,Xi(dyi|yi−1, xi) : i = 0, 1, . . . , n}. Thus, in

Bayesian estimation, the sensor map is given á priori, while in nonanticipative rate distortion
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theory, this map is identified during the realization of the optimal reconstruction conditional

distribution {PYi|Y i−1,Xi(dyi|yi−1, xi) : i = 0, 1, . . . , n}, so that the end-to-end nonanticipative

RDF from Xn to Y n is achieved.

The precise problem formulation of nonanticipative RDF is defined by first introducing the

distortion or fidelity constraint and mutual information. The distortion function [3] or fidelity

constraint between xn and its reconstruction yn, is a measurable function defined by

d0,n : X0,n × Y0,n 7→ [0,∞], d0,n(xn, yn) ,
n∑
i=0

ρ0,i(x
i, yi).

For single letter distortion d0,n(xn, yn) ≡
∑n

i=0 ρ(xi, yi), and for single letter square error

distortion d0,n(xn, yn) ≡
∑n

i=0 ||xi − yi||
2 [3]. Moreover, for finite alphabet spaces Xi and Yi,

the distortion function can be defined in terms of the Hamming distance [4].

The mutual information between Xn and Y n, for a given distribution PXn(dxn), and conditional

distribution PY n|Xn(dyn|xn), is defined by2 [3]

I(Xn;Y n) ,
∫
X0,n×Y0,n

log
(PY n|Xn(dyn|xn)

PY n(dyn)

)
PY n|Xn(dyn|xn)⊗ PXn(dxn). (I.2)

Next, introduce the nonanticipative constraint on the reconstruction distribution. To this end,

define the (n+ 1)−fold nonanticipative convolution measure

−→
P Y n|Xn(dyn|xn) , ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi)− a.s. (I.3)

The set of nonanticipative reconstruction distributions is defined by

−→
Qad ,

{
PY n|Xn(dyn|xn) : PY n|Xn(dyn|xn) =

−→
P Y n|Xn(dyn|xn)− a.s.

}
. (I.4)

Note that without the nonanticipative constraint specified by
−→
Qad, the connection between

filtering theory and rate distortion theory cannot be established, since in general by Bayes’ rule

PY n|Xn(dyn|xn) = ⊗ni=0PYi|Y i−1,Xn(dyi|yi−1, xn)− a.s., and hence, for each i = 0, 1, . . . , n, the

conditional distribution PYi|Y i−1,Xn(·|·, ·) of Yi will depend on future symbols {Xi+1, Xi+2, . . . , Xn},

in addition to the past and present symbols {Y i−1, X i}. However, by imposing the nonanticipative

constraint (I.4), then at each time instant i = 0, 1, . . . , the reconstruction Yi of Xi will depend

on the past reconstructions {Y0, . . . , Yi−1} and past and present symbols {X0, . . . , Xi}. For

filtering and control applications, the nonanticipative constraint is necessary to avoid anticipative

2The precise definition of a convolution of measures denoted by ⊗ is given in Section II.
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processing of information, while for quantization or compression applications it offers the

possibility to realize the compression channel (optimal reconstruction distribution) via causal

operations and achieve an end-to-end compression with zero-delay.

Nonanticipative Distortion Rate Function. The nonanticipative distortion rate function is de-

fined by the minimization over PY n|Xn(dyn|xn) of the average distortion function subject to a

constraint on the mutual information rate I(Xn;Y n) ≤ R and the nonanticipative constraint (I.4)

as follows.

Dna
0,n(R) , inf

PY n|Xn (dyn|xn)∈
−→
Qad:I(Xn;Y n)≤R

E
{
d0,n(Xn, Y n)

}
. (I.5)

The classical distortion rate function does not imposes the nonanticipative constraint PY n|Xn(dyn|

xn) =
−→
P Y n|Xn(dyn|xn)− a.s., hence the resulting optimal reconstruction distribution of symbol

yi will depend on (yi−1, xi) and on future symbols (xi+1, . . . , xn). Thus, by solving (I.5) and

then realizing the conditional distribution the optimal causal filter will be defined.

At this stage it is important to point out that the nonanticipative condition (I.4) is different

from the realizability condition in [11], in which is assumed that Yi is independent of X∗j|i ,

Xj−E
(
Xj|X i

)
, j = i+1, i+2, . . . ,. Moreover, the nonanticipative condition (I.4) is implied by

the nonanticipative condition found in [12], [13], defined by X∞n+1 ↔ Xn ↔ Y n forms a Markov

chain for any n = 0, 1, . . . (e.g., PY n|Xn,X∞n+1
(dyn|xn, x∞n+1) = PY n|Xn(dyn|xn), n = 0, 1, . . .).

The claim here is that the nonanticipative condition (I.4) is more natural and applies to processes

which are not necessarily Gaussian with square error distortion function, and subject to slight

modification to controlled sources in which the control is a function of the reconstruction process

(we shall discuss this point further).

Nonanticipative Rate Distortion Function. An equivalent problem to (I.5) is the nonanticipative

RDF defined by

Rna
0,n(D) , inf

PY n|Xn (dyn|xn)∈
−→
Qad: E

{
d0,n(Xn,Y n)≤D

} I(Xn;Y n). (I.6)

The two problems defined by (I.5) and (I.6) are equivalent in the sense that the solution of (I.5)
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gives that of (I.6) and vice-versa [4]. Moreover, it can be shown that

PY n|Xn(dyn|xn) =
−→
P Y n|Xn(dyn|xn)− a.s.⇐⇒

I(Xn;Y n) =

∫
X0,n×Y0,n

log
(−→P Y n|Xn(dyn|xn)

PY n(dyn)

)−→
P Y n|Xn(dyn|xn)⊗ PXn(dxn)

≡ I(PXn ,
−→
P Y n|Xn) (I.7)

where the notation I(PXn ,
−→
P Y n|Xn) is used to point out the functional dependence of I(Xn;Y n)

on {PXn ,
−→
P Y n|Xn}. The nonanticipative distortion rate function and RDF can be generalized to

controlled sources.

The paper is organized as follows. Section II discusses the problem formulation on abstract

spaces. Section III establishes existence of optimal minimizing reconstruction distribution, and

Section IV derives the stationary solution. Section V describes the real-time realization of

nonanticipative RDF. Finally, Section VI demonstrates the filter realization via an example.

II. FORMULATION OF NONANTICIPATIVE RDF ON ABSTRACT SPACES

Throughout the paper we use the notation defined on Table I. The source and reconstruction

alphabets, respectively, are sequences of Polish spaces {Xt : t ∈ N} and {Yt : t ∈ N}, associated

with their corresponding measurable spaces (Xt,B(Xt)) and (Yt,B(Yt)), t ∈ N. Sequences

of alphabets are identified with the product spaces (X0,n,B(X0,n)) , ×nk=0(Xk,B(Xk)), and

(Y0,n,B(Y0,n)) , ×nk=0(Yk,B(Yk)). The source and reconstruction are random processes denoted

by Xn , {Xt : t ∈ Nn}, X : {t} × Ω 7→ Xt, and by Y n , {Yt : t ∈ Nn}, Y : {t} × Ω 7→ Yt,

respectively.

The reconstruction conditional distribution will be defined via stochastic kernels. Note that

the random variable (RV) Z is called conditional independent of RV X given the RV Y if

and only if X ↔ Y ↔ Z forms a MC in both directions, equivalently PX,Z|Y (dx, dz|y) =

PX|Y (dx|y)PZ|Y (dz|y)− a.s., or PZ|Y,X(dz|y, x) = PZ|Y (dz|y)− a.s.

Definition II.1. [20] Let (X ,B(X )), (Y ,B(Y)) be measurable spaces in which Y is a Polish

Space.

A stochastic kernel on Y given X is a mapping q : B(Y)× X → [0, 1] satisfying the following

two properties:
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TABLE I

TABLE OF NOTATION

N , {0, 1, . . .} Set of nonnegative integers

Nn , {0, 1, . . . , n} Set of first (n+ 1) nonnegative integers

Xt, Yt, t ∈ N Source and reconstruction alphabets

B(Xt), B(Yt) σ-algebra of Borel sets generated by Xt, Yt
X0,n , ×nk=0Xk, Y0,n , ×nk=0Yk Cartesian product of source and reconstruction alphabets

B(X0,n) , ×nk=0B(Xk), B(Y0,n) , ×nk=0B(Yk) σ-algebra of Borel sets generated by X0,n, Y0,n

xn , {x0, . . . , xn}, yn , {y0, . . . , yn} Sequence of source and reconstruction symbols

M1(Z) Set of probability measures on a measurable space (Z,B(Z))

Q(Y;X ) Set of stochastic kernels on (Y,B(Y)) given (X ,B(X ))

X ↔ Y ↔ Z ⇔ PZ|X,Y (dz|x, y) = PZ|Y (dz|y)− a.s. Markov Chain (MC) or conditional independence

BC(X ) Vector space of bounded continuous real-valued functions

defined on a Polish space X

L1

(
µ,BC(X )

)
Set of all µ-integrable functions defined on X with values in

BC(X )

|| · ||µ Norm with respect to L1

(
µ,BC(X )

)
X ∗ Topological dual of a Banach space X

Mrba(X ) Space of finitely additive regular bounded signed measures on

(X ,B(X ))

Πrba(X ) ⊂Mrba(X ) Space of finitely additive regular bounded probability measures

on (X ,B(X ))

(1) For every x ∈ X , the set function q(·;x) is a probability measure (possibly finitely additive)

on B(Y);

(2) For every F ∈ B(Y), the function q(F ; ·) is B(X )-measurable.

Stochastic kernels can be used to define anticipative and nonanticipative convolution of recon-

struction kernels and associated classical and nonanticipative RDF.

Definition II.2. Given measurable spaces (X0,n,B(X0,n)), (Y0,n,B(Y0,n)), and their product

spaces, data compression channels are classified as follows.

1) An Anticipative Data Compression Channel is a stochastic kernel q0,n(dyn;xn) ∈ Q(Y0,n;X0,n).

Such a kernel admits a factorization into a convolution of a sequence of anticipative
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stochastic kernels as follows

q0,n(dyn;xn) = ⊗ni=0qi(dyi; y
i−1, xn)− a.s. (II.8)

where qi(dyi; yi−1, xn) ∈ Q(Yi;Y0,i−1 ×X0,n), i = 0, . . . , n, n ∈ N.

2) A Nonanticipative Convolution Data Compression Channel is a convolution of a sequence

of nonanticipative stochastic kernels defined by

−→q 0,n(dyn;xn) , ⊗ni=0qi(dyi; y
i−1, xi)− a.s. (II.9)

where qi(dyi; yi−1, xi) ∈ Q(Yi;Y0,i−1 ×X0,i), i = 0, . . . , n, n ∈ N.

3) A Restricted Nonanticipative Data Compression Channel is a stochastic kernel q0,n(dyn;xn)

∈ Q(Y0,n;X0,n) which is a convolution of a sequence of nonanticipative stochastic kernels

obtained by imposing the almost sure (a.s.) constraint defined by

q0,n(dyn;xn) = ⊗ni=0qi(dyi; y
i−1, xi)− a.s. (II.10)

where qi ∈ Q(Yi;Y0,i−1 ×X0,i), i = 0, . . . , n, n ∈ N.

As stated earlier, the classical RDF is concerned with optimizing (I.2) with respect to antici-

pative stochastic kernels (II.8). In this paper we address problem (I.5) or (I.6), i.e., when the

conditional distribution (stochastic kernel) is restricted nonanticipative, and we discuss gen-

eralizations based on (II.9). That is, for a given distribution PXn(dxn), nonanticipative RDF

imposes the a.s.-constraint (II.10) on the reconstruction conditional distribution, and hence on

the joint distribution PXn,Y n(dxn, dyn) generated by them, unlike the classical RDF which

does not impose such a constraint. However, when the source is independently distributed, i.e.,

PXn(dxn) = ⊗ni=0PXi(dxi) − a.s., it is well known that the optimal reconstruction conditional

distribution of the classical RDF has the property P ∗Y n|Xn(dyn|xn) = ⊗ni=0P
∗
Y i|Xi(dyi|xi)− a.s.

It is also well known that for sources with memory (i.e., Markov sources) the optimal recon-

struction conditional distribution of the classical RDF is anticipative, i.e., P ∗Y n|Xn(dyn|xn) =

⊗ni=0P
∗
Yi|Y i−1,Xn(dyi|yi−1, xn)− a.s. Therefore, to ensure a nonanticipative reconstruction condi-

tional distribution one has to impose the constraint (II.10) to the classical RDF. On the other hand,

a nonanticipative convolution data compression channel (II.9) does not impose any constraint

on the joint distribution PXn,Y n(dxn, dyn). This point is further explained below by discussing

generalizations of distortion rate function (I.5) and RDF (I.6).
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Remark II.3. The nonanticipative distortion rate function and the nonanticipative RDF can be

generalized as follows. Given a sequence of conditional distributions {PXi|Xi−1,Y i−1(dxi|xi−1, yi−1)

: i = 0, 1, . . . , n} then (I.5) and (I.6) can be generalized to

−→
D
na

0,n(R) , inf−→
P Y n|Xn (dyn|xn):I(Xn→Y n)≤RE

{
d0,n(Xn, Y n)

}
(II.11)

−→
R
na

0,n(D) , inf−→
P Y n|Xn (dyn|xn):E{d0,n(Xn,Y n)≤D} I(Xn → Y n) (II.12)

where I(Xn → Y n) is the directed information measure from Xn to Y n defined by

I(Xn → Y n) ,
∫
X0,n×Y0,n

log
(−→P Y n|Xn(dyn|xn)

PY n(dyn)

)−→
P Y n|Xn(dyn|xn)⊗

←−
P Xn|Y n−1(dxn|yn−1)

≡ IXn→Y n(
←−
P Xn|Y n−1 ,

−→
P Y n|Xn)

where
←−
P Xn|Y n−1 is defined by

←−
P Xn|Y n−1(dxn|yn−1) , ⊗ni=0PXi|Xi−1,Y i−1(dxi|xi−1, yi−1)− a.s.

Clearly, (II.11) and (II.12) do not assume PXi|Xi−1,Y i−1(dxi|xi−1, yi−1) = PXi|Xi−1(dxi|xi−1) −

a.s., and hence the process Xn can be affected by Y n causally. It is easy to show that if

(II.10) holds then PXi|Xi−1,Y i−1(dxi|xi−1, yi−1) = PXi|Xi−1(dxi|xi−1) − a.s., i = 0, 1, . . . , n,

also holds, and hence (II.11), (II.12) reduce to (I.5), (I.6). The generalizations (II.11), (II.12),

covers conditionally Gaussian sources as a special case [21]. It also covers the case when

the source is a controlled process, controlled over a finite rate channel based on the quantized

or reconstruction process. These generalizations will be investigated elsewhere, since they will

require new topological spaces on which existence of optimal solution to (II.11) and (II.12) can

be shown.

A. Nonanticipative RDF

In this subsection the nonanticipative RDF is rigorously defined on abstract spaces. Given

a source probability measure µ0,n ∈ M1(X0,n) (possibly finitely additive) and a reconstruction

kernel q0,n ∈ Q(Y0,n;X0,n), one can define three probability measures as follows.

(P1): The joint measure P0,n ∈M1(Y0,n ×X0,n):

P0,n(G0,n) , (µ0,n ⊗ q0,n)(G0,n), G0,n ∈ B(X0,n)× B(Y0,n)

=

∫
X0,n

q0,n(G0,n,xn ;xn)µ0,n(dxn)
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where G0,n,xn is the xn−section of G0,n at point xn defined by G0,n,xn , {yn ∈ Y0,n : (xn, yn) ∈

G0,n} and ⊗ denotes the convolution.

(P2): The marginal measure ν0,n ∈M1(Y0,n):

ν0,n(F0,n) , P0,n(X0,n × F0,n), F0,n ∈ B(Y0,n)

=

∫
X0,n

q0,n((X0,n × F0,n)xn ;xn)µ0,n(dxn) =

∫
X0,n

q0,n(F0,n;xn)µ0,n(dxn).

(P3): The product measure π0,n : B(X0,n)× B(Y0,n) 7→ [0, 1] of µ0,n ∈ M1(X0,n) and ν0,n ∈

M1(Y0,n) for G0,n ∈ B(X0,n)× B(Y0,n):

π0,n(G0,n) , (µ0,n × ν0,n)(G0,n) =

∫
X0,n

ν0,n(G0,n,xn)µ0,n(dxn).

The precise definition of mutual information between two sequences of Random Variables Xn

and Y n, denoted I(Xn;Y n) is defined via the Kullback-Leibler distance (or relative entropy)

between the joint probability distribution of (Xn, Y n) and the product of its marginal probability

distributions of Xn and Y n, using the Radon-Nikodym derivative as follows.

Definition II.4. [22] Given a measurable space (X ,B(X )), the relative entropy between two

probability measures P,Q ∈M1(X ) is defined by

D(P ||Q) ,


∫
X log

(
dP
dQ

)
dP =

∫
X log

(
dP
dQ

)
dP
dQ
dQ if P << Q

+∞ otherwise

where dP
dQ

denotes the Radon-Nikodym derivative (density) of P with respect to Q, and P << Q

denotes absolute continuity of Q with respect to P .

Hence, by the construction of probability measures (P1)-(P3), and the chain rule of relative

entropy [20], the following equivalent definitions of mutual information are obtained.

I(Xn;Y n) , D(P0,n||π0,n) (II.13)

=

∫
X0,n×Y0,n

log
(d(µ0,n ⊗ q0,n)

d(µ0,n × ν0,n)

)
d(µ0,n ⊗ q0,n) (II.14)

=

∫
X0,n×Y0,n

log
(q0,n(dyn;xn)

ν0,n(dyn)

)
q0,n(dyn; dxn)⊗ µ0,n(dxn) (II.15)

=

∫
X0,n

D(q0,n(·;xn)||ν0,n(·))µ0,n(dxn)

≡ I(µ0,n, q0,n). (II.16)
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Note that (II.16) states that mutual information is expressed as a functional of {µ0,n, q0,n} and it

is denoted by I(µ0,n, q0,n). Note also that µ0,n⊗q0,n � µ0,n×ν0,n if and only if q(·;xn)� ν0,n(·),

µ0,n−a.s., which is used to established that (II.14) is equivalent to (II.15). Necessary and sufficient

conditions for existence of a Radon-Nikodym derivative for finitely additive measures can be

found in [23].

Next, the classical RDF [3] is introduced, since the definition of nonanticipative RDF will be

based on the classical definition by imposing the nonanticipative constraint (I.4) (or Defini-

tion II.2-3).

Definition II.5. [3](Classical Rate Distortion Function) Let d0,n : X0,n×Y0,n → [0,∞], be an

B(X0,n) × B(Y0,n)-measurable distortion function, and let Q0,n(D) ⊂ Q(Y0,n;X0,n) (assuming

is nonempty) denotes the average distortion or fidelity constraint defined by

Q0,n(D)
4
=
{
q0,n ∈ Q(Y0,n;X0,n) :

∫
X0,n×Y0,n

d0,n(xn, yn)q0,n(dyn;xn)⊗ µ0,n(dxn) ≤ D
}

(II.17)

for D ≥ 0. The classical RDF associated with the anticipative kernel q0,n ∈ Q(Y0,n;X0,n) is

defined by

R0,n(D) , inf
q0,n∈Q0,n(D)

I(µ0,n, q0,n). (II.18)

Existence in (II.18) is shown by assuming d0,n(xn, ·) is bounded continuous on Y0,n while

Y0,n is compact, using weak-convergence of probability measures in [24], and for more general

conditions d0,n(xn, ·) which is only continuous on Y0,n using weak∗-convergence of measures

on Polish spaces [25].

Unfortunately, for general sources and distortion function d0,n(xn, yn), the optimal reconstruction

q∗0,n(dyn;xn) = ⊗ni=0q
∗
i (dyi; y

i−1, xn) is anticipative, and hence the link to filtering theory cannot

be established due to dependence of yi on (yi−1, xi) and on future symbols (xi+1, . . . , xn). This

raises the question whether the classical RDF can be reformulated so that the optimal recon-

struction kernel is nonanticipative. Before the definition of nonanticipative RDF we introduced

a Lemma which gives insight into how classical and nonanticipative RDF are related.

The next lemma relates nonanticipative convolution reconstruction kernels and conditional

independence.
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Lemma II.6. The following are equivalent for each n ∈ N.

1) q0,n(dyn;xn) = −→q 0,n(dyn;xn)-a.s., (see Definition II.2-3).

2) For each i = 0, 1, . . . , n− 1, Yi ↔ (X i, Y i−1)↔ (Xi+1, Xi+2, . . . , Xn), forms a MC.

3) For each i = 0, 1, . . . , n− 1, Y i ↔ X i ↔ Xi+1 forms a MC.

Moreover, Xn
i+1 ↔ X i ↔ Y i, forms a MC for each i = 0, 1, . . . , n − 1, implies any of the

statements 1), 2), 3).

Proof. This is straight forward hence the derivation is omitted.

According to Lemma II.6−1), for a restricted nonanticipative stochastic kernel the mutual

information becomes

I(Xn;Y n) =

∫
X0,n×Y0,n

log
(−→q 0,n(dyn;xn)

ν0,n(dyn)

)−→q 0,n(dyn; dxn)⊗ µ0,n(dxn)

≡ I(µ0,n,
−→q 0,n) (II.19)

where (II.19) states that I(Xn;Y n) is a functional of {µ0,n,
−→q 0,n}. Hence, nonanticipative RDF

is defined by optimizing I(µ0,n, q0,n) over q0,n∈Q0,n(D) subject to the realizability constraint

q0,n(dyn;xn) = −→q 0,n(dyn;xn)− a.s., which satisfies a distortion constraint.

Definition II.7. (Nonanticipative Rate Distortion Function) Suppose d0,n(xn, yn) ,
∑n

i=0 ρ0,i

(xi, yi), where ρ0,i : X0,i×Y0,i → [0,∞], is a sequence of B(X0,i)×B(Y0,i)-measurable distortion

functions, for i = 0, 1, . . . , n, and let
−→
Q 0,n(D) (assuming is nonempty) denotes the average

distortion or fidelity constraint defined by

−→
Q 0,n(D)

4
= Q0,n(D)

⋂{
q0,n∈Q(Y0,n;X0,n) : q0,n(dyn;xn) = −→q 0,n(dyn;xn)− a.s.

}
(II.20)

The nonanticipative RDF associated with the restricted nonanticipative stochastic kernel is

defined by

Rna
0,n(D)

4
= inf

q0,n∈
−→
Q0,n(D)

I(µ0,n, q0,n). (II.21)

Thus, Rna
0,n(D) is characterized by minimizing mutual information or equivalently I(µ0,n, q0,n)

over the Q0,n(D) and the nonanticipative constraint (I.4). In the work of [12], nonanticipative

RDF is called ε-entropy and nonanticipation is defined via Xn
i+1 ↔ X i ↔ Y i, forms a MC for

each i = 0, 1, . . . , n − 1, which implies q0,n(dyn;xn) = −→q 0,n(dyn;xn). Clearly, Gorbunov and
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Pinsker [12] nonanticipative RDF which imposes the constraint Xn
i+1 ↔ X i ↔ Y i forms a MC

for each i = 0, 1, . . . , n − 1, implies PXi+1|Xi,Y i(dxi+1|xi, yi) = PXi+1|Xi(dxi+1|xi) − a.s., i =

0, 1, . . . , n− 1, and hence, it does not allow the generalizations discussed in Remark II.3.

III. EXISTENCE OF OPTIMAL RECONSTRUCTION KERNEL

In this section, appropriate topologies and function spaces are introduced and existence of

the minimizing nonanticipative product kernel in (II.21) is proved. The construction of spaces

is based on [25].

A. Abstract Spaces

Let BC(Y0,n) denote the vector space of bounded continuous real valued functions defined

on the Polish space Y0,n. Furnished with the sup norm topology, this is a Banach space. Denote

by L1(µ0,n, BC(Y0,n)) the space of all µ0,n-integrable functions defined on X0,n with values in

BC(Y0,n), so that for each φ ∈ L1(µ0,n, BC(Y0,n)) its norm is defined by

‖ φ ‖µ0,n,
∫
X0,n

||φ(xn, ·)||BC(Y0,n)µ0,n(dxn) <∞.

The norm topology ‖ φ ‖µ0,n , makes L1(µ0,n, BC(Y0,n)) a Banach space. The topological dual of

BC(Y0,n) denoted by
(
BC(Y0,n)

)∗
is isometrically isomorphic to the Banach space of finitely

additive regular bounded signed measures on Y0,n [26], denoted by Mrba(Y0,n). Let Πrba(Y0,n) ⊂

Mrba(Y0,n) denote the set of regular bounded finitely additive probability measures on Y0,n.

Clearly if Y0,n is compact, then
(
BC(Y0,n)

)∗
will be isometrically isomorphic to the space

of countably additive signed measures, as in [24]. It follows from the theory of “lifting” [27]

that the dual of the space L1(µ0,n, BC(Y0,n)) is Lw∞(µ0,n,Mrba(Y0,n)), denoting the space of

all Mrba(Y0,n) valued functions {q} which are weak∗-measurable in the sense that for each

φ ∈ BC(Y0,n), xn → qxn(φ) ,
∫
Y0,n

φ(yn)q(dyn;xn) is µ0,n-measurable and µ0,n-essentially

bounded.

B. Weak∗-Compactness and Existence

Next, we prepare to prove existence of solution to Rna
0,n(D). Define an admissible set of

stochastic kernels associated with classical rate distortion function by

Qad , Lw∞(µ0,n,Πrba(Y0,n)) ⊂ Lw∞(µ0,n,Mrba(Y0,n)).
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Clearly, Qad is a unit sphere in Lw∞(µ0,n,Mrba(Y0,n)). For each φ∈L1(µ0,n, BC(Y0,n)) we can

define a linear functional on Lw∞(µ0,n,Mrba(Y0,n)) by

`φ(q0,n) ,
∫
X0,n

(∫
Y0,n

φ(xn, yn)q0,n(dyn;xn)
)
µ0,n(dxn).

This is a bounded, linear and weak∗-continuous functional on Lw∞(µ0,n,Mrba(Y0,n)) as it is shown

below.

|`φ(q0,n)| =

∣∣∣∣ ∫
X0,n

(∫
Y0,n

φ(xn, yn)q0,n(dyn;xn)
)
µ0,n(dxn)

∣∣∣∣
≤

∫
X0,n

∣∣∣∣( ∫
Y0,n

φ(xn, yn)q0,n(dyn;xn)
)∣∣∣∣µ0,n(dxn)

≤
∫
X0,n

||φ(xn, ·)||BC(Y0,n)||q0,n(·;xn)||TV µ0,n(dxn)

≤
∫
X0,n

||φ(xn, ·)||BC(Y0,n)µ0,n(dxn)

= ||φ||L1(µ0,n,BC(Y0,n)) <∞.

So given φ ∈ L1(µ0,n, BC(Y0,n)), there exists a cφ < ∞ such that ||`φ|| < cφ. Therefore, `φ is

a bounded, linear functional on Lw∞(µ0,n,Πrba(Y0,n)) and hence on Lw∞(µ0,n,Mrba(Y0,n)). Thus,

it is continuous in the weak∗-sense.

For d0,n : X0,n × Y0,n → [0,∞) measurable and d0,n∈L1(µ0,n, BC(Y0,n)) the distortion

constraint set of the classical RDF is given by

Q0,n(D) , {q∈Qad : `d0,n(q0,n)≤D}.

The next result is shown in [25]; it utilizes the Alaoglu’s theorem [26], which states that a closed

and bounded subset of a weak∗-compact set is weak∗-compact. These will be used to establish

existence of minimizer in
−→
Qad for the nonanticipative RDF Rna

0,n(D).

Lemma III.1. [25] For d0,n∈L1(µ0,n, BC(Y0,n)), the set Q0,n(D) is bounded and weak∗-closed

subset of Qad (hence weak∗-compact).

Now we prepare to consider the problem stated in Definition II.7. First, we show weak∗-

compactness of
−→
Qad defined as a subset of Qad as follows.

−→
Qad =

{
q0,n ∈ Qad : q0,n(dyn;xn) = −→q 0,n(dyn;xn)− a.s.

}
.
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The average distortion function for the nonanticipative RDF is defined by

−→
Q 0,n(D) ,

{
q0,n ∈ Qad : `d0,n(q0,n) ,

∫
X0,n

(∫
Y0,n

d0,n(xn, yn)q0,n(dyn;xn)

)
⊗µ0,n(dxn) ≤ D

}⋂−→
Qad

=
{
q0,n ∈

−→
Qad : `d0,n(q0,n) ,

∫
X0,n

(∫
Y0,n

d0,n(xn, yn)q0,n(dyn;xn)

)
⊗µ0,n(dxn) ≤ D

}
, D ≥ 0.

Since we are interested in proving existence of nonanticipative RDF of Definition II.7, we shall

first show that
−→
Qad is weak∗-closed, and then utilize Lemma III.1 to establish weak∗-compactness

for
−→
Qad and then weak∗-compactness of

−→
Q 0,n(D).

Lemma III.2. Let X0,n and Y0,n be Polish spaces and introduce the net {qαi (dyi; y
i−1, xi)},

where α ∈ (D,�), and qαi ∈ Q(Yi;Y0,i−1,X0,i). Assume

(a) qαi (·; yi−1, xi)
w∗−→ q0

i (·; yi−1, xi) for i = 1, . . . , n;

(b) for all hi(·, ·)∈L1(µi, BC(Yi)) the function

(xi, yi−1) ∈ X0,i × Y0,i−1 7−→
∫
Xi

∫
Yi
hi(y)qi(dy; yi−1, xi)µi(dxi;x

i−1)

is L1(µ0,i−1, BC(Y0,i−1)) for i = 0, 1, . . . , n;

(c) for all hi(·, ·)∈L1(µi, BC(Yi)) and ∀ ε > 0 there exists α � αε such that∫
Xi

sup
yi−1∈Y0,i−1

∣∣∣∣ ∫
Yi
hi(xi, yi)q

α
i (dyi; y

i−1, xi)

−
∫
Yi
hi(xi, yi)q

0
i (dyi; y

i−1, xi)

∣∣∣∣µi(dxi;xi−1) < ε, ∀ xi−1 ∈ X0,i−1.

Then the convolution of stochastic kernels converges in weak∗-sense as follows.

−→q α0,n
w∗−→ −→q 0

0,n (III.22)

e.g, the set
−→
Qad is weak∗-closed.

Proof. See Appendix.

Next, we utilize the weak∗-compactness of
−→
Qad to show that

−→
Q 0,n(D) is also weak∗-compact.

Remark III.3. There are certain important cases in which d0,n may not be bounded. This is the

case when d0,n is a metric of a linear metric space. The next theorem is crucial in showing the
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weak∗-closedness property of
−→
Q 0,n(D) to those distortion functions d0,n which are not necessarily

bounded, since they are measurable functions from the class d0,n ∈ L1(µ0,n, BC(Y0,n)).

Theorem III.4. Let X0,n,Y0,n be two Polish spaces and d0,n : X0,n×Y0,n 7→ [0,∞], a measurable,

nonnegative, extended real valued function, such that for a fixed xn ∈ X0,n, yn → d(xn, ·) is

continuous on Y0,n, for µ0,n-almost all xn ∈ X0,n and suppose the conditions of Lemma III.2

hold. For any D ∈ [0,∞), the set
−→
Q 0,n(D) is a weak∗-closed subset of

−→
Qad and hence weak∗-

compact.

Proof. Let {−→q α0,n} ∈
−→
Q 0,n(D) ⊂

−→
Qad be a net. Since

−→
Qad is weak∗-compact, there exists a

subnet of the net {−→q α0,n}, relabelled as the original net, and an element −→q 0
0,n ∈

−→
Qad such

that −→q α0,n
w∗−→ −→q 0

0,n
3. We must show that −→q 0

0,n ∈
−→
Q 0,n(D). Considering the sequence {dk0,n ,

d0,n∧k, k ∈ N}, which are bounded, measurable functions (continuous in the second argument),

it follows from the weak∗-convergence of the sequence {−→q α0,n} to −→q 0
0,n that∫

X0,n

(∫
Y0,n

dk0,n(xn, yn)−→q 0
0,n(dyn;xn)

)
µ0,n(dxn)

(III.23)
= lim

α

∫
X0,n

(∫
Y0,n

dk0,n(xn, yn)−→q α0,n(dyn;xn)

)
µ0,n(dxn)

for each k ∈ N . Since d0,n is non-negative and dk0,n ↑ d0,n as k −→ ∞ and −→q α0,n ∈
−→
Q 0,n(D),

we have∫
X0,n

(∫
Y0,n

dk0,n (xn, yn)−→q 0
0,n(dyn;xn)

)
µ0,n(dxn)

= lim
α

∫
X0,n

(∫
Y0,n

dk0,n(xn, yn)−→q α0,n(dyn;xn)

)
µ0,n(dxn)

≤ lim
α

∫
X0,n

(∫
Y0,n

d0,n(xn, yn)−→q α0,n(dyn;xn)

)
µ0,n(dxn) ≤ D

which is valid for all k ∈ N . Since dk0,n ↑ d0,n and they are non-negative, it follows from

Lebesgue’s monotone convergence theorem and non-negativity of stochastic kernels that∫
X0,n

(∫
Y0,n

d0,n(xn, yn)−→q 0
0,n(dyn;xn)

)
µ0,n(dxn) ≤ D.

3i.e.
∣∣∣ ∫X0,n

∫
Y0,n

φ(xn, yn)−→q α0,n(dyn;xn)⊗µ0,n(dxn)−
∫
X0,n

∫
Y0,n

φ(xn, yn)−→q 0
0,n(dyn;xn)⊗µ0,n(dxn)

∣∣∣ −→ 0 for any

φ ∈ L1(µ0,n;BC(Y0,n)).
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This shows that the weak∗-limit −→q 0
0,n ∈

−→
Q 0,n(D) and hence we have proved that the set

−→
Q 0,n(D) is a weak∗-closed subset of

−→
Qad. By Alaoglu’s theorem [26] being a weak∗-closed

subset of a weak∗-compact set, it is weak∗-compact.

Based on Theorem III.4 and lower semicontinuity of relative entropy, we show existence of the

optimal reconstruction conditional distribution for nonanticipative RDF.

Theorem III.5. (Existence) Under the conditions of Theorem III.4, Rna
0,n(D) has a minimum.

Proof. This follows from Theorem III.4 provided lower semicontinuity of I(µ0,n, ·) on
−→
Qad is

established. First we prove that −→q 0,n → I(µ0,n, ·) is weak∗-lower semicontinuous. Let {−→q α0,n} be

a net from
−→
Qad and suppose it is weak∗-convergent to −→q 0

0,n. Define the net Pα
0,n ∈ Πrba(X0,n ×

Y0,n) given by the convolution product Pα
0,n ≡ µ0,n(dxn) ⊗ −→q α0,n(dyn;xn). Take any ϕ(·) ∈

BC(X0,n × Y0,n) and consider the expression∫
X0,n×Y0,n

ϕ0,n(xn, yn)Pα
0,n(dxn, dyn) ≡

∫
X0,n×Y0,n

ϕ0,n(xn, yn)−→q α0,n(dyn;xn)⊗ µ0,n(dxn).

Since −→q α0,n
w∗−→ −→q 0

0,n in Lw∞(µ0,n,Πrba(Y0,n)), it is clear from the above expression that

Pα
0,n

w∗−→ P 0
0,n ≡ µ0,n ⊗−→q

0
0,n in Πrba(X0,n × Y0,n). (III.24)

Similarly one can easily verify that the net of the product measures {πα0,n} converges to the

product measure π0
0,n,

πα0,n ≡ να0,n × µ0,n
w∗−→ ν0

0,n × µ0,n ≡ π0
0,n

where {να0,n} are the marginals of {Pα
0,n} on Y0,n and ν0

0,n is its weak∗-limit. Now we use the

lower semicontinuity property of relative entropy [20, Lemma 1.4.3, p. 36]. Following [20] it

is verified that the same procedure holds true not only for countably additive measures but also

for finitely additive ones. Using this fact we conclude that

D(P0,n||π0,n) ≤ lim inf
α−→∞

D(Pα
0,n||πα0,n).

By (II.13), this is equivalent to

I(µ0,n, q0,n) ≤ lim inf
α−→∞

I(µ0,n, q
α
0,n). (III.25)

This proves weak∗-lower semicontinuity of I(µ0,n, ·) on
−→
Qad. We have already observed in

Theorem III.4 that the set
−→
Q 0,n(D) is weak∗-compact, and we have just seen that I(µ0,n, ·) is
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weak∗-lower semicontinuous. Hence I(µ0,n, ·) attains its infimum on
−→
Q 0,n(D). So there exists a

−→q ∗0,n ∈
−→
Q 0,n(D) such that Rna

0,n(D) = I(µ0,n,
−→q ∗0,n).

IV. NECESSARY CONDITIONS OF OPTIMALITY FOR NONANTICIPATIVE RDF

In this section the form of the optimal nonanticipative convolution reconstruction kernels is

derived under a stationarity assumption. The method is based on calculus of variations on the

space of measures [28].

Assumption IV.1. The family of measures −→q 0,n(dyn;xn) defined in (II.9), is the convolution of

stationary conditional distributions.

Assumption IV.1 holds for stationary process {(Xi, Yi) : i ∈ N} and single letter distortion

d0,n(xn, yn) ≡
∑n

i=0 ρ(xi, yi). It also holds for distortion defined by ρ(T ixn, T iyn), for which

T ixn = x̃n is the ith shift operator on the input sequence xn, where x̃k = xk+i (similarly

for T iyn), and
∑n

i=0 ρ(T ixn, T iyn) depends only on the components of (xn, yn) [29]. Utilizing

Assumption IV.1, which holds for stationary processes and a single letter distortion function, the

Gateaux differential of I(µ0,n,
−→q 0,n) is taken at −→q ∗0,n in the direction of −→q 0,n − −→q ∗0,n, via the

definition −→q ε0,n , −→q 0,n + ε
(−→q 0,n − −→q ∗0,n

)
, ε ∈ [0, 1], since under the stationarity assumption,

the functionals {qi(dyi; yi−1, xi) ∈ Q(Yi;Y0,i−1 ×X0,i) : i = 0, 1, . . . , n} are identical.

Theorem IV.2. Suppose Iµ0,n(−→q 0,n) , I(µ0,n,
−→q 0,n) is well defined for every −→q 0,n ∈ Lw∞(µ0,n,

Πrba(Y0,n)) possibly taking values from the set [0,∞]. Then −→q 0,n → Iµ0,n(−→q 0,n) is Gateaux

differentiable at every point in Lw∞(µ0,n,Πrba(Y0,n)), and the Gateaux derivative at the point
−→q ∗0,n in the direction −→q 0,n −−→q ∗0,n is given by

δIµ0,n(−→q ∗0,n,−→q 0,n −−→q ∗0,n) =

∫
X0,n

∫
Y0,n

log

(−→q ∗0,n(dyn;xn)

ν∗0,n(dyn)

)
(−→q 0,n −−→q ∗0,n)(dyn;xn)⊗ µ0,n(dxn)

where ν∗0,n ∈M1(Y0,n) is the marginal measure corresponding to −→q ∗0,n⊗µ0,n ∈M1(Y0,n×X0,n).

Proof. The proof, although lengthy, it is similar to the one in [25], hence it is omitted.

The constrained problem defined by (II.21) can be reformulated using Lagrange multipliers. The

equivalence of constrained and unconstrained problems is established in the following theorem.

November 3, 2018 DRAFT



21

Theorem IV.3. Suppose d0,n(xn, yn) ,
∑n

i=0 ρ(T ixn, T iyn), where d0,n : X0,n × Y0,n → R0 ≡

[0,∞] is continuous in the second argument and the set Γ ≡ {(xn, yn) ∈ X0,n × Y0,n :

d0,n(xn, yn) < D} is nonempty. Then the constrained problem as stated in Theorem III.5, is

equivalent to an unconstrained problem stated below.

inf
−→q 0,n∈

−→
Q0,n(D)

I(µ0,n,
−→q 0,n) = max

s≤0
inf−→q 0,n

{I(µ0,n,
−→q 0,n)− sG(−→q 0,n)}, G(−→q 0,n)

4
= `d0,n(−→q 0,n)−D

= max
s≤0

inf−→q 0,n

{
I(µ0,n,

−→q 0,n)− s
(∫
X0,n

∫
Y0,n

d0,n(xn, yn)

−→q 0,n(dyn;xn)⊗ µ0,n(dxn)−D
)}

where −→q 0,n ≡ −→q 0,n(dyn;xn) = ⊗ni=0qi(dyi; y
i−1, xi)-a.s. Further the infimum occurs on the

boundary of the set
−→
Q 0,n(D).

Proof. See Appendix.

Utilizing Theorem IV.3, we can reformulate the constraint problem as an unconstrained problem,

hence we have

Rna
0,n(D) = sup

s≤0
inf−→q 0,n

{
I(µ0,n,

−→q 0,n)− s(`d0,n(−→q 0,n)−D)
}
. (IV.26)

Note that −→q 0,n ∈ M1(Y0,n) are probability measures on Y0,n therefore, one should introduce

another set of Lagrange multipliers.

Moreover, −→q 0,n(dyn;xn) = ⊗ni=0qi(dyi; y
i−1, xi) is a consistent probability measure on Y0,n,

therefore for each k = 0, 1, . . . , n,
∫
Y0,k

−→q 0,k(dy
k;xk) = 1. This constraint is expressed via

n∑
i=0

∫
X0,i×Y0,i

λi(x
i, yi−1)

(−→q 0,i(dy
i;xi)− 1

)
µ0,i(dx

i)

(IV.27)

=
n∑
i=0

∫
X0,n×Y0,n

λi(x
i, yi−1)

(−→q 0,n(dyn;xn)− 1
)
µ0,n(dxn)

where {λi(·, ·) : i = 0, 1, . . . , n} are Lagrange multipliers.

Utilizing the additional constraint (IV.27) in (IV.26), then we derive the optimal reconstruction

kernel for the nonanticipative RDF, Rna
0,n(D). This is given in the following theorem.

Theorem IV.4. Suppose d0,n(xn, yn) =
∑n

i=0 ρ(T ixn, T iyn) and the conditions of Lemma III.2

and Theorem III.4 hold. Then the infimum in (IV.26) is attained at −→q ∗0,n ∈ Lw∞(µ0,n,Πrba(Y0,n))
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given by4

−→q ∗0,n(dyn;xn) = ⊗ni=0q
∗
i (dyi; y

i−1, xi)− a.s

= ⊗ni=0

esρ(T ixn,T iyn)ν∗i (dyi; y
i−1)∫

Yi e
sρ(T ixn,T iyn)ν∗i (dyi; yi−1)

, s ≤ 0 (IV.28)

and ν∗i (dyi; y
i−1) ∈ Q(Yi;Y0,i−1). The nonanticipative RDF is given by

Rna
0,n(D) = sD −

n∑
i=0

∫
X0,i×Y0,i−1

log
(∫
Yi
esρ(T ixn,T iyn)ν∗i (dyi; y

i−1)
)

×−→q ∗0,i−1(dyi−1;xi−1)⊗ µ0,i(dx
i) (IV.29)

where “s” is the optimal value of (IV.26).

If Rna
0,n(D) > 0 then s < 0 and

n∑
i=0

∫
X0,i

∫
Y0,i

ρ(T ixn, T iyn)−→q ∗0,i(dyi;xi)⊗ µ0,i(dx
i) = D (IV.30)

and s is obtained from the equality condition (IV.30).

Proof. The fully unconstrained problem of (IV.26) is obtained by introducing another set of

Lagrange multipliers {λi(·, ·) : i = 0, 1, . . . , n} as in (IV.27). Using the pair of Lagrange

multipliers {s, λ , {λi(·, ·) : i = 0, 1, . . . , n}} introduce the extended pay-off functional

Is,λD (µ0,n,
−→q 0,n) , I(µ0,n,

−→q 0,n)− s
(
`d0,n(−→q 0,n)−D

)
+

n∑
i=0

∫
X0,n

∫
Y0,n

λi(x
i, yi−1)

(−→q 0,n(dyn;xn)− 1
)
µ0,n(dxn).

This is a fully unconstrained problem on the vector space Lw∞(µ0,n,Mrba(Y0,n)). Utilizing The-

orem IV.2, the Gateaux derivative of Is,λD on Lw∞(µ0,n,Mrba(Y0,n)) at any point −→q ∗0,n in the

direction −→q 0,n −−→q ∗0,n is given by

δIs,λD (−→q ∗0,n;−→q 0,n −−→q ∗0,n) =

∫
X0,n×Y0,n

log

(−→q ∗0,n(dyn;xn)

ν∗0,n(dyn)

)
(−→q 0,n −−→q ∗0,n)(dyn;xn)⊗ µ0,n(dxn)

− s
∫
X0,n×Y0,n

d0,n(xn, yn)(−→q 0,n −−→q ∗0,n)(dyn;xn)⊗ µ0,n(dxn)

+
n∑
i=0

∫
X0,n×Y0,n

λi(x
i, yi−1)(−→q 0,n −−→q ∗0,n)(dyn;xn)⊗ µ0,n(dxn)

4Due to stationarity assumption νi(·; ·) = ν(·; ·) and q∗i (·; ·, ·) = q∗(·; ·, ·), ∀ i = 0, 1, . . . , n.
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=

∫
X0,n×Y0,n

log

(
e
∑n
i=0

(
−sρ(T ixn,T iyn)+λi(x

i,yi−1)
)−→q ∗0,n(dyn;xn)

ν∗0,n(dyn)

)
(−→q 0,n −−→q ∗0,n)(dyn;xn)⊗ µ0,n(dxn), ∀−→q 0,n ∈ Lw∞(µ0,n,Mrba(Y0,n)).

Since Is,λD (µ0,n,
−→q 0,n) is convex in −→q 0,n, it follows from the calculus of variations principle

that a necessary and sufficient condition for −→q ∗0,n to be a minimizer is δIs,λD (−→q ∗0,n;−→q 0,n −
−→q ∗0,n) = 0, ∀−→q 0,n ∈ Lw∞(µ0,n,Mrba(Y0,n)). Since the Gateaux derivative must be zero for all
−→q 0,n ∈ Lw∞(µ0,n,Mrba(Y0,n)) then

−→q ∗0,n(dyn;xn)

ν∗0,n(dyn)
= e

∑n
i=0

(
sρ(T ixn,T iyn)−λi(xi,yi−1)

)
− a.s.

Equivalently,

⊗ni=0

q∗i (dyi; y
i−1, xi)

ν∗i (dyi; yi−1)
= ⊗ni=0e

(
sρ(T ixn,T iyn)−λi(xi,yi−1)

)
− a.s.

Since
∫
Yi q
∗
i (dyi; y

i−1, xi) = 1, then

λi(x
i, yi−1) = log

∫
Yi
esρ(T ixn,T iyn)ν∗i (dyi; y

i−1), i = 0, 1, . . . , n.

Hence,

−→q ∗0,n(dyn;xn) = ⊗ni=0q
∗
i (dyi; y

i−1, xi)− a.s

= ⊗ni=0

esρ(T ixn,T iyn)ν∗i (dyi; y
i−1)∫

Yi e
sρ(T ixn,T iyn)ν∗i (dyi; yi−1)

.

Since s ≤ 0 and λi ≥ 0, i = 0, 1, . . . , n then −→q ∗0,n ∈ Lw∞(µ0,n,Πrba(Y0,n)). Substituting −→q ∗0,n
into Is,λD (µ0,n,

−→q 0,n) gives (IV.29).

Note that for s = 0 then Rna
0,n(D) = 0 and −→q ∗0,n(dyn;xn) = ν∗0,n(dyn), µ0,n−almost all xn ∈ X0,n.

This is trivial so we must have s < 0. From Theorem IV.3 the solution occurs on the boundary

of
−→
Q 0,n(D) giving (IV.30) for s < 0.

Often it is interesting to identify conditions so that the optimal reconstruction is Markov with

respect to {Xi : i = 0, 1, . . . , n}. The next remark discusses this case.

Remark IV.5. Note that if the distortion function satisfies ρ(T ixn, T iyn) = ρ(xi, T
iyn) then

according to Theorem IV.4 we have

q∗i (dyi; y
i−1, xi) = q∗i (dyi; y

i−1, xi)− a.s., i ∈ Nn (IV.31)
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that is, the reconstruction kernel is Markov in Xn. However, even if ρ(T ixn, T iyn) = ρ(xi, yi)

(single letter) one cannot claim that the optimal reconstruction distribution is also Markov with

respect to {Yi : i = 0, 1, . . . , n} because the right hand side (RHS) of (IV.28) does not satisfy

νi(dyi; y
i−1) = νi(dyi; yi−1).

The relation between nonanticipative RDF and filtering theory is developed for fixed source

distribution. In the next remark we discuss extensions of the nonanticipative RDF for a class of

sources and relations to robust filtering.

Remark IV.6. Nonanticipative RDF can be generalized to a class of sources to address robust-

ness of the filter. One such class is defined by a relative entropy constraint between the unknown

or true distribution PXn with respect to the nominal distribution P 0
Xn via

MP 0
Xn

(d) ,
{
PXn ∈M1(X0,n) : D(PXn||P 0

Xn) ≤ d
}

where d is the radius of uncertainty. Such a model of uncertainty or class of distributions is

often employed in filtering and control applications because it is related to robust filtering and

control using minimax methods [30], [31].

Therefore, the nonanticipative RDF for the class of sources MP 0
Xn

(d) is now defined using

minimax strategies by

Rna,+
0,n (D, d) = inf−→

P Y n|Xn∈
−→
Q0,n(D)

sup
PXn∈MP0

Xn
(d)

I(PXn ,
−→
P Y n|Xn) (IV.32)

Through (IV.32) one can obtain relations to minimax filtering strategies via nonanticipative RDF.

An example using this formulation for control of Gaussian state space systems over limited rate

channels is found in [32]. The investigation of the classical RDF for such a relative entropy class

of soures is discussed in [33], where it is also shown that the Von-Neumann minimax theorem

holds and hence one can interchange infimum and supremum operations. The validity of the Von-

Neumann minimax theorem for (IV.32), will imply that the optimal reconstruction distribution

for the minimax nonanticipative RDF is (IV.28), and hence the remaining task is to perform the

infimum operation over the relative entropy class of the solution to the nonanticipative RDF given

by (IV.29). This is the simplest approach to relate nonanticipative RDF for a class of sources

and minimax filtering techniques. Unlike minimax filtering techniques, the filtering obtained from

(IV.32) will always satisfy the fidelity criterion which can be defined with respect to probability
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of error or the average error.

However, it is not clear how one can apply sensitivity minimization to nonanticipative RDF filter,

because only the source distribution is given, while the observation map and filter are obtained

from the realization of the optimal reconstruction distribution (see Fig. I.2). This is contrary to

sensitivity minimization approach, where the input-output maps are given and depend on design

functions, such as, the controller or the filter [34], [35]. Nevertheless, when the source is a

second order Gaussian process described by a Power Spectral Density (PSD) and the fidelity of

reconstruction is the mean-square error, then it might be possible to apply robust filtering and

control techniques to address uncertainty of the PSD similar to the computation of capacity of

channels with memory [36].

V. REALIZATION OF NONANTICIPATIVE RDF

The realization of the nonanticipative RDF (optimal reconstruction kernel and nonanticipative

RDF) is equivalent to identifying the sensor mapping (see Fig. I.2) which generates the auxiliary

random process {Zi : i = 0, 1, . . . , n} so that the optimal reconstruction conditional distribution

is matched from the output of the source to the output of the filter. This intermediate mapping

consists of an encoder followed by a channel. Thus, the realization of the nonanticipative optimal

reconstruction distribution consists of a communication channel, an encoder and a decoder such

that the reconstruction from the sequence Xn to the sequence Y n matches the nonanticipative

rate distortion minimizing reconstruction kernel. Fig. V.3 illustrates a cascade of subsystems that

realizes the nonanticipative RDF. For the single letter expression of classical RDF this is related

to the so-called source-channel matching of information theory [37]. It is also described in [38]

and [39] for control over finite capacity communication channels, since this technique allows one

to design encoding/decoding schemes without encoding and decoding delays. The realization of

the optimal reconstruction kernel is given below.

Definition V.1. Given a source {PXi|Xi−1(dxi|xi−1) : i = 0, . . . , n}, a channel {PBi|Bi−1,Ai(dbi|

bi−1, ai) : i = 0, . . . , n} is a realization of the optimal nonanticipative reconstruction kernel

{q∗i (dyi; yi−1, xi) : i = 0, . . . , n} if there exists a pre-channel encoder {PAi|Ai−1,Bi−1,Xi(dai|ai−1,

bi−1, xi) : i = 0, . . . , n} and a post-channel decoder {PYi|Y i−1,Bi(dyi|yi−1, bi) : i = 0, . . . , n}
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such that

−→q ∗0,n(dyn;xn) , ⊗ni=0q
∗
i (dyi; y

i−1, xi)

= ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi)− a.s. (V.33)

where the joint distribution is

PXn,An,Bn,Y n(dxn, dan, dbn, dyn) (V.34)

= ⊗ni=0PYi|Y i−1,Bi,Ai,Xi(dyi|yi−1, bi, ai, xi)

⊗ PBi|Bi−1,Ai,Xi,Y i−1(dbi|bi−1, ai, xi, yi−1)⊗ PAi|Ai−1,Xi,Y i−1,Bi−1(dai|ai−1, xi, yi−1, bi−1)

⊗ PXi|Xi−1,Ai−1,Bi−1,Y i−1(dxi|xi−1, ai−1, bi−1, yi−1)− a.s.,

= ⊗ni=0PYi|Y i−1,Bi(dyi|yi−1, bi)⊗ PBi|Bi−1,Ai(dbi|bi−1, ai)

⊗ PAi|Ai−1,Bi−1,Xi(dai|ai−1, bi−1, xi)⊗ PXi|Xi−1(dxi|xi−1)− a.s.

The filter is given by {PXi|Bi−1(dxi|bi−1) : i = 0, . . . , n}.

Fig. V.3. Block Diagram of Realizable Nonanticipative Rate Distortion Function

Thus, {Bi : i = 0, 1, . . . , n} is the auxiliary random process which is obtained during the

realization procedure in order to define the filter {PXi|Bi−1(dxi|bi−1) : i = 0, . . . , n}. Note that

unlike Bayesian filtering in which the auxiliary process represents the observations which are

given á priori, in nonanticipative RDF this is identified during the realization procedure. In the

Definition V.1, the following MC assumptions are assumed.

1) (X i, Ai)↔ (Y i−1, Bi)↔ Yi;

2) (X i, Y i−1)↔ (Bi−1, Ai)↔ Bi;
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3) Y i−1 ↔ (Ai−1, Bi−1, X i)↔ Ai;

4) (Ai−1, Bi−1, Y i−1)↔ X i−1 ↔ Xi.

These conditional independent assumptions are natural since they correspond to data process-

ing inequalities [4]. Thus, if {PBi|Bi−1,Ai(dbi|bi−1, ai) : i = 0, . . . , n} is a realization of the

nonanticipative RDF minimizing kernel {q∗i (dyi; yi−1, xi) : i = 0, . . . , n} then the channel

connecting the source, encoder, channel, decoder achieves the nonanticipative RDF, and the

filter is obtained via {PXi|Bi−1(dxi|bi−1) : i = 0, . . . , n}. Moreover, the above MCs imply the

following data processing inequality, I(An → Bn)
4
=
∑n

i=0 I(Ai;Bi|Bi−1) ≥ I(Xn;Y n). The

optimal realization (encoder-channel-decoder) is defined as the one for which the last inequality

holds with equality.

VI. EXAMPLE

In this section, we present the filter for Gaussian Markov partially-observable processes by

utilizing the realization procedure of Section V.

Consider the following discrete-time partially observed linear Gauss-Markov system described

by  Xt+1 = AXt +BWt, X0 = X, t ∈ Nn

Yt = CXt +NVt, t ∈ Nn
(VI.35)

where Xt ∈ Rm is the state (unobserved) process of information source (plant), and Yt ∈ Rp

Fig. VI.4. Communication System

is the partially observed (measurement) process. The model in (VI.35) consists of a process

{Xt : t ∈ Nn} which is not directly observed; instead what is directly observed is the process

{Yt : t ∈ Nn} which is a noisy version of {Xt : t ∈ Nn}. This is a realistic model for any

sensor which collects information for an underlying process, since the sensor is a measurement
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device which is often subject to additive Gaussian noise. Hence, in this application the objective

is to compress the sensor data. Since we only treat the stationary case, we assume that (C,A)

is detectable and (A,
√
BBtr) is stabilizable, (N 6= 0) [18]. The state and observation noise

{(Wt, Vt) : t ∈ Nn} are mutually independent, independent of the Gaussian RV X0, with

parameters N(x̄0, Σ̄0), where Wt ∈ Rk and Vt ∈ Rd, are Gaussian IID processes with zero

mean and identity covariances.

The realization will be done following Fig. VI.4. The goal is to reconstruct {Yt : t ∈ Nn} by

{Ỹt : t ∈ Nn} causally. The distortion is single letter defined by

d0,n(yn, ỹn) ,
1

n+ 1

n∑
t=0

||yt − ỹt||2.

The objective is to compute

Rna
0,n(D) = inf−→

P Ỹ n|Y n∈
−→
Q0,n(D)

1

n+ 1
I(PY n ,

−→
P Ỹ n|Y n) (VI.36)

where
−→
Q 0,n(D) ,

{−→
P Ỹ n|Y n : E{d0,n(Y n, Ỹ n)} ≤ D

}
, and realize the reconstruction distribu-

tion. The reconstruction of {Xt : t ∈ Nn} when it is fully observed, i.e., when Yt = Xt, is

realized over a scalar additive white Gaussian noise (AWGN) channel in [9], while the partially

observed scalar reconstruction of {Yt : t ∈ Nn} is realized over a scalar AWGN channel in [38]

via indirect methods (utilizing upper bounds which are achievable).

Here, we consider the vector process Yt ∈ Rp and realize it over a vector AWGN channel.

The methodology is based on the explicit formulae of optimal reconstruction of Theorem IV.4.

According to Theorem IV.4, the optimal reconstruction is given by

−→
P ∗
Ỹ n|Y n(dỹn|yn) = ⊗nt=0

es||ỹt−yt||
2
PỸt|Ỹ t−1(dỹt|ỹt−1)∫

Yt e
s||ỹt−yt||2PỸt|Ỹ t−1(dỹt|ỹt−1)

, s ≤ 0 (VI.37)

where each term in the RHS is identical because our results are derived based on the stationarity

assumption. Hence, from (VI.37) it follows that PỸt|Ỹ t−1,Y t = PỸt|Ỹ t−1,Yt
(dỹt|ỹt−1, yt)−a.s., that

is the reconstruction is Markov with respect to the process {Yt : t ∈ Nn}. Moreover, since the

exponential term ||ỹt − yt||2 in the RHS of (VI.37) is quadratic in (yt, ỹt), and {Xt : t ∈ Nn}

is Gaussian then {(Xt, Yt) : t ∈ Nn} is jointly Gaussian, and it follows that a Gaussian

distribution PỸt|Ỹ t−1,Yt
(·|ỹt−1, yt) (for a fixed realization of (ỹt−1, yt)), and Gaussian distribution

PỸt|Ỹ t−1(·|ỹt−1) can match the left and right side of (VI.37). Therefore, at time t ∈ Nn, the

output Ỹt of the optimal reconstruction channel depends on Yt and the previous channel outputs
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Ỹ t−1, and its conditional distribution is Gaussian. Hence, the channel connecting {Yt : t ∈ Nn}

to {Ỹt : t ∈ Nn} has the general form

Ỹt = ĀtYt + B̄tỸ
t−1 + Zt, t ∈ Nn (VI.38)

where Āt ∈ Rp×p, B̄t ∈ Rp×tp, and {Zt : t ∈ Nn} is an independent sequence of Gaussian vec-

tors. Since we treat the stationary case, the finite horizon analysis below is only an intermediate

state before we give the stationary solution.

The communication channel (VI.38) can be realized via a memoryless additive Gaussian noise

channel with feedback [4] defined by

Bt = At + Zt, t ∈ Nn (VI.39)

where the encoder, at time t, is a mapping At = Φt(Yt, Ỹ
t−1) with power Pt , TraceE{AtAtrt },

and the decoder at time t ∈ Nn receives Bt and computes the reconstruction Ỹt = Ψt(B
t, Ỹ t−1).

By Section V, in view of the MCs we have the data processing inequality I(PY n ,
−→
P Ỹ n|Y n) ≤

I(An → Bn) = I(An;Bn), where the last equality holds because the channel is memoryless

[4].

For the realization, the first step is the whitening of the source {Yt : t ∈ Nn} by introducing the

Gaussian innovation process {Kt : t ∈ Nn}, defined by

Kt , Yt − E
{
Yt|σ{Ỹ t−1}

}
, t ∈ Nn (VI.40)

whose covariance is defined by

Λt , E{KtK
tr
t }, t ∈ Nn. (VI.41)

The second step is the diagonalization of the covariance {Λt : t ∈ Nn} by introducing a unitary

transformation {Et : t ∈ Nn} such that

EtΛtE
tr
t = diag{λt,1, . . . λt,p}, t ∈ Nn. (VI.42)

Thus, Γt , EtKt, where {Γt : t ∈ Nn} has independent components for each t ∈ Nn. In

practise, the encoder consists of a pre-encoder which preprocesses the observations {Yt : t ∈ Nn}

by generating {Kt : t ∈ Nn} and then applies {Et : t ∈ Nn} to it. At the decoder end, there is

a pre-decoder which generates {K̃t : t ∈ Nn} defined by

K̃t , Ỹt − E
{
Yt|σ{Ỹ t−1}

}
, t ∈ Nn (VI.43)
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on which the unitary transformation {Et : t ∈ Nn} is applied to generate Γ̃t = EtK̃t. Next, we

calculate the RDF by taking advantage of the preprocessing at the encoder-decoder. Note that

the fidelity criterion d0,n(·, ·) is not affected by the preprocessing at the encoder-decoder since

d0,n(Y n, Ỹ n) = d0,n(Kn, K̃n) = 1
n+1

∑n
t=0 ||K̃t −Kt||2 = 1

n+1

∑n
t=0 ||Γ̃t − Γt||2. Now, we show

that

I(PY n ,
−→
P Ỹ n|Y n) =

n∑
t=0

(
H(K̃t|K̃t−1)−H(K̃t|K̃t−1, Kt)

)
=

n∑
t=0

(
H(Γ̃t|Γ̃t−1)−H(Γ̃t|Γ̃t−1,Γt)

)
.

By (VI.37),

−→
P Ỹ n|Y n(dỹn|xn) = ⊗nt=0PỸt|Ỹ t−1,Yt

(dỹt|ỹt−1, yt)− a.s.

Hence,

I(PY n ,
−→
P Ỹ n|Y n) =

n∑
t=0

(
H(Ỹt|Ỹ t−1)−H(Ỹt|Ỹ t−1, Yt)

)
.

Since conditional entropy is translation invariant, utilizing (VI.43) gives

H(Ỹt|Ỹ t−1) = H(K̃t|Ỹ t−1)

= H(K̃t|Ỹ−1, Ỹ0, . . . , Ỹt−1)

(a)
= H

(
K̃t|Ỹ−1, Ỹ0, . . . , Ỹt−2, K̃t−1 + E(Ỹt−1|σ{Ỹ t−2})

)
= H(K̃t|Ỹ−1, Ỹ0, . . . , Ỹt−2, K̃t−1)

= H(K̃t|K̃t−1) (VI.44)

and repeated application of step (a) gives (VI.44). Similarly, H(Ỹt|Ỹ t−1, Yt) = H(K̃t|Ỹ t−1, Kt) =

H(K̃t|K̃t−1, Kt). Hence,

I(PY n ,
−→
P Ỹ n|Y n) =

n∑
t=0

(
H(K̃t|K̃t−1)−H(K̃t|K̃t−1, Kt)

)
≡

n∑
t=0

I(Kt; K̃t|K̃t−1).

Since the unitary transformation is non-singular then I(PY n ,
−→
P Ỹ n|Y n) =

∑n
t=0 I(Kt; K̃t|K̃t−1) =∑n

t=0 I(Γt; Γ̃t|Γ̃t−1), t ∈ Nn. Therefore, (VI.36) is equivalent to the following expression.

Rna
0,n(D) = Rna,Γn,Γ̃n

0,n (D) , inf
−→
P Γ̃n|Γn : E

{
d0,n(Γn,Γ̃n)≤D

} 1

n+ 1
I(PΓn ,

−→
P Γ̃n|Γn). (VI.45)
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By [3] (invoking an upper bound and Shannon’s lower bound if necessary) the stationary solution

of (VI.45) is given by

lim
n−→∞

Rna,Γn,Γ̃n

0,n (D) = lim
n−→∞

1

2

1

n+ 1

n∑
t=0

p∑
i=1

log
(λt,i
δt,i

)
where

δt,i ,

 ξt if ξt ≤ λt,i

λt,i if ξt > λt,i
, t ∈ Nn, i = 2, . . . , p

and {ξt : t ∈ Nn} is chosen such that
∑p

i=1 δt,i = D. Define ηt,i
4
= 1 − δt,i

λt,i
, i = 1, . . . , p,

∆t , diag{δt,1, . . . , δt,p}, and Ht , diag{ηt,1, . . . , ηt,p} ∈ Rp×p.

As a result, the reconstruction conditional distribution is given by

P ∗
Γ̃n|Γn(dγ̃n|γn) = ⊗nt=0P

∗
Γt|Γ̃t(dγ̃t|γt)− a.s.

where P ∗
Γ̃t|Γt

(·|·) ∼ N(HtΓt, Ht∆t).

Realization of Nonanticipative RDF Over Vector AWGN Channel. Consider a vector channel

Fig. VI.5. Design of Discrete-Time Communication System

Bt = At + Zt, t ∈ Nn, where Zt is Gaussian zero mean, Q , Cov(Zt) = diag{q1, q2, . . . , qp},

and At ∈ Rp. By Section V, and the memoryless nature of the channel we know that I(An →

Bn) = I(An;Bn) ≥ I(PY n ,
−→
P Ỹ n|Y n). Hence, we compress the source and transmit it to the

decoder over the vector channel, so that the RDF is equal to the capacity of the channel,

i.e., limn−→∞R
na
0,n(D) = limn−→∞

1
n+1

I(An;Bn). That is, we match the source to the channel.

Therefore, we need to design the operators {(At,Bt) : t ∈ Nn} so that the compressed signal

At = AtΓt, is sent through an AWGN channel with feedback (shown in Fig. VI.5), after which
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the received signal is decompressed by Γ̃t = BtBt at the pre-decoder. By the knowledge of the

channel output at the decoder, the mean square estimator X̂t is generated at the decoder since

X̂t , E
{
Xt|σ{Ỹ t−1}

}
(one may also use σ{Bt−1} to find the filter of {Xt : t ∈ Nn}).

The compression operator {At : t ∈ Nn} is chosen so that limn−→∞R
na
0,n(D) = limn−→∞

1
n+1

I(An;Bn).

Recall that Bt = At + Zt, At = AtEtKt, Q , Cov(Zt), TraceE{AtAtrt } = Pt, t = 0, 1, . . . n.

Hence, we find {At : t ∈ Nn} so that the following holds.

lim
n−→∞

1

n+ 1
C0,n(P0, . . . Pn) , lim

n−→∞

1

n+ 1
I(An;Bn) = lim

n−→∞

1

2

1

n+ 1

n∑
t=0

log |I + E{AtAtrt }Q−1|

= lim
n−→∞

1

2

1

n+ 1

n∑
t=0

log
|Λt|
|∆t|

= lim
n−→∞

Rna
0,n(D).

From the previous equality we obtain

At ,
√
Q∆−1

t Ht, t ∈ Nn.

The decompression operator {Bt : t ∈ Nn} is chosen so that the desired distortion is achieved

by the above realization. The decompressed channel output Γ̃t = BtBt due to transmitting the

compressed input At = AtΓt is

Γ̃t = BtBt = Bt(At + Zt) = Bt(AtΓt + Zt), Γt = EtKt

= HtEtKt + BtZt, t ∈ Nn. (VI.46)

By pre-multiplying Γ̃t by Etr
t we can construct

K̃t = Etr
t Γ̃t = Etr

t HtEtKt + Etr
t BtZt, t ∈ Nn.

The reconstruction of Yt is given by the sum of K̃t and CX̂t as follows.

Ỹt = Ψt(B
t, Ỹ t−1)

= K̃t + CX̂t, X̂t = E
{
Xt|σ{Ỹ t−1}

}
(VI.47)

= Etr
t HtEtKt + Etr

t BtZt + CX̂t, t ∈ Nn. (VI.48)

Next, we determine {Bt : t ∈ Nn}.

First, we notice that

E
{

(Yt − Ỹt)tr(Yt − Ỹt)
}

= Trace
(
E
{

(Yt − Ỹt)(Yt − Ỹt)tr
})
.
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Then we can compute

E
{

(Yt − Ỹt)tr(Yt − Ỹt)
}

= TraceE
{

(Kt − K̃t)(Kt − K̃t)
tr
}

= TraceE
{

(Kt − Etr
t Γ̃t)(Kt − Etr

t Γ̃t)
tr
}

= TraceE
{

(Kt − Etr
t HtEtKt − Etr

t BtZt)(Kt − Etr
t HtEtKt − Etr

t BtZt)tr
}

= TraceE
{(

(I − Etr
t HtEt)Kt − Etr

t BtZt
)(

(I − Etr
t HtEt)Kt − Etr

t BtZt
)tr}

= Trace
{

(I − Etr
t HtEt)Λt(I − Etr

t HtEt)
tr + Etr

t BtQBtrt Et
}

= Trace
{

(I − Etr
t HtEt)E

tr
t diag(λt,1, . . . , λt,p)Et(I − Etr

t HtEt)
tr + Etr

t BtQBtrt Et
}

= Trace
{
Etr
t

(
(I −Ht)diag(λt,1, . . . , λt,p)(I −Ht)

tr + (BtQBtrt )
)
Et

}
(b)
= Trace

{
diag(δt,1, . . . , δt,p)

}
= D

where (b) holds if we set

Bt ,
√
Ht∆tQ−1, t ∈ Nn.

This shows that the realization of Fig. VI.5 achieves end-to-end average distortion equal to D.

Decoder. The decoder is Ỹt = K̃t + CX̂t, where {X̂t : t ∈ Nn} is obtained from the modified

Kalman filter as follows. Recall that

Ỹt = K̃t + CX̂t

= Etr
t HtEt(Yt − CX̂t) + Etr

t BtZt + CX̂t

= Etr
t HtEt(CXt +NVt − CX̂t) + Etr

t BtZt + CX̂t

= Etr
t HtEt(CXt − CX̂t) + CX̂t + Etr

t HtEtNVt + Etr
t BtZt (VI.49)

where {Vt : t ∈ Nn} and {Zt : t ∈ Nn} are independent Gaussian vectors. Then X̂t =

E
{
Xt|σ{Ỹ t−1}

}
is given by the modified Kalman filter

X̂t+1 = AX̂t + AΣt(E
tr
t HtEtC)trM−1

t

(
Ỹt − CX̂t

)
, X̂0 = x̄0 (VI.50)

Σt+1 = AΣtA
tr − AΣt(E

tr
t HtEtC)trM−1

t (Etr
t HtEtC)ΣtA+BBtr

t , Σ0 = Σ̄0 (VI.51)

where

Mt = Etr
t HtEtCΣt(E

tr
t HtEtC)tr + Etr

t HtEtNN
tr(Etr

t HtEt)
tr + Etr

t BtBtrt Et.
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Stationary Solution: Infinite Horizon. Now, we are ready to give the complete solution to the

stationary nonanticipative RDF and its realization. As t −→ ∞, under the assumption that the

linear Gauss-Markov system is stabilizable and detectable, we have

Σ∞ = AΣ∞A
tr − AΣ∞(Etr

∞H∞E∞C)trM−1
∞ (Etr

∞H∞E∞C)Σ∞A+BBtr
∞

where

M∞ = Etr
∞H∞E∞CΣ∞(Etr

∞H∞E∞C)tr + Etr
∞H∞E∞NN

tr(Etr
∞H∞E∞)tr + Etr

∞B∞Btr∞E∞

and E∞ is the unitary matrix that diagonalizes Λ∞ given by

E∞Λ∞E
tr
∞ = diag(λ∞,1, . . . , λ∞,p)

and

δ∞,i ,

 ξ∞ if ξ∞ ≤ λ∞,i

λ∞,i if ξ∞ > λ∞,i
, i = 1, . . . , p

satisfying
∑p

i=1 δ∞,i = D.

Define

∆∞ = diag(δ∞,1, . . . , δ∞,p), H∞ = diag(η∞,1, . . . , η∞,p)

where η∞,i = 1− δ∞,i
λ∞,i

. The nonanticipative RDF can be computed as follows.

Rna(D) = lim
n−→∞

inf
PỸ n|Y n (dỹn|yn)∈

−→
Q0,n(D)

1

n+ 1
I(PY n ,

−→
P Ỹ n|Y n)

= lim
n−→∞

(
1

2

1

n+ 1

n∑
t=0

p∑
i=1

log
(λt,i
δt,i

))

=
1

2

p∑
i=1

log
(λ∞,i
δ∞,i

)
=

1

2
log
|Λ∞|
|∆∞|

=
1

2
lim
n−→∞

C0,n(P0, . . . , Pn)
(c)
≡ C(P )(VI.52)

where (c) comes from the fact that the power constraint satisfies limt−→∞ TraceE{AtAtrt } =

limt−→∞ Pt = P . Thus, for a given distortion level D, C(P ) = Rna(D) is the minimum capacity

under which there exists a realizable filter for the data reconstruction of {Yt : t ∈ N} by

{Ỹt : t ∈ N} ensuring an average distortion equal to D. Note that for D
p
< mini λ∞,i then

Rna(D) = 1
2

log |Λ∞|
(D
p

)p
, e.g., δ∞,i = D

p
. Hence, from (VI.52) we have D = p

(
|Λ∞|e−2Rna

) 1
p
. As a

result, we have the direct relation between the reconstruction error D and the rate Rna. Finally,

the filter is the steady state version of (VI.50), (VI.51) with initial condition X̂0 = E{X0|Y −1}

and Σ0 the covariance of X0 − X̂ which is Gaussian N(0,Σ∞).
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VII. CONCLUSION

This paper investigates nonanticipative RDF on abstract spaces. Existence of the optimal

reconstruction conditional distribution is shown, while closed form expression is derived for the

stationary case. The relation between filtering theory and nonanticipative rate distortion theory

is discussed via a realization procedure. Finally, an example is presented which illustrates the

realization of the nonanticipative RDF.

APPENDIX

A. Proof of Lemma III.2

To show closedness of
−→
Qad as a subset of Qad it suffices to show that

⊗ni=0q
α
i (·; yi−1, xi)

w∗−→ ⊗ni=0q
0
i (·; yi−1, xi).

This will be shown by induction. Consider n = 0. For any h0(x0, y0) ∈ L1(µ0, BC(Y0)), by

definition of weak∗-convergence it follows from (a) that

lim
α−→∞

∫
X0×Y0

h0(x0, y0)qα0 (dy0;x0)µ0(dx0) =

∫
X0×Y0

h0(x0, y0)q0
0(dy0;x0)µ0(dx0).

Consider n = 1. For h̃0(·, ·) ∈ L1(µ0, BC(Y0)), h̃1(·, ·) ∈ L1(µ1, BC(Y1)) We need to show

that

lim
α−→∞

∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)qα1 (dy1; y0, x
1)

)
µ1(dx1;x0)

)
qα0 (dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)q0
1(dy1; y0, x

1)

)
µ1(dx1;x0)

)
q0

0(dy0;x0)

)
µ0(dx0)

∣∣∣∣∣ = 0.

The latter equation is written as follows.∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)qα1 (dy1; y0, x
1)

)
µ1(dx1;x0)

)
qα0 (dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)q0
1(dy1; y0, x

1)

)
µ1(dx1;x0)

)
q0

0(dy0;x0)

)
µ0(dx0)

∣∣∣∣∣
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≤

∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)q0
1(dy1; y0, x

1)

)
µ1(dx1;x0)

)
︸ ︷︷ ︸

h̃1(x0,y0)

qα0 (dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)q0
1(dy1; y0, x

1)

)
µ1(dx1;x0)

)
q0

0(dy0;x0)

)
µ0(dx0)

∣∣∣∣∣
+

∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)qα1 (dy1; y0, x
1)

)
µ1(dx1;x0)

)
qα0 dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)q0
1(dy1; y0, x

1)

)
µ1(dx1;x0)

)
qα0 (dy0;x0)

)
µ0(dx0)

∣∣∣∣∣.
We need to show that both RHS terms go to zero as a −→∞. Let ε > 0 be given. Then, there

exists an αε ∈ D such that for all α � αε the first RHS term can be written as∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)h̃1(x0, y0)
(
qα0 (dy0;x0)− q0

0(dy0;x0)
))

µ0(dx0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)h̃1(x0, y0)
(
qα0 (dy0;x0)− q0

0(dy0;x0)
))

µ0(dx0)

∣∣∣∣∣
≤
∫
X0

∣∣∣∣∣
∫
Y0

h0(x0, y0)h̃1(x0, y0)
(
qα0 (dy0;x0)− q0

0(dy0;x0)
)∣∣∣∣∣µ0(dx0)

≤ ε, ∀ ε > 0 and ∀α � αε

where the last inequality follows from condition (b), e.g., h̃0(·, ·) ∈ L1(µ0, BC(Y0)).

The second RHS term can be written as∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0)

(∫
X1

(∫
Y1

h1(x1, y1)
(
qα1 (dy1; y0, x

1)− q0
1(dyi; y0, x

1)
))

µ1(dx1;x0)

)
︸ ︷︷ ︸

h̃α1 (x0,y0)

⊗qα0 (dy0;x0)

)
µ0(dx0)

∣∣∣∣∣ =

∫
X0

∫
Y0

h0(x0, y0)h̃α1 (x0, y0)qα0 (dy0;x0)⊗ µ0(dx0). (A.53)

By condition (c) for i = 1, and ∀ ε > 0 and α � αε we have

sup
y0∈Y0

∫
X1

∣∣∣∣ ∫
Y1

h1(x1, y1)qα1 (dy1; y0, x
1)−

∫
Y1

h1(x1, y1)q0
1(dy1; y0, x1)

∣∣∣∣µ1(dx1;x0) ≤ ε, ∀ x0 ∈ X0.

Utilizing the last inequality into (A.53) yields that in the limit as α −→∞, then (A.53) goes to

zero.
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Next, suppose that for n = k and for all ε > 0 there exists αε ∈ D such that for any α � αε∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0) . . .

(∫
Xk

(∫
Yk
hk(xk, yk)q

α
k (dyk; y

k−1, xk)

)
µk(dxk;x

k−1)

)
. . . qα0 (dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0) . . .

(∫
Xk

(∫
Yk
hk(xk, yk)q

0
k(dyk; y

k−1, xk)

)
µk(dxk;x

k−1)

)
. . . q0

0(dy0;x0)

)
µ0(dx0)

∣∣∣∣∣ ≤ ε.

To conclude the derivation we need to show that for n = k + 1

⊗k+1
i=0 q

α
i (·; yi−1, xi)

w∗−→ ⊗k+1
i=0 q

0
i (·; yi−1, xi).

Consider n = k + 1. We need to show that for all ε > 0 there exists αε ∈ D such that for any

α � αε∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0) . . .

(∫
Xk+1

(∫
Yk+1

hk+1(xk+1, yk+1)qαk+1(dyk+1; yk, xk+1)

)
µk+1(dxk+1;xk)

)
. . . qα0 (dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0) . . .

(∫
Xk+1

(∫
Yk+1

hk+1(xk+1, yk+1)q0
k+1(dyk+1; yk, xk+1)

)
µk+1(dxk+1;xk)

)

. . . q0
0(dy0;x0)

)
µ0(dx0)

∣∣∣∣∣ ≤ ε.

Since,∣∣∣∣∣
∫
X0

(∫
Y0

h0(x0, y0) . . .

(∫
Xk+1

(∫
Yk+1

hk+1(xk+1, yk+1)qαk+1(dyk+1; yk, xk+1)

)
µk+1(dxk+1;xk)

)
. . . qα0 (dy0;x0)

)
µ0(dx0)

−
∫
X0

(∫
Y0

h0(x0, y0) . . .

(∫
Xk+1

(∫
Yk+1

hk+1(xk+1, yk+1)q0
k+1(dyk+1; yk, xk+1)

)
µk+1(dxk+1;xk)

)

. . . q0
0(dy0;x0)

)
µ0(dx0)

∣∣∣∣∣
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≤

∣∣∣∣∣
∫
X0,k

∫
Y0,k

⊗ki=0hi(xi, yi)

(∫
Xk+1

∫
Yk+1

hk+1(xk+1, yk+1)
(
qαk+1(dyk+1; yk, xk+1)

−q0
k+1(dyk+1; yk, xk+1)

)
µk+1(dxk+1;xk)

)
⊗ki=0 q

α
i (dyi; y

i−1, xi)⊗ µi(dxi;xi−1)

∣∣∣∣∣
+

∣∣∣∣∣
∫
X0,k

∫
Y0,k

⊗ki=0hi(xi, yi)

(∫
Xk+1

∫
Yk+1

hk+1(xk+1, yk+1)q0
k+1(dyk+1; yk, xk+1)µk+1(dxk+1;xk)

)
︸ ︷︷ ︸

h̃k+1(xk,yk)

⊗ki=0

(
qαi (dyi; y

i−1, xi)− q0
i (dyi; y

i−1, xi)
)
⊗ µi(dxi;xi−1)

∣∣∣∣∣.
By condition (c) the following inequality holds, ∀xk ∈ X0,k,

sup
yk∈Y0,k

∫
Xk+1

∣∣∣∣ ∫
Yk+1

hk+1(xk+1, yk+1)
(
qαk+1(dyk+1; yk, xk+1)−

q0
k+1(dyk+1; yk, xk+1)

)∣∣∣∣µk+1(dxk+1;xk)

≤ ε, ∀ ε > 0 and ∀ α � αε.

Also, by condition (b), h̃k+1 ∈ L1(µ0,k, BC(Y0,k)). Utilizing the previous observations and the

induction hypothesis ⊗ki=0q
α
i (·; yi−1, xi)

w∗−→ ⊗ki=0q
0
i (·; yi−1, xi) in the two inequalities above,

then in the limit as α −→∞, the terms in the inequality go to zero.

As a result,
−→
Qad is a weak∗-closed set. Being a weak∗-closed subset of the weak∗-compact set

Qad,
−→
Qad is also weak∗-compact.

B. Proof of Theorem IV.3

The proof is based on Lagrange Duality theorem [28, Theorem 1, p. 224]. We choose X ,

Lw∞(µ0,n,Mrba(Y0,n)) which is clearly a vector space. For the set Ω the natural choice is the set

Ω =
−→
Qad ≡ Lw∞(µ0,n,Πrba(Y0,n)) ⊆ X . Define

G(−→q 0,n) , `d0,n(−→q 0,n)−D, −→q 0,n ∈ Lw∞(µ0,n,Mrba(Y0,n))

,
∫
X0,n

(∫
Y0,n

d0,n(xn, yn)−→q (dyn;xn)

)
µ0,n(dxn)−D.

It is clear that G(·) is a convex mapping from Lw∞(µ0,n,Mrba(Y0,n)) into the real line with

the natural ordering (R,�) , Z. Also recall that −→q 0,n → I(µ0,n;−→q 0,n) is convex and well

defined on Ω and that, by Theorem III.5, inf−→q 0,n∈
−→
Q0,n(D)

I(µ0,n;−→q 0,n) exists and is finite. Thus,
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according to the Lagrange duality theorem referred to above, it suffices to show that there exists

a −→q 1
0,n ∈ Ω such that

G(−→q 1
0,n) =

∫
X0,n

{∫
Y0,n

d0,n(xn, yn)−→q 1
0,n(dyn;xn)

}
µ0,n(dxn)−D < 0.

Introduce the sets A1 , {xn ∈ X0,n : Γxn 6= ∅} and A0 , X0,n \ A1, with Γxn denoting the

xn-section of Γ. Define the measure valued function −→q 1
0,n as follows

−→q 1
0,n(Γxn ;xn) = 0, ∀ x ∈ A0; −→q 1

0,n(Y0,n;xn) = 1, ∀ xn ∈ X0,n

0 ≤ −→q 1
0,n(B;xn) ≤ 1, B ⊂ Γxn ,

−→q 1
0,n(Γxn ;xn) = 1, ∀ xn ∈ A1

where B ∈ B(Y0,n). Since by hypothesis Γ 6= ∅ we have µ0,n(A1) > 0 and thus the kernel −→q 1
0,n

is well defined and it belongs to Lw∞(µ0,n,Πrba(Y0,n)). Using this kernel in the expression for

`d0,n(−→q 0,n), one can easily verify that `d0,n(−→q 1
0,n) < D and hence G(−→q 1

0,n) < 0. Then, by the

Lagrange Duality theory, we arrive at the conclusion of the theorem as stated. Also it follows from

the same duality theory that if the infimum is achieved by some −→q ∗0,n ∈ Lw∞(µ0,n,Πrba(Y0,n)),

then

s

(∫
X0,n

∫
Y0,n

d0,n(xn, yn)−→q ∗0,n(dyn;xn)⊗ µ0,n(dxn)−D
)

= 0. (A.54)

In other words, for non-zero s ∈ (−∞, 0], solution occurs on the boundary. This completes the

proof.
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