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Abstract—This note describes a model predictive control (MPC)
formulation for discrete-time linear systems with hard constraints on
control and state variables, under the assumption that the solution of
the associated quadratic program is neither optimal nor satisfies the
inequality constraints. This is common in embedded control applications,
for which real-time constraints and limited computing resources dictate
restrictions on the possible number of on-line iterations that can be
performed within a sampling period. The proposed approach is rather
general, in that it does not refer to a particular optimization algorithm,
and is based on the definition of an alternative MPC problem that
we assume can only be solved within bounded levels of suboptimality,
and violation of the inequality constraints. By showing that the inexact
solution is a feasible suboptimal one for the original problem, asymptotic
or exponential stability is guaranteed for the closed-loop system. Based
on the above general results, we focus on a specific dual accelerated
gradient-projection method to obtain a stabilizing MPC law that only
requires a predetermined maximum number of on-line iterations.

Index Terms—Model predictive control, real-time control, embedded
control, numerical optimization.

I. INTRODUCTION

The use of MPC [2] has recently expanded from traditional appli-
cations in the process industry to fields like mechatronics, automotive,
and aerospace, thanks to the increasingly available computing power,
and to fast optimization algorithms. The most common formulation
of an MPC problem is based on a linear model, linear constraints
on inputs and states, and quadratic stage and terminal costs. The
resulting optimization problem to be solved on line is translated
into a quadratic program (QP), for which fast solvers are available,
such as active-set methods [3], [4], interior-point methods [5], [6]
and semismooth Newton methods [7]. However, one of the main
issues in the practical implementation of embedded controllers is the
certification of the worst-case execution time. The recent research on
real-time MPC aims at designing optimization algorithms that give
an acceptable suboptimal solution in an a-priori bounded number
of iterations, for which the bounds are much tighter than for the
previously-mentioned solvers (see, e.g., [8, Section IA]). To achieve
this goal, different variants of fast gradient methods, first proposed by
Nesterov [9], [10] have been applied to MPC [8], [11], [12]. In [13]
the authors proposed an accelerated dual gradient projection method
based on [9], called GPAD (see also [14]–[16]). Although GPAD is a
dual method, bounds on the maximum number of iterations required
to achieve specified levels of primal suboptimality and constraint
violation are provided as complexity certificates. In case a primal
method is used (e.g., [8]), the suboptimal solution will not violate the
inequality constraints, and closed-loop stability can be proved [17].
On the other hand, dual methods (e.g., [15]) can be successfully
applied to more general MPC formulations (with polytopic mixed
constraints on states and inputs), but they have the drawback of pro-
viding inexact solutions (i.e., the inequality constraints are violated)
for the primal problem. Solutions to this drawback (which, however,
do not provide a-priori bounds on the maximum number of iterations
valid for the entire region of attraction) were recently proposed in
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[18], [19]. The main contribution of the present work is to prove
asymptotic/exponential stability of closed-loop systems in a given
domain of attraction in case an optimization solver is used that only
gives a solution within prescribed tolerances on suboptimality and
constraints violation. These are typically related to the maximum
number of iterations that can be executed within a sampling period,
such as in the algorithms of [15], [16]. Taking the selected tolerances
into account, the original MPC problem is modified so that stability
is enforced by design, in spite of the possible low quality of the
solution, at the same time guaranteeing bounds on performance loss
with respect to the standard MPC formulation (i.e., the problem one
would solve exactly).

II. BASIC NOTATION

Let R>0, R≥0, N>0 and N≥0 denote the sets of positive reals,
non-negative reals, positive integers and non-negative integers, re-
spectively. Given two integers a ≤ b, let N[a,b] , {a, a + 1, ..., b},
and Nb , {0, 1, ..., b}. Given v ∈ Rn, let ‖v‖ denote its Euclidean
norm. Given u, v ∈ Rn, the notation u ≤ v refers to component-
wise inequalities. Given M ∈ Rn×n, M ′ is its transpose, ρ(M)
its spectral radius. We write M � 0 (M � 0) if M is symmetric
positive semidefinite (positive definite). For M ∈ Rn×n, we use
λmin(M) and λmax(M) to indicate its minimum and maximum
eigenvalues, respectively. Also, 1n , [1 . . . 1]′ ∈ Rn. Given a
set X ⊆ Rn, its interior is denoted by int(X ). Given λ ∈ R≥0, we
define λX , {x ∈ Rn : x = λy, y ∈ X}.

III. STANDARD MPC FORMULATION

Consider the discrete-time LTI state-space model

x(t+ 1) = Ax(t) +Bu(t) (1)

where t ∈ N≥0, x ∈ Rnx , u ∈ Rnu , and the state vector x is
assumed to be available for feedback. The state and input values can
be represented in a single vector

z(t) ,

[
x(t)
u(t)

]
∈ Rnz , nz , nx + nu

and are required to satisfy the constraint

z(t) ∈ Z , {z ∈ Rnz | Fzz ≤ 1sz} (2)

with Fz =
[
F G

]
, and F ∈ Rsz×nx , G ∈ Rsz×nu , sz ∈ N>0.

Note that (2) implies that Z is nonempty, closed, and 0 ∈ int(Z).
We additionally require Z to be compact. The representation of Z
in (2) is without loss of generality [20], since it can represent any
polytope that contains the origin in its interior.

The problem of regulating x(t) to the origin while satisfying (2)
point-wise in time can be solved by a standard MPC law for linear
systems. In particular, the procedure described in the remainder of this
section is a starting point for the subsequent theoretical development.
Given two weight matrices Q = Q′ ∈ Rnx×nx and R = R′ ∈
Rnu×nu , we define the stage cost `(x, u) , 1

2
(x′Qx+ u′Ru).

Assumption 1: a Matrices A, B, Q, R satisfy one of the following:
(a) The pair (A,B) is stabilizable, Q � 0, and R � 0.
(b) The pair (A,B) is stabilizable, Q � 0 is such that C′C = Q,

C ∈ Rny×nx , the pair (A,C) is detectable, R � 0. �

Clearly, Assumption 1a is more restrictive than Assumption 1b. In
both cases, we define the linear auxiliary control law, κ(x) , Kx,
where K ∈ Rnu×nx is the gain associated to the infinite-horizon
linear quadratic regulator (IH-LQR) defined by matrices A, B, Q, and
R. By applying u(t) = κ(x(t)), we obtain the closed-loop system

x(t+ 1) = AKx(t), (3)
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where AK , A + BK. By the theory of IH-LQR, Assumption 1
implies ρ(AK) < 1. The terminal cost is defined as Vf (x) , 1

2
x′Px,

where P = P ′ � 0 is the solution of the algebraic Riccati equation
associated with the IH-LQR. Finally, we define the terminal set

Xf , {x ∈ Rnx |Ffx ≤ 1sf }, (4)

with Ff ∈ Rsf×nx , sf ∈ N>0, which is assumed to be a (not
necessarily maximal) positively invariant set in

XK , {x ∈ Rnx |(F +GK)x ≤ 1sz}, (5)

for the closed-loop system (3), i.e.,

x ∈ Xf ⇒
[

x
Kx

]
∈ Z, AKx ∈ Xf . (6)

The MPC law is determined by solving the optimization problem

V ?(x) = min
z
{VN (z)|z ∈ SN (x)}, (7)

where z ,
[
z′0 · · · z′N−1 x′N

]′, zk , [x′k u′k
]′. The finite-

horizon cost function is

VN (z) =

N−1∑
k=0

`(xk, uk) + Vf (xN ), (8)

the parametric constraint set is given by

SN (x) = {z ∈ A(x) | zk ∈ Z, k ∈ NN−1, xN ∈ Xf } , (9)

A(x) = {z| x0 = x, xk+1 = Axk +Buk, k ∈ NN−1}, (10)

while N ∈ N>0 is the prediction horizon. The set of states x for
which a feasible solution of (7) with prediction horizon N exists is
referred to as DN . It is well known that for x ∈ DN , the (unique)
optimal state-input sequence z?(x), associated to problem (7), can
be obtained by solving a quadratic program (QP). Then, according
to the receding horizon principle, only the first control move u?0(x)
is applied to the system at time t, while the optimization process
with the same prediction horizon N is repeated at time t + 1. If
Assumption 1 holds, and the control law u(t) = u?0(x(t)) associated
with the optimal sequence z?(x) is applied at each t ∈ N≥0, the
set DN is positively invariant for the resulting closed-loop system,
and the origin is an asymptotically stable equilibrium point for the
closed-loop system with domain of attraction equal to DN (also
exponentially stable if Assumption 1a holds). This result is an
extension of results in [2] to the case of mixed constraints.

IV. MPC FORMULATION FOR INEXACT SOLVERS

The standard MPC formulation requires finding, at each time
instant t, the optimal solution of (7). In this section we formulate
a modification of problem (7) to determine a stabilizing control
law even if the solution is suboptimal and violates the constraints,
assuming that bounds on both inaccuracies are given. After fixing the
maximum constraint violation ε ∈ R≥0, and the maximum level of
suboptimality δ ∈ R≥0 a priori, a problem with tightened constraints,
as described in the following, is obtained. Then, given the QP solver,
the needed number of iterations required to solve it within the given
bounds is determined: typically, the need for smaller values of these
parameters leads to a larger number of numerical iterations. Given the
available sampling time, the designer can therefore find the maximum
allowed number of iterations, so as to reduce the conservativeness and
obtain a solution which is as close as possible to that of (7). In Section
VI, we provide a detailed explanation of how these parameters are
obtained, based on the specific solver presented in [15].

Assumption 2: The parameter ε ∈ R≥0 is chosen so as to satisfy

ε < min
{

1
N
, 1− ρ(AK)

}
. (11)

�
Given ε and k ∈ N[0,N ], we define the tightened sets

Zεk,(1− kε)Z={z ∈ Rnz | Fzz ≤ (1− kε)1sz} ⊆ Z. (12)

Remark 1: The first term in the min in (11) implies that 0 ∈
int(ZεN ), while the second term implies that ρ((1 − ε)−1AK) <
1, which by [21, Lemma 3], [22, Theorem 2.1], ensures that the
maximal (1 − ε)–contractive set for (3) contains the origin in its
interior (see, e.g., [20] for the formal definition of contractive set).
As ρ(AK) < 1, it is always possible (in principle) to find an ε small
enough to satisfy Assumption 2. However, this requirement influences
the settings of the numerical solver (typically, more iterations of the
solver are required in order to obtain a smaller ε). �
A different terminal set with respect to Xf is defined as

X εf ,
{
x ∈ Rnx | F εfx ≤ 1sε

f

}
, (13)

with F εf ∈ Rs
ε
f×nx and sεf ∈ N>0, and is a (not necessarily maximal)

(1− ε)-contractive set in

X εK , {x ∈ Rnx | (F +GK)x ≤ (1−Nε)1sz}, (14)

for the closed-loop system (3), i.e.,

x ∈ X εf ⇒
[

x
Kx

]
∈ ZεN , AKx ∈ (1− ε)X εf . (15)

Notice that, by Assumption 2, such a set exists non-empty. The set
(1− ε)X εf can be described as

(1− ε)X εf = {x ∈ Rnx | F εfx ≤ (1− ε)1sε
f
} (16)

which is analogous to the definition of the sets Zεk in (12). The
modified finite-horizon optimal control problem takes the form

V ?ε (x) = min
z
{VN (z)| z ∈ SεN (x)}, (17)

where

SεN (x) =
{
z ∈ A(x)

∣∣ zk ∈ Zεk+1, k ∈ NN−1, xN ∈ (1− ε)X εf
}
.

The set DεN is defined as the set of states x ∈ Rnx for which there
exists a feasible solution of (17). For every x ∈ DεN , the unique
optimal solution of (17) is denoted by z?ε (x).

For every x ∈ DεN , we suppose that a vector z̄(x) ∈ RNnz+nx

can be computed, satisfying the following assumption:
Assumption 3: For every x ∈ DεN , vector z̄(x) =[
z̄′0 · · · z̄′N−1 x̄′N

]′ is such that

VN (z̄(x))− V ?ε (x) ≤ δ, (18a)

z̄(x) ∈ A(x), (18b)

z̄k ∈ Zεk, k ∈ NN−1, (18c)

x̄N ∈ X εf , (18d)

z̄(x) = z?ε (x), if x ∈ X εf , (18e)

where z̄k , [x̄′k ū
′
k]′, k ∈ NN−1. �

For each x ∈ DεN , let Zε,δ(x) denote the set of all vectors z̄(x) ∈
RNnz+nx satisfying conditions (18), and Uε,δ(x) the set of all ū0(x)
corresponding to vectors z̄(x). �

Remark 2: Conditions (18c)-(18d) imply that z̄(x) leads to a
violation of each of the Nsz + sεf linear inequalities, z̄k ∈ Zεk,
k ∈ NN−1, x̄N ∈ (1−ε)X εf which is no larger than ε. Also, Zε,δ(x)
(and consequently Uε,δ(x)) is nonempty for any x ∈ DεN , since it
contains z?ε (x). �
We next state a useful result, which follows mainly from (18e) and
from well-known results in MPC, and the proof of which is omitted
due to space limitation.



3

Lemma 1: Let Assumptions 1-3 hold. Then

VN (z̄) = V ?ε (x) = V ?(x) = Vf (x) (19)

for all x ∈ X εf , and all z̄ ∈ Zε,δ(x) with x ∈ X εf . �
Theorem 2: Let Assumptions 1-3 be satisfied, and consider the

closed-loop system

x(t+ 1) = ϕ(x(t)) = Ax(t) +Bµ(x(t)), (20)

where µ(x(t)) ∈ Uε,δ(x(t)). Then, the following hold:
(i) recursive feasibility for (17) is ensured, i.e., the set DεN is a

positively invariant set;
(ii) (x(t), µ(x(t))) ∈ Z , t ∈ N≥0;

(iii) if Assumption 1a is satisfied, x converges exponentially to a
closed set F , 0 ∈ F ⊆ DεN , for all x(0) ∈ DεN ;

(iv) if Assumption 1a is satisfied, and δ is small enough so that

Bξ ,
{
x ∈ Rnx

∣∣∣∣‖x‖2 ≤ 2δ

λmin(Q)− ξ

}
⊆ X εf (21)

for some ξ ∈ R>0, ξ < λmin(Q) (e.g., δ = 0), the origin is an
exponentially stable equilibrium with domain of attraction DεN ;

(v) if Assumption 1b is satisfied, and δ = 0, the origin is an
asymptotically stable equilibrium with domain of attraction DεN .
Proof: (i) We first prove positive invariance of DεN for (20),

i.e., x ∈ DεN ⇒ ϕ(x) ∈ DεN . This can be stated equivalently as
SεN (ϕ(x)) 6= ∅, ∀x ∈ DεN and ∀µ(x) ∈ Uε,δ(x). Therefore, it
suffices to find a vector z̃ ∈ SεN (ϕ(x)), ∀x ∈ DεN , z̄(x) ∈ Zε,δ(x).

Consider any x ∈ DεN , along with any z̄(x) ∈ Zε,δ(x),
where z̄(x) =

[
z̄′0 · · · z̄′N−1 x̄′N

]′, with z̄k =
[
x̄′k ū′k

]′,
k ∈ N[0,N−1], µ(x) = ū0 and the “shifted” vector z̃ =[
z̃′0 · · · z̃′N−1 x̃′N

]′, where

z̃k = z̄k+1, k ∈ NN−2, (22a)

z̃N−1 =
[
x̄′N (Kx̄N )′

]′
, (22b)

x̃N = AK x̄N . (22c)

Then, x̃0 = x̄1 = Ax + Bµ(x) = ϕ(x), where the first equality
follows by (22a), the second by (18b), and the third by (20). By
(22a) and (18b), x̃k+1 = x̄k+2 = Ax̄k+1 + Būk+1 = Ax̃k + Bũk,
k ∈ NN−2. Also, from (22a) and (18c), z̃k = z̄k+1 ∈ Zεk, k ∈
NN−2. Furthermore, from (18d), x̄N ∈ X εf . Using (15), (22b), (22c)
we get z̃N−1 ∈ X εf and x̃N = AK x̄N ∈ (1 − ε)X εf . Therefore,
z̃(x) ∈ SεN (ϕ(x)).

(ii) Since DεN is invariant, and µ(x(t)) ∈ Uε,δ(x(t)) 6= ∅,
from (18c) one has (x(t), µ(x(t)) ∈ Zε1 ⊆ Z , t ∈ N≥0.

(iii) To prove exponential convergence to a set including the origin
(defined as F = {x ∈ Rn : ||x|| ≤ η}, η ∈ R≥0), it is necessary
to prove that there exist c1 ∈ R>0 and c2 ∈ R[0,1), s.t.

‖x(t)‖ ≤ c1ct2‖x0‖+ η, ∀x(0) ∈ DεN , ∀t ∈ N≥0. (23)

This is proved by finding a Lyapunov function V : X → R, s.t.

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2, (24a)

V (ϕ(x))− V (x) ≤ −α3‖x‖2 + d, (24b)

where αi ∈ R>0, i = 1, 2, 3, and d ∈ R≥0, ∀x ∈ DεN . By slightly
modifying the results in [23, Theorem 2.5], it is easy to prove that
(24a)-(24b) imply (23), with c1 =

√
2α2/α1, c2 =

√
1− α3/α2,

η =
√

2dα2/(α1α3) (omitted due to space limitation).
Keeping this in mind, we choose V ?ε as candidate Lyapunov

function. One can easily obtain that V ?ε (x) ≥ 1
2
x′Qx ≥

1
2
λmin(Q)‖x‖2, ∀x ∈ DεN . On the other hand, from Lemma 1 it fol-

lows that V ?ε (x) = Vf (x) = 1
2
x′Px ≤ 1

2
λmax(P )||x||2, ∀x ∈ X εf .

Following [2, Proposition 2.18], all needed assumptions are satisfied

to state that ∃ c ∈ R≥0 s.t. V ?ε (x) ≤ c
2
λmax(P )||x||2, ∀x ∈ DεN .

Condition (24a) is then satisfied with α1 = 1
2
λmin(Q) and α2 =

c
2
λmax(P ), ∀x ∈ DεN . To prove that also (24b) holds, we recall

that z̃ ∈ SεN (ϕ(x)), and then VN (z̃) ≥ V ?ε (ϕ(x)). Then, recalling
(18a), we have, ∀x ∈ DεN ,

V ?ε (ϕ(x))− V ?ε (x) ≤ VN (z̃)− VN (z̄) + δ (25)

= −`(x, µ(x)) + `(x̄N ,Kx̄N )− Vf (x̄N )

+ Vf (AK x̄N ) + δ

= −`(x, µ(x)) + δ (26)

≤ − 1
2
λmin(Q)‖x‖2 + δ, (27)

where the first equality follows by (22), and the second by the fact that
K is the gain given by the IH-LQR, which implies `(x̄N ,Kx̄N )−
Vf (x̄N ) + Vf (AK x̄N ) = 0 (see, e.g., [2]). As a consequence, (24b)
holds with α3 = 1

2
λmin(Q), and d = δ. Therefore, the value of

η in (23) is known, and x converges exponentially to the set F ={
x ∈ DεN

∣∣ ‖x‖2 ≤ 4δcλmax(P )/λ2
min(Q)

}
.

(iv) We distinguish two cases. If δ = 0, (27) becomes V ?(ϕ(x))−
V ?(x) ≤ − 1

2
λmin(Q)‖x‖2, which holds for all x ∈ DεN , and then

condition (24b) holds with α3 = 1
2
λmin(Q), and d = 0.

On the other hand, if δ > 0 and (21) holds for some ξ ∈ R>0

one has that, for x ∈ DεN \ Bξ, (27) can be written as V ?ε (ϕ(x))−
V ?ε (x) ≤ − 1

2
ξ‖x‖2 − 1

2
(λmin(Q)− ξ)‖x‖2 + δ ≤ − 1

2
ξ‖x‖2. Since

Bξ ⊆ X εf (and x ∈ Bξ implies µ(x) = Kx by Lemma 1), for x ∈ Bξ
we have V ?ε (ϕ̄(x))−V ?ε (x) = V ?ε (AKx)−V ?ε (x) = Vf (AK x̄N )−
Vf (x̄N ) = −`(x,Kx) ≤ − 1

2
λmin(Q)‖x‖2. Being ξ < λmin(Q),

condition (24b) is satisfied ∀x ∈ DεN , with α3 = ξ/2, and d = 0.
In both cases, the fulfillment of (23) follows with c1 =

√
2α2/α1,

c2 =
√

1− α3/α2 (being α1 = 1
2
λmin(Q) and α2 = c

2
λmax(P )),

and η = 0, thus proving exponential stability of the origin with
domain of attraction DεN .

(v) Also in this case, V ?ε (x) = Vf (x) = 1
2
x′Px ≤

1
2
λmax(P )||x||2, ∀x ∈ X εf . Also, V ?ε (x) ≥ 1

2
x′Qx =

1
2
‖Cx‖2, ∀x ∈ DεN . Analogously to (25) and recalling that δ = 0,

we get V ?ε (ϕ(x))− V ?ε (x) ≤ −`(x, µ(x)) ≤ − 1
2
‖Cx‖2. Summing

up, V ?ε (x) ≥ 1
2
‖Cx‖2 and V ?ε (ϕ(x)) − V ?ε (x) ≤ − 1

2
‖Cx‖2 for

x ∈ DεN , and V ?ε (x) ≤ 1
2
λmax(P )||x||2 for x ∈ X εf . In [2, Sec.

2.6], it is proved that, if these equations hold for a generic nonlinear
system, and if the system is input/output-to-state stable [2, Def. 2.40]
(which is satisfied in our case, since Assumption 1b imposes (A,C)
detectable) then the origin is an asymptotically stable equilibrium
point with domain of attraction DεN .

Remark 3: Problem (17) can be seen as a way to obtain a feasible
suboptimal solution to problem (7), in the presence of known bounds
on suboptimality, δ, and on constraint violation, ε. Note that, as ε is
increased, the imposed contractions of the predicted evolution lead
to a progressive shrinking of DεN ⊆ DN , which in turn leads to
conservative results. This effect is strongly system-dependent: for
instance, the shrinking of DεN is more dramatic if the uncontrollable
part of matrix A has large eigenvalues. On the other hand, as both δ
and ε tend to zero, the solution of problem (17) tends to the solution
of problem (7), and DεN tends to DN . �

V. PERFORMANCE BOUNDS

In this section we will derive suboptimality bounds of the finite-
horizon cost VN , corresponding to a suboptimal MPC law satisfying
Assumption 3, compared to the value function V ? of the original
MPC problem (7). From these results, performance bounds based
on the closed-loop infinite-horizon cost are provided. To be able to
perform such a comparison, we require the following:
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Assumption 4: The terminal set Xf in (7) is the maximal positive
invariant set for (3) in XK , cf. (5), while the terminal set X εf in (17)
is the (1− ε)–maximal contractive set for (3) in X εK , cf. (14). �

The proof of the next lemma follows by [22, Theorem 4.1], [21,
Lemma 3] and it is omitted due to space limitations.

Lemma 3: If Assumptions 1, 2 and 4 hold, then there exist a finite
integer N? such that

Xf = {x ∈ Rnx | CKAjKx ≤ 1sz , j ∈ NN?}, (28a)

X εf = {x ∈ Rnx | CKAjKx ≤ κj1sz , j ∈ NN?}, (28b)

where CK , F+GK and κj , (1−ε)j(1−Nε), for all ε satisfying
(11). �

We remark that the (1 − ε)–maximal contractive set for (3) is
the maximal positive invariant set for xk+1 = (1− ε)−1AKxk [21,
Lemma 3], therefore it can be computed using well-known techniques
[22, Algorithm 3.1]. If Assumptions 1, 2 and 4 hold, due to Lemma
3, problem (7) can be expressed as

V ?(x) = min
z∈A(x)

{
VN (z)

∣∣∣∣ g(zk) ≤ 0, k ∈ NN−1

gk(xN ) ≤ 0,k ∈ N[N,N+N?]

}
, (29)

where

g(z) = Fzz − 1sz , (30a)

gk(x) = CKA
N−k
K x− 1sz , k ∈ N[N,N+N?]. (30b)

The Lagrangian associated with (29) is

L(z,y) = V (z) +

N−1∑
k=0

g(zk)′yk +

N+N?∑
k=N

gk(xN )′yk, (31)

while the set of dual optimal solutions of (29) is

Y?(x) = arg max
y≥0

min
z∈A(x)

L(z,y). (32)

Similarly, for ε satisfying (11), problem (17) can be expressed as

V ?ε (x) = min
z∈A(x)

{
VN (z)

∣∣∣∣ gεk(zk) ≤ 0, k ∈ NN−1

gεk(xN ) ≤ 0, k ∈ N[N,N+N?]

}
, (33)

where

gεk(z) = Fzz − (1− (k + 1)ε)1sz , k ∈ NN−1, (34a)

gεk(x) = CKA
N−k
K x− κk+1−N1sz , k ∈ N[N,N+N?], (34b)

and with the Lagrangian of (33) being

Lε(z,y) = V (z) +

N−1∑
k=0

gεk(zk)′yk +

N+N?∑
k=N

gεk(xN )′yk, (35)

while the set of dual optimal solutions of (33) is

Y?ε (x) = arg max
y≥0

min
z∈A(x)

Lε(z,y). (36)

It is immediate to see that 0 ≤ V ?ε (x)−V ?(x) for any x ∈ DεN , since
the set of feasible solutions of (33) is a subset of that of (29). The next
theorem provides refined lower and upper bounds on V ?ε (x)−V ?(x).

Theorem 4: Let Assumptions 1, 2 and 4 hold. Then, for any x ∈
DεN , and any y?ε (x) ∈ Y?ε (x), y?(x) ∈ Y?(x),

ε‖y?(x)‖1 ≤ V ?ε (x)− V ?(x) ≤ Nε‖y?ε (x)‖1. (37)

Proof: Problems (29), (33) are convex quadratic programs, thus
strong duality holds for any x ∈ DN , x ∈ DεN , respectively.
Therefore, by the Lagrangian Saddle Point Theorem (see e.g., [24,
Prop. 6.2.4]) for any x ∈ DN , the unique solution of (29), z?(x),
and any y? ∈ Y?(x) satisfy the saddle point inequality

L(z?(x),y) ≤ V ?(x) ≤ L(z,y?(x)), (38a)

for all z ∈ A(x), y ≥ 0, while for any x ∈ DεN , the unique solution
of (33), z?ε (x), and any y?ε (x) ∈ Y?ε (x) satisfy

Lε(z?ε (x),y) ≤ V ?ε (x) ≤ Lε(z,y?ε (x)), (38b)

for all z ∈ A(x), y ≥ 0. Choose any x ∈ DεN ⊆
DN and set y = y?ε (x) =

[
(y?ε,0)′ · · · (y?ε,N?)′

]′ ∈
Y?ε (x) in the left part of (38a), and z = z?(x) =[
(z?0)′ · · · (z?N−1)′ (x?N )′

]′ ∈ A(x) in the right part of (38b).
Then V ?ε (x) − V ?(x) ≤ Lε(z?(x),y?ε (x)) − L(z?(x),y?ε (x)) =∑N−1
k=0 (gεk(z?k)−gk(z?k))′y?ε,k+

∑N+N?

k=N (gεk(x?N )−gk(x?N ))′y?ε,k =∑N−1
k=0 (k + 1)ε1′szy

?
ε,k +

∑N+N?

k=N (1 − κk+1−N )1′szy
?
ε,k ≤

Nε
∑N+N?

k=0 1′szy
?
ε,k = Nε‖y?ε (x)‖1, where the first inequality

follows by (38), the first equality by (31), (35), the second equality
by (30), (34), the last inequality by maxk∈NN−1(k + 1)ε = Nε and
maxk∈N[N,N+N?]

1 − κk+1−N = 1 − (1 − Nε) mink∈N[N,N?]
(1 −

ε)k+1−N ≤ Nε, and the last equality by the nonnegativity of y?ε (x).
Hence, the right part of inequality (37) is proved.

To prove the left part, set z = z?ε (x) =[
(z?ε.0)′ · · · (z?ε,N−1)′ (x?ε,N )′

]′ ∈ A(x) in the right part
of (38a) and y = y?ε (x) =

[
(y?0)′ · · · (y?N?)′

]′ ∈ Y?ε (x) in
the left part of (38b), and follow exactly the same steps to arrive
at V ?ε (x) − V ?(x) ≥ Lε(z?ε (x),y?(x)) − L(z?ε (x),y?(x)) =∑N−1
k=0 (k + 1)ε1′szy

?
k +

∑N+N?

k=N (1 − κk+1−N )1′szy
?
k ≥

Nε
∑N+N?

k=0 1′szy
?
k = ε‖y?(x)‖1, where the last inequality follows

by mink∈NN−1(k + 1)ε = ε and mink∈N[N,N+N?]
1 − κk+1−N =

1− (1−Nε) maxk∈N[N,N?]
(1− ε)k+1−N = 1− (1−Nε)(1− ε) ≥

1− (1− ε) = ε.
Now we are ready to provide suboptimality estimates for a z̄(x) ∈
Zε,δ(x).

Theorem 5: Let Assumptions 1-4 hold. Then, for any z̄(x) ∈
Zε,δ(x),

VN (z̄(x))− V ?(x) ≤ Nε‖y?ε (x)‖1 + δ, x ∈ DεN , (39)

for all δ satisfying (21).
Proof: One has VN (z̄(x))− V ?(x) = (VN (z̄(x))− V ?ε (x)) +

(V ?ε (x)−V ?(x)) ≤ δ+Nε‖y?ε (x)‖1, where the last equality follows
from (18a), (37).

For a feedback law µ : Rnx → Rnu , we introduce the infinite-
horizon cost corresponding to µ:

V µ∞(x) ,
∞∑
t=0

`(xµ(t), µ(xµ(t))),

where xµ(0) = x, xµ(t+ 1) = Axµ(t) +Bµ(xµ(t)). The following
theorem gives performance bounds for the infinite horizon cost of
the system in closed-loop with any µ(x) ∈ Uε,0(x) in terms of the
value function of the original problem.

Theorem 6: Let Assumptions 1-4 hold and µ(x) ∈ Uε,0(x). Then

V µ∞(x) ≤ V ?(x) +Nε‖y?ε (x)‖1, x ∈ DεN\X εf , (40a)

V µ∞(x) = V ?(x), x ∈ X εf . (40b)

Proof: Since (27) is satisfied with δ = 0, by [25, Proposition
2.2], we have V µ∞(x) ≤ V ?ε (x). Invoking Theorem 4 proves (40a).
Equation (40b) follows from Lemma 1.

VI. DESCRIPTION OF THE OPTIMIZATION ALGORITHM

In this section we consider and briefly summarize the Dual
Accelerated Gradient Projection (GPAD) algorithm proposed in [13]
(see also [14], [15]). This algorithm belongs to the category covered
by the theoretical results of this note. In particular, it guarantees a
bounded ε and δ = 0 in a finite number of iterations, and ensures
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Algorithm 1 Accelerated Dual Gradient Projection (GPAD)

y(0) = y(−1) = 0. z̄(−1) = 0. θ0 = θ−1 = 1. ν ← 0
Step 1. w(ν) = y(ν) + θν(θ−1

ν−1 − 1)(y(ν) − y(ν−1))
Step 2. z(ν) = arg minz∈A(x) VN (z) + w′(ν)g

ε(z)
Step 3. z̄(ν) = (1− θν)z̄(ν−1) + θνz(ν)

Step 4. If gε(z̄(ν)) ≤ ε, z̄(x)← z̄(ν) stop
Step 5. y(ν+1) = max

{
w(ν) + 1

LΨε
gε(z(ν)), 0

}
Step 6. θν+1 =

√
θ4ν+4θ2ν−θ

2
ν

2
. ν ← ν + 1. Go to Step 1.

by design that µ(x) = Kx for all x ∈ X εf , without the need of
employing a dual-mode strategy.

Problem (17) can be expressed as

V ?ε (x)= min
z∈A(x)

{VN (z)|gε(z) ≤ 0}, (41)

where gε(z) = (gε1(z1), · · · , gεN (xN )) with gεk : Rnx+nu → Rsz ,
k ∈ NN−1, defined as gεk(z) = Fzz − (1 − (k + 1)ε)1sz , while
gεN (x) = F εfx− (1− ε)1sε

f
. The dual function

Ψε(y, x) , min
z∈A(x)

VN (z) + gε(z)′y

is Lipschitz-continuous, with Lipschitz constant equal to LΨε . The
tightest Lipschitz constant for ∇Ψε can be computed by forming
explicitly the Hessian of quadratic dual cost Ψε as in [14] and
calculating its spectral norm. Alternatively, one can either compute
the Frobenius or 1-norm of the Hessian of Ψε or use the results in
[12]. Algorithm 1 is based on the accelerated gradient method of [9]
applied to the dual problem maxy≥0 Ψε(y, x).

The only complicated part of Algorithm 1 is Step 2. If Problem (41)
is posed in condensed form, i.e., the equality constraints correspond-
ing to the state equations have been eliminated (off-line), then Step 2
consists of a matrix-vector product which requires O(N2) operations.
One can do even better, by viewing Step 2 as an unconstrained
linear-quadratic optimal control problem, and applying the modified
Riccati approach proposed in [13], which requires only O(N) flops
to compute z(ν).

Note that this is a simplified version of the algorithm proposed
in [13]. The following theorem provides an upper bound on the
maximum number of iterations to compute a solution satisfying
Assumption 3, with δ = 0. Since the initial dual iterate is equal
to the zero vector, GPAD is doing always better than optimal, so
that one has to care only about ε-feasibility, and this is the only ter-
mination criterion employed at Step 4. The following theorem gives
complexity, stability, and performance guarantees for Algorithm 1.

Theorem 7: Let Assumptions 1, 3 and 4 hold. For any x ∈ DεN ,
and ε satisfying (11), Algorithm 1 will terminate after at most

ν?ε =

⌈(
8LΨε∆

ε
y

ε

) 1
2

⌉
− 2 (42)

iterations, with z̄(x) ∈ Zε,0(x), where

∆ε
y , max

x∈Dε
N

min
y?ε (x)∈Y?ε (x)

‖y?ε (x)‖1 (43)

The corresponding MPC law µ(x) = ū0(x) produced by Algorithm
1 renders the origin asymptotically stable (if Assumption 1a holds)
or exponentially stable (if Assumption 1b holds) for the closed-loop
system (20) with region of attraction DεN , while the closed-loop
infinite-horizon performance satisfies

V µ∞(x) ≤ V ?(x) +N∆ε
yε, x ∈ DεN\X εf , (44a)

V µ∞(x) = V ?(x), x ∈ X εf . (44b)

Proof: By Step 2 of Algorithm 1, and linearity of the equality
constraints describing A(x), one has that z̄(ν) ∈ A(x) for all
ν ∈ N≥0, i.e., requirement (18b) is always fulfilled. In [15, Cor.
6] it is shown that VN (z̄(ν)) ≤ V ?ε (x) for all ν ∈ N≥0, therefore re-
quirement (18a) is fulfilled with δ = 0, for every ν. Furthermore, that
(18e) is satisfied, comes from the fact that, since y(0) = y(−1) = 0,
one has w(0) = 0 as well in Step 1. Therefore, z̄(0) = z(0) is equal to
the solution of the unconstrained problem, which is optimal for (17)
if x ∈ X εf , due to Lemma 1. In that case, Algorithm 1 terminates at
Step 4, for ν = 0, since z̄(0) is feasible for (17). That the algorithm
needs no more than ν? iterations to achieve ε-infeasibility, and thus
satisfies requirements (18c), (18d) is shown in [15, Th. 5, Cor. 7],
proving that z̄(x) ∈ Zε,0(x). Now, the rest of the statements follow
immediately by Theorems 2 and 6.

Bounds on dual optimal solutions such as the one of (43) are called
Uniform Dual Bounds (UDBs) in [13], [15].

Remark 4: According to Theorem 7, GPAD reaches ε-feasibility in

O

(√
LΨε∆εy

ε

)
iterations, while the complexity estimate to achieve

the same level of suboptimality for the dual cost, which is the
standard result found in the literature (see, e.g., [9]) is of order

O

(√
LΨε
ε

∆ε
y

)
, which may be much larger.

Remark 5: The bound on dual optimal solutions, ∆ε
y , must be

valid on the entire DεN , in order to be able to guarantee stability
and invariance of DεN for the closed-loop system. In [15, Sec. VI.B],
it is shown that a tight upper bound to ∆ε

y can be computed by
solving a Linear Program with Linear Complementarity Constraints
(LPLCC) for which specialized efficient algorithms exist for its
solution. However, the time needed to solve the resulting LPLCC
may grow rapidly with the dimension of the problem. Notice that
the techniques proposed in [12], [13], lead to bounds which are valid
only on a subset interior of DεN , since they are based on Slater’s
condition, and thus cannot be used to derive an iteration bound on
the entire DεN . �

VII. SIMULATION EXAMPLES

A. Masses Example

The setup for this example is similar to [6]. It consists of a sequence
of M objects of equal mass m serially connected to each other, by
spring-dampers of equal spring constant k and damping coefficient c,
and to walls on either side. Between two consecutive masses there is
an actuator exerting tensions. The discrete-time LTI model is obtained
after discretization with sampling period of 0.5s, and it consists of
nx = 2M states and nu = M − 1 inputs. Each state of the system
is constrained to lie in [−4, 4], while each input in [−1, 1]. The
weight matrices are Q = Inx , R = Inu and the length of the
horizon is N = 15. Table I gives bounds on the maximum number
of iterations on DεN , according to Theorem 7, for number of masses
M = {2, 3} and accuracy ε ∈ {10−3, 5 × 10−3, 10−2}. For each
value of ε, ν?ε is the theoretical bound given by Eq. (42), with a
tight upper bound on ∆ε

y (cf. (43)) computed by solving the LPLCC
described in [15, Sec. VI.B], while ν̂?ε is the maximum number of
iterations encountered by simulating the closed-loop system from 500
random initial states belonging to DεN . One can observe that the
theoretical bound for the specific example is quite tight. Furthermore
in I, the theoretical bound for the infinite horizon performance of
the closed-loop system, given by Theorem 6, is compared against
the practical one, which is the one obtained by simulating the
system in closed-loop with Algorithm 1. Specifically, the theoreti-
cal relative performance bound ∆Vε,maxi∈N[1,100]

{
N‖y(xi0)‖1ε
V ?(xi0)

}
is compared against the measured relative bound given by
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TABLE I: Complexity certification analysis (ν? = theoretical itera-
tion bound, ν̂? = measured iteration bound) and performance bounds
for the masses example

M ε
10−3 5× 10−3 10−2

ν?ε ν̂?ε ν?ε ν̂?ε ν?ε ν̂?ε
2 1229 1025 551 458 389 323
3 2979 2266 1332 800 949 584

∆Vε% ∆V̂ε% ∆Vε% ∆V̂ε% ∆Vε% ∆V̂ε%
2 2 0.1 7.1 0.5 6.8 0.7
3 4.8 0.3 7.7 0.5 13.6 1

TABLE II: Complexity certification analysis (ν? = theoretical itera-
tion bound, ν̂? = measured iteration bound)

ε ν?ε ν̂?ε
quantile quantile

25% 50% 75% 25% 50% 75%
10−3 1416 4154 9390 804 1832 3367

5× 10−3 622 1853 4190 352 664 1149
10−2 430 1307 2959 236 399 544

5× 10−2 183 613 1357 75 102 117

∆V̂ε,maxi∈N[1,100]

{
V µ∞(xi0)−V ?(xi0)

V ?(xi0)

}
. Another significant conclu-

sion that can be drawn from Table I is that the iteration bounds ν?ε ,
ν̂?ε decrease as ε increases. For embedded applications, this means
that according to hardware specifications and sampling time, one can
select the appropriate value of ε that will guarantee stability and
invariance of the corresponding closed-loop system. However, the
price to pay is a smaller DεN , and performance degradation, which
however appears to be insignificant according to Table I.

B. Random Systems

The next example presents results for 50 random systems, with
nx = 2, nu = 1, Q = Inx , R = Inu , N = 5, input constraints
|u| ≤ 1, and mixed constraints ‖y‖∞ ≤ 1, being y = Cx+Du ∈ R2.
Table II gives results on the maximum number of iterations on DεN ,
according to Theorem 7, for accuracy ε ∈ {10−3, 5×10−3, 10−2, 5×
10−2}. As before, for each value of ε, ν?ε is the theoretical bound and
ν̂?ε is the maximum number of iterations encountered by simulating
the closed-loop system from 500 random initial states belonging to
DεN . The corresponding quartiles of ν?ε , ν̂?ε are presented in Table
II. Two main observations are in order. The number of iterations
decreases as ε decreases, as in the previous example, while the
theoretical bound becomes less tight as ε decreases.

Additional simulation examples can be found in [1].

VIII. CONCLUSIONS

This note has proposed an MPC formulation for constrained linear
systems with guaranteed stability despite the use of inexact QP
solvers. Given the optimal control problem, the QP solver is applied
to a modified problem with tightened constraints, so as to obtain a
suboptimal solution of the original problem that enjoys guarantees
of recursive feasibility and asymptotic (or exponential) stability in
a finite and a-priori determined number of iterations. Performance
bounds are obtained to analyze the level of suboptimality of the
computed solution with respect to the optimal solution of the original
problem. Simulation examples show the potential of the proposed ap-
proach under hard real-time constraints when a simple dual gradient
projection method (GPAD) is used to solve QPs.
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