
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 9, NO. 9, JANUARY 9999 1

Verification of the Observer Property
in Discrete Event Systems

P. N. Pena, H. J. Bravo, A. E. C. da Cunha, R. Malik,
S. Lafortune,Fellow, IEEE,and J. E. R. Cury,Member, IEEE

Abstract—The observer property is an important condition
to be satisfied by abstractions of Discrete Event System (DES)
models. This paper presents a new algorithm that tests if an
abstraction of a DES obtained through natural projection has
the observer property. The procedure, calledOP-Verifier, can
be applied to (potentially nondeterministic) automata, with no
restriction on the existence of cycles of “non-relevant” events.
This procedure has quadratic complexity in the number of states.
The performance of the algorithm is illustrated by a set of
experiments.

Index Terms—Discrete Event Systems, Natural Projections,
Observer Property.

I. I NTRODUCTION

Natural projections play a central role in the computation
of abstractions for Discrete Event Systems (DES) models.
Abstractions obtained by natural projections have been exten-
sively used in the Supervisory Control Theory of DES [1] as,
for example, in control with partial observation, in hierarchical
control [2]–[6], in modular synthesis [2], [7], [8], and in
compositional verification of the nonblocking property [2], [9],
[10], among many problem domains. In several of the above
cited works, theobserver propertyis an important condition to
be satisfied by the abstracted models. Abstractions satisfying
this property are calledOP-abstractions[11].

The observer property, or simply OP hereafter, was first
introduced in the context of hierarchical control of DES.
In [12], the abstraction is obtained in the form of areporter
map, that projects strings of events of the original (low-level)
model, built from a setΣ, into high-level strings built from
an independent set of events, denoted byT . Due to some
difficulties with the use of reporter maps [13], most of the
approaches subsequent to [12] focus on abstractions obtained
by the natural projection, which maps strings of the original
model into strings of the abstraction, by erasing events ofΣ

P. N. Pena is with the Departamento de Engenharia Eletrônica, Universidade
Federal de Minas Gerais, Brazil (e-mail: ppena@ufmg.br).

H. J. Bravo and A. E. C. da Cunha are with the Seção de En-
genharia Eĺetrica, Instituto Militar de Engenharia, Brazil (email: hugob-
ravoc@gmail.com, carrilho@ime.eb.br).

R. Malik is with the Department of Computer Science, The University of
Waikato, New Zealand (e-mail: robi@waikato.ac.nz).

S. Lafortune is with the Department of Electrical Engineering
and Computer Science, The University of Michigan, USA (e-mail:
stephane@eecs.umich.edu).

J. E. R. Cury is with the Departamento de Automação e Sistemas,
Universidade Federal de Santa Catarina, Brazil (e-mail: jose.cury@ufsc.br).

The first, second, third, and sixth authors are supported in part by CAPES
(PROCAD 102/2007). The first and sixth authors are supportedin part by
FAPEMIG and CNPq grant 300953/93-3, respectively. The research of the
fifth author is supported in part by NSF grant CNS-0930081.

that are not contained in a given subset of relevant events,
denoted byΣr, with Σr ⊆ Σ; see [3]–[5], [14], [15].

The structure calledOP-Verifierwas first presented in [11];
it was inspired by an algorithm for testing diagnosability
presented in [16]. Given an input automatonG, defined on
the alphabetΣ, a set of relevant eventsΣr ⊆ Σ, and a
natural projectionθ from strings inΣ to strings inΣr, theOP-
Verifier algorithm checks whether the projectionθ(Lm(G)) is
anOP-abstraction. TheOP-Verifieralgorithm does not require
explicitly computing the abstraction to check for the OP and
has been shown to have better computational performance
when compared to other similar procedures [13], [17]–[19].
It runs in quadratic complexity in the number of states. A
limitation of the OP-Verifier algorithm as proposed in [11],
however, is that it can only be applied to automata that do not
have cycles of non-relevant events.

A different algorithm to test the OP is proposed in [13],
[17]. This algorithm relies on the computation of a coarsest
observation equivalence relation and runs in cubic complexity
in the number of states. Yet another algorithm for testing
so-called “observerness” for a systemG and a maskM is
presented in [18]. This procedure may give false negatives as
stated and needs to be modified to address this problem [20].

This paper presents a modified version of theOP-Verifier
algorithm of [11] that subsumes the preliminary results in [21].
This algorithm can be applied to automata with no restriction
on the existence of cycles of non-relevant events. The algo-
rithm operates on a modified automatonGnr, obtained from
the input automatonG, by aggregating states connected by
cycles of non-relevant events. It overcomes the limitations of
the previously proposed verifier [11], [21], while retaining its
quadratic complexity. The modifiedOP-Verifieralgorithm has
been implemented in Supremica [22].

This paper is organized as follows. Section II introduces the
necessary background. Section III describes the construction
of the OP-Verifier automaton and its properties. Then Sec-
tion IV presents an algorithm to construct the OP-Verifier
and check the observer property. This section also contains
a complexity analysis and experimental results to demonstrate
the performance of the algorithm in comparison with [17].
Finally, concluding remarks are given in Section V.

II. PRELIMINARIES

This paper is set in the supervisory control framework. The
reader is referred to [1] for a detailed introduction to the
theory. Behaviors of DES are modeled using strings ofevents

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 9, NO. 9, JANUARY 9999 2

taken from a finite alphabetΣ. Σ∗ is the set of all finite strings
of events inΣ, including the empty stringε. Theconcatenation
of stringss, u ∈ Σ∗ is written assu. A string s ∈ Σ∗ is called
a prefix of t ∈ Σ∗, written s ≤ t, if there existsu ∈ Σ∗ such
thatsu = t. A subsetL ⊆ Σ∗ is called alanguage. Theprefix-
closureL of a languageL ⊆ Σ∗ is the set of all prefixes of
strings inL, i.e.,L = { s ∈ Σ∗ | s ≤ t for somet ∈ L }. Reg-
ular languages are represented by (possibly nondeterministic)
finite-state automataas follows.

Definition 1: A (nondeterministic) finite-state automaton is
a tupleG = 〈Σ, Q,→, Q◦〉, whereΣ is a finite set of events,
Q is a finite set ofstates, → ⊆ Q × Σ × Q is the state
transition relation, and Q◦ ⊆ Q is the set ofinitial states.
G is deterministic, if |Q◦| ≤ 1 and x

σ
→ y1 and x

σ
→ y2

always impliesy1 = y2.
The transition relation is written in infix notationx

σ
→ y,

and is extended to traces inΣ∗ by letting x
ε
→ x for all

x ∈ Q, and x
sσ
→ z if x

s
→ y and y

σ
→ z for somey ∈ Q.

Furthermore,x
s
→ meansx

s
→ y for somey ∈ Q, andx→ y

meansx
s
→ y for somes ∈ Σ∗. These notations also apply

to state sets:X
s
→ Y for X,Y ⊆ Q meansx

s
→ y for some

statesx ∈ X and y ∈ Y . Also, if G is an automaton, then
G

s
→ x, G

s
→ X, and G

s
→ stand forQ◦ s

→ x, Q◦ s
→ X,

and Q◦ s
→, respectively. For example,G

s
→ X means that

the automatonG can reach some state in the setX ⊆ Q on
execution of traces ∈ Σ∗. Finally, thegenerated languageof
automatonG is L(G) = { s ∈ Σ∗ | G

s
→}.

To express the marking of strings, the alphabetΣ is assumed
to contain themarking eventω ∈ Σ, which may only
appear on self-loops, i.e.,x

ω
→ y always impliesx = y.

In this notation, themarked languageof G is defined as
Lm(G) = { s ∈ (Σ \ {ω})∗ | sω ∈ L(G) }. This paper uses
the marking eventω instead of the more conventional set of
marking, or final, states, because it simplifies the presentation
by associating the marking of strings to a special case of
transition.

Given an automatonG = 〈Σ, Q,→, Q◦〉, a statex ∈ Q is
called reachableif G→ x, andcoreachableif x

tω
→ for some

t ∈ Σ∗. The automatonG is called reachableif every state
x ∈ Q is reachable, andnonblockingif every reachable state
x ∈ Q is coreachable.

A common automaton operation is thequotientmodulo an
equivalence relation on the state set.

Definition 2: Let G = 〈Σ, Q,→, Q◦〉 be an automaton and
let ∼ ⊆ Q × Q be an equivalence relation. Thequotient
automatonof G modulo∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (1)

where→/∼ = { ([x], σ, [y]) | x′ σ
→ y′ for somex′ ∈ [x] and

y′ ∈ [y] } and Q̃◦ = { [x◦] | x◦ ∈ Q◦ }. Here, [x] = {x′ ∈
Q | x ∼ x′ } denotes theequivalence classof x ∈ Q, and
Q/∼ = { [x] | x ∈ Q } is the set of all equivalence classes.

An operation over languages that is very important for
abstraction isnatural projection. For this purpose, the event
alphabet is partitioned intoΣ = Σr ∪̇ Σnr, whereΣr denotes
the set ofrelevantevents, whileΣnr denotes the set ofnon-
relevantevents. ForΣr ⊆ Σ, the natural projectionθ : Σ∗ →
Σ∗

r maps strings inΣ∗ to strings inΣ∗
r by erasing all events

G ω a

b
c

r

r

y

0 1 2 3

θ(G) ω a

b, c
0 1

Fig. 1. Example to demonstrate the observer property.

not contained inΣr. The concept is extended to languages by
definingθ(L) = { t ∈ Σ∗

r | t = θ(s) for somes ∈ L }.

This paper is concerned with the property of projections
known as theobserver property, which was first introduced in
the context of reporter maps in [12] and [14]. In the context
of natural projections, it is written as follows.

Definition 3: [14] Let L ⊆ Σ∗ be a language, letΣr ⊆ Σ,
and letθ : Σ∗ → Σ∗

r be the natural projection. If for alls ∈ L
and all t ∈ Σ∗

r such thatθ(s)t ∈ θ(L), there existst′ ∈ Σ∗

such thatθ(st′) = θ(s)t and st′ ∈ L, then θ(L) has the
observer property.

The observer property ensures that, if two states can be
reached by traces with the same projection, i.e.,G

s1→ x1

and G
s2→ x2 with θ(s1) = θ(s2), then these states can

also achieve termination by traces with equal projection,
i.e., x1

t1ω
−−→ implies x2

t2ω
−−→ with θ(t1) = θ(t2). If the

observer property is satisfied for an automaton, then its natural
projection is “observation equivalent” to that automaton,which
means that all branching in the automaton remains visible in
its projection [12].

Projections can also be applied to automata. Given a
deterministic and nonblocking automatonG, its projection
θ(G) is the minimal deterministic recognizer of the language
θ(Lm(G)) [23]. Then it is said thatθ(G) has the observer
property if θ(Lm(G)) has the observer property. In this case
θ(G) is also called anOP-abstraction.

Example 1:AutomatonG in Fig. 1 models the behavior of
a simple manufacturing transfer line with material feedback,
adapted from [21], [24]. After starting to manufacture a
workpiece (a), the transfer line can either finish production
sucessfully (b), or decide to retain the workpiece (r) for one or
more rework cycles (y), and eventually finish production with
a reworked workpiece (c). Assume that, in some hierarchical
control approach, as in [3], [5], [6], one is concerned only with
the input-output behavior of the line. Then it is of interestto
construct the abstractionθ(G) with respect to relevant events
Σr = {a, b, c, ω} and non-relevant eventsΣnr = {r, y}, which
is shown in Fig. 1. In this case,θ(G) is not an OP-abstraction.
To see this, lets = ar and t = b in Definition 3. Then
θ(s)t = ab ∈ θ(Lm(G)), but there is no tracet′ ∈ Σ∗ such
that st′ = art′ ∈ Lm(G) andθ(st′) = θ(s)t = ab.

The OP-Verifier algorithm [11] can check for certain pro-
jections whether or not they satisfy the observer property.
This algorithm, which was inspired by the verifier [16] for
testing the property of diagnosability, can only be appliedto
deterministic automata that do not have cycles of non-relevant
events. The automatonG in Fig. 1 has a cycle of non-relevant
events involving states1, 2, and3. Because of this cycle, the
example cannot be classified correctly by the algorithm [11].

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 9, NO. 9, JANUARY 9999 3

III. V ERIFICATION OF THEOBSERVERPROPERTY

In this section, theOP-Verifier algorithm is presented. It
extends the algorithm in [11] by adding the ability to handle
cycles of non-relevant events.

A. StronglyΣnr-Connected Components AutomatonGnr

In order to deal with cycles of non-relevant events, a
stronglyΣnr-connected components automatonis introduced.
Let G = 〈Σ, Q,→, Q◦〉 be an automaton, and letΣnr ⊆ Σ be
a set of non-relevant events. Define the following relationson
the state setQ:

x
nr
→ y ⇐⇒ x

s
→ y for somes ∈ Σ∗

nr ; (2)

x
nr
↔ y ⇐⇒ x

nr
→ y andy

nr
→ x . (3)

If x
nr
↔ y, then the statesx and y are calledstrongly Σnr-

connected(Σnr-SC), because it is possible to reach each state
from the other using only non-relevant events. If G does not
contain two distinctΣnr-SC states it is said to beΣnr-acyclic.

A set of Σnr-SC states is called astrongly Σnr-connected
component(Σnr-SCC). If eachΣnr-SCC is contracted to
a single state, the resulting automaton isΣnr-acyclic. This
contracted automaton is called the stronglyΣnr-connected
components automaton (Σnr-SCC automaton) ofG in the
following. Formally, theΣnr-SCC of statex ∈ Q is

[x] = { y ∈ Q | x
nr
↔ y } , (4)

and theΣnr-SCC automaton ofG is the quotient automaton
constructed by merging theΣnr-SCCs inG,

Gnr = G/
nr
↔ . (5)

Remark 1: In graph theory, theΣnr-SCC automaton is
called a condensation graph, which is known to be
acyclic [25], i.e., it does not contain any cycles of non-relevant
events except for self-loops. For a finite state set, it follows
that for every statex ∈ Q, there exists a statey ∈ Q such that
x

nr
→ y, with [y] a terminal component, i.e., a component with

no furtherΣnr-transitions outgoing to other components.
Definition 4: Let G = 〈Σ, Q,→, Q◦〉 be an automaton, and

let Σnr ⊆ Σ. For y ∈ Q, the component[y] is Σnr-terminal
if, for all σ ∈ Σnr and allz ∈ Q such that[y]

σ
→ [z], it holds

that [y] = [z].
The strongly connected components of a graph can be com-

puted efficiently usingTarjan’s Algorithm[26]. This algorithm
has a worst-case time complexity ofO(|→|), i.e., it is linear
in the number of transitions. Tarjan’s Algorithm can be easily
adapted to compute theΣnr-SCC automaton.

B. OP-VerifierVG

Based on theΣnr-SCC automaton, theOP-Verifier VG is
constructed. TheOP-Verifier is a nondeterministic automaton
that is used to determine whether or not the observer property
is satisfied for the original automatonG and non-relevant
eventsΣnr. It is constructed in a similar way to the previous
OP-Verifier for Σnr-acyclic automata in [11], except that it is
based on theΣnr-SCC automatonGnr instead ofG.

Gnr ω a

b

c

r
r, y

[0] [1] [2]

VG ω a

b

b

c
r

r

r, y

r, y

{[0]} {[1]} {[1], [2]}

{[2]}

⊥

Fig. 2. Example of OP-Verifier construction.

Definition 5: Let G = 〈Σ, Q,→, Q◦〉 be a deterministic au-
tomaton withΣnr-SCC automatonGnr = 〈Σ, Qnr,→nr, Q̃◦〉,
and letΣ = Σr ∪̇ Σnr. The OP-VerifierVG for G is

VG = 〈Σ, QV ,→V , Q◦
V 〉 (6)

where

• QV = {P ⊆ Q/
nr
↔ | 1 ≤ |P | ≤ 2 } ∪ {⊥}.

The state set of the verifier consists of sets ofΣnr-SCCs
of G of cardinality one or two, i.e, a singleΣnr-SCC and
pairs ofΣnr-SCCs, plus the special state⊥.

• →V consists of the following transitions:

{[x], [y]}
σ
→ {[x′], [y′]} if σ ∈ Σr, [x]

σ
→nr [x′], and

[y]
σ
→nr [y′];

(7)

{[x], [y]}
σ
→ {[x′], [y]} if σ ∈ Σnr and[x]

σ
→nr [x′]; (8)

{[x], [y]}
σ
→ ⊥ if σ ∈ Σr, [x]

σ
→nr, [y] is

terminal, and[y] 6
σ
→nr.

(9)

• Q◦
V = { {[x◦], [y◦]} | x◦, y◦ ∈ Q◦ }.

The initial state set of the verifier contains all pairs of
Σnr-SCCs of initial states ofG.

Example 2:The Σnr-SCC automaton corresponding toG
in Example 1 isGnr shown in Fig. 2. TheΣnr-SCCs are
[0] = {0}, [1] = {1} and [2] = {2, 3}. Notice that [2]
is Σnr-terminal. The verifierVG, shown in Fig. 2, contains
the following transitions: from (7),{[0]} = {[0], [0]}

a
→

{[1], [1]} = {[1]}, {[0]}
ω
→ {[0]}, {[1]}

b
→ {[0]}, and

{[2]}
c
→ {[0]}; from (8), {[1]}

r
→ {[1, 2]}, {[1, 2]}

r
→ {[1, 2]},

{[1, 2]}
r
→ {[2]}, {[1, 2]}

y
→ {[1, 2]}, {[2]}

r
→ {[2]}, and

{[2]}
y
→ {[2]}; and, from (9),{[1], [2]}

b
→ ⊥, since [1]

b
→nr

[0], [2] is Σnr-terminal, and[2]
b
→nr does not hold. Note that

state⊥ is reachable inVG. It is shown below that this is a
necessary and sufficient condition to confirm thatθ(G) is not
an OP-abstraction.

C. Properties of the OP-Verifier

This section establishes a key property of the OP-Verifier.
The special state⊥ is reachable in the OP-Verifier if and only
if the observer property isnot satisfied. The main result in
Theorem 3 depends on two lemmas to relate traces with the
same projection to the states of the verifier: the OP-Verifier
contains all pairs ofΣnr-SCCs that can be reached by traces
that project to the same relevant events.

Lemma 1:Let VG be the verifier for automatonG. Let
a, b ∈ Σ∗ such thatθ(a) = θ(b) and G

a
→ xa and G

b
→ xb.

Then there existss ∈ Σ∗ such thatθ(a) = θ(b) = θ(s) and
VG

s
→ {[xa], [xb]}.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 9, NO. 9, JANUARY 9999 4

Proof: The claim is shown by induction onn = |a|+ |b|.
In the base case,n = 0 and thusa = b = ε. Thenxa, xb ∈

Q◦ and thus{[xa], [xb]} ∈ Q◦
V , i.e., VG

ε
→ {[xa], [xb]}.

Now assume the claim has been shown for alla, b ∈ Σ∗

such thatθ(a) = θ(b) and |a| + |b| ≤ n. Considera, b ∈ Σ∗

such thatθ(a) = θ(b) and |a|+ |b| = n + 1 andG
a
→ xa and

G
b
→ xb. As θ(a) = θ(b) and |a|+ |b| > 0, either at least one

of the tracesa or b ends with an event inΣnr, or both end
with the same event inΣr.

In the first case, assume without loss of generalitya = a′σ

for someσ ∈ Σnr. ThenG
a′

→ x′
a

σ
→ xa andθ(a′) = θ(a′σ) =

θ(a) = θ(b), and by inductive assumption there existss ∈ Σ∗

such thatθ(s) = θ(a′) = θ(b) and VG
s
→ {[x′

a], [xb]}. Given
x′

a

σ
→ xa with σ ∈ Σnr, it follows by construction ofVG (8)

that VG
s
→ {[x′

a], [xb]}
σ
→ {[xa], [xb]}, i.e., VG

sσ
→ {[xa], [xb]}

with θ(sσ) = θ(s) = θ(a′) = θ(a) = θ(b).
In the second case,a = a′σ andb = b′σ for someσ ∈ Σr.

ThenG
a′

→ x′
a

σ
→ xa andG

b′

→ x′
b

σ
→ xb andθ(a′) = θ(b′). By

inductive assumption there existss′ ∈ Σ∗ such thatθ(s′) =

θ(a′) = θ(b′) and VG
s′

→ {[x′
a], [x′

b]}. Given x′
a

σ
→ xa and

x′
b

σ
→ xb with σ ∈ Σr, it follows by construction ofVG (7)

thatVG
s′

→ {[x′
a], [x′

b]}
σ
→ {[xa], [xb]}, i.e.,VG

s′σ
→ {[xa], [xb]}

with θ(s′σ) = θ(a′σ) = θ(a) andθ(s′σ) = θ(b′σ) = θ(b).
Lemma 2:Let VG = 〈Σ, QV ,→V , Q◦

V 〉 be the verifier for
automatonG. Let s ∈ Σ∗ and{A,B} ∈ QV such thatVG

s
→

{A,B}. Then there exista, b ∈ Σ∗ such thatθ(a) = θ(b) =

θ(s) andG
a
→ A andG

b
→ B.

Proof: The claim is shown by induction onn = |s|.
In the base case,n = 0 and thuss = ε. Note thatA,B ∈

Q◦
V . By Def. 5 there existx◦

a ∈ A such thatx◦
a ∈ Q◦ and

x◦
b ∈ A such thatx◦

b ∈ Q◦, which is enough to showG
ε
→ A

andG
ε
→ B.

Now considers = s′σ such thatVG
s′

→ {A′, B′}
σ
→ {A,B},

and assume by inductive assumption that there exista′, b′ ∈

Σ∗ such thatθ(a′) = θ(b′) = θ(s′) andG
a′

→ A′ andG
b′

→ B′.
Consider two cases.

If σ ∈ Σnr, then by construction ofVG (8), without loss of
generality, there existx′

a ∈ A′ andxa ∈ A such thatx′
a

σ
→ xa,

and B′ = B. As G
a′

→ A′, there existsy′
a ∈ A′ such that

G
a′

→ y′
a. Furthermore,x′

a, y′
a ∈ A′ impliesx′

a

nr
↔ y′

a, i.e., there

exists t ∈ Σ∗
nr such thaty′

a

t
→ x′

a. Thus G
a′

→ y′
a

t
→ x′

a

σ
→

xa ∈ A. It follows that θ(a′tσ) = θ(a′σ) = θ(s′σ) = θ(s),

θ(b′) = θ(s′) = θ(s′σ) = θ(s), G
a′tσ
−−−→ A, andG

b′

→ B′ = B.
If σ ∈ Σr, then by construction ofVG (7) there existx′

a ∈
A′, xa ∈ A, x′

b ∈ B′, and xb ∈ B such thatx′
a

σ
→ xa and

x′
b

σ
→ xb. As G

a′

→ A′, there existsy′
a ∈ A′ such thatG

a′

→ y′
a.

Furthermore,x′
a, y′

a ∈ A′ implies x′
a

nr
↔ y′

a, i.e., there exists

ta ∈ Σ∗
nr such thaty′

a

ta→ x′
a. ThusG

a′

→ y′
a

ta→ x′
a

σ
→ xa ∈ A

and θ(a′taσ) = θ(a′σ) = θ(s′σ) = θ(s). Likewise, there

existsy′
b ∈ B′ and tb ∈ Σ∗

nr such thatG
b′

→ y′
b

tb→ x′
b

σ
→ xb ∈

B andθ(b′tbσ) = θ(b′σ) = θ(s′σ) = θ(s).
Theorem 3:Let G = 〈Σ, Q,→, Q◦〉 be a deterministic

nonblocking automaton. The special state⊥ is reachable inVG

if and only if θ(G) is not an OP-abstraction.

Proof: First assume that⊥ is reachable inVG. By
construction ofVG (9), this means that there exists a reachable
state{A,B} ∈ QV such thatVG

s
→ {A,B}

σ
→ ⊥, where

σ ∈ Σr, xa
σ
→ ya for somexa ∈ A and ya ∈ Q, and B

is a terminal component such thatB
σ
→ does not hold. By

Lemma 2, there existsa, b ∈ Σ∗ such thatθ(a) = θ(b) = θ(s)

and G
a
→ A and G

b
→ B. Then there existsza ∈ A and

ta ∈ Σ∗
nr such thatG

a
→ za

ta→ xa
σ
→ ya, and sinceG is

nonblocking, there existsu ∈ Σ∗ such thatya
uω
→. Thus,

G
a
→ za

ta→ xa
σ
→ ya

uω
→ . (10)

Now let s0 = b andt0 = σθ(u). Thenθ(s0)t0 = θ(b)σθ(u) =
θ(a)σθ(u) = θ(ataσu) ∈ θ(Lm(G)). However, there does not
exist t′ ∈ Σ∗ such thatθ(s0t

′) = θ(s0)t0 and s0t
′ ∈ Lm(G),

because if sucht′ exists thenθ(t′) = t0 = σθ(u) and then

as s0 = b and G
b
→ B and B is a terminal component, also

G
s0→ B

σ
→. However,B was chosen such thatB

σ
→ does not

hold.
Conversely, assumeθ(G) is not an OP-abstraction. Then

there exists ∈ L(G) andt ∈ Σ∗
r such thatθ(s)t ∈ θ(Lm(G)),

and there does not existt′ ∈ Σ∗ such thatθ(st′) = θ(s)t and
st′ ∈ Lm(G). Let u ≤ tω be the longest prefix oftω such
that there existsu′ ∈ Σ∗ such thatθ(u′) = u andsu′ ∈ L(G).
Clearly u 6= tω, since otherwiset′ as above exists.

So let t = uσv with σ ∈ Σr and v ∈ Σ∗
r . Then

θ(su)σv = θ(s)uσv = θ(s)t ∈ θ(Lm(G)), so there exists
a ∈ Σ∗ such thatθ(a) = θ(su) and G

a
→ xa

σ
→. Since

su′ ∈ L(G), there existsx′
b ∈ Q such thatG

su′

→ x′
b. By

Remark 1, there existtb ∈ Σ∗
nr andxb ∈ Q such thatx′

b

tb→ xb

and [xb] is a terminal component. Letb = su′tb. Note that
θ(a) = θ(su) = θ(s)u = θ(su′) = θ(su′tb) = θ(b) and

G
a
→ xa and G

b
→ xb. By Lemma 1, there existssab ∈ Σ∗

such thatθ(sab) = θ(a) = θ(b) andVG
sab→ {[xa], [xb]}. Here

it holds that [xa]
σ
→ and [xb] is a terminal component and

[xb]
σ
→ does not hold, because otherwiseG

b
→ xb

zσ
→ for some

z ∈ Σ∗
nr, and thusbzσ = su′tbzσ ∈ L(G) in contradiction

to the maximal choice ofu above. It follows by construction
of VG (9) thatVG

sab→ {[xa], [xb]}
σ
→ ⊥.

Based on Theorem 3, the observer property can be checked
by constructing the verifier automaton and checking whether
it contains the state⊥.

IV. I MPLEMENTATION

A. The OP-Verifier Algorithm

Algorithm 1 shows the pseudo-code of theOP-Verifier
algorithm; this pseudo-code is the basis of the implementation
of the OP-verifier algorithm within Supremica [22], which is
further discussed in Section IV-C. The algorithm explores the
state space of the verifier until a transition to⊥ is encountered,
or until all possible verifier states have been constructed.

Verifier states are represented as ordered pairs([x], [y])
to represent a set{[x], [y]} ∈ Q/

nr
↔, with singletons{x}

represented as([x], [x]). To exploit the symmetry, all pairs
are ordered such that[x] < [y] based on a fixed but arbitrary
ordering of theΣnr-SCC. The algorithm maintains the set

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 9, NO. 9, JANUARY 9999 5

Algorithm 1 OP-Verifier algorithm

1: input G = 〈Σ, Q,→, Q◦〉
2: calculateGnr = 〈Σ, Q/

nr
↔,→nr, Q

◦
nr〉

3: queue ← 〈empty queue〉
4: visited ← 〈empty hash set〉
5: for all [x] ∈ Q/

nr
↔ do

6: expand([x], [x])
7: end for
8: while queue not emptydo
9: remove([x], [y]) from queue

10: expand([x], [y])
11: end while
12: stop “The observer property is satisfied.”

13: procedure expand([x], [y])
14: for all σ ∈ Σr do
15: if [x]

σ
→nr and [y]

σ
→nr then

16: for all [x]
σ
→nr [x′] and [y]

σ
→nr [y′] do

17: enqueue([x′], [y′])
18: end for
19: else if [x]

σ
→nr and [y] 6

σ
→nr andy is terminalor

[y]
σ
→nr and [x] 6

σ
→nr andx is terminalthen

20: stop “The observer property is not satisfied.”
21: end if
22: end for
23: for all σ ∈ Σnr do
24: for all [x]

σ
→nr [x′] do

25: enqueue([x′], [y])
26: end for
27: for all [y]

σ
→nr [y′] do

28: enqueue([x], [y′])
29: end for
30: end for

31: procedure enqueue([x], [y])
32: if [x] = [y] then
33: return
34: else if [x] > [y] then
35: enqueue([y], [x])
36: else if ([x], [y]) /∈ visited then
37: add ([x], [y]) to visited

38: add ([x], [y]) to queue

39: end if

visited containing all pairs([x], [y]) discovered so far, and
a queue containing those pairs that still need to be explored.

After construction of theΣnr-SCC automaton using Tarjan’s
Algorithm [26], the loop in line 5 examines everyΣnr-
SCC [x] ∈ Q/

nr
↔ and records the successors of the verifier

state{[x]} according to (7) and (8). This step assumes that all
states are reachable. Afterwards, the loop in line 8 visits and
expands all verifier states{[x], [y]} resulting from the previous
loop in line 5, and their successors.

Procedureexpand checks for transitions originating from a
verifier state{[x], [y]}. For relevant events, the loop in line 14
checks in line 15 for successor pairs according to (7), and
then checks in line 19 whether condition (9) is satisfied. If

so, the verifier clearly contains the state⊥, so the algorithm
terminates and reports that the observer property is not sat-
isfied. For non-relevant events, the loop in line 23 constructs
successor pairs according to (8). Procedureenqueue adds new
state pairs to the setvisited and to thequeue, ensuring the
ordering and using the hash setvisited to prevent any pairs
from being processed more than once.

B. Complexity

The complexity of theOP-Verifier algorithm is determined
by the complexity to construct the verifier. If the input is a
deterministic automatonG = 〈Σ, Q,→, Q◦〉 then the number
of reachable states ofVG is bounded by|Q|2 + |Q| + 1 =
O(|Q|2). To estimate the number of transitions ofVG, consider
a transitionx

σ
→ x′ in the input automatonG, and lety ∈ Q

be an arbitrary state. Ifσ ∈ Σr, then this produces at most
one transition{[x], [y]}

σ
→ {[x′], [y′]} or {[x], [y]}

σ
→ ⊥

according to (7) or (9), and ifσ ∈ Σnr, then there is one
transition {[x], [y]}

σ
→ {[x′], [y]} according to (8). That is,

every transition ofG produces up to|Q| transitions inVG.
The deterministic automatonG has up to|Σ||Q| transitions,
so the total number of transitions ofVG is bounded by

|→||Q| ≤ |Σ||Q|2 = O(|Σ||Q|2) . (11)

Tarjan’s algorithm to identify theΣnr-SCC runs inO(|→|) =
O(|Σ||Q|) time [26], so it is dominated by the verifier con-
struction. Therefore, (11) gives the worst-case time complexity
of the OP-Verifier algorithm.

C. Experimental Results

The OP-Verifier algorithm has been implemented in Java
and integrated in the discrete event systems tool Suprem-
ica [22]. Table I shows some experimental results to demon-
strate the performance of the implementation. All experiments
were run on a standard desktop computer using a single core
2.33 GHz CPU and 3 GB of RAM.

The test suite consists of 23 automata obtained as intermedi-
ate results during compositional nonblocking verification[9],
and variations of such automata. The table shows for each
automaton that was checked, the number of states|Q|, the
number of events|Σ|, the total number of transitions|→|, and
the number of non-relevant transitions|

nr
→|. Then the table

shows the number of states|QV | constructed by the OP-
Verifier algorithm, and the time taken to check the observer
property. Furthermore, the time taken by Supremica [22] to
compute a coarsest observation equivalence relation using
the method in [27] is shown. This is the crucial step of
the observer property verification algorithm proposed in [17]
and is indicative of its performance. Finally, the table shows
the verdict whether or not the given automaton satisfies the
observer property.

Table I shows that the OP-Verifier algorithm can easily
check automata with more than 100,000 states in a few
seconds. With one exception, the number of verifier states is
of the same order of magnitude as the number of states of the
automaton, and the OP-Verifier algorithm runs significantly
faster than observation equivalence. This is particularlytrue

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 9, NO. 9, JANUARY 9999 6

TABLE I
EXPERIMENTAL RESULTS

Automaton OP-Verifier Obseq.

|Q| |Σ| |→| |
nr

→| |QV | Time Time Verdict
14934 38 118793 16087 31023 0.01 s 0.21 s false
14934 8985 118793 1272 16207 0.01 s 0.09 s false
18816 42 532812 82656101484 0.05 s 7.29 s false
19538 38 115369 41105 60807 0.02 s 0.94 s false
19538 6028 114952 23616 43373 0.02 s 0.73 s false
21867 30 67058 34661 56530 0.02 s 0.23 s false
21867 16777 67058 2 21870 0.01 s 0.08 s true
22599 22 156361 35667 58287 0.02 s 1.04 s false
22599 19062 156361 2187 24786 0.02 s 0.14 s true
22634 26 67100 35655 58291 0.02 s 0.32 s false
22634 9462 67100 2110 26030 0.01 s 0.11 s true
23313 40 232014 23784 47099 0.02 s 0.49 s false
23313 14366 232014 648 23961 0.02 s 0.22 s true
24938 32 75399 39305 64245 0.02 s 0.27 s false
24938 16265 75399 1932 27676 0.01 s 0.09 s true
31216 40 278251 33122 64340 0.03 s 0.57 s false
31216 14139 278251 4614 36750 0.03 s 0.25 s true
36277 18 288995 54049 90928 0.04 s 3.38 s false
36277 34013 288995 4926 41205 0.02 s 0.27 s false
49152 44 1546504 319488368663 0.18 s93.89 s false
49152 434 1446152 1228805147232 27.71 s 2.17 s true

105619 20 680591 3261731231667 1.01 s18.38 s false
136656 36 1273580 249928387611 0.17 s 9.37 s false

when the observer property is not satisfied, because the OP-
Verifier algorithm can terminate early as soon as the state⊥
is encountered during construction of the verifier. The case
where the OP-Verifier is slower than observation equivalence
has the largest number of non-relevant transitions among the
examples that satisfy the observer property, while the obser-
vation equivalence algorithm quickly finds a good partitionin
this case. In all other cases, the OP-Verifier algorithm gives
an answer in less than two seconds.

V. CONCLUSIONS

The OP-Verifier algorithm presented in this paper allows
to efficiently check whether an abstraction obtained by a
natural projection has the observer property. The procedure
is a modified version of a previous one [11], which removes
a restriction on the existence of cycles of non-relevant events
while still ensuring quadratic complexity in the number of
states. The new version of the verifier first merges all states
connected by cycles of non-relevant events. The resulting
(non-deterministic) automaton is then translated into a tran-
sition structure, in which the observer property is checkedby
verifying the reachability of a specific state. We are currently
investigating how theOP-Verifier can be used to improve the
OP-Search algorithm [19] in order to help computing reduced
OP-abstractions.

REFERENCES

[1] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[2] R. C. Hill and D. M. Tilbury, “Modular Supervisory Control of Discrete
Event Systems with Abstraction and Incremental HierarchicalConstruc-
tion,” in 8th Int. Workshop on Discrete Event Systems, WODES ’06, Ann
Arbor, MI, USA, July 2006, pp. 399–406.

[3] A. E. C. da Cunha and J. E. R. Cury, “Hierarchical Supervisory Control
Based on Discrete Event Systems with Flexible Marking,”IEEE Trans.
Autom. Control, vol. 52, no. 12, pp. 2242–2253, Dec. 2007.

[4] L. Feng and W. M. Wonham, “Supervisory control architecture for
discrete-event systems,”IEEE Trans. Autom. Control, vol. 53, no. 6,
pp. 1449–1461, July 2008.

[5] K. Schmidt, T. Moor, and S. Perk., “Nonblocking hierarchical control
of decentralized discrete event systems,”IEEE Trans. Autom. Control,
vol. 53, no. 10, pp. 2252–2265, Nov. 2008.

[6] K. Schmidt and C. Breindl, “Maximally Permissive Hierarchical Control
of Decentralized Discrete Event Systems,”IEEE Trans. Autom. Control,
vol. 56, no. 4, pp. 723–737, April 2011.

[7] K. Schmidt, H. Marchand, and B. Gaudin, “Modular and Decentralizd
Supervisory Control of Concurrent Discrete Event Systems Using Re-
duced Systems Models,” in8th Int. Workshop on Discrete Event Systems,
WODES ’06, Ann Arbor, MI, USA, July 2006, pp. 149–154.

[8] L. Feng and W. M. Wonham, “Computationally Efficient Supervisor
Design: Abstraction and Modularity,” in8th Int. Workshop on Discrete
Event Systems, WODES’ 06, Ann Arbor, MI, USA, July 2006, pp. 3–8.

[9] H. Flordal and R. Malik, “Compositional verification in supervisory
control,” SIAM J. Control and Optimization, vol. 48, no. 3, pp. 1914–
1938, 2009.

[10] P. N. Pena, J. E. R. Cury, and S. Lafortune, “Verificationof Noncon-
flict of Supervisors Using Abstractions,”IEEE Trans. Autom. Control,
vol. 54, no. 12, pp. 2803–2815, 2009.

[11] ——, “Polynomial-Time Verification of the Observer Property in Ab-
stractions,” in 2008 American Control Conference, ACC ’08, Seattle,
USA, June 2008, pp. 465–470.

[12] K. C. Wong and W. M. Wonham, “Hierarchical Control of Discrete-
Event Systems,”Discrete Event Dynamic Systems: Theory and Applica-
tions, vol. 6, no. 3, pp. 241–273, 1996.

[13] L. Feng and W. M. Wonham, “On the computation of natural observers
in discrete-event systems,”Discrete Event Dynamic Systems, vol. 20,
no. 1, pp. 63–102, 2010.

[14] K. C. Wong, J. G. Thistle, R. P. Malhamé, and H.-H. Hoang, “Super-
visory Control of Distributed Systems: Conflict Resolution,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 10, pp. 131–
186, 2000.

[15] K. Schmidt and C. Breindl, “On maximal permissiveness of hierarchical
and modular supervisory control approaches for discrete event systems,”
in 9th Int. Workshop on Discrete Event Systems, WODES ’08, Göteborg,
Sweden, 2008, pp. 462–467.

[16] T. Yoo and S. Lafortune, “Polynomial-time verification ofdiagnosabil-
ity of partially observed discrete-event systems,”IEEE Trans. Autom.
Control, vol. 47, no. 9, pp. 1491– 1495, Sep. 2002.

[17] K. C. Wong and W. M. Wonham, “On the Computation of Observers
in Discrete-Event Systems,”Discrete Event Dynamical Systems, vol. 14,
no. 1, pp. 55–107, Jan. 2004.

[18] S. Jiang, R. Kumar, and H. E. Garcia, “Optimal sensor selection for
discrete-event systems with partial observation,”IEEE Trans. Autom.
Control, vol. 48, no. 3, pp. 369–381, March 2003.

[19] P. N. Pena, J. E. R. Cury, R. Malik, and S. Lafortune, “Efficient
Computation of Observer Projections using OP-Verifiers,” in10th Int.
Workshop on Discrete Event Systems, WODES ’10, Berlin, Germany,
Aug. 2010, pp. 416–421.

[20] R. Kumar and P. N. Pena, “Private communication,” Oct. 2012.
[21] H. J. Bravo, A. E. C. da Cunha, P. Pena, R. Malik, and J. E. R.

Cury, “Generalised verification of the observer property indiscrete event
systems,” in11th Int. Workshop of Discrete Event Systems, WODES ’12,
Guadalajara, Mexico, 2012, pp. 337–342.

[22] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - An
integrated environment for verification, synthesis and simulation of
discrete event systems,” in8th Int. Workshop of Discrete Event Systems,
WODES ’06, Ann Arbor, MI, USA, 2006, pp. 384–385.

[23] J. E. Hopcroft, R. Motwani, and J. D. Ullman,Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001.

[24] H. Zhong and W. M. Wonham, “On the Consistency of Hierarchical
Supervision in Discrete-Event Systems,”IEEE Trans. Autom. Control,
vol. 35, no. 10, pp. 1125–1134, Oct. 1990.

[25] L. R. Foulds,Graph theory applications. Universitext, 1992.
[26] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM J.

Comput., vol. 1, no. 2, pp. 146–160, Jun. 1972.
[27] T. Bolognesi and S. A. Smolka, “Fundamental results for the verifica-

tion of observational equivalence: a survey,” inProtocol Specification,
Testing and Verification VII: IFIP WG6.1 7th Int. Conf. on Protocol
Specification, Testing and Verification, H. Rudin and C. H. West, Eds.
Amsterdam, The Netherlands: North-Holland, 1987, pp. 165–179.

