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Abstract—The observer property is an important condition that are not contained in a given subset of relevant events,
to be satisfied by abstractions of Discrete Event System (DES) denoted byx,, with ¥, C ¥; see [3]-[5], [14], [15].

models. This paper presents a new algorithm that tests if an \Jarifi : ; .
abstraction of a DES obtained through natural projection has The structure calle@P-Verifierwas first presented in [11];

the observer property. The procedure, called OP-Verifier, can it was i”SPired by gn algori.thm for testing diagnosability
be applied to (potentially nondeterministic) automata, with no presented in [16]. Given an input automat6h defined on
restriction on the existence of cycles of “non-relevant” events. the alphabet:, a set of relevant events, C ¥, and a

This procedure has quadratic co_mple>_<ity_in the number of states. patural projectiord from strings inX. to strings in¥,., the OP-
lgseﬁrig%g]ance of the algorithm is illustrated by a set of \sgifier algorithm checks whether the projecti6(L,, (G)) is
' an OP-abstraction The OP-Verifieralgorithm does not require
Index Terms—Discrete Event Systems, Natural Projections, explicitly computing the abstraction to check for the OP and
Observer Property. has been shown to have better computational performance
when compared to other similar procedures [13], [17]-[19].
I. INTRODUCTION It runs in quadratic complexity in the number of states. A
Natural projections play a central role in the computatiolimitation of the OP-Verifier algorithm as proposed in [11],
of abstractions for Discrete Event Systems (DES) modeRowever, is that it can only be applied to automata that do not
Abstractions obtained by natural projections have beeenext have cycles of non-relevant events.
sively used in the Supervisory Control Theory of DES [1] as, A different algorithm to test the OP is proposed in [13],
for example, in control with partial observation, in hieriaical [17]. This algorithm relies on the computation of a coarsest
control [2]-[6], in modular synthesis [2], [7], [8], and inobservation equivalence relation and runs in cubic coniigiex
compositional verification of the nonblocking property,[], in the number of states. Yet another algorithm for testing
[10], among many problem domains. In several of the aboge-called “observerness” for a systefhand a maskM is
cited works, theobserver propertys an important condition to presented in [18]. This procedure may give false negatiges a
be satisfied by the abstracted models. Abstractions saigsfystated and needs to be modified to address this problem [20].
this property are calle@P-abstractiong11]. This paper presents a modified version of B-Verifier
The observer property, or simply OP hereafter, was firgtgorithm of [11] that subsumes the preliminary results2if] [
introduced in the context of hierarchical control of DESThis algorithm can be applied to automata with no restnictio
In [12], the abstraction is obtained in the form ofeporter on the existence of cycles of non-relevant events. The algo-
map that projects strings of events of the original (low-l§velrithm operates on a modified automatoh,, obtained from
model, built from a set, into high-level strings built from the input automatorz, by aggregating states connected by
an independent set of events, denotedZhyDue to some cycles of non-relevant events. It overcomes the limitatioh
difficulties with the use of reporter maps [13], most of théhe previously proposed verifier [11], [21], while retaigiiis
approaches subsequent to [12] focus on abstractions ebtaiquadratic complexity. The modifie@P-Verifier algorithm has
by the natural projection which maps strings of the original been implemented in Supremica [22].
model into strings of the abstraction, by erasing event¥ of This paper is organized as follows. Section Il introduces th
o o o necessary background. Section Ill describes the construct
FeZ'e':lélpfg?A';;V;t%t‘;izfgfggm‘(ﬁ?aﬂ?gg‘grf;&atffﬁ?ﬁ? Universidade of the OP-Verifier automaton and its properties. Then Sec-
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taken from a finite alphabet. X is the set of all finite strings
of events in%, including the empty string. Theconcatenation
of stringss, u € ¥* is written assu. A string s € ¥* is called

a prefix of ¢t € ¥*, written s < ¢, if there existsu € ¥* such

thatsu = t. A subsetl, C >* is called alanguage Theprefix- Fig. 1. Example to demonstrate the observer property.

closure L of a languagel. C ¥* is the set of all prefixes of

strings inL, i.e.,L = { s € ©* | s < t for somet € L }. Reg-

ular languages are represented by (possibly nondetetm}nlsnot contained inS,.. The concept is extended to languages by

finite-state automatas follows. e N
Definition 1: A (nondeterministic) finite-state automaton isdefmmg&(L) = {# e[t =0(s) for somes € L }.

a tupleG = (X, Q, —,Q°), whereX is a finite set of events, This paper is concerned with .the property of projectjons
Q is a finite set ofstates — C Q x ¥ x Q is the state known as theobserver properi;ywhlch was first introduced in
transition relation and Q° C @ is the set ofinitial states the context of reporter maps in [12] and [14]. In the context
G is deterministic if [Q°| < 1 andz % y, andz % o of natural projections, it is written as follows.
always impliesy; = yo. Definition 3: [14] Let L C ¥* be a language, let, C %,
The transition relation is written in infix notation % y, and letd: ¥* — ¥ be the natural projection. If for all € L
and is extended to traces M* by letting + = « for all and allt € X} such thatd(s)t € 6(L), there exists’ € ¥~
re@ andz 2% 2 if 2 5 yandy 5 2 for somey € Q. such thatd(st’) = 6(s)t and st’ € L, thend(L) has the
Furthermorex > meansz > y for somey € Q, andz — y  observer property

meansz = y for somes € ¥*. These notations also apply The observer property ensures that, if two states can be
to state setsX — Y for X,Y C () meansz — y for some reached by traces with the same projection, i®.,
statesz € X andy € Y. Also, if G is an automaton, thengnd ¢ 2z, with 6(s;) = 6(s2), then these states can

S S s o S o S . . . . . .
G =z, g — X, andG — stand for@ oo @° — X, also achieve termination by traces with equal projection,
and Q° —, respectively. For examplg; — X means that ; o z, DY implies b itk O(t1) = O(ts). If the
the automator(; can re*ach_ some state in the SEtC Q on  ypserver property is satisfied for an automaton, then itsrakt
execution of trace € *. Finally, thegenerated languagef  poiection is “observation equivalent” to that automatahich

automatonG is L(G) = {s € " | G — . _ means that all branching in the automaton remains visible in
To express the marking of strings, the alphabes assumed ;4 projection [12].

to contain themarking eventw € X, which may only
appear on self-loops, i.ez - y always impliesz = y.
In this notation, themarked languageof G is defined as
Ln(G) ={se (E\{w})* | sw € L(G)}. This paper uses
the marking eventv instead of the more conventional set o . :
marking, or final, states, because it simplifies the presienta prope_rty it6(Lm(G)) has the obs_erver property. In this case
by associating the marking of strings to a special case %@G) is also called arOP-abstraction
transition. Example 1: AutomatonG in Fig. 1 models the behavior of
Given an automatoiy = (X, Q, —,Q°), a statex € Q is @ simple manufacturing transfer line with material feedbac
calledreachableif G — z, andcoreachablef = % for some 2dapted from [21], [24]. After starting to manufacture a
t € ¥*. The automator is called reachableif every state workpiece @), the transfer line can either finish production

z € Q is reachable, andonblockingif every reachable state Sucessfully§), or decide to retain the workpiece) for one or
x € Q is coreachable. more rework cyclesy), and eventually finish production with

A common automaton operation is theotientmodulo an & reworked workpiecec]. Assume that, in some hierarchical
equivalence relation on the state set. control approach, as in [3], [5], [6], one is concerned onithw

Definition 2: Let G = (2, Q, —, Q°) be an automaton and the input-output behavior of the line. Then it is of interést
let ~ C Q x Q be an equivalence relation. Thguotient Construct the abstractio(G) with respect to relevant events

Projections can also be applied to automata. Given a
deterministic and nonblocking automatdr, its projection
0(G) is the minimal deterministic recognizer of the language
i?(/:m(G)) [23]. Then it is said tha?(G) has the observer

automatonof G modulo ~ is Oy = {a,b_, c,a.u} and no_n—relevant events,, = {r,y}, whigh
- is shown in Fig. 1. In this casé(G) is not an OP-abstraction.
G/~ =(8,Q/~,—/~Q°) , (1) To see this, lets = ar andt = b in Definition 3. Then

where — /~ = { ([z],0,[y]) | 2’ % v for somez’ € [z] and 0(s)t = ab € 0(Ly(G)), but there is no trac¢ € ¥* such
y €[y} and@° = {[2°] | 2° € Q°}. Here,[z] = {2’ € that st’ = art’ € L,,(G) andd(st’) = 0(s)t = ab.

Q | x ~ 2’} denotes theequivalence classf = € @, and The OP-Verifier algorithm [11] can check for certain pro-
Q/~=1{l]z] | x € Q} is the set of all equivalence classes. jections whether or not they satisfy the observer property.
An operation over languages that is very important forhis algorithm, which was inspired by the verifier [16] for

abstraction isnatural projection For this purpose, the eventtesting the property of diagnosability, can only be applied
alphabet is partitioned intd = X, U X,.,, whereX, denotes deterministic automata that do not have cycles of non-agiev
the set ofrelevantevents, whileX,, denotes the set afon- events. The automatad in Fig. 1 has a cycle of non-relevant
relevantevents. Forx, C ¥, the natural projectionf: ¥* —  events involving states, 2, and3. Because of this cycle, the
¥ maps strings ino* to strings inX} by erasing all events example cannot be classified correctly by the algorithm.[11]
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IIl. V ERIFICATION OF THE OBSERVERPROPERTY Gur

In this section, theOP-Verifier algorithm is presented. It
extends the algorithm in [11] by adding the ability to handle
cycles of non-relevant events.

A. StronegEnr-Connected Components Automatgp, Fig. 2. Example of OP-Verifier construction.

In order to deal with cycles of non-relevant events, a
strongly ¥,,;,-connected components automaierintroduced.
Let G = (%,Q, —,Q°) be an automaton, and I&t,, C ¥ be Definition 5: Let G = (¥, Q, —, Q°) be a deterministic au-
a set of non-relevant events. Define the following relations tomaton with,,,-SCC automatorts,,, = (2, Qur, — nr, @°),

the state sef): and letX = ¥, U X,,,. The OP-Verifier V for G is
z 5y — x>y for somes € O, ; 2) Vo = (%,Qv,—v,Qv) (6)
r&y = 5 yandy Sz . (3) where

« Qu={PCQ/[1<|P[<2}U{L}).
The state set of the verifier consists of set2gf-SCCs
of G of cardinality one or two, i.e, a singhg,,,-SCC and
pairs of ¥,,,-SCCs, plus the special state

o —y, consists of the following transitions:

If z & y, then the states andy are calledstrongly ¥,,,-
connected>,,,-SC), because it is possible to reach each state
from the other using only non-relevant events. If G does not
contain two distinc®,,,-SC states it is said to e, -acyclic

A set of X,,,-SC states is called strongly >>,,,-connected
component(¥,,,-SCC). If eachX,,-SCC is contracted to {lz], ]} Z {[2'], W]} if o €%y, [2] Zue [2'], and (7)
a single state, the resulting automaton3is,-acyclic. This

: [y] S V)
contracted automaton is called the strongly,.-connected

components automatory(,-SCC automaton) ofG' in the {lz], W]} = (2], [y} |f o € Bur and[z] S [27]: (8)
following. Formally, theX,,.-SCC of stater € Q is {[=],[y]} > L if o€, 2] Zu, [y]is (9)
2] ={yeQ|z =y}, @) terminal, andy] 7.

and theX,,,-SCC automaton ot is the quotient automaton ° ?Xe%n{t%fs]t;\[tye E(thof gt/hee Qer'f}?ér contains all pairs of
constructed by merging thg,.-SCCs inG, nit vertl : pai

Yn-SCCs of initial states of5.

G =G/ ) Example 2: The X,,,-SCC automaton corresponding @
in Example 1 isGy, shown in Fig. 2. Thex,,-SCCs are

Remark 1:In graph theory, theX, -SCC automaton is 0] = {0}, [1] = {1} and [2] = {2,3}. Notice that[2]

calleq a cc_)nde.nsauon graph V.Vh'Ch s known to be is X,.-terminal. The verifierV, shown in Fig. 2, contains
acyclic[25], i.e., it does not contain any cycles of non-relevanf following transitions: from (7),{[0]} = {[0],[0]} =
events except for self-loops. For a finite state set, it fedlo " ' p o

that for every state € (, there exists a statee Q such that [ [1]} = {[1]}, {0} = {[o]}, {[1]} = {[0]%’ and

& ™y, with [y] aterminal component, i.e., a component witht |2/} = {7,[0]}; from (8), {[1]5 = {[1,21}, {[1,2]) = {[1.2]},
no furtherX,,-transitions outgoing to other components.  {[1 21} — {[21}, {[1,2]} = {[1,2]}, {b[2}} = {[2]}, Zi”d
Definition 4: Let G = (3, Q, —, Q°) be an automaton, and {[2]} > {[2]}; and, from (9),{[1],[2]} — L, since[1] 5,

let ¥, C X. Fory € @, the componenfy] is X,.-terminal [0], [2] is X,,-terminal, and[2] b, does not hold. Note that

if, for all o € ¥,,, and allz € Q such thatly] % [2], it holds state_L is reachable inV. It is shown below that this is a

that [y] = [z]. necessary and sufficient condition to confirm th&®) is not
The strongly connected components of a graph can be caam OP-abstraction.

puted efficiently usingarjan’s Algorithm[26]. This algorithm

has a worst-case time complexity 6f|—|), i.e., it is linear

. i 7 . .C. Properties of the OP-Verifier
in the number of transitions. Tarjan’s Algorithm can be basi . ] . -
adapted to compute the,,-SCC automaton. This section establishes a key property of the OP-Verifier.

The special staté is reachable in the OP-Verifier if and only

» if the observer property isiot satisfied. The main result in

B. OP-VerifierVg Theorem 3 depends on two lemmas to relate traces with the
Based on thex,,-SCC automaton, th©P-Verifier V; is same projection to the states of the verifier: the OP-Verifier

constructed. Th®©P-Verifieris a nondeterministic automatoncontains all pairs obl,,-SCCs that can be reached by traces
that is used to determine whether or not the observer prppettiat project to the same relevant events.
is satisfied for the original automato@ and non-relevant Lemma 1:Let V5 be the verifier for automatoiw’. Let
eventsy,,. It is constructed in a similar way to the previous; b € ¥* such thatd(a) = 6(b) and G 4z, and G KA Zp.
OP-Verifierfor ¥,,,-acyclic automata in [11], except that it iSThen there exists € %* such thatf(a) = 6(b) = 6(s) and
based on the:,,-SCC automatortr,,, instead ofG. Vo 2 {[zd], [zp]}-
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Proof: The claim is shown by induction om = |a| + |b].

In the base case, = 0 and thusa = b = <. Thenz,, 2}, €
Q° and thus{[z,], 73]} € Q% i.e., Vo = {[xa], [zs]}-

Now assume the claim has been shown foraah € ¥*
such thatf(a) = 6(b) and |a| + |b| < n. Considera,b € £*
such thatd(a) = 6(b) and|a| + |b| =n + 1 andG % =z, and
G 2 z,. As 0(a)
of the tracesa or b ends with an event irt,,, or both end
with the same event ix,.

In the first case, assume without loss of generality o'c
for someo € Ly,,. ThenG % 2! %z, andf(a’) = 0(a’'c) =
0(a) = 0(b), and by inductive assumption there exists >*
such thatd(s) = 0(a’) = 6(b) and Vg > {[2], [z,]}. Given
2/, % x, with o € ¥,,, it follows by construction ofi/; (8)
that Ve = {[z4], [5,]} = {[za], [wa]}, i€, Vo = {[za], [22]}
with 8(so) = 0(s) = 0(a’) = 0(a) = 0(D).

In the §econd case, = a’g andb = b'o for someo € ..
ThenG % 2/, % z, andG & 2, % 2, andf(a’) = (V). By
inductive assumption there exists € X* such thatd(s’) =
O(a’) = 0(b') and Vg LA {[z%], [z}]}. Givenz! % z, and
z, % x, with o € %,, it follows by construction ofl/; (7)
that Ve = {[z,], [23]} = {[za], [ze]}, €., Vo == {[za], 23]}
with §(s'c) = 0(a'c) = 0(a) andb(s'c) = 0(b'c) = 0(b). A

Lemma 2:Let Vi = (X, Qv, —v, Q) be the verifier for
automatonG. Let s € ©* and{A, B} € Qv such thatlVg >
{4, B}. Then there exist, b € ¥* such thatd(a) = 6(b) =
f(s) andG % A andG > B.

Proof: The claim is shown by induction on = |s|.

In the base case, = 0 and thuss = ¢. Note thatA, B €
Q5. By Def. 5 there existt; € A such thatz, € Q° and
z € A such thatr§ € Q°, which is enough to show = A
andG 5 B. /

Now considers = s'o such that/y = {A’, B’} % {A, B},
and assume by inductive assumption that there e»(;ii €
¥* such tha¥(a’) = 0(V') = 6(s') andG % A’ andG LiNy:
Consider two cases.

If o € ¥, then by construction oF (8), without loss of
generality, there exist/, ¢ A’ andz, € A such that!, % =z,
and B = B.AsG % A’, there existsy,, € A’ such that
G % .. Furthermoreg! , !, e A’impliesa!, & ya, i.e., there

existst € ¥ such thaty/, LA 2. ThusG % o, 4 A
z, € A lt fOllOWS thatf(a'to) = 0(a’'c) = 0(s o) = 9( ),
o) = 0(s') = 0(s'a) = 8(s), G 2% A, andG % B/ = B.

If o € X,, then by construction oV (7) there exist!, €
Az, € Az}, € B/, andz, € B such that!, % =, and
x5 x,. AsG % A/, there existg/, € A’ such thatG' - y/,.
Furthermoreg! vy, € A’ implies 2/, & y!, i.e., there exists
te € ©, such thaty, %% 2. ThusG % o, % 2, S a, € A
and f(a't,o) = 6(d’o) = 0(s'c) = 6(s). Likewise, there
existsy, € B’ andt, € X}, such thatG LA yp By o, €
B andf(t'tyo) = 0(b'o) = 0(s'0) = 6(s). [

Theorem 3:Let G = (X,Q,—,Q°) be a deterministic
nonblocking automaton. The special statés reachable iV
if and only if 6(G) is not an OP-abstraction.

= 0(b) and|a| + |b] > 0, either at least one

Proof: First assume thatl is reachable inVy. By
construction ofi; (9), this means that there exists a reachable
state {A, B} € Qv such thatVy > {A,B} % 1, where
o€ X, x4 > y, for somez, € A andy, € Q, and B
is a terminal component such th& % does not hold. By
Lemma 2, there exists, b € ¥* such that)(a) = 6(b) = 6(s)
andG % A and G > B. Then there existg, € A and
t, € ¥ such thatG % z, % 2, % y,, and sinceG is

nr

nonblockmg, there exists € ©* such thaty, 5. Thus,

G tq o uw
*)Za*)xa*)ya

(10)

Now let sy = b andty = o6 (u). Thend(so)tg = 6(b)ob(u) =
0(a)ob(u) = O(at,ou) € 0(Ly,(G)). However, there does not
existt’ € X* such thatf(spt’) = 0(so)tp and sot’ € L1 (G),
because if such’ exists thend(t') = ¢ty = o6(u) and then
as 50 = b andG % B and B is a terminal component also
G %% B Z. However, B was chosen such thd % does not
hold.

Conversely, assum@(G) is not an OP-abstraction. Then
there exists € £(G) andt € £ such that)(s)t € (L (G)),
and there does not existe X* such thatd(st’) = 6(s)t and
st' € L,(G). Let u < tw be the longest prefix ofw such
that there exists’ € ¥* such tha?(u') = v andsu’ € L(G).
Clearly u # tw, since otherwise¢’ as above exists.

So lett = wov with ¢ € X, andv € X}. Then
O(su)ov = 0(s)uov = 0(s)t € (L (G)), so there exists
a € %* such thatf(a) = O(su) and G % =z, 5. Since
su' € L(G), there existsr, € @ such thatG e xy. By
Remark 1, there exisi € X} andz;, € @ such thatr; By T,
and [z;] is a terminal component. Lét = su't,. Note that
O(a) = O(su) = 0(s)u = O(su’) = O(su'ty) = 6(b) and
G% x, andG b, xp. By Lemma 1, there exists,, € ¥*
such thatd(s.;) = 0(a) = 0(b) and Vg 2% {[z,], [x3]}. Here
it holds that[z,] % and [x}] is a terminal component and
[z] = does not hold, because otherwise z;, 2 for some
z € X%, and thusbzo = su'tyzo € L(G) in contradiction
to the maximal choice of. above. It follows by construction

of Vg (9) thatVg = Zab [xa}, [xb]} Z 1. |

Based on Theorem 3, the observer property can be checked
by constructing the verifier automaton and checking whether
it contains the state..

IV. IMPLEMENTATION

A. The OP-Verifier Algorithm

Algorithm 1 shows the pseudo-code of tl@P-Verifier
algorithm; this pseudo-code is the basis of the implemgmtat
of the OP-verifier algorithm within Supremica [22], which is
further discussed in Section IV-C. The algorithm explotes t
state space of the verifier until a transitionltds encountered,
or until all possible verifier states have been constructed.

Verifier states are represented as ordered pdirk [y])
to represent a sef[z], [y]} € Q/&, with singletons{z}
represented ag[x], [z]). To exploit the symmetry, all pairs
are ordered such thét] < [y] based on a fixed but arbitrary
ordering of theX,,-SCC. The algorithm maintains the set
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Algorithm 1 OP-Verifier algorithm

1
. calculateG,,, = (X,Q/%, — ., Q%)
. queue «— (empty queug

. visited <+ (empty hash sét

. for all [z] € Q/& do

[l
N PO

13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:

© 0N O UAWN

input G = (%,Q, —,Q°)

expand([z], [z])

: end for
: while queue not emptydo

remove([z], [y]) from queue
expand([z], [y])

. end while
. stop “The observer property is satisfied.”

procedure expand([z], [y])
forall o0 € X, do
if [z] Zn and[y] 2y, then
for all [z] %, [¢'] and[y] &
enqueue([2'], [y'])
end for
else if [z] 2 Zor and[y] 2. andy is terminalor
[y] Zne and[z] 2, andz is terminalthen
stop “The observer property is not satisfied.”
end if
end for
for all o € ¥, do
for all [z] %, [2'] do
enqueue([2’], [y])
end for
for all [y] %, [y'] do
enqueue([], [y'])
end for
end for

nr [y/} do

procedure enqueue([z], [y])

if [x] = [y] then
return

else if [x] > [y] then
enqueue([y], [])

else if ([z], [y]) ¢ visited then
add ([z], [y]) to wisited
add ([z], [y]) to queue

end if

(0]
(0]

visited containing all pairs([z], [y]) discovered so far, and
a queue containing those pairs that still need to be explore

so, the verifier clearly contains the state so the algorithm
terminates and reports that the observer property is net sat
isfied. For non-relevant events, the loop in line 23 congsruc
successor pairs according to (8). Procedurgueue adds new
state pairs to the setisited and to thequeue, ensuring the
ordering and using the hash satited to prevent any pairs
from being processed more than once.

B. Complexity

The complexity of theDP-Verifier algorithm is determined
by the complexity to construct the verifier. If the input is a
deterministic automatoty = (X, @, —, Q°) then the number
of reachable states dfi is bounded by|Q* + |Q| + 1 =
O(|Q|?). To estimate the number of transitionslaf, consider
a transitionz = 2’ in the input automatoid, and lety € Q
be an arbitrary state. I# € X,, then this produces at most
one transition{[z], [y]} = {['],[y']} or {[z],[y]} = L
according to (7) or (9), and it € X,,, then there is one
transition {[z], [y]} = {[z'],[y]} according to (8). That is,
every transition ofG' produces up tdQ)| transitions inV.
The deterministic automato@ has up to|X||Q| transitions,
so the total number of transitions &% is bounded by

I=lQl < BRI = O(IZ]1QP?) - (11)

Tarjan’s algorithm to identify th&,,-SCC runs inO(|]—|) =
O(|2]|Q|) time [26], so it is dominated by the verifier con-
struction. Therefore, (11) gives the worst-case time cexipf

of the OP-Verifier algorithm.

C. Experimental Results

The OP-Verifier algorithm has been implemented in Java
and integrated in the discrete event systems tool Suprem-
ica [22]. Table | shows some experimental results to demon-
strate the performance of the implementation. All expernitae
were run on a standard desktop computer using a single core
2.33GHz CPU and 3 GB of RAM.

The test suite consists of 23 automata obtained as intermedi
ate results during compositional nonblocking verificat[®h
and variations of such automata. The table shows for each
automaton that was checked, the number of st&fps the
number of eventy:|, the total number of transitiorjs-|, and
the number of non-relevant transitions:|. Then the table
shows the number of statd€)y| constructed by the OP-
Verifier algorithm, and the time taken to check the observer

@roperty. Furthermore, the time taken by Supremica [22] to

ompute a coarsest observation equivalence relation using

After construction of theZ,,,-SCC automaton using Tarjan'sthe method in [27] is shown. This is the crucial step of

Algorithm [26], the loop in line 5 examines every,.-

the observer property verification algorithm proposed iA] [1

SCC[z] € Q/% and records the successors of the verifigfnd is indicative of its performance. Finally, the tablewsgo

state{[z]} according to (7) and (8). This step assumes that @He verdict whether or not the given automaton satisfies the
states are reachable. Afterwards, the loop in line 8 visits agpserver property.

expands all verifier statggz], [y]} resulting from the previous

loop in line 5, and their successors.

Procedurexxpand checks for transitions originating from aseconds. With one exception, the number of verifier states is
verifier state{[z], [y]}. For relevant events, the loop in line 14of the same order of magnitude as the number of states of the
checks in line 15 for successor pairs according to (7), aadtomaton, and the OP-Verifier algorithm runs significantly
then checks in line 19 whether condition (9) is satisfied. faster than observation equivalence. This is particul&g

Table | shows that the OP-Verifier algorithm can easily
check automata with more than 100,000 states in a few
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— — v
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021y false vol. 53, no. 10, pp. 22522265, Nov. 2008.
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