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On Delay-independent Stability of a class of

Nonlinear Positive Time-delay Systems

Vahid S. Bokharaie , Oliver Mason

Index Terms
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Abstract

We present a condition for delay-independent stability of aclass of nonlinear positive systems.

This result applies to systems that are not necessarily monotone and extends recent work on cooperative

nonlinear systems.

I. INTRODUCTION

In Ecology, Biology, Economics and other application domains, the variables of interest are

typically constrained to be nonnegative. Motivated by thisvery simple observation, numerous

researchers have worked on the theory of so-called positivesystems in the recent and not so

recent past [1]. Much of the more recent work in this direction has focussed on extending the

elegant theory of positive linear time-invariant systems to more general and realistic settings [2],

[3], [4], [5]. In particular, authors have considered time-varying, switched and different classes

of nonlinear positive systems [6], [7], [8].

Of the particular properties of positive LTI systems, that of delay-independent stability is

among the most striking. Formally, if the positive system

ẋ(t) = (A +B)x(t) (1)
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has a globally asymptotically stable (GAS) equilibrium at the origin, then so does the delayed

system

ẋ(t) = Ax(t) +Bx(t− τ) (2)

for everyτ ≥ 0.

Recently, this result has been extended to nonlinear cooperative systems in [9], [10]. In a

similar spirit, the robustness of other classes of positivesystems with respect to delay has been

studied in [4]. In this brief note, our purpose is to build on the work of [10] and derive a

condition for delay-independent stability of a class of nonlinear positive systems that are not

necessarily cooperative. To this end, we present necessarypreliminary results in Section II; the

main result of the note is then developed in Section III alongwith a simple illustrative example.

II. PRELIMINARIES

Throughout we denote the positive orthant ofR
n by R

n
+ := {x ∈ R

n : xi ≥ 0, 1 ≤ i ≤ n}.

For x ∈ R
n and i = 1, . . . , n, xi denotes theith coordinate ofx. For vectorsx, y ∈ R

n, we

write: x ≥ y if xi ≥ yi for 1 ≤ i ≤ n; x > y if x ≥ y andx 6= y; x≫ y if xi > yi, 1 ≤ i ≤ n.

Let D be an open neighbourhood of the nonnegative orthantR
n
+ and let f : D → R

n,

g : D → R
n beC1 mappings. We are concerned with the delayed system

ẋ(t) = f(x(t)) + g(x(t− τ)), τ ≥ 0. (3)

For a continuous function,φ ∈ C([−τ, 0],Rn) we write F (φ) = f(φ(0)) + g(φ(−τ)) for the

functional associated with (3). Also,x(t, φ) denotes the solution of (3) corresponding to the initial

conditionφ ∈ C([−τ, 0],Rn). Throughout the note, we assume that the origin is an equilibrium

of (3) so that(f + g)(0) = 0. For background on the theory of delayed systems and functional

differential equations, see [11].

The system (3) ispositive if for any initial conditionφ ∈ C := C([−τ, 0],Rn
+), the solution

x(t, φ) ∈ R
n
+ for all t ≥ 0 for which it is defined. It follows from Theorem 5.2.1 of [14] that

(3) will be positive if

Fi(φ) ≥ 0 for all φ ∈ C with φi(0) = 0. (4)

This condition will be satisfied if:

(P1) g(x) ≥ 0 for all x ∈ R
n
+;
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(P2) fi(x) ≥ 0 for all x ∈ R
n
+ with xi = 0.

For the remainder of the note, unless clearly stated otherwise, we assume thatf and g satisfy

(P1), (P2). As all the systems considered are positive, we shall work with the state spacesC (for

delayed systems) andRn
+ (for undelayed systems) throughout.

Moreover we shall assume thatf andg are subhomogeneous of degreeα > 0 meaning that

f(λx) ≤ λαf(x) for all λ ≥ 1, x ∈ R
n
+. The class of subhomogeneous vector fields given above

includes concave vector fields [12]. Furthermore, it includes vector fields which are homogeneous

with respect to the standard dilation map

KKM Lemma

Later in the paper, we shall need the so-called Knaster, Kuratowski, Mazurkiewicz (KKM)

Lemma [13]. We denote the simplex whose vertices are the standard basis vectorse1, . . . , en of

R
n by ∆n. Given a set of indices1 ≤ i1 < i1 < · · · < ip ≤ n, the simplexS(ei1 , . . . , eip) with

the verticesei1 , . . . , eip is a faceof S(e1, . . . , en). We shall need the following open version of

the KKM Lemma.

Theorem II.1 (KKM Lemma). Let F1, . . . , Fr be (relatively) open subsets of∆n. If

S(ei1 , . . . , eip) ⊂ Fi1 ∪ · · · ∪ Fip

holds for all facesS(ei1, . . . , eip), 1 ≤ p ≤ n, 1 ≤ i0 < i1 < · · · < ip ≤ n, then

F1 ∩ · · · ∩ Fn 6= ∅.

Quasimonotone Conditions and Monotonicity

Our main result in the next section, which applies to positive systems that are not necessarily

monotone, makes extensive use of the properties of monotonesystems and conditions for

monotonicity. We now recall some relevant definitions and results.

A function h : Rn
+ → R

n satisfies the quasimonotone condition (onR
n
+) if hi(x) ≤ hi(y)

for any x, y ∈ R
n
+ satisfyingx ≤ y, xi = yi. It is well known [14] that this implies that the

associated systeṁx(t) = h(x(t)) is monotone, meaning thatx0 ≤ x1 impliesx(t, x0) ≤ x(t, x1)

for all t for which both solutions are defined.

For a positive delayed system (3), the quasimonotone condition requires thatFi(φ) ≤ Fi(ψ)

for anyφ, ψ in C with φ ≤ ψ andφi(0) = ψi(0). Again this is a sufficient condition for (3) to be
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monotone [14], meaning thatφ ≤ ψ implies x(t, φ) ≤ x(t, ψ) for all t for which both solutions

are defined.

Given a vectorv ∈ R
n
+, we usev̂ to denote the function inC with v̂(t) = v for t ∈ [−τ, 0].

III. M AIN RESULT

In this section, we develop the main result of this note. First we present some preliminary

technical lemmas.

Lemma III.1. Let h : Rn
+ → R

n be continuous. Further, assume thathi(x) ≥ 0 for anyx ∈ R
n
+

with xi = 0 and that there exists nox 6= 0 in R
n
+ with h(x) ≥ 0. Then there exists somev ∈ ∆n,

with h(v) ≪ 0.

Proof: We apply the KKM lemma, suitably adapting the arguments given in [10], [15]. For

1 ≤ i ≤ n, let

Fi := {x ∈ ∆n : hi(x) < 0}.

As h is continuous,Ni is relatively open in∆n for 1 ≤ i ≤ n. Consider indices1 ≤ i1 <

i2 · · · < ip ≤ n and letx ∈ S(ei1 , . . . , eip) be given. It follows from the assumptions onh, that

hi(x) < 0 for some indexi. Howeverxj = 0 and hencehj(x) ≥ 0 for j /∈ {i1, . . . , ip} so it

follows thathij(x) < 0 for somej ∈ {1, . . . , p}. This implies that

S(ei1, . . . , eip) ⊂ Fi1 ∪ · · · ∪ Fip.

The KKM Lemma now implies the result.

The vectorv whose existence is established in the previous result will play a key role

in the stability analysis presented in Theorem III.2. The approach to stability taken here is

reminiscent of the so-called MO condition used to analyse Wazewski systems (see [16], [17]

and the references therein).

The next result is the main result of this note and provides a sufficient condition for the origin

to be a GAS equilibrium of (3) for allτ ≥ 0.

Theorem III.2. Consider the positive system (3) and suppose thatf andg are subhomogeneous

of degreeα > 0. Assume that for everyw ∈ R
n
+ \ {0}, there is some indexi such that

sup{gi(y) : 0 ≤ y ≤ w} < −sup{fi(x) : 0 ≤ x ≤ w, xi = wi}. (5)

April 18, 2022 DRAFT



5

Then the origin is a GAS equilibrium of (3) for everyτ ≥ 0.

Proof: We shall adapt the techniques used to prove Proposition 5.2.3 of [14]; note that we

cannot directly apply this result as we are not explicitly assuming that (3) possesses an invariant

order interval. We associate with (3) a positive time-delaysystem

ẋ(t) = F̄ (xt) (6)

with the following properties:

• the system (6) is order-preserving;

• the trajectories of (3) are dominated by those of (6) for every τ ≥ 0;

• the origin is a GAS equilibrium of (6) for everyτ ≥ 0.

Taken together, these points will yield the desired result.Following [14] for anyφ ∈ C define

F̄i(φ) = sup{Fi(ψ) : 0 ≤ ψ ≤ φ, ψi(0) = φi(0)}, 1 ≤ i ≤ n. (7)

Remembering thatF (ψ) = f(ψ(0)) + g(ψ(−τ)), it is readily seen that

F̄i(φ) = sup{fi(x) + gi(y) : 0 ≤ x ≤ φ(0), xi = φi(0), 0 ≤ y ≤ φ(−τ)}.

As both fi and gi are continuous and the set{(x, y) ∈ R
2n : 0 ≤ x ≤ φ(0), xi = φi(0), 0 ≤

y ≤ φ(−τ)} is clearly compact, it follows that̄F is well-defined and in fact the supremum is a

maximum. Using this last observation, and noting that bothf andg areC1 and hence Lipschitz

on any compact set, it is straightforward to show directly that F̄ is Lipschitz on compact subsets

of C.

We next verify thatF̄ satisfies the positivity requirement (4). To this end, letφ ∈ C with

φi(0) = 0 be given. AsF satisfies (4) by assumption, it follows that for anyψ ∈ C with

ψi(0) = φi(0) = 0,ψ ≤ φ, we must haveFi(ψ) ≥ 0. HenceF̄i(ψ) ≥ 0 and F̄ satisfies (4).

As F̄ is Lipschitz on compact subsets ofC and satisfies (4), for anyφ ∈ C there exists a

unique solutionx(t, φ) to (6), which satisfiesx(t, φ) ∈ C for all t in its maximal interval of

existence.

It is immediate from the definition of̄F that for anyφ ∈ C, F (φ) ≤ F̄ (φ). The argument from

[14] to establish that̄F satisfies the quasimonotone condition applies directly. Inthe interests of

completeness, we outline it now. Letφ ≤ ψ in C and supposeφi(0) = ψi(0) for somei. Then the

supremum defininḡFi(φ) is taken over a subset of that defininḡFi(ψ) and hencēFi(φ) ≤ F̄i(ψ).
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Thus F̄ satisfies the quasimonotone condition and hence the system (6) is monotone. It is clear

that (6) has an equilibrium at the origin.

Next defineh : Rn
+ → R by h(v) = F̄ (v̂). We claim that there exists no non-zerow ∈ R

n
+

with h(w) ≥ 0. To see this, letw 6= 0 in R
n
+ be given and note that for eachi

hi(w) = max{fi(x) + gi(y) : 0 ≤ x, y ≤ w, xi = wi}.

By assumption, there is somei such that (5) holds. For thisi, we must havehi(w) < 0. Thus,

we have shown that for every non-zerow ∈ R
n
+, there exists some indexi with hi(w) < 0. This

immediately implies that the origin is the unique equilibrium of (6) inR
n
+.

For v ∈ R
n
+, 1 ≤ i ≤ n:

hi(v) = sup{fi(x) + gi(y) : 0 ≤ x ≤ v, xi = vi, 0 ≤ y ≤ v}.

As f and g are both subhomogeneous of degreeα by assumption, it is readily seen thath is

also subhomogeneous.

Clearly, for anyx ∈ R
n
+ with xi = 0, we must havehi(x) ≥ 0. We have also shown above

that there exists now 6= 0 in R
n
+ with h(w) ≥ 0. It now follows from Lemma III.1 that there

must exist some vectorv ≫ 0 with h(v) = F̄ (v̂) ≪ 0. Corollary 5.2.2 of [14] now implies

that the solutionx(t, v̂) of (6) converges to an equilibrium of (6) ast→ ∞. However, as noted

above, 0 is the only such equilibrium. Thusx(t, v̂) → 0 as t→ ∞.

Now for any φ ∈ C, there exists someλ > 1 such thatφ ≤ λv. Moreover, ash is

subhomogeneous,̄F (λv̂) ≤ λαF̄ (v̂) ≪ 0, the solutionx(t, λv̂) → 0 as t → ∞. Hence as

(6) is monotone and positive, it follows thatx(t, φ) → 0 as t→ ∞. This completes the proof.

We next present a simple example to illustrate the above result.

Example III.1. Let f : R2
+ → R

2, g : R2
+ → R

2 be given by

f(x1, x2) =





x1(1− ex1+x2)

−x2



 , g(x1, x2) =





x1x2
x2

1+x2



 .

Then it is easy to see thatf andg are subhomogeneous of degree 2 and thatF (φ) = f(φ(0))+

g(φ(−τ)) satisfies the positivity requirement (4). Note also that∂f1
∂x2

is not non-negative for all

x1, x2 ≥ 0 so the system is not monotone.
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Now let w = (w1, w2)
T ∈ R

n
+ \ {0} be given withw2 > 0. It is easy to see that sup{g2(x) :

0 ≤ x ≤ w} = w2

1+w2

. Also, sup{f2(y) : 0 ≤ y ≤ w, y2 = w2} = −w2. Hence asw2 > 0,

sup{g2(x) : 0 ≤ x ≤ w} < −sup{f2(y) : 0 ≤ y ≤ w, y2 = w2}.

Next supposew2 = 0. Then,w1 > 0 asw 6= 0 by assumption, and sup{g1(x) : 0 ≤ x ≤ w} = 0

and sup{f1(y) : 0 ≤ y ≤ w, y1 = w1} = w1(1− ew1) < 0. Hence, in this case,

sup{g1(x) : 0 ≤ x ≤ w} < −sup{f1(y) : 0 ≤ y ≤ w, y1 = w1}.

It now follows from Theorem III.2 that the system (3) has an asymptotically stable equilibrium

at the origin for every value ofτ > 0.

As a final point for this section, we note the following simplecorollary for monotone time-

delay systems. The system (3) will be monotone iff is cooperative andg is non-decreasing (see

Chapter 5 of [14]).

Corollary III.3. Consider the system (3) and assume thatf is cooperative andg is non-

decreasing. Assume that the system

ẋ(t) = (f + g)(x(t)) (8)

has a globally asymptotically stable equilibrium at the origin. Then the system (3) also has a

GAS equilibrium at the origin for allτ > 0.

Proof: As the origin is GAS, there can be no non-zerow ∈ R
n
+ with (f + g)(w) ≥ 0. Thus

for every suchw, there is some indexi with fi(w)+gi(w) < 0. As g is non-decreasing, we must

havegi(y) ≤ gi(w) for all y ≤ w in R
n
+. Also, asf is cooperative, it follows thatfi(x) ≤ fi(w)

for all x ∈ R
n
+ with x ≤ w, xi = wi. Thus

sup{gi(x) : x ≤ w} ≤ gi(w)

< −fi(w)

≤ −sup{fi(y) : y ≤ w, yi = wi}.

It now follows immediately from Theorem III.2 that (3) has a GAS equilibrium at the origin for

all τ ≥ 0.
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IV. CONCLUSIONS

We have extended some recent work on delay-independent stability for positive systems.

Specifically, in Theorem III.2, a sufficient condition for a class of nonlinear positive systems to

be stable independent of delay is given. The systems coveredby the result are not necessarily

monotone. In fact, the corresponding result for monotone delay systems follows as a simple

corollary.
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