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A Difference of Convex Functions Algorithm for

Switched Linear Regression
Tao PHAM DINH, Hoai Minh LE, Hoai An LE THI, and Fabien LAUER

Abstract—This paper deals with switched linear system iden-
tification and more particularly aims at solving switched linear
regression problems in a large-scale setting with both numerous
data and many parameters to learn. We consider the recent
minimum-of-error framework with a quadratic loss function, in
which an objective function based on a sum of minimum errors
with respect to multiple submodels is to be minimized. The paper
proposes a new approach to the optimization of this nonsmooth
and nonconvex objective function, which relies on Difference of
Convex (DC) functions programming. In particular, we formulate
a proper DC decomposition of the objective function, which
allows us to derive a computationally efficient DC algorithm.
Numerical experiments show that the method can efficiently and
accurately learn switching models in large dimensions and from
many data points.

Index Terms—Switched linear systems, Piecewise affine sys-
tems, System identification, Switched regression, Nonconvex op-
timization, Nonsmooth optimization, DC programming, DCA.

I. INTRODUCTION

We consider switched regression as the problem of learning

a collection of n models from a training set of N data pairs,

(xi, yi) ∈ IRp × IR, generated by a switching function as

yi = fλi
(xi) + ei, (1)

where xi ∈ IRp is the regression vector, yi ∈ IR is the ob-

served output, λi ∈ {1, . . . , n} is the mode determining which

one of the n functions {fj}
n
j=1 was active when computing the

output yi for the ith data point and ei is an additive noise term.

In particular, the aim of the paper is to estimate the parameters

of the submodels {fj}
n
j=1 from such a data set, under the

assumptions that the parametric form of the submodels are

known but that the mode λi of each data pair (xi, yi) is

unknown. In the context of system identification, we focus on a

class of hybrid systems known as multiple-input-single-output

(MISO) arbitrarily Switched AutoRegressive with eXogenous

input (SARX) systems of orders na and nb. In this case, the

regression vector is built from past inputs ui−k ∈ IRnu and

outputs yi−k, i.e., xi = [yi−1 . . . yi−na
, uT

i . . . uT
i−nb

]T and

can be in high dimension depending on the number of inputs

nu. We further assume that the number of modes n is a priori

fixed. Note that, even with a known n and linear submodels

fj , the problem remains complex and amounts to solving a

nonconvex optimization program. This difficulty is due to the
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de l’Université- 76801 Saint-Etienne-du-Rouvray cedex, France

H.M. Le and H.A. Le Thi are with the Laboratory of Theoretical and
Applied Computer Science - LITA EA 3097 University of Lorraine, Ile de
Saulcy, 57045 Metz, France

F. Lauer is with the LORIA, Université de Lorraine, CNRS, Inria, F-54506
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intrinsic combination of two subproblems: the unsupervised

classification of the points into modes and the estimation of a

submodel for each mode.

Related work. Over the last decade, the control community

showed an increasing interest in switched regression as a

means to identify hybrid (or switched) dynamical systems.

These dynamical systems are described by a collection of sub-

systems and a switching mechanism resulting in a convenient

framework for the study of the complex nonlinear behaviors of

cyber-physical systems. However, their identification, i.e., the

estimation of their parameters from experimental data, remains

in most cases an open issue, which can, for SARX systems

and through an appropriate choice of regressors in xi, be

posed as the problem of learning the n functions fj in the

model (1). Therefore, most methods for switched regression

were proposed in this context for hybrid systems with linear

subsystems [1], [2], [3], [4], [5]. More recently, the continuous

optimization framework of [6] offered a convenient approach

for problems with large data sets and was extended in [7]

to deal with nonlinear subsystems. Beside [6], the current

trend, see, e.g., [8], [9], [10], [11], [12], seems to focus on

convex formulations in order to avoid local minima issues.

However, these approaches are often based on relaxations of

nonconvex optimization problems which typically depend on

specific conditions on the data in order to guarantee the equiv-

alence with the original problem; and these conditions can

be difficult to verify or obtain in practice. Moreover, in spite

of this activity, the issue of learning large-scale models with

numerous modes and/or with a high-dimensional regression

vector remains largely unanswered. For instance, the sparse

optimization-based method of [8] relies on a condition on the

fraction of data generated by each mode, which is not easily

satisfied when the number of modes becomes large. Regarding

the nonconvex optimization-based methods, including the one

of [6], their computational burden quickly becomes prohibitive

when the number of parameters to estimate becomes large.

Paper contribution. This paper proposes an algorithm ded-

icated to the minimization of a regularized version of the

cost function considered in [6], which is both nonsmooth

and nonconvex. In [6], the estimation is originally performed

through the use of a generic global optimization algorithm –

the Multilevel Coordinate Search (MCS) [13]. Though rather

effective for small-size problems with few parameters to learn,

this approach is not applicable to large-scale systems. On the

contrary, our approach is devised explicitly to deal with such

cases. The proposed method is based on DC (Difference of

Convex functions) programming and DCA (DC Algorithms)

that were introduced by Pham Dinh Tao in their preliminary

form in 1985. They have been extensively developed since
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1994 by Le Thi Hoai An and Pham Dinh Tao and become

now classic and increasingly popular (see e.g. [14], [15], [16],

[17], [18]). Our motivation is based on the fact that DCA

is a fast and scalable approach which has been successfully

applied to many large-scale (smooth or nonsmooth) nonconvex

programs in various domains of applied sciences, in particular

in data analysis and data mining, for which it provided quite

often a global solution and proved to be more robust and

efficient than standard methods (see [15], [16], [17], [14], [18]

and references therein). Using a natural DC decomposition of

the cost function, we devise an efficient and inexpensive DC

algorithm that can solve large scale problems.

Paper organization. The paper starts by introducing the

considered framework for switched regression and the main

optimization problem in Sect. II. Then, we formulate the

proposed DC programming approach and DC algorithm in

Sect. III. The paper ends with numerical experiments in

Sect. IV and conclusions in Sect. V.

II. SWITCHED REGRESSION FRAMEWORK

Under the assumption that the number of modes n is known,

the switched regression problem is to find a collection of n
models {fj}

n
j=1 that best fits the given collection of data points

{(xi, yi)}
N
i=1 ∈ (IRp×IR)N . In order to control the complexity

of the models fj in large dimensions p, we additionally

consider a regularized version of this problem. This can be

posed as a mixed-integer nonlinear programming problem of

the form

min
{fj},{βij}

N
∑

i=1

n
∑

j=1

βijℓ(yi − fj(xi)) + γ

n
∑

j=1

R(fj) (2)

s.t. βij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , n,
n
∑

j=1

βij = 1, i = 1, . . . , N,

where βij is a binary variable coding the assignment of the

point of index i to mode j, ℓ is a suitable loss function and

R(fj) is a convex regularization term, weighted by a trade-

off parameter γ ≥ 0. From the solution to (2), the mode of

each data point is recovered via the binary variables by λi =
argmaxj=1,...,n βij .

As proposed by [6], this problem can be reformulated to

give rise to the Minimum-of-Error (ME) estimator, defined as

the solution to1

min
{fj}

N
∑

i=1

min
j∈{1,...,n}

ℓ(yi − fj(xi)) + γ
n
∑

j=1

R(fj). (3)

This formulation explicitly includes the solution of the classi-

fication subproblem with respect to the βij as

∀i ∈ {1, . . . , N}, β
iλ̂i

= 1,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , n} \ λ̂i, βij = 0,

1In [6], the focus is on small dimensions p and the ME estimator is defined
without the regularization terms (with γ = 0).

where

∀i ∈ {1, . . . , N}, λ̂i = arg min
j∈{1,...,n}

ℓ(yi − fj(xi)). (4)

The classification rule (4) states that a data point xi must

be associated to the mode j for which the corresponding

submodel fj yields the best estimate of the target output yi.
Compared with (2), the ME estimator (3) significantly re-

duces the influence of the number of data N on the complexity

of the problem and the time required to find its solution. In

particular, the number of variables does not depend on N and

no binary variables are involved.

In the remaining of the paper, we focus on linear submodels

fj(xi) = wT
j xi, (5)

with parameter vectors wj ∈ IRp and a regularization based

on the ℓ2-norm of these vectors, i.e., R(fj) = ‖wj‖
2
2.

This regularization term is classicaly used in ridge regression

and is particularly useful when estimating models in large

dimensions from small data sets. We further concentrate on

the quadratic loss function, ℓ(e) = e2. Thus, we aim at solving

min
w∈IRnp

J(w) :=

N
∑

i=1

min
j∈{1,...,n}

(yi −wT
j xi)

2 + γ‖w‖22, (6)

where the vector of variables w = [wT
1 , . . . ,w

T
n ]

T is of

dimension np and contains all the parameter vectors wj to

be estimated, which yields ‖w‖22 =
∑n

j=1 ‖wj‖
2
2.

III. DC PROGRAMMING APPROACH

In this section, we give a brief introduction to DC program-

ming and DCA for an easy understanding of these tools and

our motivation to use them for solving Problem (6).

A. A brief introduction to DC programming and DCA

DC Programming and DCA constitute the backbone of

smooth/nonsmooth nonconvex programming and global opti-

mization. They address DC programs of the form

α = inf{f(w) := g(w)− h(w) : w ∈ IRd}, (Pdc) (7)

where g and h are lower semicontinuous proper convex

functions on IRd. Such a function f is called a DC function and

g−h a DC decomposition of f , while g and h are DC compo-

nents of f. Recall the natural convention +∞−(+∞) = +∞
in DC programming, and that a DC program with a closed

convex constraint set C ⊂ IRd,

β = inf{ϕ(w)− φ(w) : w ∈ C},

can be rewritten in the form of (Pdc) as

β = inf{g(w)− h(w) : w ∈ IRd},

where g := ϕ + χC , h := φ and χC stands for the indicator

function of C, i.e., χC(u) = 0 if u ∈ C, and +∞ otherwise.

Let

g∗(v) := sup{〈w,v〉 − g(w) : w ∈ IRd}
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be the Fenchel conjugate function of g. Then, the following

program is called the dual program of (Pdc):

αD = inf{h∗(v)− g∗(v) : v ∈ IRd}. (Ddc) (8)

One can prove (see, e.g., [16]) that α = αD and that there is a

perfect symmetry between primal and dual DC programs: the

dual to (Ddc) is exactly (Pdc).
For a convex function θ, the subdifferential of θ at w0 ∈

dom θ := {w ∈ IRd : θ(w0) < +∞}, denoted by ∂θ(w0), is

defined by

∂θ(w0) := {v ∈ IRd : θ(w) ≥ θ(w0)+〈w−w0,v〉, ∀w ∈ IRd}.

The subdifferential ∂θ(w0) generalizes the derivative in the

sense that θ is differentiable at w0 if and only if ∂θ(w0)
≡ {▽wθ(w0)}. Recall the well-known property [16] related

to subdifferential calculus of a convex function θ:

v0 ∈ ∂θ(w0)⇔ w0 ∈ ∂θ∗(v0)⇔ 〈w0,v0〉 = θ(w0)+θ∗(v0).
(9)

The complexity of DC programs resides, of course, in the

lack of practical global optimality conditions. Local optimality

conditions are then useful in DC programming.

A point w∗ is said to be a local minimizer of g − h if

g(w∗) − h(w∗) is finite and there exists a neighbourhood U
of w∗ such that

g(w∗)− h(w∗) ≤ g(w)− h(w), ∀w ∈ U .

The necessary local optimality condition for (primal) DC

program (Pdc) is given by

∅ 6= ∂h(w∗) ⊂ ∂g(w∗). (10)

The condition (10) is also sufficient (for local optimality) in

many important classes of DC programs (see [15], [14]).

A point w∗ is said to be a critical point of g − h if

∂h(w∗) ∩ ∂g(w∗) 6= ∅. (11)

The relation (11) is in fact the generalized KKT condition for

(Pdc) and w∗ is also called a generalized KKT point.

Philosophy of DCA: Based on local optimality conditions

and duality in DC programming, the DCA consists in con-

structing two sequences {wl} and {vl} of trial solutions to the

primal and dual programs respectively, such that the sequences

{g(wl)− h(wl)} and {h∗(vl)− g∗(vl)} are decreasing, and

{wl} (resp. {vl}) converges to a primal feasible solution w∗

(resp. a dual feasible solution v∗) satisfying local optimality

conditions and

w∗ ∈ ∂g∗(v∗), v∗ ∈ ∂h(w∗). (12)

Thus, according to (9) and (12), w∗ and v∗ are critical points

of g − h and h∗ − g∗, respectively.

The main idea behind DCA is to replace in the primal DC

program (Pdc), at the current point wl of iteration l, the second

component h with its affine minorization defined by

hl(w) := h(wl) + 〈w −wl,vl〉, vl ∈ ∂h(wl)

to give rise to the primal convex program of the form

(Pl) inf{g(w)− hl(w) : w ∈ IRd}

⇔ inf{g(w)− 〈w,vl〉 : w ∈ IRd},

an optimal solution of which is taken as wl+1.

Dually, a solution wl+1 of (Pl) is then used to define

the dual convex program (Dl+1) obtained from (Ddc) by

replacing g∗ with its affine minorization defined by

(g∗)l(v) := g∗(vl) + 〈v − vl,wl+1〉, wl+1 ∈ ∂g∗(vl)

to obtain the convex program

(Dl+1) inf{h∗(v)− [g∗(vl) + 〈v − vl,wl+1〉] : v ∈ IRd}

an optimal solution of which is taken as vl+1. The process is

repeated until convergence.

Overall, DCA performs a double linearization with the help

of the subgradients of h and g∗. According to relation (9) it is

easy to see that the optimal solution set of (Pl) (resp. (Dl+1))
is nothing but ∂g∗(vl) (resp. ∂h(wl+1)). Hence, we can say

that DCA is an iterative primal-dual subgradient method that

yields the next scheme: (starting from given w0 ∈ dom ∂h)

vl ∈ ∂h(wl); wl+1 ∈ ∂g∗(vl), ∀l ≥ 0. (13)

A deeper insight into DCA has been described in [14]. The

generic DCA scheme is shown below.

Algorithm 1 DCA

Initialization: Let w0 ∈ IRd be an initial vector (possibly

drawn randomly), l← 0.
repeat

Calculate vl ∈ ∂h(wl).
Calculate

wl+1 ∈ arg min
w∈IRd

g(w)− h(wl)− 〈w −wl,vl〉 (Pl)

l← l + 1.

until convergence of wl.

Convergence properties of DCA and its theoretical basis

can be found in [14], [15], [16], [17], [18]. For instance, it is

important to mention the following properties:

(i) DCA is a descent method (the sequences {g(wl) −
h(wl)} and {h∗(vl) − g∗(vl)} are decreasing) without

linesearch;

(ii) if the optimal value α of the problem (Pdc) is finite and

the infinite sequences {wl} and {vl} are bounded, then

every limit point w∗ (resp. v∗) of the sequence {wl}
(resp. {vl}) is a critical point of g − h (resp. h∗ − g∗);

(iii) DCA has a linear convergence for general DC programs

and has a finite convergence for polyhedral DC programs.

DCA’s distinctive feature relies upon the fact that DCA deals

with the convex DC components g and h but not with the DC

function f itself. Moreover, a DC function f has infinitely

many DC decompositions (and there are as many DCA as there

are equivalent DC programs and their DC decompositions)

which have crucial implications for the qualities (speed of

convergence, robustness, efficiency, globality of computed

solutions,...) of DCA. Finding an appropriate equivalent DC

program and a suitable DC decomposition is consequently

important from the algorithmic point of view. For a complete
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study of DC programming and DCA the reader is referred to

[14], [15], [16], [17], [18] and references therein.

The solution of a nonconvex program by DCA must be

composed of two stages: the search of both a suitable DC

program and its relevant DC decomposition, and the choice

of a strategy for a good initial point, taking into account the

specific structure of the nonconvex program. In this paper,

by exploiting a well-crafted DC decomposition for problem

(6), we design a computationally inexpensive DCA scheme:

each iteration requires only to solve an unconstrained and

strongly convex quadratic program which is separable in the

components wj of w.

B. A DC formulation of Problem (6)

Let us denote

Ji(w) = min
j∈{1,...,n}

(yi −wT
j xi)

2.

We can write the function Ji(w) in the form

Ji(w) =
n
∑

j=1

(yi−w
T
j xi)

2− max
j∈{1,...,n}

∑

k∈{1,...,n}\j

(yi−w
T
k xi)

2.

Consequently, the objective function of (6) can be written as

J(w) = G(w)−H(w),

where

G(w) =

N
∑

i=1

n
∑

j=1

(yi −wT
j xi)

2 + γ
n
∑

j=1

‖wj‖
2
2

and

H(w) =
N
∑

i=1

max
j∈{1,...,n}

∑

k∈{1,...,n}\j

(yi −wT
k xi)

2

are convex functions. Hence, we can recast Problem (6) as the

following DC program

min {G(w)−H(w) : w ∈ IRnp} . (14)

C. A DCA scheme

According to Section III-A, applying DCA to (14) amounts

to computing the two sequences
{

wl
}

and
{

vl
}

such that

vl ∈ ∂H(wl), (15)

wl+1 ∈ arg min
w∈IRnp

G(w)− 〈vl,w〉. (16)

Problem (16) is a convex quadratic program whose optimal

solution can be determined in an inexpensive way. Indeed, by

defining the target output vector y = [y1, . . . , yN ]T and the

regression matrix X = [x1, . . . ,xN ]T , we have

G(w) =

N
∑

i=1

n
∑

j=1

(yi −wT
j xi)

2 + γ

n
∑

j=1

‖wj‖
2
2

=

n
∑

j=1

(y −Xwj)
T (y −Xwj) + γwT

j wj

= G0 +

n
∑

j=1

Gj(wj).

where G0 = nyTy is a constant and Gj(wj) = wT
j (X

TX+
γI)wj − 2yTXwj is a function of the subset of variables

wj .

Hence, the objective function of problem (16) is separable

with respect to n groups of variables {wj}
n
j=1 and solving (16)

amounts to solving n separate optimization problems. More

precisely, for j = 1, . . . , n, wl+1
j is the solution to the

unconstrained convex quadratic program

min
wj∈IRp

wT
j (X

TX + γI)wj − (2yTX + vT
j )wj ,

where I stands for the identity matrix of appropriate size.

For (15), we compute a subgradient v ∈ ∂H(w) as follows:

v ∈ ∂H(w)⇔ v ∈
N
∑

i=1

∂hi(w),

where hi(w) = max
j∈{1,...,n}

hj
i (w) with hj

i (w) =
∑

k∈{1,...,n}\j

(yi −wT
k xi)

2.

Let Ji(w) = {j ∈ {1, . . . , n} : hj
i (w) = hi(w)}. We have

∂hi(w) = co







⋃

j∈Ji(w)

∂hj
i (w)







,

where co stands for the convex hull. Hence, ∂hi(w) is a

convex combination of {∇hj
i (w) : j ∈ Ji(w)}, i.e.,

∂hi(w) =
∑

j∈Ji(w)

µj
i∇h

j
i (w);

∑

j∈Ji(w)

µj
i = 1, µj

i ≥ 0.

In particular, in our implementation, a subgradient ηi of hi(w)
is chosen as follows:

ηi = ∇h
j0
i (w), with j0 ∈ Ji(w).

From the above computations, the DCA applied to problem

(14) is described via Algorithm 2, where the set valued

function Ji is never computed as a whole but only evaluated

at a given wl for each iteartion l.

Algorithm 2 ME-DCA

Initialization: Draw a random w0 ∈ IRnp. Let τ > 0 be

sufficiently small. l← 0.
repeat

Set vl =

N
∑

i=1

∇hj0
i (wl), with j0 ∈ Ji(w

l).

Compute wl+1 by solving the n unconstrained convex

quadratic programs, i.e., for j = 1, . . . , n:

wl+1
j ∈ argmin

wj∈IRp

wT
j (X

TX+γI)wj−(2y
TX+vl

j)wj .

Increase the iteration counter: l← l + 1.

until ‖wl+1 −wl‖/(‖wl‖+ 1) ≤ τ .

return J(wl) and wl.
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Convergence and complexity of the algorithm: From

general convergence properties of DCA, the ME-DCA has

a linear convergence. One of the key points of DCA is

that it does not rely on a line search strategy. Therefore,

there is no need to evaluate the objective function numerous

times as in standard gradient descent schemes, for instance.

One iteration of the ME-DCA algorithm only relies on few

basic operations, which leads to a low computational cost.

Indeed, at each iteration the computation of ∂H(wl) requires

N(np+ (n− 1)p2) operations, and the solution of n separate

unconstrained convex quadratic programs of size p, which is

equivalent to solve n linear systems of size p, has a total

computing cost O(np2). Therefore the complexity of ME-

DCA is O
(

N(np+ (n− 1)p2) + np2
)

= O
(

Nnp2
)

.

IV. NUMERICAL EXPERIMENTS

In this Section, we compare the ME-DCA algorithm

with ME-MCS, i.e., the optimization of (6) by the MCS

algorithm [13] as proposed by [6] with default parame-

ters.2 The proposed ME-DCA is initialized with w0
j =

[w0
j1, . . . , w

0
jp] randomly drawn from a uniform distribution

with mini∈{1,...,N} xik ≤ w0
jk ≤ maxi∈{1,...,N} xik, k =

1, . . . , p. DCA is stopped with the tolerance τ = 10−6.

Since all the tests below consider a large-scale setting with

a sufficiently large number of data points with respect to the

number of parameters, both the ME-DCA and ME-MCS use

an unregularized version of the method (i.e., with γ = 0).

The data are generated by yi = θT
λi
xi + ei, i = 1, . . . , N ,

where the θj ∈ IRp, j = 1, . . . , n, are the true parameters to

recover, λi is the true mode of point i uniformly distributed

in {1, . . . , n}, and ei ∼ N (0, σ2
e) is a Gaussian noise with

variance σ2
e = 0.1 (corresponding to a signal-to-noise ratio

of about 27 dB). The methods are compared on the basis of

the computing time and the normalized mean squared error

on the parameters, NMSE =
∑n

j=1 ‖θj − wj‖
2
2/‖θj‖

2
2. In

the Tables, we report the mean and the standard deviation of

the NMSE over 100 experiments with different sets of true

parameters {θj} and noise sequences. Note that since the

goal is to find a global solution to a nonconvex optimization

problem, we cannot guarantee the success of the method,

which in some cases may yield a local and unsatisfactory

solution. Therefore, we also measure the performance of

the algorithms through their ability to obtain a satisfactory

solution that is not too far from the global one. In particular,

the percentage of success over the multiple experiments is

estimated by the percentage of experiments for which the mean

squared error, MSE = 1/N
∑N

i=1(yi−wT

λ̂i

xi)
2, where the λ̂i

are estimated by (4) and the wj are the learned parameters,

satisfies MSE < 2× MSEref, where MSEref stands for the

MSE of the reference model trained by applying n independent

least squares estimators to the data grouped in n subsets

on the basis of the true classification. Note that, since the

precise modeling error is irrelevant for unsuccessful cases, the

average NMSE is computed from the successful cases only.

All computing times refer to Matlab implementations of the

methods running on a standard desktop computer.

2Software available at http://www.loria.fr/∼lauer/software.html .

TABLE I
AVERAGE NMSE AND COMPUTING TIME OVER 100 EXPERIMENTS WITH

LARGE DATA SETS OF SIZE N (n = 3, p = 4).

ME-DCA ME-MCS

NMSE Succ. Time NMSE Success Time

N (×10
−6) (%) (sec.) (×10

−6) (%) (sec.)

100 12±4 80 0.1 10±5 85 4.5

1000 7±3 96 1.1 10±2 92 3.6

5000 0.1±0.05 100 10 0.1±0.05 100 8

10000 3±1.5 99 30 4±2 95 35

50000 0.1±0.05 100 55 0.1±0.05 95 65

A. Large data sets

We start by comparing the methods with respect to their

ability to deal with large data sets. In particular, the number

of data N is increased from 100 to 50 000. The results are

summarized in Table I, where the NMSE, the percentage of

successful experiments and the computing time are reported.

These results show that, by sharing the same problem formu-

lation (6), ME-DCA benefits from the ME-MCS ability to deal

efficiently with large data sets, with however a slightly lower

computational cost. In addition to this increase of efficiency,

ME-DCA is at least as accurate as ME-MCS in terms of both

the percentage of successful trainings and the model error.

B. Large models

The computing time of previous methods such as ME-MCS

heavily relies on the number of model parameters n × p.

Thus, these methods may not be suitable for large models with

numerous modes or regressors. In the following experiments,

the dimension of the data p and the number of modes n are

both increased to test the ability of the proposed ME-DCA to

efficiently and accurately learn large models. Table II shows

results for models with up to 2 000 parameters trained on

10 000 data points. These results clearly indicate that ME-

DCA can tackle problems with much larger dimensions n
and p than the classical ME-MCS algorithm, which does not

yield a solution after 2 hours in many cases. For moderate

dimensions, such as n = 5 and 5 ≤ p ≤ 20, ME-DCA is also

much faster than ME-MCS (between 15 and 100 times faster)

without being less accurate. Indeed, the percentage of success

is always higher for ME-DCA than for ME-MCS.

C. Switched system identification

We now turn to switched dynamical system identification.

In this case, the regression vectors are given by xi =
[yi−1 . . . yi−na

, uT
i . . . uT

i−nb
]T and are constrained to

lie on a particular manifold, which could affect the results of

DCA. However, as shown by Table III, ME-DCA provides

accurate system identification results that are again better than

those obtained with the original ME-MCS algorithm. These

results are obtained with 10 000 data points generated by

second-order systems (na = nb = 2) with various numbers of

modes and of inputs, and with random parameters3 uniformly

3Sets of parameters generating diverging trajectories are discarded.
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TABLE II
AVERAGE NMSE, PERCENTAGE OF SUCCESS AND COMPUTING TIME OVER

100 EXPERIMENTS WITH LARGE MODELS.

ME-DCA ME-MCS

NMSE Succ. Time NMSE Succ. Time

n p (×10
−6) (%) (sec.) (×10

−6) (%) (sec.)

3 100 0.1±0.1 100 31 N/A 0 7200

3 200 0.1±0.1 100 112 N/A 0 7200

5 5 10±2 95 4 14±2 89 219

5 10 5±2 88 18 7±1 65 290

5 20 3±1 85 3 5±1 75 270

5 50 0.1±0.1 100 180 N/A 0 7200

10 200 12±2 84 87 N/A 0 7200

20 100 9±3 92 440 N/A 0 7200

TABLE III
AVERAGE NMSE AND PERCENTAGE OF SUCCESS OVER 100 EXPERIMENTS

FOR VARYING NUMBER OF MODES (n) AND NUMBER OF INPUTS (nu).

ME-DCA ME-MCS

NMSE Succ. NMSE Succ.

n nu (×10
−6) (%) (×10

−6) (%)

3 10 2± 1 80 3± 1 75

3 30 7± 2 74 10± 3 68

5 3 3± 1 82 4± 2 82

10 20 14± 3 65 N/A 0

distributed in [−1, 1]. With n = 5 and nu = 10, Figure 1 also

shows that, for reasonable values of the signal-to-noise ratio

above 12 dB, the noise level has little influence on the quality

of the ME-DCA solution: the success rate remains above 73%
and higher than the one of ME-MCS. In addition, in these

experiments, the solution is always obtained in seconds with

ME-DCA instead of minutes or hours with ME-MCS.

V. CONCLUSION

We proposed a new optimization algorithm for switched

linear regression in the minimum-of-error framework. The pro-

posed DC algorithm efficiently deals with both the nonconvex-

ity and the nonsmoothness of the objective function. Compared

with previous approaches, the algorithm is particularly efficient

for learning large models with many modes and/or parameters.

However, only the convergence towards a local minimum

can be guaranteed. Though promising results were obtained

on multiple examples with high success rates, the probability

of success could be further analyzed as in [19] and compared
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Fig. 1. Success rate (%) versus signal-to-noise ratio (dB).

with the one of the k-LinReg algorithm proposed in that

paper. In addition, a method that is guaranteed to find the

global solution for small dimensions would be of primary

interest and is the subject of ongoing investigations on branch-

and-bound DC programming. In comparison with the mixed-

integer programming approach of [3] for hinging-hyperplane

ARX systems, this could alleviate the limitations on the

number of data and on the form of the model. Future work

will also consider the framework of [7] in order to extend

the algorithm to switched nonlinear regression, where dealing

with large model structures becomes a critical issue.
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