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Zero forcing sets and controllability of dynamical systems
defined on graphs

Nima Monshizadeh Shuo Zhan§ M. Kanat Camlibel

Abstract—In this paper, controllability of systems defined on graphsis
discussed. We consider the problem of controllability of tle network for a
family of matrices carrying the structure of an underlying directed graph.
A one-to-one correspondence between the set of leaders remihg the
network controllable and zero forcing sets is establishedTo illustrate the
proposed results, special cases including path, cycle, aedmplete graphs
are discussed. Moreover, as shown for graphs with a tree stoture, the
proposed results of the present paper together with the exigg results
on the zero forcing sets lead to a minimal leader selection keme in
particular cases.

I. INTRODUCTION

[18], [22], and circulant graphs [16] which all provide aladeader
selection procedure.

Another thread in the study of controllability of systemdined
by a graph was centered around structural controllabityuctural
controllability deals with a family of pairdX,U) rather than a
particular instance and asks whether the family contaimmérallable
pair (weak structural controllability [13]) or all membeaykthe family
are controllable (strong structural controllabilityl [7])n the latter
case, the authors of |[7] have established necessary andiesuiffi
conditions for strong structural controllability in terraconstrained
matchings over the bipartite graph representation of theor&. For

The study of networks of dynamical systems became one of tRdnore general look at control properties of structurechlirsystems,

most popular themes within systems and control theory irabtetwo
decades. Roughly speaking, networks of dynamical systemsbe
seen as dynamical systems that inherit certain structucglepties
from the topology of a graph that captures the network sfirect
Across many scientific disciplines, one encounters suchesys
in a variety of applications. Typical examples include bgtal,
chemical, social, power grid, and robotic networks (see [&& Ch.
1]). The research on numerous aspects of these kind of systave
already resulted in a vast literature that still keeps gnowi

One line of research in this fast growing literature is dedoto
the controllability analysis of linear input/state sysgenf the form

=Xz +Uu

where z € R" is the state andv € R™ is the input with the

distinguishing feature that the matriX is associated with a given
graph and the matriXJ encodes the vertices (often called leader
through which external inputs are applied.

Up to our knowledge[[19] is the first paper which addressed co

trollability problem within this framework wheX is the Laplacian
matrix of an undirected graph. This early paper was follovigd
a number of papers dealing with different aspects of cdatdity
when X is the Laplacian matrix (see e.0. [18]] [9]. [22]) and whe
X is the adjacency matrix (see e.g.[10]). On the one handraent
lability was investigated from a graph topology perspexiiv [18],
[@l, [@4], [e], [22], [21], [10] which established necesgaufficient
conditions for controllability as well as lower and/or upgmunds
on the controllable subspace. These conditions are basegtam
theoretical tools such as graph symmeifryl[18], (almost)itebie
partitions [18], [9], [14], [22], walks of a graph [10], destce
partitions [22], or pseudo monotonically increasing sexges [21].
On the other hand, the minimum number of leaders that rerfaer
system controllable, withX being the Laplacian matrix of a simple
undirected graph, was explored for several classes of graphh
as path graphs [18]._[17], cycle graphs|[17],1[22], complgtaphs
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see e.g.[[B].

In this paper, we deal with a family ok matrices carrying the
structure of a directed grapfi. This family is called the qualitative
class ofGG, and we investigate the controllability of the network with
respect to this qualitative class, under a fixed set of \est{eaders).
Note that essentially this is the same as studying strongtstmal
controllability, but we carry out controllability analgsithrough the
notion of zero forcing sets, similar t01[4], rather than tgb the
constrained matching which has been treated in [7].

The notions of zero forcing sets and zero forcing humber have
an intimate relationship with minimum rank problems of pated
matrices, and have been well studied in the literature (sge[2]
and [11]). Moreover, in these papers and the referencesither
lower/upper bounds for the zero forcing number has beenigedy
and also the exact value has been obtained for some spexsakslof

raphs, either directly or in terms of some graph parametech as

ath cover number. Note that computing the zero forcing remals
well as finding a minimal zero forcing set for a general loofedied
graph is an NP-hard problem (séel[20, Thm. 2.6]).

Recently, zero forcing sets in one form or another have been
utilized for controllability analysis of quantum systems waell as
linear systems (see e.d.![4]./[5].1[3]). In particular, fdretcase
where the underlying communication graph is undirectedahaff-
diagonal elements oX have the same sign, a sufficient condition
for network controllability and in terms of zero forcing sétas been
provided in [4].

In this paper, for the case where the underlying graph is di-
rected, we establish a one-to-one correspondence betweeset
of leaders rendering the network controllable and zeroifigrsets.
Consequently, we obtain that the minimum number of leadefs r

tquired to render the network controllable, with respecth whole

qualitative class, is indeed equal to the zero forcing nundbethe
underlying graph. Note that in some applications extra ragsions

and constraints such as symmetry may be present on the sentrie
of the matrix X. Hence, in these cases, one may be interested in
some subsets of the qualitative class @frather than the whole
class. This will be addressed through the notion of suffttyerich
subclasses, and we explore how the results establishedsipaper
boils down or can be applied to certain qualitative subelss$hen,

we study the controllability problem for some special ctss®of
graphs, namely path, cycle, and complete graphs. In additi@
establish a connection between the existing results on thamum
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number of leaders in these cases where the matrig the Laplacian In this paper, we deal with the controllability of the systeaf the

matrix, and the results proposed in this manuscript. form (3) or [4). With a slight abuse of notation, we sometimeite
An advantage of the proposed results of this paper is that o0&;Vz) is controllable meaning thatX, U) is controllable. For a

can deduce conclusions on the minimum number of leaders fgiven graphG and a leader sétz. we say(G; V) is controllable if

controllability as well as how to choose such leaders inipagr the pair(X; Vz) is controllable for allX € Q(G).

cases, by utilizing the existing results in graph theoryarding the In particular, we are interested in determining the set aflégs

zero forcing sets of graphs. For instance, in case whererttherlying rendering systems of the forfal (3) controllable. For a givesph G

graph has a structure of a (directed) tree, we conclude that tand a matrixX € Q(G), we denote the minimum number of leaders

minimum number of leaders rendering the network contrtélafor rendering the systerfi](3) controllable By, (X), that is

all matrices in the qualitative class, is equal to the cqmesling . .

path cover number of the graph. Moreover, initial verticesai lmin(X) = VLIS‘I}}G){W“ + (X;V2) is controllablg.

minimal path cover can be selected as the choice of leadettsisn . -
For a given graphG, we denote the minimum number of leaders

case. Likewise, one can draw similar conclusions for othasses .
of graphs for which the zero forcing sets has been alreadjiestu _rendenng all systems of the forrfll 3) controllable &y:n(G), that

in the literature. Finally, thanks to the result of the prespaper, . )

the problem of verifying whether a given set of leaders rerttle bmin(G) = VLIS‘I}}G){W“ + (G5 Vr) is controliablg.  (5)
network controllable, for all matrices in the qualitativiass, boils
down to checking whether this leader set constitutes a zEm@ng
set or not.

The organization of the paper is as follows. In Secfidn Ik th
problem at hand is mathematically formulated, and is mtaiya
by establishing connection to the existing results in therature.
In Section[Il, zero forcing sets, zero forcing number, arg t i(t) = —La(t) + Uu(t) (6)
involved notions are recapped. The main result of the paper i
reported in SectioR IV, where a necessary and sufficientiiondor Where L is the Laplacian matrix of an undirected graph. This
controllability of networks is established in terms of zévecing sets.  line of research has been initiated by [19] and further e
In addition, controllability of the network with respect ¢ualitative PY [18]. Within this framework, the two main themes were drap
subclasses is studied in this section, and finally some apeases theoretical characterization of controllability propestin terms of
are provided for further illustration of the proposed résuThe paper Certain graph partitions [14].[9]. [22] and (minimum) leacselection

Controllability of systems of the forni(3) has been studiedhie
literature from different angles. In what follows, we give account
of the existing results/approaches in the literature.

One particular line of research within the context of coltetaility
has been devoted to systems of the form

ends with concluding remarks in Sectioh V. for rendering a system of the forrfi] (6) controllable for partar
classes of undirected graphs [22], ][17].1[16].
II. PROBLEM FORMULATION AND MOTIVATION The work on the leader selection led to a number of intergstin

For a given simple directed grapfi, the vertex set oG is a results by exploiting the structure of the Laplacian masidor

nonempty set and is denoted bY(G). The arc set of#, denoted by several graph classes. It has been showrLih [18] &hai(L) = 1
E(G), is a subset o/ x V, and (i, ) ¢ E for all i € V(G). The for path graphs. In this case, one can choose one of the twonizir

cardinality of a given seV is denoted by V|. Also we use|G| to vertices as the Ieader._By [22fumin (L) = 2 for undirected cycle
denote in short the cardinality af (G). We say vertexj is an out- graphs and any.two neighbours can be chosen as leaders. fie pa

neighbor of vertex if (i,j) € E. The family of matrices described [17] further studied cycle graphs and has proved that anyléaders
by G is calledqualitativé clasof G, and is given by would render the system controllable in case the number lof al

' vertices is a prime number. For an undirected complete gveifih

n vertices, we know from[22]/118] thatmin(L) = n — 1 and any
= € : fore# g, Xij < (4,1) € . choice ofn—1 leaders would render the system controllable. Another

Q(G) = {X eRIICl: fori#j Xij #0< (5,i) € E(G)} h fn—1 lead Id render th llable. Anoth
rather specific class of undirected graphs that has beeie in
(1) h ific cl f undi d hs that has beeiedtudthi
ForV = {1,2,...,n} and Vr = {v1,ve,...,uvm} € V, We the same context is distance regular graphs[Tn [22], it viemsvs

define then x m matrix U(V; VL) = (U] by: that £min(L) < n — d wheren is the number of vertices and is
1 ifieo the diameter of the graph. The paperl[22] provided also gpecm

U; = { 7 (2) selectn — d leaders that render the system controllable. In case the
0 otherwise underlying graph is a circulant graph, the authors of [1@\pd that

By a leader/follower system defined on a graghwe mean a finite- #min(L) is equal to the maximum algebraic multiplicity of Laplacian

dimensional linear input/state system of the form eigenvalues.
Another particular class of systems that has been studigtiein

@(t) = Xa(t) + Uu(?) (3)  context of the controllability is given by
in continuous-time and @(t) = Az(t) + Uu(t) (7)
z(t+1) = Xz(t) + Uu(t) 4)

where A is the adjacency matrix of an undirected graph, see e.g.

in discrete-time where: € R!¢! is the statex € R™ is the input, [10]. The same class of systems was studied_in [13] from thakwe

X € 9(@), andU = U(V(G); Vi) for some given leader set structural controllability viewpoint.

VL CV(G). In this paper, we will mainly deal with the controllabilityf o
families of systems given by(3) wher&® < Q(G) for a graph

Systems of the fornf{3) of{4) whet€ € Q(G) for a given graph G and provide results concernifghi, (G) rather thar/,,i, (X) for a

G are encountered in various contexts. Examples include @sesc specific choice ofX € Q(G). However, our treatment, as a side

where X is adjacency [10], (in-degree or out-degree) Lapladiai), [15result, will reveal that the aforementioned existing resun the

normalized Laplacian [1], etc. matrices associated to ahgra number of minimum leaders are not intrinsic to the Lapladiam



hold for any matrix within the corresponding qualitativeass given IV. ZERO FORCING SETS AND CONTROLLABILITY

by th derlyi h.
y the Underlying grap In this section, we characterize a set of leaders which rsnde

(G; VL) controllable for a given grapliz. Clearly, a pair(X,U)

is controllable if and only if the matri¥X — AI U] has full row

rank for all A\ € C. Here, we deal with a family of matrices based

involved notations and terminology which will be used in teguel. ©n & given grapit, and thus we should consider whether the matrix
[X —AI U] has full row rank for allX € Q(G) and A € C. It

For more details see e.¢. [11]. °
Let G be a given graph, where each vertex is colored either whitgrns out that this property does not depend on the paramete

or black. Consider the following coloring rule: to the structure of the matrix famil@(G).

Ill. ZERO FORCING SETS

First, we review the notion of zero forcing sets togethemwiite

: If w is a black vertex and exactly one out-neighkoof w is
Whlte then change the color ofto black.
Following terminology will be used when we apply the color®
change rule above to a grajh

— When the color-change rule is applieddce V(G) to change proof, Clearly, (G; V) is controllable if and only if the matrix
the color ofv € V(G), we sayu forcesor infectsv, and write [X Al U] has full row rank for all X € Q(G) and all

U = . ) € C. Hence, the “only if” part follows trivially. Now, suppose
— Given a coloring seCC' C V(G), i.e. C indexes the initially that [X U] has full row rank for allX € Q(G). Let A € C and

Lemma IV.1 Let G be a graph andvz, C V(G). Then,(G; VL) is
controllable if and only if the matri>{X U} has full row rank for
all X € Q(G) whereU = U(V; V) given by(2).

black vertices of, the derivedset of C' is denoted byD(C),

z € CI9 be such that™ [X — A\I U] = 0 for someX € Q(G).

and is the set of black vertices obtained by applying thereolg o , — p + jq for real vectorsp and ¢ where j is the imaginary

change rule until no more changes are possible.
— The setZ C V(G) is azero forcing se{ZFS) forG if D(Z) =

number. Definer € R/’ asz = p + aq wherea is a real number.
Choosea such that

V(G).
— Thezero forcing numbelZ(G) is the minimum of| Z| over all
zero forcing setsZ C V(G). A set Z is called aminimal zero

forcing setif |Z| = Z(G). where p; and ¢; denote thei*® element ofp and ¢, respectively.
Figures[1 and12 illustrate the zero forcing set and the nstiohen one can show that; = 0 if and only if z; = 0. In fact, if

defined above. First, consider the graph depicted in Flgwhkete the z; = 0 then obviouslyz; = 0. In addition, if z; = 0 then we obtain
vertex 1 is initially colored black. Then, by the color-change rule ip; + aq; = 0, which yieldsq; = 0 by (8). Hence, we have; = 0,
is clear thatl — 2. Consequently2 — 3, and3 — 4. Therefore, the and thusz; = 0.
derived set of{ 1} is equal to{1,2,3,4}, and thus{1} is not a zero  Next, we claim that the following implication holds:
forcing set. Now, suppose that we chodse 5} to be the initially
colored black vertices as shown in Figlile 2. Then by applyirey
color-change rule, we conclude that this set is a zero fgrcet.
Moreover, note that no singleton set constitutes a zerarfgrset in
this case, thus the zero forcing number is indeed equal to 2.

a¢{__ qi#O;i:LZ"'v'G'} (8)

9)

To prove this claim, suppose that = 0. Then, we havez; = 0.
Sincez* X = A\z*, we obtain(z*X); = 0. Hence,(p' X); =0 =

xT; =0= (CCTX)L =

(¢" X);. Consequently((p' +ag")X); = (z' X); =0.

1 2 3 1 2 3 1 2 3 Now, we define the diagonal matrik = diag(di,ds,...,dn)
with

535 &8 88 7 L. .

@' X); =i otherwise (10)

6 5 4 6 5 4 6 5 4

1 2 3 By using [9), it holds that:" X = 2" D. Besides,z*U =
results inp"U = 0 = ¢' U which yieldsz"U = 0. Now, choose
X = X —D. Clearly, X € Q(G) andz" X = 0. Then due to full

6 5 4 row rank assumption of X U] we obtainz = 0, thusz = 0.

Therefore,[X — A U] has full row rank, and the result follows.
[ ]

Next, we explore the relationship between zero forcing sets

controllability of (G; V). First we show that the process of color-
ing/infecting vertices, according to the change-colorefudoes not
6 5 4 6 5 4 6 5 4 affect the controllability. This issue is addressed in tbé#ofving
1 2 3 1 2 3 lemma.
m m Lemma IV.2 Let G be a graph and” be a (coloring) set. Suppose
6 5 4 6 5 4 that v — w wherev € C andw ¢ C. Then(G; C) is controllable

if and only if (G; C' U {w}) is controllable.

Fig. 2. An example for the zero forcing set Proof. The “only if” part is trivial. Now, letC’ := C' U {w} and

suppose thafG; C’) is controllable. Hence(X,U) is controllable



for all X € Q(G) whereU = U(V(G); C") is given by [2). Without
loss of generality, we can assume that

r11  T12 T13 T4 1 0 0
T21  XT22  T23  T24 0 1 0
X, U :( 7 ) 11
( ) X311 Xsz2 X33 Xaa 0 0 I 11)
X X2 Xuz Xaa 0 0 O

is controllable for allX € Q(G), where the first row correspondsfor someX in Q(G), and again we reach a contradiction.

to the vertexw, the second corresponds tg the third row block
corresponds to the vertices indexed ©Yy\ {v}, and the last row
block corresponds to remaining white vertices, K¥gG) \ C’. By
Lemm&1V1, we know thafX U] has full row rank, which implies
that the last row block ofX in (1) has full row rank. Since — w,
we haveris # 0 and X4 = 0. Therefore, the submatrix

T12 x13

B’(Z Xa2  Xus ;’Z] (12)
has full row rank. Consequently, the pair
Ti1 T2 X113 T4 0 0 O
(o % 5w fos)
X Xao Xuz Xua 0 0 O
is controllable, and hencg=; C) is controllable. ]

Roughly speaking, this lemma states that controllabifitinvariant
under infection. As such, we can obtain the following caull by
repeated application of Lemria1V.2.

Corollary IV.3 Let G be a graph and a”' be a coloring set. Then,
(G; Q) is controllable if and only if(G; D(C)) is controllable.

Next, we state one of the main results of the paper based on
above auxiliary lemmas.

Theorem IV.4 Let G be a graph andV; C V(G). Then,(G; V%)
is controllable if and only ifi’;, is a zero forcing set.

Proof. If V7 is a zero forcing set, theR(Vz) = V(G) by definition.
Hence, it follows from Corollar{ IV that controllabilitgf (G; V1)
is equivalent to that of(G;V(G)). Since (G;V(G)) is trivially

17 X21 = 0, wherel denotes the vector of ones with an appropriate
dimension. In addition, note that the diagonal elementX aofan be
chosen arbitrarily due to the the definition @{ &), and thus can be
assigned such that " X2, = 0. Therefore, we obtain that

]17} X1 X2
Xo1 Xa2

Im+'r

0o |=%

[07—1l;+7‘

Remark IV.5 In caseVy is a zero forcing set, it is easy to observe
that each vertex o \ V¢, is accessible (via a directed path) from at
least one leader. This input-accessibility condition @eied necessary
for weak/strong structural controllability of networkseése.g. [[12]
and [13, Thm. 1]).

Theorem[IV4 establishes a one-to-one correspondenceebptw
leader sets rendering systems of the fofin (3) controllahte zero
forcing sets of the corresponding graphs. An immediate equmsnce
of this result yields the following result on the minimum nioen of
leaders required for controllability.

Corollary IV.6 Let G be a given graph. Thetmin(G) = Z(G).

A. Sufficiently rich qualitative subclasses

So far, we have investigated controllability of systemsegiby [3)
where the matriceX belongs to the family@(G) which is described
by the graphG. In many examples, one encounters matricesXof
carrying more structure than that is imposed®{G). For instance,
consider a grapfty; for which E(G1) is symmetric, i.e.(v,w) €
E(Gh) if and only if (w,v) € E(G1) and the matrices( belonging

t
the 0.(G1)={X€Q(G): X=X"}CO(G1). (15

Note that undirected graphs can be identified with directeplys
having symmetric arc sets. As such, the clas(G1) naturally
appears whenever the underlying graph structure is indiyedn
undirected graph as in the systems of the fdrin (6) ahd (7)

In what follows, we focus on controllability with respect to
subclasses 0©(G). For a graphG, (leader) set’;, C V(G), and a
qualitative subclas®'(G) C Q(G), we sayVy, controls Q'(G) if

controllable, so is(G;Vr). To prove the converse, suppose thagX;V;,) is controllable for allX € Q'(G).

(G; V1) is controllable, buti, is not a zero forcing set. Then, we

haveD(VL) # V(G). We also know tha{G; D(V1)) is controllable
by Corollary[TV.3. Without loss of generality, we can assuthat
Vi ={1,2,...,m}andD(Vy) =V, U{m+1,m+2,... m+r}

wherem + r < |G|. Since (G;D(Vz)) is controllable, it follows
from LemmaIV1 that the matrixX U] has full row rank for all
X € Q(G) whereU = U(V;D(Vr)) = col(Im+r,0). Hence, the

matrix
Xll

Xo1

Xi2
Xa2

I’m+7‘

. (14)

has full row rank for allX € Q(G) where X;; € R(m+m)x(mdn),
X1z € RU™FXE X0 € RFX0) hand Xop € R¥*F with k =

If Vi is a zero a forcing set for the gragH, then Vi controls
9Q(G) by Theoreni IV#. Consequently, suctVa controlsQ’(G) for
any Q'(G) C Q(G). However, the converse is not true in general.
For instance, conside&; = (Vi, E1) whereV; = {1,2,3,4} and
E,={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)}. Let Vi, = {2} and
take the Laplacian matrix off1, denoted byL., as the qualitative
subclass in this case. Then, by [17L:; V) is controllable whereas
obviously V7, is not a zero forcing set.

Therefore, we conclude thaf;, is not necessarily a zero forcing
set forG even though it controls a nonempty subsei@y(iG). Next,
we investigate under what conditions, controlling a sultde®(G)
implies thatVy, is a zero forcing set. For this purpose, the following

|G| — (m+r) constitute the corresponding partitioning of the matrigiotion is needed.

X.
Now, we distinguish two cases. First, suppose that thergtsesi

Definition IV.7 Let Q'(G) be a non-empty subset @gi(G). We say

column of X5, with exactly one nonzero element. This implies thathat Q'(G) is a sufficiently richsubclass ofQ(G) if the following
there is a vertex, say € D(V), which has exactly one (white) implication holds:

out-neighbor, sayw ¢ D(V.). Consequentlypy can infectw, and
we reach a contradiction. On the other hand, suppose that tloes

2eR9 X eQ@), "X =0 = 3X' Q@) st"X =0.
(16)

not exist a column ofX»; with exactly one nonzero element. Then,
clearly the nonzero elements &f; can be chosen such that we have Now, we have the following result.



Theorem IV.8 LetG be a graph and’;, C V(G) be a (leader) set.
Suppose tha®'(G) C Q(G) is a sufficiently rich subclass @(G).
Then the following statements are equivalent:

1) The setVy is a zero forcing set.

2) The setV controls Q(G).

3) The setV, controls Q'(G).

forcing set. However, the converse does not hold in genses [4,
Ex. 4.3]). The following proposition shows that inde€l(G1) is
not a sufficiently rich subclass, except for some pathobigiases.

Proposition V.10 Assume that the graptr; has a vertex with at
least two (out) neighbors. Then, the €&1,(G1) is not a sufficiently
rich subclass ofQ(G1).

Proof. The first two statements are equivalent by Theofem] IV.4.

Besides, the second statement trivially implies the thind.dHence,

Proof. Let k be a vertex ofGG; with at least two (out) neighbors.

it suffices to show that statemepimplies 2. Suppose that statementDefine z € R/ as

3 holds. In view of Lemm& V11, it suffices to show that the matri

[X U] has full row rank for allX € Q(G), whereU is given
by (). Now suppose that" [X U] = 0 for somez € RI®! and
X € 9(G). Since Q'(G) is a sufficiently rich subclass o(G),
there existsY’ € Q'(G) such thatz" [X’ U] = 0. This results in
x = 0 due to the assumption th&t, controlsQ’(G). Consequently,
the matrix[X U] has full row rank for allX € Q(G). Thus, Vi,
also controlsQ(G). |

By TheorenIV.8, controlling sufficiently rich subclasseseiquiv-
alent to controlling the corresponding qualitative classehich can
be further characterized by zero forcing sets. Next, we damu two
notable subclasses ¢(G1). Bare in mind that®(G1) is symmetric.
The first subclass we consider hereds(G1) given by [15).

Proposition 1.9 The setQ,(G1) is a sufficiently rich subclass of

9(Gh).

Proof. Assume that there exists € R/l such thatz' X = 0

)1 if ik,
“~ 0 otherwise.
Note that (2" X'); is nonzero for anyX’ € Q,;(G1). Hence,
2T X" # 0 for any X' € Q.(G1). Therefore, to conclude that
Q:5(Gh1) is not sufficiently rich, it suffices to show that’ X = 0
for someX € Q(G1). Itis easy to see that one can choose a matrix
X € Q(G4) suchtha(z " X); = 0 for eachi # k. Also note that, by
the assumption, the matriX has at least two nonzero off-diagonal
elements in itsk'" column. Hence, these (two or more) nonzero
elements can be further chosen such that we IiaveX); = 0, and
thuszT X = 0. This completes the proof. |

B. Special cases

Next, we study some special cases to demonstrate how the pro-
posed results can be used in particular applications.
As we mentioned earlier, controllability of systems of tlwnf

for some X € Q(G1). We distinguish two cases. First, supposdB) has been extensively studied in the literature. In palar,

that 2; # 0 for eachi = 1,2,...,|G1|. Define the matrixX’ as
X' =X 4 D whereX € Q.(G1) and D is a real diagonal matrix.
Obviously, we haveX’ € Q,(G1) for any choice ofD. Then, since
z; # 0 for eachi, one can choosé® such thatz" X’ = 0. Next,
consider the case whete = 0 for somei. Without loss of generality,
the vectorz can be then decomposedas- [T 0] such that the

minimum number of leaders that render the system (6) cdablel
was investigated for some special classes of undirecteghgralo
apply our results to the special case of undirected grapbsdentify
an undirected grapti/ by a corresponding directed graghwhose
arc set is symmetric. As an example, three undirected grafesher
with the corresponding directed graphs are depicted inrE[Gu For

vector 2 does not contain any zero element. Correspondingly, let tg undirected graplif, we denote the corresponding directed graph

matrix X be decomposed as

Y — {Xn

Xi2
Xo1 ’

Xa2

Hence, we have" X1, = 0 and 27 X1 = 0 by the assumption.
Now, choose a matriXX € Q,(G1) and let

I:Xll X12:|

X = ~ A~
X5 X

Let D be a real diagonal matrix such that (X;; + D) = 0. Note

that suchD exists asz; # 0 for eachi. Then, we construct a matrix

X' as .
Y — {Xu :lr—D 2512] .
X12 X22
Clearly, we haveX’ € Q,(G1). Moreover, it holds that " X’ =0,
and thusQ,(G1) is a sufficiently rich subclass @@ (G1). |

Now, we consider another subclass @fG1) by imposing an
additional constraint toQ,(G1). More precisely, letQs(G1) be

by 6(H). Note that, clearly, the Laplacian matrixof H belongs to
the qualitative clas®(0(H)).

In case of an undirected path gragh with n vertices, it has
been shown in[18] thatmin (L) = 1. For an undirected cycle graph
C», it has been shown in[22, Thm. 3] th&tin(L) = 2, and any
two neighbors can be chosen as leaders. For an undirecteuletem
graph K, with n vertices, we havénin(L) = n—1, and anyn — 1
vertices can be chosen as leaders (seé [22, Thm. 4]). Byrigakt
Figure[3, it is easy to verify thaf.in(L) coincides with the zero
forcing number in these three cases, i.e. path, cycle, anthlete
graphs. Note that the s¢fi} or {3} is a minimal ZFS for the path
graph in Figuré€l3. Moreover, any two neighboring verticesstitutes
a minimal zero forcing set for the cycle graph, and any thrgebthe
four vertices forms a minimal ZFS for the complete graph iguFe

[3. Obviously, this is not limited to the depicted examples] &olds

true for any undirected path, cycle, or complete graphsréfbee, we
obtain thatZ(6(P,)) = 1, Z(0(Cr)) =2, and Z(0(K,)) =n — 1.
Then, by Corollary TV.6, we conclude that the existing resébr the
minimum number of leaders rendering the systéin (6) coatnts]
carries over unchanged to the class of systems whose dymasnic

defined as a subset @,(G1) with the property that all off-diagonal given by [3).That is, we havé.in(X) = 1 for any X € Q(0(Py)),

nonzero elements ok have the same sign for ak € Q.s(G1).
Note that ordinary Laplacian matrices and adjacency nesriare
among the special cases of this subclass. Structural daiitiy

Lmin(X) =2 forany X € Q(0(Ch)), andlumin(X) = n—1 for any
X € Q(6(Kn)).
It is worth mentioning that one should not conjecture basethe

with respect t0Q,,(G1) has been studied iril[4]. In particular, itaforementioned special cases that.(L) is equal to the zero forcing

has been shown that the sEt controls Q,,(G1) if Vi is a zero

number for any graph. As a counter example, consider a @aegu



1 2 3 4 1 2 3 4
Q-0-0-0 egegege)
2 2
1 3 1 3
5 4 5 4
1 2 1 2
4 3 4 3

Fig. 3. Undirected graphs and the associated symmetrictditegraphs:
path, cycle and complete graphs

circulant graph with10 vertices. It follows directly from[[16, Thm.

I1.1] that £min (L) = 2, whereas it is easy to observe that no pair of[5]

vertices results in a zero forcing set.

After the discussion of undirected graph classes for whigh (L)
has been characterized in the literature, we turn our &terio a
class of directed graphs, namely directed trees (ditré¥g)use the
symbol T' to denote a ditree to avoid possible confusion with th
general case. The notions of a path, the path cover numbéraan
minimal path cover are required before stating the resultHis case
(see e.g.[T11]) for more details on these notions).

Definition IV.11 A path P in G is an ordered set of distinct vertices
(v1,v2,...,v,) of G such that(vi,vi11) € E(G) for eachi
1,2,...,k — 1. The vertexwv; is calledthe initial point of P and
v, IS thefinal pointof P. The path cover numbeof G, denoted by

[10]

results on the zero forcing sets lead to a minimal leadercseie
scheme in particular cases, such as graphs with a treewsguBased
on the results of the present paper, our knowledge aboutirfrain
leader selection for controllability of a network is intitely related
to the knowledge we have for zero forcing sets (number). ddde
for each class of graphs whose zero forcing number has bemwmnkn
or will be established later on, we immediately obtain th@imum
number of leaders for controllability, and, in principle,n@nimal
leader selection scheme.
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