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Abstract—We propose a decentralized subspace algorithm for
identification of large-scale, interconnected systems that are
described by sparse (multi) banded state-space matrices. First,
we prove that the state of a local subsystem can be approximated
by a linear combination of inputs and outputs of the local
subsystems that are in its neighborhood. Furthermore, we prove
that for interconnected systems with well-conditioned, finite-time
observability Gramians (or observability matrices), the size of this
neighborhood is relatively small. On the basis of these results,
we develop a subspace identification algorithm that identifies a
state-space model of a local subsystem from the local input-output
data. Consequently, the developed algorithm is computationally
feasible for interconnected systems with a large number of local
subsystems. Numerical results confirm the effectiveness of the
new identification algorithm.

Index Terms—Identification, large-scale systems, subspace
identification.

I. INTRODUCTION

Large-scale interconnected systems consist of a large num-
ber of local subsystems that are distributed and interconnected
in a spatial domain [1]–[4]. The classical identification meth-
ods, such as the Subspace Identification Methods (SIMs) [5]
or Prediction Error Methods (PEMs) [6], are not suitable for
identification of large-scale interconnected systems. This is
mainly because the computational and memory complexity
of these methods scale at least with O(N3) and O(N2),
respectively, where N is the number of local subsystems
of an interconnected system. Furthermore, the SIMs identify
a state-space representation of an interconnected system, in
which the interconnection structure is destroyed by unknown
similarity transformation [5]. However, for efficient distributed
controller synthesis we need structured state-space models of
interconnected systems [3], [4], [7], [8].
On the other hand, the SIMs and the PEMs are centralized
identification methods. That is, these methods can be applied
only if input-output data of all local subsystems can be
collected and processed in one computing unit. In cases in
which a large number of local sensors collect measurement
data of local subsystems, it might not be possible to transfer
local measurements to one centralized computing unit [9]. In
such situations, identification should be performed in a decen-
tralized/distributed manner on a network of local computing
units that communicate locally.
In [10], [11], SIMs have been proposed for some special
classes of interconnected systems. However, these identifica-
tion algorithms are computationally infeasible for intercon-
nected systems with a very large number of local subsystems.
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In this paper we propose a decentralized subspace algorithm
for identification of large-scale, interconnected systems that
are described by sparse (multi) banded state-space matrices.
For example, these state-space models originate from dis-
cretization of 2D and 3D Partial Differential Equations (PDEs)
[1], [12]. First, we prove that the state of a local subsystem
can be approximated by a linear combination of inputs and
outputs of the local subsystems that are in its neighborhood.
Furthermore, we prove that for interconnected systems with
well-conditioned, finite-time observability Gramians (or ob-
servability matrices), the size of this neighborhood is relatively
small. On the basis of these results, we develop a subspace
identification algorithm that identifies a state-space model of
a local subsystem using only local input-output data. Conse-
quently, the developed algorithm is computationally feasible
for interconnected systems with an extremely large number of
local subsystems (provided that the finite-time observability
Gramian is well conditioned). We numerically illustrate the
effectiveness of the new identification algorithm.
The paper is organized as follows. In Section II, we present the
problem formulation. In Section III, we present theorems that
are used in Section IV to develop the identification algorithm.
In Section V we present the results of numerical simulations
and in Section VI we draw conclusions.

II. PROBLEM FORMULATION

We briefly explain the notation used in this paper. A block
diagonal matrix X with blocks X1, . . . , XN is denoted by
X = diag(X1, . . . , XN ). A column vector z = [zT1 , . . . , z

T
M ]T

is denoted by z = col(z1, . . . , zM ). For the sake of presenta-
tion clarity, we consider the following state-space model:

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k) (1)

A =



A1,1 E1,2

E2,1 A2,2 E2,3

. . .
Ei,i−1 Ai,i Ei,i+1

. . .
EN−1,N−2 AN−1,N−1 EN−1,N

EN,N−1 AN,N


(2)

B = diag(B1, . . . , BN ), C = diag(C1, . . . , CN )

y(k) = col(y1(k), . . . ,yN (k)), x(k) = col(x1(k), . . . ,xN (k))

u(k) = col(u1(k), . . . ,uN (k)), n(k) = col(n1(k), . . . ,nN (k))

The system S is referred to as the global system, with the
global state x(k) ∈ RNn, the global input u(k) ∈ RNm, the
global measured output y(k) ∈ RNr and the global measure-
ment noise n(k) ∈ RNr. The system matrices A ∈ RNn×Nn,
B ∈ RNn×Nm and C ∈ RNr×Nn are referred to as the global
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system matrices. The global system S is an interconnection of
N local subsystems Si:

Si

 xi(k + 1) = Ai,ixi(k) + Ei,i−1xi−1(k) + Ei,i+1xi+1(k)
+Biui(k)

yi(k) = Cixi(k) + ni(k)
(3)

where xi(k) ∈ Rn is the local state of the local subsystem
Si, xi−1(k) ∈ Rn and xi+1(k) ∈ Rn are the local states of
the neighboring local subsystems Si−1 and Si+1 respectively,
ui(k) ∈ Rm is the local input, yi(k) ∈ Rr is the local
measured output, ni(k) ∈ Rr is the local measurement
noise. Without loss of generality, we assume that all local
subsystems have identical local order n � N . All matrices
in (3) are constant matrices and are referred to as the local
system matrices. In (3), the index i is referred to as the
spatial index. The spatial index takes the values from the
spatial domain Π = {1, . . . , N}. For example, the global
state-space model (1) can be obtained by discretizing the 2D
heat equation using the finite difference method [1], [12].
The identification algorithm proposed in this paper can be
generalized to large-scale interconnected systems with sparse
(multi) banded system matrices (see Remark 4.2).

The set of local subsystems Vh(Si) = {Si−h, . . . ,Si+h}
will be referred to as the neighborhood of Si.

Definition 2.1: The structure preserving similarity transfor-
mation is the matrix Q = diag(Q1, . . . , QN ), that transforms
the global state-space model (1)-(2) into the following state-
space model:

Ŝ
{

x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) + n(k)
(4)

where x(k) = Qx̂(k), Â = Q−1AQ, B̂ = Q−1B and
Ĉ = CQ. The matrix Â has block bandwidth equal to 1
(the same sparsity pattern like A), while B̂ and Ĉ are block
diagonal matrices.

Problem 2.2: Identification problem
Consider the global system (1) that consists of the intercon-

nection of N local subsystems (3). Then, using the sequence
of the global input-output data {y(k),u(k)},

1) Estimate the order of the local subsystems n.
2) Identify the global state-space model (1) up to a structure

preserving similarity transformation.

III. MAIN THEOREMS

Starting from k − p and by lifting (1) p time steps, we
obtain:

Yk
k−p = Opx(k − p) +Gp−1U

k−1
k−p + Nk

k−p (5)

where Yk
k−p = col

(
y(k − p), . . . ,y(k)

)
, Uk−1

k−p =

col (u(k − p), . . . ,u(k − 1)) and similarly we define Nk
k−p.

The matrix Op ∈ RN(p+1)r×Nn is the p-steps observability
matrix and the matrix Gp−1 ∈ RN(p+1)r×Npm is the p − 1
steps impulse response matrix [5].
On the other hand, from the state equation of the global state-
space model (1), we have:

x(k) = Apx(k − p) +Rp−1U
k−1
k−p (6)

where Rp−1 ∈ RNn×Npm is the p − 1 steps controllability
matrix. The parameter p should be selected such that it is
much smaller than N (p � N ). This ensures that all lifted
system matrices in (5) and (6) are sparse matrices.

Formation of the lifted equations (5) and (6) is the standard
step in the classical SIMs. However, in this paper we use a dif-
ferent lifting technique. This lifting technique consists of first
lifting the local outputs over the time domain and then lifting
such lifted outputs over the spatial domain. To explain this new
lifting technique, we define the vector Yk

i,k−p ∈ R(p+1)r as fol-
lows Yk

i,k−p = col(yi(k−p),yi(k−p+1), . . . ,yi(k)). In the
same manner we define the lifted input vector Uk−1

i,k−p ∈ Rpm

and the lifted measurement noise vector N k
i,k−p ∈ R(p+1)r.

Next, a column vector Yk
k−p ∈ RN(p+1)r is defined as follows:

Yk
k−p = col(Yk

1,k−p, . . . ,Yk
N,k−p). In the same manner we

define vectors Uk−1
k−p ∈ RNpm and N k

k−p ∈ RN(p+1)r. It can
be easily proved that:

Yk
k−p = PY Yk

k−p, N k
k−p = PY Nk

k−p, Uk−1
k−p = PUU

k−1
k−p (7)

where PY and PU are permutation matrices. By multiplying
the lifted equation (5) from left with PY and keeping in mind
that permutation matrices are orthogonal, we obtain:

Yk
k−p = Opx(k − p) + Gp−1Uk−1

k−p +N k
k−p (8)

where the matrices Op ∈ RN(p+1)r×Nn and Gp−1 ∈
RN(p+1)r×Npm are defined as follows:

Op = PYOp, Gp−1 = PYGp−1P
T
U (9)

The equation (8) will be called the global data equation.
On the other hand, using the orthogonality of the permutation
matrix PU , from (6) we have:

x(k) = Apx(k − p) +Rp−1Uk−1
k−p (10)

where the matrix Rp−1 ∈ RNn×Npm is defined by Rp−1 =
Rp−1P

T
U . The matrix Op is a sparse banded matrix, with the

block bandwidth equal to p. Similarly, the matrices Gp−1 and
Rp−1 are sparse banded matrices with the block bandwidth
equal to p − 1. For more information about the structure of
Op, Gp−1, andRp−1, the interested reader is advised to consult
Chapter 3 of [12].
The following lemma will be used to prove Theorems 3.2 and
3.4.

Lemma 3.1: Assume that p ≥ ν, where ν is the
observability index of the global system [13], [14]. Then
rank(Op) = nN .

Proof. The matrix Op is defined by permuting the rows of
Op. Since this permutation does not change the rank of Op,
we have: rank(Op) = rank(Op). Now, let p ≥ ν, where ν
is the observability index of the global system. This implies
rank(Op) = rank(Op) = nN . �

Throughout the reminder of the paper, the matrix Op will be
called the structured observability matrix of the global system
(1). The finite-time observability Gramian of the global system
(1), denoted by J2p ∈ RNn×Nn, can be expressed as follows
[15], [16]:

J2p = OT
p Op (11)



From (9) and (11), we have:

J2p = OT
p PY P

T
Y Op = OT

p Op (12)

Taking into account that Op has block bandwidth equal to p,
from (12) we have that J2p is a sparse banded matrix with
the block bandwidth equal to 2p. Throughout the remainder
of the paper, the condition number of J2p will be denoted
by κ. The inverse of J2p will be denoted by D ∈ RNn×Nn.
For the sequel we will assume that the matrix J2p is well-
conditioned. As we will prove later, this assumption ensures
that the local state of Si can be approximated by a linear
combination of input and output data of local subsystems that
are in a relatively small neighborhood of Si.

Theorem 3.2: Let p ≥ ν, where ν is the observability index
of the global system. Then,

x(k) =ApD
(
OT

p Yk
k−p −OT

p Gp−1Uk−1
k−p −O

T
pN k

k−p

)
+Rp−1Uk−1

k−p (13)

where D = J−1
2p .

Proof. From (8), we have:

Opx(k − p) = Yk
k−p − Gp−1Uk−1

k−p −N
k
k−p (14)

Because p ≥ ν, from Lemma 3.1 we have: rank(Op) =
Nn. This implies that J2p is positive definite and invertible.
Because of this, from (14) we have:

x(k − p) = D
(
OT

p Yk
k−p −OT

p Gp−1Uk−1
k−p −O

T
pN k

k−p

)
(15)

where D = J−1
2p . Substituting (15) in (10) we arrive at (13).

�
Although J2p is a sparse banded matrix, in the general case,

D is a dense matrix. However, by examining the entries of
D, it can be observed that the absolute values of the off-
diagonal entries decay1, as they are further away from the
main diagonal. This phenomena has been studied in [17] and
[18], and it is illustrated in Fig. 1(a) in Section V. Next, we
define exponentially off-diagonally decaying matrices.

Definition 3.3: [17] We say that an nN × nN matrix
Z = [zi,j ] is an exponentially off-diagonally decaying matrix
if there exist constants c, λ ∈ R, c > 0 and λ ∈ (0, 1), such
that:

|zi,j | ≤ cλ|i−j| (16)

for all i, j = 1, . . . , nN .

Theorem 3.4: Let p ≥ ν, where ν is the observability index
of the global system, and consider the finite-time observability
Gramian J2p and its inverse D. The matrix D is an exponen-
tially off-diagonally decaying matrix with:

λ =

(√
κ− 1√
κ+ 1

)1/g

, c = ‖D‖2 max

{
1,

(1 +
√
κ)2

2κ

}
(17)

where g is the bandwidth2 of J2p (g is proportional to p).
Proof. Because p ≥ ν from Lemma 3.1 it follows that Op

1The absolute values of off-diagonal elements can also oscillate. However,
there should exist a decaying exponential function that bounds these oscilla-
tions.

2The bandwidth g is defined by g = m/2, where m is a constant in Eq.
(2.6) in [18].

has full column rank. This implies that J2p is a symmetric
positive definite matrix. Because of this, from [18] (see
Theorem 2.4 and Proposition 2.2 in [18], and for a more
general proof, see [17]), if follows that D is an exponentially
off-diagonally decaying matrix with the constants c and λ
given by (17). �

Because by assumption the matrix J2p is well conditioned
and p� N , from (17) it follows that the off-diagonal decay of
D is rapid. Because of this, the matrix D can be approximated
by a sparse banded matrix [17].

Definition 3.5: [17] Let D = [di,j ]. The matrix D̆ = [d̆i,j ]
with its elements defined by:

d̆i,j =

{
di,j if |i− j| ≤ s,

0 if |i− j| > s, (18)

is an approximation of D.

Proposition 3.6: Consider the matrix D ∈ RnN×nN and its
approximation D̆ ∈ RnN×nN . Then,

∥∥∥D − D̆∥∥∥
1
< ck1, k1 = 2λs+1 1− λNn−s

1− λ (19)

where the constants c and λ are defined in (17). Moreover,
the parameter k1 is an increasing function of κ.
Proof. See the proof of Proposition 5.4 in [12]. �

Let us assume that the bandwidth of D̆ is chosen such
that s = nt, where t is a positive integer. Similarly to the
partitioning of the matrix A, defined in (2), we partition D̆
into N2 blocks, where each block is a matrix of dimension
n × n. After this partitioning, the matrix D̆ has the block
bandwidth equal to t. Accordingly, throughout the remainder
of the paper, the matrix D̆ will be denoted by D̆t.
From Proposition 3.6 we see that the approximation accuracy
increases as s increases or equivalently, as t increases.
Furthermore, we see that the approximation accuracy is
better when κ is smaller. Because J2p is well conditioned,
there exists s � nN , or equivalently, t � N , for which the
accuracy of approximating D by D̆t is relatively good [17].
For the sequel we assume that t� N .

By substituting D with D̆t in (13), we define an approximate
global state:

x̆(k) =ApD̆t

(
OT

p Yk
k−p −OT

p Gp−1Uk−1
k−p −O

T
pN k

k−p

)
+Rp−1Uk−1

k−p

(20)

For the sequel we will partition x̆(k) as follows: x̆(k) =
col(x̆1(k), . . . , x̆N (k)), where x̆i(k) ∈ Rn, ∀i ∈ Π. From
(20) we have that x̆i(k) is a linear combination of the lifted
local inputs, lifted local outputs and lifted local measurement
noises of the local subsystems belonging to the neighborhoods
V3p+t−1 (Si), V2p+t (Si) and V2p+t (Si), respectively. Because
t � N , these neighborhoods are small. By substituting
in (3) the local states xi−1(k) and xi+1(k) with their ap-
proximations, x̆i−1(k) and x̆i+1(k), we obtain the following



approximate state-space model:

xi(k + 1) ≈ Ai,ixi(k) + Q̆iΩ̆i + B̆
(3)
i N̆

(1)
i

yi(k) = Cixi(k) + ni(k)
(21)

Q̆i =
[
B̆

(1)
i B̆

(2)
i

]
, Ω̆i =

[
Y̆

(1)
i

Ŭ
(2)
i

]
,

Y̆
(1)
i = col

(
Yk

i−1−2p−t,k−p, . . . ,Yk
i+1+2p+t,k−p

)
,

Ŭ
(2)
i = col

(
Uk−1
i−3p−t,k−p, . . . ,U

k−1
i+3p+t,k−p

)
,

N̆
(1)
i = col

(
N k

i−1−2p−t,k−p, . . . ,N k
i+1+2p+t,k−p

)
(22)

IV. IDENTIFICATION ALGORITHM

The main idea of the identification algorithm it to use
the approximate state-space model (21) to estimate the state
sequence of the local subsystem Si. This step has to be
repeated for all N local subsystems. Because t � N and
p � N , the input Ω̆i of (21), contains input-output data of
local subsystems that are in a relatively small neighborhood
of Si. Consequently, using the SIMs [5] we can estimate the
state sequence of (21) in a computationally efficient manner.
The computational complexity of estimating the state of (21)
is independent from the total number of local subsystems N .
However, the problem lies in the fact that we do not know
in advance the precise value of t that determines the form of
the input Ω̆i. As it will be explained in Section IV-A, this
problem can be solved by choosing several values of t and by
computing the Variance Accounted For (VAF) of the identified
models.
Let the estimated state sequence of the approximate state-space
model (21) be denoted by {x̂i(k)}. The state sequence {x̂i(k)}
is approximately related to the “true” state sequence of the
local subsystem Si, via the following transformation:

xi(k) ≈ Qix̂i(k) (23)

where Qi is a square, invertible matrix. We will denote the
estimated state-sequences of the local subsystems Si−1 and
Si+1 (that are estimated on the basis of (21)) by {x̂i−1(k)}
and {x̂i+1(k)}, respectively. Similarly to (23), we have:

xi−1(k) ≈ Qi−1x̂i−1(k), xi+1(k) ≈ Qi+1x̂i+1(k) (24)

where Qi−1 and Qi+1 are invertible matrices. By substituting
(23) and (24) in (3), and by multiplying the state-equation with
Q−1

i , we obtain:

Ŝi



x̂i(k + 1) ≈ Q−1
i Ai,iQi︸ ︷︷ ︸

Âi,i

x̂i(k) +Q−1
i Ei,i−1Qi−1︸ ︷︷ ︸

Êi,i−1

x̂i−1(k)

+Q−1
i Ei,i+1Qi+1︸ ︷︷ ︸

Êi,i+1

x̂i+1(k) +Q−1
i Bi︸ ︷︷ ︸
B̂i

ui(k)

yi(k) ≈ CiQi︸ ︷︷ ︸
Ĉi

x̂i(k) + ni(k)

(25)

State-space model (25) tells us that once the local
state sequences are estimated, the local system matrices
{Âi,i, Êi,i−1, Êi,i+1, B̂i, Ĉi} can be estimated by solving a
least-squares problem formed on the basis of:[

x̂i(k + 1) yi(k)
]
≈

[
Âi,i Êi,i−1 Êi,i+1 B̂i Ĉi

]︸ ︷︷ ︸
matrices to be estimated


x̂i(k) 0

x̂i−1(k) 0
x̂i+1(k) 0
ui(k) 0

0 x̂i(k)

+
[
0 ni(k)

]
(26)

Using the same principle, we can estimate the local system
matrices of other local subsystems. Using the estimates of the
local system matrices, we can form the estimates {Â, B̂, Ĉ}.
Next, from (25) we have:

Âi,i ≈ Q−1
i Ai,iQi, Êi,i−1 ≈ Q−1

i Ei,i−1Qi−1,

Êi,i+1 ≈ Q−1
i Ei,i+1Qi+1, B̂i ≈ Q−1

i Bi, Ĉi ≈ CiQi (27)

Since (25) and (27) hold for all i ∈ Π, we conclude that
x(k) ≈ Qx̂(k), Â ≈ Q−1AQ, B̂ ≈ Q−1B, and Ĉ ≈ CQ,
where Q = diag(Q1, . . . , QN ) is the structure preserving
similarity transformation (see Definition 2.1). This shows that
the identified model is (approximately) similar to the global
state-space model (1). We are now ready to formally state the
identification algorithm.

Algorithm 4.1: Identification of the global state-space
model
For i = 1, . . . , N , perform the steps 1 and 2:
1. Choose the parameters p and t and form the input vector
Ω̆i of the state space model (21).
2. Estimate the local state sequence {xi(k)} of the state space
model (21) using the SIM.
After the steps 1 and 2 are completed, the state sequences
{x̂i(k)}, i = 1, . . . , N , are available. For i = 1, . . . , N ,
perform the following step:
3. On the basis of (26) form a least-squares problem, and esti-
mate the local system matrices {Âi,i, Êi,i−1, Êi,i+1, B̂i, Ĉi}.
4. Using the estimates {Âi,i, Êi,i−1, Êi,i+1, B̂i, Ĉi}, i =
1, . . . , N , form the global system matrices {Â, B̂, Ĉ}.

A. Comments on the identification algorithm

The theory developed in this paper predicts that for sys-
tems with well-conditioned, finite-time observability Grami-
ans, there should exist t� N for which the matrix D can be
accurately approximated by the sparse banded matrix D̆t. This
implies that in the first step of Algorithm 4.1, we can select
any t that satisfies t � N . After that, the model should be
identified and the VAF should be calculated. If the VAF value
of the identified model is not high enough, then a new value
of t needs to be chosen and identification procedure needs to
be repeated (usually the new value should be larger than the
previous one). This has to be repeated until a relatively high
value of the VAF of the identified model is reached. Because
the local subsystems are not identical, it might happen that
the rate of the off-diagonal decay of D varies from one row to
another. This implies that the matrix D can be approximated
by a banded matrix, which bandwidth is row dependent. That
is, for each local subsystem Si, it is possible to find a different
parameter ti that determines the input Ω̆i.
As it is shown in the next section, the form of the input Ω̆i can
cause ill-conditioning of the data matrices used in the SIM.
This is because Ω̆i consists of the delayed inputs and outputs of
the local subsystems. Some of the outputs might be depending
on the past local inputs and local outputs. This problem can
be resolved either by regularizing the data matrices used in
the SIM or by eliminating certain outputs and inputs from
Ω̆i. In this paper, we do not analyze the consistency of the



identification algorithm. The consistency analysis is left for
future research. The estimates of local subsystem matrices
obtained using the proposed identification algorithm, can be
used as initial guesses of the decision variables of a computa-
tionally efficient, parameter optimization method presented in
Chapter 6 of [12]. This way, the identification results can be
additionally improved.

Remark 4.2: Algorithm 4.1 can be generalized for global
systems described by sparse, multi-banded, state-space matri-
ces. For example, these systems originate from discretization
of 3D PDEs using the finite difference method [12]. Using
the lifting technique presented in Section III, it can be easily
shown that the finite-time observability Gramian J2p of this
class of systems, is a sparse, multi-banded matrix, for more
details see chapters 2 and 3 of [12]. In [12], [17], [19], it
has been shown that inverses of sparse multi-banded matrices
can be approximated by sparse multi-banded matrices. That
is, the inverse of J2p can be approximated by a sparse multi-
banded matrix. From the identification point of view, this
implies that the state of a local subsystem can be identified
using the local input-output data of local subsystems that are
in its neighborhood. Depending on the interconnection pattern
of local subsystems, this neighborhood can be a 2D or a 3D
neighborhood.

V. NUMERICAL EXPERIMENTS

The data generating model, is a global state-space model
consisting of N = 500 identical local subsystems. The local
system matrices of each local subsystem are given by:

A =

[
0.5728 0.1068
0.1068 0.5728

]
, E =

[
0.1068 0

0 0.1068

]
, B =

[
0.2136
0.1068

]
C =

[
1 0

]
(28)

The model (28) is obtained using the finite-difference ap-
proximation of the heat equation, see Chapter 2 of [12] (the
thermal diffusivity constant is 0.6, and the temporal and spatial
discretization steps are h = 5 and L = 5.3, respectively).
Every local input is a zero-mean Gaussian white noise. Every
local output is corrupted by a zero-mean Gaussian white noise.
Signal to Noise Ratio (SNR) of each local output is 25 [dB].
In total 100 identification experiments are performed.

For identification of the local state of (21), we use the SIM
method summarized in [20] (other SIMs can be also used).
This SIM is a modified version of the SIM presented in [21].
The SIM is applied with the past and future windows equal to
15 and 10, respectively. Because all local subsystems have
identical local system matrices (28), to identify the global
state-space model we only need to perform three identification
experiments. Namely, using (21) we first estimate the state
sequence of the local subsystem S2. Using the same methodol-
ogy, we estimate the state sequence of S1. In the final identifi-
cation step, we use the state-space model (26) (we set i = 1 in
(26)) and the sequences {x̂1(k)},{x̂2(k)} and {y1(k),u1(k)},
to form a least-squares problem. By solving this least-squares
problem we estimate the local system matrices {Â, Ê, B̂, Ĉ}.
Using {Â, Ê, B̂, Ĉ} we form {Â, B̂, Ĉ} and we compute the
VAF of the identified model.

Figure 1(a) shows how the off-diagonal decay of D depends
on p and κ. The results presented in Fig. 1(a) confirm that for
well-conditioned J2p, the off-diagonal decay of D is rapid.
This figure also suggests that the accuracy of approximating
D by D̆t, is relatively good for t = 1.

45 50 55 60
10-5

100

j

||Z
5

0
,j
|| 2

 

 

p=1, =231
p=2, =134
p=3, =138

(a) (b)

Fig. 1: (a) The norm of the block elements Z50,j ∈ R2×2 of the
50th block row of D. (b) The singular values of the data matrix used
to determine the order and to estimate the state-sequence of S2. The
data matrix is formed on the basis of the input 3 in (29).

To illustrate how the quality of the identified model depends
on the selection of the input vector of (21), we identify the
state-sequence of S2 using 5 different inputs:

1. Ω̆2 = u2(k)

2. Ω̆2 = col (y1(k),y2(k),y3(k),u2(k))

3. Ω̆2 = col
(
Yk

1,k−1, ...,Yk
3,k−1,u2(k),u1(k − 1), ...,u3(k − 1)

)
4. Ω̆2 =

col (y1(k − 1), ...,y6(k − 1),u2(k),u1(k − 1), ...,u6(k − 1))

5. Ω̆2 = col(Yk
1,k−1, ...,Yk

6,k−1,u2(k),u1(k − 1), ...,u6(k − 1))
(29)

In the case of inputs 3, 4 and 5, data matrices used to
estimate the Markov parameters (impulse response parameters)
of (21) are ill conditioned. This ill-conditioning is caused by
the fact that the local outputs, that are the elements of Ω̆2,
are depending on delayed outputs and inputs. We use the
regularization technique to improve the condition number of a
data matrix used for identification of the Markov parameters
of S2 (the regularization parameter is 0.05). Local state order
is selected by examining the singular values of the data matrix
that is formed on the basis of {Ω̆2,y2(k)}. For each of the
inputs defined in (29), we form the data matrix and we select
the local order n = 2. For illustration, in Fig. 1(b) we present
the singular values of the data matrix formed on the basis of
the input 3 (similar behavior of singular values can be observed
for the inputs 2, 4 and 5, while in the case of the input 1 the
state order could not be uniquely determined).
Using the similar procedure, we determine the order and we
estimate the state sequence of S1. The state sequence of S1,
can be also identified on the basis of (3) (where i is set to
1). Namely, using {x̂2(k),u1(k)} as known inputs in (3), and
using {y1(k)}, we can directly identify {x̂1(k)} by solving a
simple least-squares problem.
Next, we estimate the local system matrices {Â, Ê, B̂, Ĉ}.
Using {Â, Ê, B̂, Ĉ} we form the estimates of the global



system matrices {Â, B̂, Ĉ} and we compute the VAF of
the global model. The average values of VAF (for S2) are
presented in Table I.

input 1 2 3 4 5
VAF (without reg.) 40 % 99.7 % 5 % 30 % 20 %

VAF (with reg.) - 99.6 % 97.7 % 99.2 % 98.5 %

TABLE I: The average values of VAF for 5 different inputs (reg. is
the abbreviation for regularization).

From Table I we conclude that ”best” identification results
are obtained when the input 2 is used for identification.
This input is formed by eliminating the delayed inputs and
outputs that cause ill-conditioning. In Fig. 2(a), we present
the distribution of VAF values for the output of S1, when the
input 2 is used for identification (in total 100 identification
experiments are performed). Similar results are obtained for
other local subsystems. The eigenvalues of Â, when the input
2 is used for identification, are given in Fig. 3. Next, assuming
that the local outputs are not corrupted by the noise, we
perform identification using the input 2 (with regularization).
The results are given in Fig. 2(b).

(a) (b)

Fig. 2: (a) Distribution of the VAF of S1. The identification of the
state-sequence of S2 is performed using input 2, defined in (29). (b)
Eigenvalues of the estimated matrix Â and Ê, when the input 2 is
used for identification. The outputs are not corrupted by noise.

As it can be seen from Fig. 2(b), in the noise-free scenario
we are able to obtain a relatively good identification results.
Some of the eigenvalues are biased. This is mainly because
of the approximation errors in the state-space model (21)
and because a part of useful information is ”thrown away”
by forming the input 2 (that is, some information is lost by
eliminating the delayed inputs and outputs).

(a) (b)

Fig. 3: (a) and (b): The distribution of the eigenvalues of Â for 100
identification experiments. The SNR ratio is 25 [dB]. The circle with
the big ”X” corresponds to the eigenvalue of A. Identification of the
state-sequence of S2 is performed using input 2, defined in (29).

VI. CONCLUSION

In this paper we proposed a decentralized subspace al-
gorithm for identification of state-space models of large-
scale interconnected systems. To develop the identification
algorithm, we proved that the state of a local subsystem can
be approximated by a linear combination of inputs and outputs
of local subsystems that are in its neighborhood. For systems
with well-conditioned, finite-time observability Gramians, the
size of this neighborhood is small. Consequently, the local
subsystems can be estimated in a computationally efficient
manner. The numerical experiments confirm the effectiveness
of the proposed algorithm.
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