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Relaxed persistent flow/jump conditions for jump property to establish UGpAS for a nonlinear mass-gprin
uniform global asymptotic stability system with impacts having a (non-necessarily periodiogti
] ] ] varying restitution coefficient. For this time-varying sy the
Christophe Prieut,Andrew R. Teef, Luca Zaccariah attractor is closed but not bounded, therefore the La Salle’

results of [9] cannot be applied (whereas one may use the
Matrosov constructions in [10]). A second example, treated

Abstract—For hybrid systems, sufficient conditions are derived SeCt.Io.n llI-B, illustrates the use of practical perSISm by
for the uniform global asymptotic stability of a given closed set. Providing a more elegant proof of the main result in [11],
These conditions are written in terms of a Lyapunov function in the context of event-triggered controllers (see, e.g], [
candidate and assume a semiglobal practical persistent flow [3], [11], [12]). The algorithm of [11] satisfies our semigkl
(resp. persistent jump) property of the solutions to the hybrid practical persistent flow condition (but not the persistéow
system. The use of the new conditions is illustrated via the o 4ition of [4, Sec. 3.3]), and thus we can apply the results
stability analysis of a physically inspired example and of an event- . -
triggered control algorithm. of this paper to prove UGpAS of the attractor. This result
generalizes [11] since uniformity of GAS could not be proven
with the approach adopted in [11]. Moreover, we require
milder regularity conditions than [11] and prove a robuste
result, stated in Section V. This last result strengthergs th
[. INTRODUCTION result in [1, Claim 5.1] and is of interest on its own.

YBRID dynamical systems can characterize continuoys Notation: A function o : [0,00) — R is of classiC if
H evolution (or flow) and discrete evolution (or jump)t iS Zero at zero, continuous angl strictly increasing. Io_is
of their solutions. Examples of hybrid dynamical systenf@@sSKo if it is of class £ and is unbounded. A function
include, e.g., systems having an internal clock (such as the [0,00) — R belongs toPD (positive definite) if it is
flashing fireflies), or mechanical objects experiencing uhixé¢@ntinuous,p(s) > 0 for all s > 0 and p(0) = 0. Given a set
discrete and continuous dynamics (such as the bounciny bdli © R”, C denotes its closure. Given a sdtC R", and a
(See [4, Chap. 1] for more examples.) While many mathBOINtx € R, |24 := ;gf4|$_z|- For any integern and any
matical frameworks have been proposed to suitably represeoalardo > 0, the setéB° := {x € R™ : |z| < ¢} denotes
hybrid dynamics (see, e.g., the ones cited in [5]), a suggestthe (open)d-ball centered at the origin anéB denotes its
one is that recently surveyed in [4], [5] which is capable dflosure. Given two set&’, ) C R", the sett + ) comprises
covering the well understood continuous- and discrete-tinall vectorsz = x 4+ y for somex € X andy € ).
dynamical systems as special cases.
In [4, Chap. 3] it is proven that if a Lyapunov function Il. MAIN RESULTS
candidate strictly decreases along flows and across julmgs, t  Consider the following nonlinear hybrid dynamical system
the attractor is uniformly globally pre-asymptoticallyabte % — (C, F, D,G):
(UGpAS). Some relaxed conditions are then given in [4, Sec. . ,
3.3] where it is shown that one may relax the strict decrease H { ff € F(z), z€C (1)
across jumps (respectively along flows) if a suitable ptests et € G(@), weD
flow (respectively persistent jump) condition is satisfied bwhere F* and G : R™ — R™ are locally bounded set-valued
the solutions. The aim of this paper is to show that a relaxetappings and’ and D are subsets dR”. Let A be a closed
semiglobal practical notion of persistent flow/jump is Istilsubset ofR™. For an introduction to hybrid systems notation
sufficient to establish UGpAS. Our main results, given iand precise definitions of solutions to (1) and hybrid time
Section 1l, use a lemma stating that uniform global stabilitdomains, the reader is referred to §2.2—-2.3]. We recall here
(UGS) plus semiglobal practical uniform global pre-attidty  the following from [4, Definition 3.6]:
implies UGpAS. This lemma is related to [14, Theorem 1] for Definition 1: (Uniform global stability concepts)
continuous-time systems. e The setA is uniformly globally stablgUGS) for (1) if there
A possible use of the proposed UGpAS conditions is illusxists a classC., functiona such that any solution to (1)
trated in Section IlI-A where we use our practical persistegatisfies|z(t, j)|4 < a(]x(0,0)|4), for all (¢,7) € domz;
e the setA is uniformly globally pre-attractivUGpA) for

1Christophe Prieur is with Gipsa-lab, Grenoble Campus, 11 das (1) if for eache > 0 and r > 0, there existsI' > 0 such that
Mathematiques, BP 46, 38402 Saint Martin dités Cedex, France, for any solutionz to (1)
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uniform global asymptotic stability, event-triggered control
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Note that once UGS ofl for  is established, the remainingfunction'V, continuously differentiable on a neighborhood of
UGPpA property amounts to checking uniform convergence i1, two classiC., functionsa; andas, and a functiorp € PD
a semiglobal practical way (that is, for each pair 0, > 0). satisfying (6a) and

Then we can build a set of relaxed conditions ensuring UGpA

Vv < N VfeF 7
of A by introducing, for each paif < 6 < A of positive (VV(z), f) <0, v€C, Vf € F(z), (73)
scalars, the following set Vig) = V(z) < —p(|zfa), VeeD, VgeGx). (70)

. o Assume also that the semiglobal practical persistent jump
Spa 1= (A+AB)\ (A + IB%), (32) Property 1 holds for (1). Then the sdtis uniformly globally
(which is closed, not necessarily bounded, and is boundedpie-asymptotically stable for system (1).
and only if A is bounded) and introducing the following hybrid Theorems 1 and 2 differ in a few ways from the results in
system [4, Props. 3.27 and 3.24] as clarified next.
” — (Csa FDsaG) e First, using the restriction in (3), we are allowed to disueh
&A 8,80 TH oA (3b) a neighborhood of the attractgt for the persistent flow/jump.
= (CNSsa, F,DNSsa,G), This is useful to rule out defective solutions only occugrin
which corresponds to restricting the flow and jump sets to theside the attractor. Examples of such cases corresporteto t
closed setS5 a. situations addressed in Sections IlI-A and IlI-B, the reséds
In [4, §3.2], Lyapunov-based sufficient conditions for UGASroposed in [8], the bouncing ball example (see [4, Example
of a closed set4 are given in terms of the so-called “strict”3.19]) or the homogeneous approximations in [7] where the
Lyapunov conditions, namely strict decrease of a Lyapunaitractor A = {0} necessarily belongs to both the jump and
function both across jumps and along flows. Then, irg43], flow sets which are closed cones.
several relaxations of the strict Lyapunov conditions avery e In [4, Props. 3.27 and 3.24], the argument of the class
among which we focus here on the ones called “persistédt, function v in (4) [respectively, (5)] ist + j. The new
jumping” [4, Prop. 3.24] and “persistent flowing” [4, Propformulation in Property 1 seems to be easier to establish, du
3.27]. In light of the restriction in (3), we introduce a nedal to the fact that the variable [respectively,j] appearing at
semiglobal practical formulation of persistent jump/flow.  the left hand side does not appear at the right hand side. It
Property 1: (Semiglobal practical persistent flow [respeceertainly leads to an easier proof of Propositions 1 and 2 in
tively, persistent jump]) Given system (1), for each pgitA  Section IIl. The next lemma shows that the two formulations
of positive scalars, there exist a clas, functiony and a are equivalent.

scalarN > 0 such that each solutianto hybrid systent{s A Lemma 1: Given a hybrid time domairE, there exist
in (3) satisfies the following for all¢, j) € dom x: 7 € K and N > 0 satisfying (4) [respectively, (5)] for all
. (t,j) € E, if and only if there existy € K, and N > 0
t=() - N, @) satisfying, for all(t, j) € E:
respectively,j > v(t) — N]. 5 .
| [ ? y?_v() ] | .(') £ A0+ g) — N, ®)
Semiglobal practical persistent flow [respectively, junig] [respectively, > 5(t + j) — N. 9)

useful because it still allows to assess UGpAS of an attracto
when strict decrease of a candidate Lyapunov function isProof. We only prove the case corresponding to (4), (8).
only established along flows [respectively, across jumps] aThe other proof is identical witlt and j exchanged. If (8)
only non-increase of the Lyapunov function is establishdtlds for somej € Ko and N > 0, then it suffices to pick
across jumps [respectively, along flows] (see [4, Props? 3.2 = ¥ andN = N for (4) to hold, because> 0 and4 € Ko
and 3.24]). In other words these properties allow estaiigsh implies t > 4(t + j) — N > 4(j) — N. Conversely, assume
UGPAS in the presence of nonstrict (weakened) Lyapundjat (4) holds for somey € Ko and N > 0. Then the choice
conditions. The following main results of this paper, gatiee N = 5 and3(s) = 39m (5) with 4, (s) = min{s,y(s)}
[4, Props. 3.27 and 3.24]. They are proven in Section Iv. satisfies (8). To see this, addto both sides of (4) to get

Theorem 1: Consider hybrid systen¥{ = (C,F,D,G) 2t=t+7(j)— N which implies
in (1) and a closed setd C R™. Assume that there exist a t > §(t+7(j)) — %
function V', continuously differentiable on a neighborhood of ) . .
C, two classK,, functionsa; andas, and a functiorp € PD 3(m(t) +ym(5)) = N

39m (B2) =N =4t +j) - N

such that
a1 (z]g) <V(z) < az(|z]a), Yz € CUDUG(D), (6a) wherethe Iast inequality follows from inspecting the fallng
VV(2),f) < —pllzla),  VreC, VfeF(z), (6b) Wo cases(i) t > j implies v (t) + yn(j) 2 ym(t) =
- ’ Ym (J)=7m(’+ va(ﬂ) O
Assume also that the semiglobal practical persistent flow T S ONS
Property 1 holds for (1). Then the sgtis uniformly globally ) ) N LLu TRAT_' N
pre-asymptotically stable for system (1). A. Nonlinear impacting mass-spring system
Theorem 2: Consider hybrid systeri{ = (C,F,D,G) Let us consider a mass connected to a nonlinear spring.
in (1) and a closed sed C R™. Assume that there exist aAccording to the sketch to the top left of Figure 1, the mass

Y

v
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is moving along the horizontal axis with a positipr> 0 and function V', we consider the energy of the system during flow,
a velocityv = p. Assume moreover that the mass is impactindpat is V (z) := f(f’ k(s)ds + zv®. For thisV, after noticing
with a vertical wall atp = 0, where each dissipative dampinghat |z|4 = |(p, v)|, we may establish (6a) as follows:

h € Z is associated to the restitution coefficien I'(h) < { Izl g

|z]a

I'y < 1. This gives the following hybrid model which uses the,;, / " k(s)ds 1@,&} <v@) < [ ks)ds+ el
) 4 — — 2 K
0 0

counterh € Z and the state: = (p, v, h):

[P v indeed the right inequality is easily checked by writing an
o] = |—k(p)|, re(C = {1’ ER?X7Z, stp> 0} upper bound for each term o and the left inequality

h 0 can be checked by first noticing that i U D U G(D)
:p+ 0 ) one always hagp = |p| and then splitting the analysis
vt = |=T(hyw|, ©€ D:={z eR* x Z, in two cases: 1) iflp| > |v|, then [p| > % and thus
Bt hal ’ s.t.p =0 andv < 0}, lelg

. V(z) > [,7* k(s)ds and 2) if [v| > |p|, then o] > L2

and that satisfies the following assumption characterizing@nd thusV(z) > 7|z|%. Let us now show equations (7). The
very general nonlinear spring with the only requirementt thflow inequality (7a) is easily established by noticing tHat,
at rest p = 0) the spring exerts no force and that extendingll = € C, (VV (z), [—kb(f')b = 0. The jump inequality (7b) is
the spring one experiences an increase of elastic force.  established wittp(s) = (1 —Ty)?s2, indeed for allz € D we
o= 2 e P . .
Assumption 1: Functionk is of classC and“ there exists haveV/( _}Flihl)“ )= V(@) = —(1 = T()[ol? = —p(lz|a).

a scalarT'y € [0,1) such that0 < T'(h) < T for all h € Z.
The last thing to establish to apply Theorem 2 is the
semiglobal practical persistent jump Property 1. To this,ai
for each pair of positive scalar8 < § < A, consider

(p,v) P ) .
Pm\@ system#; o defined in (3) and notice that any solution to
K\ K5 this system can flow for a uniformly bounded ordinary time
D K ‘ycl interval. Indeed, each solution % o experiencing flow is
— A guaranteed to exit from the flow set (the compact Sgi

~ =

T below corresponds to the tiled areas at the right of Figure 1)

=B Cra=KsaxZ=({5<I(pv)| <A} {p>0}) xZ

—_—— e after a bounded time. This simple observation comes from the
1 circulant nature of the trajectories but can be more foynall
1 proven by focusing on the sek$—C, represented in Figure 1,

s
=0

o
o

=)
o

Position and Speed
=)

20 _2‘5 30 3 a4 4 s K =Ksan{p< §/v/2 andv > 0}, Ky := Ksan{p >

e §/v/2 andv > 0}, K3 := Ksan{p > 6/+/2 andv < 0}, and
Fig. 1. Sketch of the mass-spring system of Section lll-Aflaw and jump K4 = Ks.aN{p < §//2 andv < 0}. In particular, notice that
sets, and a solution starting from{(0,0) = (1,1) projected on the ordinary the (p,v) components of all flowing solutions

=
o e
o
ok
=L
S}
=y
3}

time domaint. o
ime domain 1. must leave after a finite time the s€§ and enterk,

or exit 5 o because inC; we havep =v > %;
2. must leave after a finite time the st and enterCs
or exit s o because inC; we havep = v > 0 and

From the simulation of Figure 1, corresponding to the

selectionk(p) = p* andT'(h) = 3, Vh, one gets a clear

i ion that the attract .
impression that the attractor b= —k(p) < —k(%);
A= {(pw,h) ER*XZ: (p,v) = (070)} (12) 3. must leave after a finite time the g€ and enter’C, or
exit ks, because ikC; we haves = —k(p) < —k(J5)

is globally asymptotically stable for the dynamics. Nekiert 4. must leave after a finite time the S6i and exit/Cs o
less, formally proving this fact may be complicated because  pecause irkc, we havep = v < — 5. ’

no dissipation happens during flow and the impacts, whig?S a consequence each projection in\/épev) plane of the
dissipate, may happen increasingly seldom as the mass

roaches zero, especially for specific defective shapebeof SBlution flowing in the compact sét;  is guaranteed to exit
P » €SP y P P jcm in finite (ordinary) time, thereby either having to jump or

very ger!e_ral functiori_c: Nevertheless, we may prove UGA %o terminate. Then, from compactnessiof o and continuity

of the origin by exploiting Theorem 2 as formally Stated. i (continuous-time) solutions on compact time intervais

(15r?§%s(§fg flo.r ;JI;ctisrrnA(\izl)Jmptlon 1, the closed sétin addition to the fact that the flow dynamics is independent
Proof. The roofyuses Thedrem 2 withi and & being the of h, we obtain that there is a uniform maximum flow time

) proc . ) ng T (8, A) for all solutions to#s . Finally, equation (5) holds

two right hand sides m_(lO)C and D as defined in (10) with () = t/Th(5,A) and N — 1. (Note that establishing

and the closed attractot in (11). To construct the Lyalour]ovcondition (9) would require additional steps in this proof.
41t is actually enough that be positive definite and not integrable, so thatThIS shows that (5) IS a S|mpler condition to check for this

the Lyapunov function in the proof of Proposition 1 is raljiainbounded. example.)
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Since all the assumptions of Theorem 2 hold, then the originRemark 1: As compared to [11, Thm 3.1], we address here
is is UGpAS for (10). To show UGAS, note that from [6,a more general case. In particular, we assume only confinuit
Prop. 2.1], we have local existence of solutions and so tbé f, (while a locally Lipschitz f, was considered there);
only way a maximal solution would not be complete is ifwe allow for a very general flow map fon, by way of
along flows, it escapes to infinity in finite time. From (7a) ththe continuous functionf,,, while only the casef, = 0
function V' is non-increasing along all solutions to (16) andvas considered there; finally we allow for stabilizing laws
V is radially unbounded in(p,v). Thus finite-time escapessatisfying local boundedness only, whereas in [11] coit§nu
of V' are avoided. Moreovel does not escape in finite timeof the stabilizer was required. The reason for these ratznat
becausé: = 0. Therefore, UGpAS implies UGAS ofl. O is that not more than those weak properties is required to
prove our stability results and the general formulationduse
here allows to establish robust stability of a larger claks o
systems. Note however that the special case whiete 0

Based on the results in [11], we consider the followingnd+ = #(x,) is captured by dynamics (16a) by selecting
nonlinear continuous-time plant with control inpute R™: = 0 and noticing that:(z,,) € K (z,) for all z,,. The extra

. elements ofK (x,) introduced by the regularization (15) are

Tp = fyp(zp, u) (12) needed to ensure outer semicontinuity of the right hand side
where f, : R"™ x R™ — R" is continuous in both of the jump equation which, based on the developments in
arguments. Paralleling [11], we assume for (12) the existerl4, Chap. 6] ensures well posedness of the hybrid system.
of a stabilizing state feedback control law= r(z,), where This well posedness property enables us to also introduce
% is only required to be locally bounded. the perturbation functiony in the jump equation of (16a)

Assumption 2: Function fp is Continuous in both argu_ to characterize robustness of UGAS in the pl’esence of small
ments and there exist a compact séf C R™, a locally Mmeasurement errors (captured by the inner inflatioA d&ind
bounded functions : R™ — R™, a continuously differen- round-off errors in the transmission of the signa(captured
tiable functionV, : R"™» — R, two classK,, functionsa, by the outer inflation of<). Note that this robustness result can
and a9, and a functionpo € PD such that’ for a"xp c R”p, not be established USing [4, Thm 721] because the attractor

B. An event-triggered control scheme

the following holds for allz, € R": A is not compact. °
Besides the generalizations highlighted in Remark 1, the
a1 (|zpla,) < Vpley) < as(|zpla, ), (13) event-triggered implementation (16) of the stabilizethas

(VVp(2p), fo(p, 6(2))) < —po(lzp|a,)- (14) beer'llproven in [11, Thm 3.1] to. induce global asymptotic
stability (GAS) of A = A, x R™ with A, = {0}. However,
Different from [11], we enforce mild assumptions on thejue to the invariance principle based proof adopted there, a
stabilizer . Therefore, we will use its outer semi-continuougropriately since solutions are bounded, there is no gteean
regularization (see [4, Lemma 5.16] and references thereingf the uniformity and robustness of GAS df Indeed, sinced
—_— is not compact, it is not possible to use the results of [4, 7 h.
K(wp) = m ti(ap + OB). (15) (See, e.g, [4, Thms 7.12 & 7.21] establishing uniformity and
0>0 robustness of pre-asymptotic stability with compact atties.)
Then, inspired by [11], we establish robust stability prtigs Instead, using our Theorem 1, it is possible to prove unifiyrm
of an event-triggered hybrid implementation of the stabitj and robustness of GAS of the attractor by relying on the
law «, whose state iz = [z, u"]" and whose (perturbed) semiglobal practical persistent flow property establisired

dynamics can be written as: the proposition below whose proof uses the result of the next
&y = o2y, 0) claim._ The proof of the claim is given _in Section V.
upe ! E’x ;JfBS ' (xp,u) € C Claim 1: Under Assumption 2, letting = n, +m, and

H: ot :“xp P A = A, xR™, there exists a small enough functign R"» —

(zp,u) € D,  Rs( which is positive irR"» \ A, such that syster# in (16)
(16a) satisfies the semiglobal practical persistent flow in Propér.

where f, : R™ — R is any continuous function allowing for émark 2: Note that due to the very mild conditions
very general intersample behavior for the plant inpuwhile r€quired by Assumption 2, there is no possibility to prove
v :R™ — Rsg is a sufficiently small continuous function adhat there is a minimum intersample behavior guaranteed by

specified below. The flow and jump sets are chosen as: e event-triggered implementation of [11, Thm 3.1] (namel
a uniform persistent flow property, rather than the prattica

ut € K(zp + x(2p)B) + x(zp)B,

C = {(zp,u) : (VVp(xp), fo(mp,u)) < —p(lzpla,)} one established above). Indeed, for very defective nomline
D = {(zp,u) : (VVy(2p), fp(zp,w) = —p(|zp|a,) selections off,, andx, one may run into the need of arbitrarily
6b) fast sampling close to the origin or at infinity (notice hoeev

and p € PD is such thatp(s) < po(s) for all s > 0. This that for those defective selections no periodic samplinglém
event-triggered algorithm was proposed in [12] and used imentation would work either). Nevertheless, if a lower bibun
many later works. As in [11], we study here the stabilitpn the maximum intersample time is imposed by technological
properties of the closed (but noncompact) gdet= A, x R™ needs, one may still use the robustness properties estedlis
for dynamics (16). here to conclude some kind of semiglobal practical uniform
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asymptotic stability results. o Then using [4, Prop. 3.27] and Property 1 with Lemma 1,
Proposition 2: Under Assumption 2, there exists a smallve conclude UGpA ofH; o for each pair of positive scalars
enough functiory : R"» — R>( which is positive ifR"»\ A, (J,A). Finally the result follows from Lemma 2. O
such that the setl = A, x R™ is UGAS for system (16).
Proof. Introduce the functioV (z) = V((zp,u)) = Vp(z)p) V. PROOF OFCLAIM 1

and note that due to the definition of the sétwe have

To the end of proving Claim 1, we provide a robustness
|(zp,u)|a = |2p|.4, @and from (13), we have

statement which strengthens the result in [1, Claim 5.1¢ (se
o (|z]4) < V(z) < aa(|z]a). (17) also [13, Pages 332-333] for a similar re;ult) establishing

o ) that under Assumption 2 the flow inequality (14) can be

Moreover, from the definition of the flow set in (16b), we havgyengthened to hold robustly, as clarified below. The proof

(pu _ uses the regularity oV, and the continuity off,,.
<VV(‘T)’ [f (@(x)}z)ge Cf)(';jz‘uA)e’f (2,)B (18a) Lemma 3: Under Assumption 2, the following strengthened
b ’ e flow condition holds for allz, € R"»
and sincer, = x,,, we also have ~
__ max (VVp(zp), f) < =po(lzpla,),  (19)
V(@) = V(@) = Vy(e}) = Vilay) =0, V(wp,u) € D. Fem fy(ep K (o)
(18b) whereco denotes the closed convex hull.

Then, by the semiglobal practical persistent flow property Moreover, for eacly € PD such thato(s) < po(s), Vs > 0,
established in Claim 1 and by Theorem 1, stis UGpAS there exists a continuous functien: R™» — [0, 0o0) which is
for H. To show UGAS, note that from [6, Prop. 2.LJUD = strictly positive onR™» \ A,,, such that for allz, € R"»

R™ implies local existence of solutions and so the only way

a maximal solution would not be complete is if it escapes(VV,(x,), f) < _pellzpla,) +p(|xp|A”), Vf € Fy(zp),
to infinity during flows. From (18), the functio¥ is non- 2 (20a)
increasing along all solutions to (16) so thg component of \here the set-valued mappitig, is defined as follows:
each solution is bounded. Moreover, from continuity fQf

boundedness of, implies also boundedness afalong flows ~ Fy(%p) := €0 fp(2p, K(zp + n(2,)B) + n(z,)B).  (20b)
and thus forward completeness follows. Therefore, UGPAS p.qof. Proof of (19) Fix z, € R™. By definition of the

implies UGAS of A. closed convex hull, for each € €0 f, (x,, K (x,)), there exists
a sequenced fi);cn in R™ such thatf! — f, asi — oo
IV. PROOF OFTHEOREMS1 AND 2. satisfying, for eachi > 1, the existence of two sequences

The following lemma is needed to prove Theorems 1 and @%7);_, _, in [0, 1] with 2221 Nod =1and (k)= ;€

and is similar to [14, Theorem 1, 33 1)]. K (z,) such that
Lemma 2: A closed se#d is UGpAS forH := (C, F, D, G) ;
in (1) if it is UGS for# and, for each pairA > 0, § > 0, it = Z)\i,jf (i, k) 1)
= »(Tps .

is UGpA forHs a in (3).
Proof. According to Definition 1, UGpAS of4 follows from _ . o
UGS (which is assumed) and UGpA, which is established neRiow recalling (15), for eacli € N and for eachl < j < 4,
With reference to Definition 1, select any pai of positive there exists a sequence;’"),cy such that
scalars and seleck = a(r) and§ = a~!(g) (wherea is the il i iim 1
classK .. function establishing UGS of). By assumption, & {|zp — 27", [k — s(z;7")[} < =l
Hs A is UGpA, therefore there exists such that (2) holds Then, usin
for all solutionsz to #H;5 A. For that same”, all solutions to
‘H with |z(0,0)|4 < r satisfy (2) as well. Indeed, denote by _ ) i i
T any Sl|JC(h sgl|ution and two cases may occur: (VVp(2p), f) = Jim Z AV (@p), fo(@p, k7))
1) |z(t,§)|a > ¢ for all (t,5) € domz, in which case notice ‘ =t
that from UGS of# we have|z(t,j)|4 < a(r) = A for all R ST . i i
(t,j) € domz. Then,z is als|o(a s)<|)lution (td)H(;A and (2) - }E{}OZA N nh_{fgova(%]’ )s oy, ("))
holds by definition. i=1
2) there exists(¢,j) € domx such that|xz(¢,j)|4 < ¢ and . ig o1 i
l2(t, )| > 6 for all (¢ j) € domz satisfyingt + j < £+ j. = lim 3 A L po(|ay” " a,)
Thenx(t, ) is also a solution tdHs A for all (¢,7) € domz =t
with ¢ + j < £+ j (so that it satisfies (2) by definition for all
such times) while from UGS we have(t, j)|a < a(d) =«
for all (¢,) € domz with ¢+ j > £+ j which implies (2) for '
the remaining part oflom z. O where in the last line we used’_, A"/ = 1.

Proof of Theorems 1 and 2We only prove Theorem 1 asProof of (20) Using (19), the functiony is constructed
the proof of Theorem 2 is identical. Conditions (6) imply UGSollowing the proof technique of [1, Claim 5.1] (see also
of # following the same proof technique as in [4, Theo. 3.18[13, Pages 332-333]), recognizing that in (20) we have

j=1

g continuity oV, f, andp,, and (14), we get

i

IN

IN

— i 2 < —
Jim 320 (lpla,) < <pellapla,)
j=
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po(\xp\Ap)-i-p(\»tplAp)

< po(|xp\,4 ) for all z, ¢ A, while in
[1, Claim 5. 1] we havelV,(z,) < V,(2p), V z) ¢ A,p.

Combining (29) with (28), we get the following relations
O where for compactness of notation we usgfor x,(¢, j) and

First select the functiony in (16a) as any contmuousgp for x,(t;,7):

function satisfyingx(z,) < n(zp) for all =, ¢ A,, where

n is the continuous function introduced in Lemma 3. To prove
the claim for hybrid systen#{ with such a selection of,

fix scalarsé > 0 and A > 0 as in Property 1. Below
we determine parameters € K., and N > 0 satisfying
(4) for all solutionsz to H; . If the solution never jumps,

fp(:z?p(t,j),u(t,j))

€ fo (w0 K (& + X(&)B) + X(5)B + 1, B)
C  fplzp, K(2p + x(2p)B + 21 B) + x(2p)B + 21 B)
C  fp(zp, K(zp +n(2p)B) + U(xp)B)

Ey(ap(t,5)),

then (4) trivially follows with any N > 0 and any class for all ¢ € [¢;,t; + 05,a]. Then from (20) we obtain

K+ function ~. If the solution jumps at least once, then
by the restriction of the flow and jump sets &5, we
have |z(t,j)|a = |zp(t,j)]a, < A, for all (¢,j) € domz,
(t,7) # (0,0). Therefore, the (sub-)state, is uniformly
bounded as follows:

@yt )4, <A, V(tj) €dome, j>1.  (22)

upper bound and local boundednessFiof(inherited frome)

(VY (0, 3)), fy (. 9), ult, )
< 2 (pellaplt ), + pllg(t,3)1,))

< —plla(t,)].a)-

Combined with (16b) this latter inequality implies that the
solution is not in the jump set for atle

Since from (22)r, is bounded, then alsf, (x,,) has a uniform dwell time for all j > 1, suggests the selection of(s)
os,as that, combined with the selectioN' = o5 A (ensuring

[tj,t + os, A] This

and continuity of f, and f, imply that there exist positive that the right hand side of (4) is non-positive for,j) €

scalarsL, and L,,, such that, for al(t,j) in domz, j > 1,

domz, 7 = 0), implies (4). (Note that establishing condition

(8) would require additional steps in this proof. This shows

lzp(t,5) — 2p(ty, J)| < Lo(t —t;) (23)
u(t, ) —u(t;, j)| < Lu(t —t;). (24)
Sincey is continuous oriR™», it is uniformly continuous on

each compact set, namely there exists > 0 such that, for
all 2}, e R", |ah]a, <A, i=1,2,

() —

Use now the result of Lemma 3 and, in particular, the®!
continuous functiony satisfying (20) and the functiory in
(16a) which is smaller than by construction. Select

=1 min (@) - x(z)

X 2 |y a,€lS, A]

/N NN
min | 7 "L Ly I
and note that) > 0 (becausex(z,) <
A,), implying o5 A > 0.

Then from (24) and the right bound of (27), we get for al
te [tj,tj + U&,A]

fp(xp(t,j),u(t,j)) € fp(mp(tvj)vu(t%j) +QXB)~

Moreover, applying (26) first and then the left two bounds i
(27) and (23), we get

< n(xp)

(1]

(2]

X(@)] < Ly|z), — x| . (25)

(4]
(5]
(6]

i (26)

g5,A ‘=

(27)

[7]
n(xp) for all z, ¢

|8l
9]
(28)
[11]
(29a)

} . (29b)

X(xp) + QQX

) ) . n [12]

. X

zp(t,j) € xp(t;,j)+ min {nx’ —LX
and the right bound of (29b) together with (25) gives (3]

X(@p(ti, ) = x(@p(t,9) + x(zp(ts, ) — x(@p(t, 7)) 4
C x(@p(t: 7)) + Lylzp(ty, 4) — 2p(t, 5)|B
- X(xp( )) +QXB

(29¢)

that (4) is a simpler condition to check for this example.)
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