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Distributed Surrounding Design of Target Region with
Complex Adjacency Matrices

Youcheng Lou and Yiguang Hong

Abstract–This is a complete version of the 6-page IEEE TAC
technical note [1]. In this paper, we consider the distributed sur-
rounding of a convex target set by a group of agents with switch-
ing communication graphs. We propose a distributed controller to
surround a given set with the same distance and desired projection
angles specified by a complex-value adjacency matrix. Undermild
connectivity assumptions, we give results in both consistent and
inconsistent cases for the set surrounding in a plane. Also,we provide
sufficient conditions for the multi-agent coordination when the convex
set contains only the origin.

Index Terms—Multi-agent systems, complex weights, set surrounding,
joint connection

I. I NTRODUCTION

The distributed coordination and control of multi-agent systems
has been investigated from various perspectives due to its various
applications. After the study of consensus or formation of multi-
agent systems [3], [4], [5], [6], [7], [8], much attention has been
paid to set coordination problems of multi-agent systems. Among
the studies of multi-agent set coordination, distributed containment
control has achieved much, which makes agents reach a convexset
maybe spanned by multiple leaders [10], [13], [12], [11]. Moreover,
some results were obtained to control a group of agents in order to
protect or surround a convex target set. For example, the distributed
controller was designed for the agents to surround all stationary
leaders in the convex hull spanned by the agents in [18], while a
model was provided for multiple robots to protect a target region [2].
However, many theoretical problems to surround a target setremain
to be solved.

On the other hand, complex Laplacians or rotation matrices have
been applied to consensus and formation (see [22], [21], [23]), par-
tially because the complex representation may significantly simplify
the analysis when the state space is a plane. Formation control for
directed acyclic graphs with complex Laplacians and related stability
analysis were discussed in [21], while new methods were developed
for pattern formation with complex-value elements in [22].

The objective of this paper is to study the distributed set surround-
ing design based on complex adjacency matrices, that is, to design
a distributed protocol to make a group of agents protect/surround a
convex set in a plane. We first propose a distributed controller to
make all agents achieve the set projection with the same distance
and different projection angles specified by a given complex-value
adjacency matrix. For uniformly jointly strongly connected undirected
graph and fixed strongly connected graph, we provide the initial
conditions guaranteeing that all agents will not converge to the set.
Then we investigate the special case when the set becomes the
origin, with a necessary and sufficient condition in the fixedstrongly
connected graph case. In addition, our results also extend some
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existing ones including the consensus [3], [4] and bipartite consensus
[14].

The contributions of this paper include: 1) we proposed a dis-
tributed controller to solve the set surrounding problem under the
switching communication graphs; 2) we characterize the relationship
between the consistency of directed cycles of the configuration graph
and the system dynamic behavior, or roughly speaking, the consistent
cycles produce the consistent case, while inconsistent cycles yield the
inconsistent case; 3) we extend some existing results of consensus
and bipartite consensus when the set contains only one point.

The paper is organized as follows. Section II gives preliminary
knowledge and the problem formulation. Section III provides the
main results for the distributed set surrounding problems and then
considers an important special case when the target becomesthe
origin. Then Section IV gives a numerical example for illustration.
Finally, Section V shows some concluding remarks.

Notation: R and C denote the real field and complex field,
respectively;| · | denotes the modulus of a complex number or the
number of elements in a set;PX(·) denotes the projection operator
onto the closed convex setX; zp denotes the projection vector of
point z onto X, i.e., zp = z − PX(z); | · |X denotes the distance
between a point andX, i.e., |z|X = |z−PX(z)|; ι = √−1 denotes
the imaginary unit;∠z denotes the argument of complex number
z; 〈·, ·〉 denotes the inner product of two complex numbers, i.e.,
〈a1 + a2ι, b1 + b2ι〉 = a1b1 + a2b2.

II. PRELIMINARIES AND FORMULATION

In this section, we first introduce preliminary knowledge and then
formulate the distributed set surrounding problem.

A. Preliminaries

A digraph (or directed graph)G = (V, E) consists of node set
V = {1, 2, ..., n} and arc setE ⊆ V × V [19]. A weak path in
digraphG is an alternating sequencei1e1i2e2 · · · ikekik+1 of nodes
ir, r = 1, ..., k+1 and arcser = (ir, ir+1) ∈ E or er = (ir+1, ir) ∈
E , r = 1, ..., k; if er = (ir, ir+1) for all r, the weak path becomes
a directed path; ifi1 = ik+1, the weak path is called a weak cycle;
A weak cycle containing a directed path is called a directed cycle.
Digraph G is said to be weakly strongly connected if there exists
a weak path inG between every pair of nodes inV, and strongly
connected if there exists a directed path inG between every pair of
nodes inV. Moreover,G is undirected if(i, j) ∈ E is equivalent to
(j, i) ∈ E . Undirected graph (digraph)G is said to be a (directed)
tree if there is one node such that there is one and only one (directed)
path from any other node to this node. Undirected graph (digraph)
G is said to contain a (directed) spanning tree if it has a (directed)
tree containing all nodes ofG as its subgraph. Here we assumeG
contains no self-loop, i.e.,(i, i) 6∈ E , i ∈ V.

Consider a multi-agent system consists ofn agents. Letσ :
[0,∞) → Q be a piecewise constant function to describe the
switching graph process withQ the index set of all possible digraphs
on V. Denote a switching graph with signalσ as Gσ = (V, Eσ),
which is called acommunicationgraph to describe the (time-varying)
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communication between the agents (regarded as nodes) with taking
its connection weightaij = 1 if (i, j) ∈ Eσ for simplicity.
DenoteGσ([s1, s2)) as the union graph with node setV and arc
set

⋃
s1≤t<s2

Eσ(t), 0 ≤ s1 < s2. Let {tk, k ≥ 0} := ∆ with
t0 = 0 denote the set of all switching moments of switching graph
Gσ. The switching digraphGσ is uniformly jointly strongly connected
(UJSC) if there existsT > 0 such thatGσ([t, t + T )) is strongly
connected for anyt ≥ 0. As usual, we assume there is a dwell time as
the lower bound between two consecutive switching moments.That
is, there existsτ > 0 such thattk+1 − tk ≥ τ for all k.

The Dini derivative of a continuous functionf : (a, b) → R at
t ∈ (a, b) is defined as follows:

D+f(t) = lim sup
s→0+

f(t + s)− f(t)

s
.

Clearly, f is non-increasing on(a, b) if D+f(t) ≤ 0, ∀t ∈ (a, b).
The following result can be found in [17].

Lemma 1. Let fi(t, x) : R × R
m → R, i = 1, ...,M

be continuously differentiable andf(t, x) = max1≤i≤M fi(t, x).
Then D+f(t, x(t)) = maxi∈I(t) ḟi(t, x(t)), where I(t) ={
i|fi(t, x(t)) = f(t, x(t)), 1 ≤ i ≤ M

}
.

As we know, a setK is said to be convex if(1−λ)z1+λz2 ∈ K
wheneverz1, z2 ∈ K and0 ≤ λ ≤ 1. Moreover, letPK(·) : C → K
be the projection operator onto closed convex setK, i.e.,PK(z) is the
unique element inK satisfyinginfy∈K |z−y| = |z−PK(z)| := |z|K
[15]. In the following convergence analysis, we need to extend the
Barbalats Lemma to a switching case.

Lemma 2. Let g : [0,∞) → R be a continuous function with
limt→∞ g(t) = g0. Supposeg is continuously differential except all
the switching momentstk, t ≥ 0 and the derivativeġ is uniformly
continuous with respect to all time intervals(tk, tk+1) (i.e., for any
ε > 0, there existsδ > 0 such that for anyk and anys1, s2 satisfying
tk < s1 < s2 < tk+1, when |s2 − s1| ≤ δ, |ġ(s2) − ġ(s1)| ≤ ε).
Thenlimt→∞ ġ(t) = 0.

Proof: This conclusion can be shown by contradiction via the
almost same arguments in the proof of the well-known Barbalat’s
Lemma. Without loss of generality, supposelim supt→∞ ġ(t) :=
g∗ > 0. Then let {sk}k≥0 be a subsequence such thatg∗/2 ≤
ġ(sk) ≤ 3g∗/2 for all k. Therefore, forε = g∗/4, there existsδ > 0
such that for anyk and anyr1, r2 satisfyingtk < r1 < r2 < tk+1,
when |r2 − r1| ≤ δ, |ġ(r2)− ġ(r1)| ≤ ε. Sincetk+1 − tk ≥ τ > 0
for all k, we can assumeδ is sufficiently small such that for each
k, eithersk + δ ∈ (tk, tk+1) or sk − δ ∈ (tk, tk+1). First suppose
sk + δ ∈ (tk, tk+1). Then ġ(sk + δ) ≥ ġ(sk)− g∗/4 ≥ g∗/4. As a
result,g(sk+δ) = g(sk)+

∫ sk+δ

sk
ġ(t)dt ≥ g(sk)+δg∗/4. Similarly,

we also haveg(sk − δ) ≥ g(sk) + δg∗/4 whensk − δ ∈ (tk, tk+1).
This contradicts the hypothesislimt→∞ g(t) = g0. Thus, the con-
clusion follows. �

B. Problem Formulation

Consider then agents described by the first-order integrator

ẋi(t) = ui(t), i = 1, ..., n, (1)

where xi, ui ∈ C are the state and control input of agenti in
the plane, respectively. Consider a 2-dimensional boundedclosed
convex setX ⊆ R

2 to be surrounded. For a desired surrounding
configuration or pattern, we need to assign the desired relative
projection angles between the agents when they surroundX. To this
end, we give a complex-value adjacency matrixW = (wij) ∈ C

n×n

to describe the desired relative angles of projections for agents to

X as follows: wii = 0, i = 1, ..., n and either |wij | = 1 or
wij = 0 for i 6= j. In this way, we get a digraphGw = (V, Ew)
with Ew = {(i, j)|wij 6= 0}, which is called aconfigurationgraph.
Meanwhile,wij is called theconfiguration weightof arc(i, j) ∈ Ew.
A weak cyclei1e1i2e2 · · · ikeki1 in Gw is said to be consistent if

k∏

r=1

w(er) = 1,

where w(er) = wirir+1
for er = (ir, ir+1), w(er) = w−1

ir+1ir

for er = (ir+1, ir); otherwise, it is said to be inconsistent. Clearly,
wijwji = 1 in the consistent case whenwij 6= 0 andwji 6= 0.

Remark 1. Although no convex set gets involved in the control
design in multi-agent formation [7], [22], its design is directly based
on the desired formation configuration determined by the desired
relative distances or positions. Sometimes, the desired formation can
be described by a set of desired relative position vectorsdij to show
the desired position of agentj relative to that of agenti for i, j =
1, ..., n. In this case, for a given weak cyclei1e1i2e2 · · · ikeki1, we
also have the consistent case with

∑k

r=1 d(er) = 0, and inconsistent
case with

∑k

r=1 d(er) 6= 0, whereik+1 = i1, d(er) = dirir+1
for

er = (ir, ir+1), d(er) = −dir+1ir for er = (ir+1, ir). It is known
that the formation may fail in the inconsistent case. In our problem,
the desired relative projection angles are described bywij to achieve
the desired surrounding configuration, which plays a similar role as
dij in the formation. Therefore, in both formation and surrounding
problems, the agents’ indexes are given in the desired configuration.

In this paper, we consider how to surround the given setX with
the same distance by then agents from different projection angles
(that is, the rotation angles of projection vectors) specified byW . To
be strict, we introduce the following definition.

Definition 1. The distributed set surrounding is achieved for system
(1) with a distributed controlui if, for any initial conditionxi(0), 1 ≤
i ≤ n,

lim
t→∞

wij(xj(t)− PX(xj(t)))− (xi(t)− PX(xi(t))) = 0

for (i, j) ∈ Ew.

In fact, there are two cases for the set surrounding:

• Consistent case: All agents surround the convex setX with
the same nonzero distance toX and desired projection angles
between each other determined by the entrieswij of W .

• Inconsistent case: all agents converge to the convex setX.

In what follows, we will show: if the weights given in the
configuration graph are inconsistent, the inconsistent case appears;
if the weights are consistent, we can achieve the consistentcase
somehow.

Remark 2. Different from the surrounding formulation given in
[18], the agents in our problem not only surround the target set
but also keep the same distance from the target set (potentially for
balance or coordination concerns). Additionally, the inconsistent case
resulting from the inconsistency of configuration graph is related to
containment problems [11], [12], [13].

In practice, nodei may not receive the information from nodej
sometimes due to communication failure or energy saving. Denote the
set of all arcs transiting information successfully at timet asEσ(t),
which is a subset ofEw, and the resulting graph isGσ(t) = (V, Eσ(t)),
which is thecommunicationgraph of the multi-agent system. Note
that the configuration graphGw shows the desired relative projection
angles of the agents, while the communication graphGσ , a subgraph
of Gw, describes the communication topology of the agents. LetNi =
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{j|(i, j) ∈ Ew} andNi(σ(t)) ⊆ Ni denote the neighbor set of node
i in communication graphGσ(t). Then we take the following control

ui(t) =
∑

j∈Ni(σ(t))

[
wij

(
xj(t)− PX(xj(t))

)

−
(
xi(t)− PX(xi(t))

)]
. (2)

As usual, in the design of controller (2), agents only count in the
received information from their neighbors.

Remark 3. Let us check the role of complex-value adjacency
matrix W . In Definition 1, the complex-value configuration weight
wij(= eαijι) indicates thatαij is the desired angle difference
between projection vector of agenti onto setX and that of agentj.
Because|wij | = 1 for (i, j) ∈ Ew, wijx

p
j (t) − xp

i (t) → 0 implies
|xi(t)|X−|xj(t)|X → 0, and therefore, all agents will have the same
distance to the convex set when the (consistent) set surrounding is
achieved. If|wij | 6= 1, we may get the set surrounding with different
distances from the agents to the target set.

III. M AIN RESULTS

In this section, we will solve the following basic surrounding
problems: (i) How to design distributed controllers to achieve the set
surrounding? (ii) What initial conditions can guarantee the consistent
case? (iii) What happens when the target set consists of onlyone
point?

Before we study the set surrounding problem, we first show that
the consistent case of the set surrounding problem is well-defined,
which can be achieved in some situations.

Theorem 1. Consider a complex-value adjacency matrixW and the
resulting configuration graphGw = (V, Ew). If all weak cycles ofGw

are consistent, then there arezi, i = 1, ..., n such that|zi|X 6= 0, ∀i
and zi − PX(zi) = wij(zj − PX(zj)), ∀(i, j) ∈ Ew.

Proof: For any (i1, i0) ∈ Ew and zi0 6∈ X, take ei1i0 =
wi1i0(zi0 − PX(zi0)). Define a hyperplane

Hλ =
{
z| 〈z, ei1i0〉 = 〈PX(zi0) + λei1i0 , ei1i0〉

}
, λ ≥ 0.

and denote the two corresponding closed half spaces asH+
λ andH−

λ ,
respectively. Let

λ∗ = sup
{
λ|λ ≥ 0, X

⋂
H+

λ 6= ∅
}
.

SincePX(zi0) ∈ H+
0 and X

⋂H+
λ = ∅ for sufficiently largeλ,

λ∗ < ∞. It is easy to see thatX
⋂H+

λ∗ 6= ∅ and X ⊆ H−
λ∗ .

Let zi1 = yi1 + ei1i0 with yi1 ∈ X
⋂H+

λ∗ . Clearly, zi1 6∈ X,
PX(zi1) = yi1 andzi1 −PX(zi1) = ei1i0 = wi1i0(zi0 −PX(zi0)).

If Gw contains no weak cycle, we can apply the similar ar-
guments to all the other arcs inEw to obtain the conclusion; if
Gw contains weak cycles and all its weak cycles are consistent,
we can continue the above procedures until there arez1, ...., zn
such thatzi − PX(zi) = wij(zj − PX(zj)) for all (i, j) ∈ Ew

∗ ,
where (V, Ew

∗ ) is a maximal spanning subgraph ofGw containing
no weak cycle. Because all weak cycles ofGw are consistent,
zi − PX(zi) = wij(zj − PX(zj)) also holds for all the otherwij

when (i, j) ∈ Ew\Ew
∗ . Thus, the proof is completed. �

In the following two subsections, we will show that inconsistent
cycles yield the inconsistent case for any initial conditions and the
consistent cycles imply the consistent case for all initialconditions
except a bounded set, respectively. Then in the third subsection,
we will reveal the inherent relationships between consensus and our
problem with the set containing only one point.

A. Set surrounding

The following results provide sufficient conditions for theconsid-
ered set surrounding problem.

Theorem 2. (i) The distributed set surrounding is achieved for system
(1) with control law (2) if the communication graphGσ is UJSC
and all directed cycles of the configuration graphGw are consistent;

(ii) limt→∞ |xi(t)|X = 0, i = 1, ..., n for any initial conditions
if the communication graphGσ(t) ≡ Gw is fixed, strongly connected
and there are inconsistent weak cycles inGw.

Proof: (i) Define the arc set connecting infinitely long time

E∝ =
{
(i, j)|∃ {sk}k≥0, sk → ∞ such that(i, j) ∈ Eσ(sk)

}

and corresponding graphG∝ = (V, E∝). Clearly,G∝ is a subgraph
of the configuration graphGw.

Define

d(t) = max
1≤i≤n

di(t), di(t) =
1

2
|xi(t)|2X , i ∈ V, t ≥ 0,

which are nonnegative. According to Proposition 1 in [16] (page
24), |xi(t)|2X is continuously differentiable and its derivative is
2〈xp

i (t), ẋi(t)〉. Applying Lemma 1 gives

D+d(t) = max
i∈I(t)

〈
xp
i (t), ẋi(t)

〉

= max
i∈I(t)

〈
xp
i (t),

∑

j∈Ni(σ(t))

(
wijx

p
j (t)− xp

i (t)
)〉

≤ max
i∈I(t)

∑

j∈Ni(σ(t))

(
|xi(t)|X |xj(t)|X − |xi(t)|2X

)

≤ 0 (3)

with I(t) =
{
j|j ∈ V, dj(t) = d(t)

}
and t 6∈ ∆. Therefore, it

follows from (3) thatd(t) is non-increasing and then converges to a
finite number, that is,

lim
t→∞

d(t) = d∗. (4)

As a result, the agent statesxi(t), i ∈ V, t ≥ 0 are bounded because
X is bounded. In addition, ifd∗ = 0, the conclusion is obvious.
Supposed∗ > 0 in the following proof of this part.

Since the switching communication graphGσ is UJSC, by similar
procedures in the proof of Lemma 4.3 in [20], we can show that
limt→∞ di(t) = d∗, i = 1, ..., n. Based on the boundedness of sys-
tem states and the non-expansive property of projection operator, we
can find thatḋi is uniformly continuous with respect to time intervals
[tk, tk+1) for k ≥ 0. Then by Lemma 2 we havelimt→∞ ḋi(t) = 0,
that is,

lim
t→∞

ḋi(t) = lim
t→∞

〈
xp
i (t),

n∑

j=1

χij(t)
(
wijx

p
j (t)− xp

i (t)
)〉

= lim
t→∞

n∑

j=1

χij(t)
(
− |xi(t)|2X

+ |xj(t)|X |xi(t)|X cos(∠wijx
p
j (t)− ∠xp

i (t))
)

= lim
t→∞

n∑

j=1

χij(t)
(
− 2d∗

+ 2d∗ cos(∠wijx
p
j (t)− ∠xp

i (t))
)

= 0,

which implies

lim
t→∞, t∈Ξij

wijx
p
j (t)− xp

i (t) = 0, (5)
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whereΞi,j = {t|(i, j) ∈ Eσ(t)},

χij(t) =

{
1, if (i, j) ∈ Eσ(t);
0, otherwise.

It follows from (5) that for anyε > 0, there isT1 > 0 such that, when
t ≥ T1, |wijx

p
j (t)−xp

i (t)| ≤ ε for (i, j) ∈ Eσ(t), and then|ẋi(t)| ≤
(n−1)ε. Thus,|xi(t2)−xi(t1)| ≤

∫ t2
t1

|ẋi(s)|ds ≤ (n−1)(t2−t1)ε,
and then|xp

i (t2)− xp
i (t1)| ≤ 2(n− 1)(t2 − t1)ε for t2 ≥ t1 ≥ T1,

where the last inequality follows from the non-expansive property of
projection operator:|PX (z1)−PX(z2)| ≤ |z1−z2|, ∀z1, z2. Without
loss of generality, we assumeT1 is a sufficiently large number such
that Eσ(t) ⊆ E∝, ∀t ≥ T1.

Take(i0, j0) ∈ E∝ arbitrarily. Since the union graphGσ([t, t+T ))
is strongly connected, there exist nodesi1, ..., ik, k ≤ n−2 and time
instantst ≤ s0, s1, ..., sk < t+ T such that(ir, ir+1) ∈ Eσ(sr), r =
0, ..., k−1 and(ik, j0) ∈ Eσ(sk). At the same time, there also exists
a directed pathP from j0 to i0 in Gσ([t, t+T )). Denote the product
of all configuration weights onP asw∗.

SinceGσ([t, t + T )) is a subgraph ofGw and all directed cycles
of Gw are consistent, all directed cycles ofGσ([t, t + T )) are
also consistent. Therefore,

∏k−1
r=0 wirir+1

wikj0w∗ = 1. Moreover,
since i0(i0, j0)j0P is a directed cycle inGw, wi0j0w∗ = 1. Thus,∏k−1

r=0 wirir+1
wikj0 = wi0j0 and

|xp
i0
(t)− wi0j0x

p
j0
(t)|

=
∣∣xp

i0
(t)−

k−1∏

r=0

wirir+1
wikj0x

p
j0
(t)

∣∣

≤ |xp
i0
(t)− xp

i0
(s0)|+ |xp

i0
(s0)− wi0i1x

p
i1
(s0)|

+ |wi0i1x
p
i1
(s0)−wi0i1x

p
i1
(s1)| + · · ·

+
∣∣∣wk−2x

p
ik−1

(sk−1)− wk−1x
p
ik
(sk−1)

∣∣∣

+
∣∣∣wk−1x

p
ik
(sk−1)− wk−1x

p
ik
(sk)

∣∣∣

+
∣∣∣wk−1x

p
ik
(sk)− wikj0wk−1x

p
j0
(sk)

∣∣∣

+
∣∣∣wikj0wk−1x

p
j0
(sk)− wikj0wk−1x

p
j0
(t)

∣∣∣

≤ (k + 1)ε+ 2(k + 2)(n− 1)2Tε

≤ (n− 1)ε+ 2n(n− 1)2Tε,

wherewq =
∏q

r=0wirir+1
. Sinceε can be sufficiently small, we

can further obtain

lim
t→∞

wijx
p
j (t)− xp

i (t) = 0, ∀(i, j) ∈ E∝. (6)

Clearly, due to the uniformly strong connectivity ofGσ, G∝ is
strongly connected. Combining the previous conclusion, (6) and the
consistency of directed cycles ofGw, we havelimt→∞ wijx

p
j (t) −

xp
i (t) = 0 for all the otherwij with (i, j) ∈ Ew\E∝. Thus, the proof

of part (i) is completed.
(ii) We first show this conclusion for the case when there exist

inconsistent directed cycles inGw. Let i1e1i2e2 · · · ikeki1 be an
inconsistent directed cycle inGw with

k∏

r=1

wirir+1
6= 1, (7)

ik+1 = i1. From (5), we havelimt→∞ wirir+1
xp
ir+1

(t)−xp
ir
(t) = 0

for 1 ≤ r ≤ k. Therefore,

lim
t→∞

xp
i1
(t)

(
1−

k∏

r=1

wirir+1

)
= 0,

which implieslimt→∞ di1(t) = 0 and thend∗ = 0. For the case of
existing weak cycles (not directed cycles) inGw, we can similarly

show this conclusion by replacing the configuration weightwirir+1

in (7) with w−1
ir+1ir

corresponding to arcer = (ir+1, ir).
Thus, we complete the proof. �

From the proof of Theorem 2, we can find that the conclusion (ii)
also holds under the following relaxed connectivity condition: the
communication graphGσ is UJSC and there exist a time sequence
{sk}∞k=0, sk → ∞ and b0 > 0 such thatEw ⊆ ⋃sk+b0

t=sk
Eσ(t) for

k ≥ 0.

Remark 4. In the consistent set surrounding, the distance of all
agents surrounding the convex setX is same. In fact, we can consider
a more general set surrounding problem that all agents surround the
convex set X with the pre-specified relative distance relationship to
X among agents determined by some matrix(dij) (dij , (i, j) ∈ E
describes the proportion of the desired distance of agenti onto set
X and that of agentj onto setX) and desired projection angles
between each other determined by the entrieswij of W . We can find
that this new set surrounding problem can be solved by distributed
controller (2) by replacingwij with dijwij if the communication
graphGσ is UJSC, and the consistence definition of directed cycles
of the configuration graphGw with replacingwij with dijwij holds.

Remark 5. Here we provide another simple proof of Theorem 2 (i)
whenwij = 1 for all i, j and the communication graph is a fixed
undirected connected graph. First of all, by∇|x|2X = 2(x−PX(x)),
we have

d|xi(t)|2X
dt

= 2
〈
xp
i (t),

∑

j∈Ni

(
xp
j (t)− xp

i (t)
)〉
.

Taking the sum for the two sides of the above equality overi =
1, ..., n, by the undirectedness of the graph(V, E), we have

d
∑n

i=1 |xi(t)|2X
dt

= −2
∑

(i,j)∈E

|xp
j (t)− xp

i (t)|2 (8)

≤ 0,

which implies that
∑n

i=1 |xi(t)|2X is non-increasing and then its limit
exists. As a result, the system statesxi(t), i, t ≥ 0 are bounded. This
combines with (8) lead to

∫ ∞

0

∑

(i,j)∈E

|xp
j (t)− xp

i (t)|2dt < ∞.

From the boundedness of system states, we can see that∑
(i,j)∈E |xp

j (t) − xp
i (t)|2 is uniformly continuous on[0,∞). Then

it follows from the Babalat’s Lemma thatlimt→∞

∑
(i,j)∈E |xp

j (t)−
xp
i (t)|2 = 0. This implies thatlimt→∞(xp

j (t) − xp
i (t)) = 0 for all

(i, j) ∈ E and then the set surrounding is achieved.

B. Consistent Case

Theorem 2 showed that the distributed set surrounding can be
achieved underUJSC communication graph condition. In this sub-
section, we further show under the case without inconsistent cycles
of Gw, how to select initial conditions such that the consistent case
(that is,d∗ > 0 given in (4)) can be guaranteed.

Let Lσ(t) be the matrix with entries

(Lσ(t))ij =






|Ni(σ(t))|, if i = j;
−wij , if i 6= j, j ∈ Ni(σ(t));
0, otherwise.

(9)

Then system (1) with control law (2) can be written in the following
compact form

ẋ(t) = −Lσ(t)x
p(t), (10)
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wherex(t) = (x1(t), ..., xn(t))
T is the stack vector of agents’ states,

xp(t) = (xp
1(t), ..., x

p
n(t))

T is the stack vector of agents’ projection
vectors.

We first consider system (10) with aUJSC undirected graphGσ,
where all directed cycles of the configuration graphGw are consistent.
Without loss of generality (otherwise we can relabel the index of
nodes), we take a spanning treeT of Gw as follows:T =

⋃ρ

k=1 Tk,
where the initial and the terminal nodes of the pathTk are ik and
1, respectively; the nodes in the path fromik to 1 are in the order
ik, ik − 1, . . . , ik−1 + 1, 1, 1 ≤ k ≤ ρ, i0 = 1. Associated with the
n nodes, we definen nonzero complex numbers

p1 = 1, pj = w−1
(ik−1+1)1

j−1∏

r=ik−1+1

w−1
(r+1)r for ik−1 + 1 ≤ j ≤ ik.

Denote a diagonal matrix

P = diag(p1, ..., pn) (11)

with diagonal elementspi, 1 ≤ i ≤ n. It is easy to see that̃Lσ(t) =
PLσ(t)P

−1 is the Laplacian1 of undirected graphGσ(t). Then we
have

Theorem 3. In the switchingUJSC undirected graph case,d∗ > 0
if the initial conditionx(0) satisfies

∣∣1TPx(0)/n
∣∣ > supz∈X |z|.

Proof: Let x̃(t) = Px(t). Clearly, system (10) can be written as

˙̃x(t) = −L̃σ(t)Pxp(t).

Because1T L̃σ(t) ≡ 0 with 1 = (1, ..., 1)T , 1T x̃(t)/n is time-
invariant. Note thatsupz∈X |z| is a finite number sinceX is bounded.

We prove the conclusion by contradiction. Hence supposed∗ =
0. Since limt→∞ di(t) = d∗ under the UJSC assumption,
limt→∞ |xi(t)|X = 0. Therefore,lim supt→∞ |xi(t)| ≤ supz∈X |z|
and then

∣∣1T x̃(t)/n
∣∣ ≤ supz∈X |z|, which yields a contradiction due

to 1T x̃(t)/n ≡ 1T x̃(0)/n. �

Next we consider system (10) under a fixed strongly connected
digraph Gσ(t) ≡ Gw with all its directed cycles being consistent.
Since any strongly connected graph contains a directed spanning tree,
Gw contains a directed spanning treeT d =

⋃̺

k=1 T d
k , where the

initial and the terminal node of the directed pathT d
k are ik and 1,

respectively. Moreover, the nodes in the directed path fromik to 1
are in the orderik, ik − 1, . . . , ik−1 + 1, 1, 1 ≤ k ≤ ̺, i0 = 1.
Associated with then nodes, we can similarly define

q1 = 1, qj = w−1
(ik−1+1)1

j−1∏

r=ik−1+1

w−1
(r+1)r for ik−1 + 1 ≤ j ≤ ik.

Let Q = diag(q1, ..., qn) denote the diagonal matrix with diagonal
entriesq1, ..., qn. It is easy to see thatQLσ(t)Q

−1 ≡ QLσ(0)Q
−1

is the Laplacian of the fixed digraphGw and

αTQx(t) (12)

is time-invariant, whereα = (α1, ..., αn)
T with αi > 0,

∑n

i=1 αi =
1 is the left eigenvector ofQLQ−1 associated with eigenvalue 0,
that is,αTQLQ−1 = 0. Similar to the undirected graph case, we
can show the following result, whose proof is omitted due to space
limitations.

Theorem 4. In the fixed strongly-connected digraph case,d∗ > 0 if
the initial conditionx(0) satisfies

∣∣αTQx(0)
∣∣ > supz∈X |z|.

1 The LaplacianL̄ of a digraphG = (V , E) is defined as:(L̄)ii = |N̄i|,
(L̄)ij = −1 for j 6= i, j ∈ N̄i and all other entries are zero, wherēNi =
{j|(i, j) ∈ E} [19].

Remark 6. Clearly, by the relation (3) we always haved∗ ≤
max1≤i≤n |xi(0)|X . Generally, the final distanced∗ between agents
andX depends on the initial conditions, graphGσ, matrixW and the
shape ofX. The computation ofd∗ is very complicated and it is not
easy to give its value, or even a lower bound because our connectivity
condition and convex set are quite general. On the other hand, in
some special cases, we can certainly discussd∗. For example, when
Gσ is undirected,UJSC and X is a ball with center(0, 0) and
radius r0, if |1T x̃(0)/n| > r0 (the sufficient condition in Theorem 3
is satisfied), then

d∗ ≥
√

2(|1T x̃(0)/n| − r0) > 0,

becauselimt→∞(|xi(t)|X−|xj(t)|X) = 0 with |xi(t)|X = |x̃i(t)|X
and limt→∞ |x̃i(t)|X ≥ |1T x̃(t)/n|X = |1T x̃(t)/n| − r0 with
1T x̃(t)/n ≡ 1T x̃(0)/n. Similar estimation can also be given for
the fixed strongly-connected digraph case.

C. Special Case:X = {(0, 0)}
Here we consider a special case when the set becomes a point.

Without loss of generality, takeX = {(0, 0)}, which can be regarded
as a stationary leader of the multi-agent system. Then system (1) with
control law (2) can be rewritten as

ẋi(t) =
∑

j∈Ni(σ(t))

(wijxj(t)− xi(t)) (13)

or in the compact form:̇x(t) = −Lσ(t)x(t), whereLσ is given in
(9).

Remark 7. System (13) is a generalized model for various models
in the multi-agent literature. For example, whenwij = 1 for
(i, j) ∈ Ew, system (13) becomes the standard consensus model with
all connection weights equal to 1. Moreover, the bipartite consensus
model discussed in [14] is a special case of system (13) withwij = 1
or −1.

Remark 8. Different from the feedback controlui =∑
j∈Ni

wij(xj − xi) given in [22], [21], our distributed control
is ui =

∑
j∈Ni

(wijxj − xi). As stated in [22], the system matrix
generated byvi may have eigenvalues with positive real parts and
then the resulting system may be unstable. Here if the graphGσ

is undirected and switching (or fixed and strongly connected) with
consistent directed cycles ofGw, then all the eigenvalues ofLσ

(or L) have non-negative real parts, which implies that for the two
cases system (13) is always stable.

Consider system (13) associated with aUJSCundirected graphGσ.
Recalling the diagonal matrixP in (11), we first have the following
theorem.

Theorem 5. For system (13), if the undirected communication graph
Gσ is UJSC and all directed cycles of the configuration graphGw

are consistent, then, for any initial conditionxi(0), i = 1, ..., n,

lim
t→∞

xi(t) =

∑n

j=1 pjxj(0)

npi
, 1 ≤ i ≤ n.

Proof: Recalling the notations̃x(t) and L̃σ(t) used in Subsection
III. B, we have ˙̃x(t) = −L̃σ(t)x̃(t). According to Theorem 2.33 in
[4], for any xi(0), 1 ≤ i ≤ n,

lim
t→∞

x̃i(t) =

∑n

j=1 x̃j(0)

n
, 1 ≤ i ≤ n,

which implies the conclusion. �

Next we consider system (13) with a fixed strongly connected
digraphGσ(t) ≡ Gw. Clearly, L is diagonally dominant and all its
eigenvalues are either 0 or with positive real parts.
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Lemma 3. 0 is an eigenvalue ofL if and only if all directed cycles
of Gw are consistent.

Proof: Sufficiency. If all directed cycles ofGw are consistent, then
by the discussions in Subsection III. B, there is an invertible diagonal
matrixQ such thatQLQ−1 is the Laplacian of digraphGw. Since all
row sums of any Laplacian are zero, any Laplacian has an eigenvalue
zero. The sufficiency follows from that similar matrices have the same
eigenvalues.

Necessity. Let us show it by contradiction. Suppose thatGw

contains inconsistent directed cycles. On one hand, by Theorem 2 (ii),
limt→∞ xi(t) = 0, i = 1, ..., n for any initial conditions (noticing
thatX = {(0, 0)}). On the other hand, letξ 6= 0 be the eigenvector
of L with eigenvalue 0, that is,Lξ = 0. Clearly,x(t) ≡ ξ for initial
conditionx(0) = ξ, which yields a contradiction. Thus, the necessity
follows. �

Recalling the matrixQ and vectorα defined in (12) along with
Lemma 3 and Theorem 2.13 in [4], we have the following theorem.

Theorem 6. Consider system (13) with a fixed strongly connected
digraph Gσ(t) ≡ Gw. Thenlimt→∞ xi(t) = 0, i = 1, ..., n for any
initial conditions if and only ifGw contains inconsistent directed
cycles. Moreover, if all directed cycles ofGw are consistent, then,
for any initial conditionxi(0), i = 1, ..., n,

lim
t→∞

xi(t) =

∑n

j=1 αjqjxj(0)

qi
, 1 ≤ i ≤ n.

Remark 9. Theorem 2 stated that, in the fixed graph case, if there
exist irregular weak cycles inG, then, for any initial condition, all
agents converge to the target set (which is the origin here),which
implies that all eigenvalues of generalized LaplacianL have positive
real parts. In fact, as shown in Theorems 5 and 6, the converseis also
true. Theorems 5 and 6 provided necessary and sufficient conditions
to characterize the relationship between the stability of system (13)
and the properties of graphG.

Remark 10. Clearly, the results in Theorems 5 and 6 are consistent
with the conventional results in [3], [4], [14]. In fact, if all wij ’s
are 1, both P and Q given in Subsection III. B are the identity
matrix, which implies that all agents will achieve a consensus for any
initial conditions by the conclusions in Theorems 5 and 6. Moreover,
Theorem 2 in [14] showed that all agents will converge to the origin
for the structurally unbalanced graph case or achieve the bipartite
consensus for the structural balanced graph case, which canbe
obtained from Theorem 6 in this paper by noticing that a digraph with
all configuration weights being−1 or 1 is structurally balanced if
and only if all its directed cycles are consistent. Due to theconvex set
and complex-value weights, the method given in [14] for the bipartite
consensus cannot be applied directly to solve our problem.

Sometimes, we need to check whether the weak cycles in the
configuration graph are consistent and it is known that the consistency
of weak cycles in digraphs implies that of directed cycles. In the
strongly connected digraph case, the converse is also true and then
we only need to check the consistency of all directed cycles instead
of that of all weak cycles as the next result shows.

Theorem 7. SupposeGw is strongly connected. Then all directed
cycles ofGw are consistent if and only if all weak cycles ofGw are
consistent.

Proof: The sufficiency part is straightforward. We focus on the
necessity part. Without loss of generality, let the weak cycle in Gw

take the following form

i1e1i2e2 · · · ek1−1ik1
e−1
k1

ik1+1 · · · ike−1
k i1,

where er = (ir, ir+1), r = 1, ..., k1 − 1; e−1
r = (ir+1, ir),

r = k1, ..., k, ik+1 = i1. Since Gw is strongly connected, for
each r = k1, ..., k, there is a directed pathPr from ir to ir+1.
Because the directed cyclesPre

−1
r , r = k1, ..., k are consistent,

w(Pr)wir+1ir = 1, wherew(Pr) is the product of all configuration
weights on directed pathPr. Then, from the consistency of the
directed cyclei1e1i2e2 · · · ek1−1Pk1

· · · Pk, we have

wi1i2 · · ·wik1−1ik1
w−1

ik1+1ik1
· · ·w−1

ik+1ik

= wi1i2 · · ·wik1−1ik1
w(Pk1

) · · ·w(Pk) = 1.

Thus, the conclusion follows. �

IV. N UMERICAL EXAMPLE

In this section, we provide an example to illustrate the results
obtained in this paper.

Consider a network of five agents with node setV = {1, 2, 3, 4, 5}
and the complex-value adjacency matrixW = (wij). The convex
set to be surrounded is the unit ball inR2. The initial conditions are
x1(0) = 2+4ι, x2(0) = 4+3ι, x3(0) = −4−3ι, x4(0) = −4+2ι,
x5(0) = 2 + 3ι (marked as◦ in Figures 1 and 2).

Two cases are shown as follows:

• Consistent case: Takew12 = w23 = w34 = e
π
2
ι, w45 = e

π
3
ι,

w51 = e
π
6
ι, and all other configuration weights are zero.

Then the resulting configuration graph isGw = (V, Ew)
with arc set Ew = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. The
communication graph of the multi-agent system is periodically
switched between two graphsG1 = (V, E1),G2 = (V, E2)
with E1 = {(1, 2), (3, 4), (5, 1)} and E2 = {(2, 3), (4, 5)} in
the following order:G1,G2,G1,G2, . . . with switching period
5. Clearly, Gσ is UJSC and all directed cycles ofGw are
consistent. Figure 1 demonstrates that all agents accomplish the
consistent set surrounding at timet = 2000, where the five agent
trajectories are described by the solid lines and the projection
vectors of the final positions of the agents are described by
dashed lines.

• Inconsistent case: Takew12 = w23 = w34 = e
π
2
ι,

w45 = e
π
3
ι, w51 = e

π
3
ι, w14 = e−

π
2
ι, and all other

configuration weights are zero. Suppose the communication
graph is fixed, that is,Gσ ≡ Gw = (V, Ew) with Ew =
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (1, 4)}. Note that the config-
uration graphGw defined by the new configuration weights is
clearly inconsistent. Figure 2 shows that all agents converge to
the unit ball, where the final positions of the five agents at time
t = 2000 are marked with∗.

V. CONCLUSION

In this paper, we proposed a formulation and a distributed con-
troller for set surrounding problems. We discussed both consistent and
inconsistent cases, and obtained the necessary/sufficientconditions
for multi-agent systems with communication topologies described by
joint-connected graphs. Moreover, we showed when the consistent
case can be guaranteed, and also provided conditions on the leader-
following consensus when the target set becomes one point.

Many interesting problems about set surrounding of multi-agent
systems remain to be done, such as the analysis in the case with
various uncertainties, the construction of configuration graphs based
on given optimization indexes, and surrounding control design for
agents moving in a high-dimensional space with the help of rotation
matrices.
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Figure 1: The consistent cycles yield the consistent set surrounding.
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