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Abstract

Increased uncertainty due to high penetration of renewables imposes significant costs to the system operators.
The added costs depend on several factors including market design, performance of renewable generation
forecasting and the specific dispatch procedure. Quantifying these costs has been limited to small sample Monte
Carlo approaches applied specific dispatch algorithms. Thecomputational complexity and accuracy of these
approaches has limited the understanding of tradeoffs between different factors. In this work we consider a two-
stage stochastic economic dispatch problem. Our goal is to provide an analytical quantification and an intuitive
understanding of the effects of uncertainties and network congestion on the dispatch procedure and the optimal
cost. We first consider an uncongested network and calculatethe risk limiting dispatch. In addition, we derive
the price of uncertainty, a number that characterizes the intrinsic impact of uncertainty on the integration cost
of renewables. Then we extend the results to a network where one link can become congested. Under mild
conditions, we calculate price of uncertainty even in this case. We show that risk limiting dispatch is given by a
set of deterministic equilibrium equations. The dispatch solution yields an important insight: congested links do
not create isolated nodes, even in a two-node network. In fact, the network can support backflows in congested
links, that are useful to reduce the uncertainty by averaging supply across the network. We demonstrate the
performance of our approach in standard IEEE benchmark networks.

I. INTRODUCTION

The existing electric grid is operated so that online generation is sufficient to meet peak period
demand. Butuncertaintiesarising from outages and unpredicted fluctuations in demandand renewable
generation can cause a loss of load event, when online generation does not meet demand some load
needs to be disconnected from the power system. To decrease the loss of load probability, the system
operator (SO) schedules generation and transmission line capacity so it exceeds forecasted peak net
demand by a small percentage (around 5%), to compensate for small amount of uncertainty due to
generator contingencies and load forecast errors. This additional reserve capacity is utilized in real time
as actual loads and contingencies are revealed. Typically energy and reserve capacity are scheduled
following a ‘3-σ’ rule: the total amount scheduled is the forecast plus ‘3-σ’, where σ is the standard
deviation of net demand forecasting error. Currently, the typical values ofσ is around 1% to 2% of
total load.

Due to various incentives and state goals such as the renewable portfolio standards (RPS), renewables
are expected to make up to 30% to 40% of generation mix in the USA. Increased penetration of renewable
generation increases the uncertainty in the grid [1], [2]. In such scenario, the current deterministic
dispatch practice would require large reserve capacity allocations. Such allocations increase energy
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costs significantly and accrue unwanted emissions [3]. For example, each additional1% of reserve costs
CAISO about50 million dollars (based on 2009 costs). In light of the significant financial implications,
various alternative forms of stochastic dispatch procedures have been studied [4], [5]. The goal of these
procedures is to solve a dispatch program that utilizes available forecasts and the sequential decision
nature of the problem. Past approaches often resulted in programs that were infeasible in practice due to
computational complexity and relying on Monte-Carlo type approaches that could only be calculated
with a limited number of scenario samples. The complexity ofthese procedures makes it even difficult to
reliably evaluate the benefit of smart grid technologies or improvements in forecasting. Moreover, these
approaches require significant changes in the operating procedures and software of system operators.
In some cases, the forecast error distributions are not utilized appropriately or at all [6].

Recently, Risk Limiting Dispatch (RLD) [7], [8] was proposed as a new dispatch framework. By
utilizing a simplified approach that is applied after unit commitment and does not consider network
constraints, a very simple analytic dispatch rule can be obtained. The rule proposes an alternative
deviation calculation that depends on error performance offorecasting, the costs of various generation
alternatives and the timing of dispatch decisions stages. It was shown that in uncongested and lossless
networks, the proposed dispatch significantly reduces the renewable integration cost. Moreover, reliable
estimates of various metrics such as integration cost, emissions and costs due to forecasting performance
can be easily obtained [3].

The first contribution of this paper is the derivation of risklimiting dispatch for acongested network.
This dispatch is denoted the network RLD and we show that it issimple to implement computation-
ally(without the need for Monte Carlo type of simulations),results in reliable and interpretable dispatch
decisions and can be used to provide stable performance estimation. We model economic dispatch under
uncertainty as a two-stage dispatch problem where the decision is made for each operating hour. Without
loss of generality, we assume that the first stage occurs at the day ahead market and the second stage
occurs at the real time market. In a day-ahead market (DAM), the SO purchases energy at generators
connected to different buses in the network, utilizing forecasts and error distributions for loads and
renewable generation at various buses. In the real-time market (RTM), dispatch decisions are made
utilizing the realized values of all loads, renewable generations and physical network constraints such
as transmission limits. We consider a DC power flow model for analysis and validate our results by
considering full AC model in case studies.

The key observation that makes the problem tractable is thatin real networks, only avery small
number of transmission lines are congested. For example, the commonly used IEEE benchmark networks
[9] are far from being congested under normal operations. Also, the WECC model for the California
network only include a few congested lines [10]. We expect that the congestion patterns would not shift
excessively under the uncertainty levels typically present in the renewable penetration levels expected in
the near future. Intuitively, knowing the congestion patterns should reduce the complexity of the dispatch
procedure since not all possible network constraints need to be considered. In this paper we formalize
this intuition by developing an accurate picture of a network operating underexpected congestion, that is
where congestion is predicted in the DAM. We observe a novel fact: a network operating under expected
congestion due to uncertainty behaves qualitatively different than a network under deterministic loads
and generation. We introduce the concept ofback flowto capture this behavior. Back flows are directed
permissible flows in congested links that need to be includedin a two stage dispatch. The possibility
of back flow is somewhat surprising, as congestion in a two busnetwork in deterministic dispatch
program implies the two buses are decoupled [11], [12]. We also develop a computationally simple
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dispatch approach that utilizes this structural understanding to compute the dispatch in a simplified
form via a set of equilibrium equations. The proposed approach can be easily integrated into existing
unit commitment and dispatch procedures of the system operators.

The second contribution of this paper is in developing the concept of price of uncertaintythat
characterize the intrinsic impact of uncertainty on the cost of dispatch. Given a network, the integration
cost is defined as the difference between expected cost undertheoptimaldispatch procedure (i.e., RLD)
and the dispatch cost if the SO has a clairvoyant view of all loads and renewable generations [13]. We
observe that under the expected mild to moderate uncertainty levels, the integration cost increases
linearly with the uncertainty in the forecast error and the per unit ofuncertainty cost of integration is
the price of uncertainty. The price of uncertainty can also be interpreted as the benefit of improving
forecast procedures and can be used as a metric to evaluate the benefits of forecasting and provide a
reference point to judge specific dispatch methodologies.

A brief discussion of related works follow. Monte Carlo based dispatch formulations that include
security constraints and DC power flow balance have been studied recently [4], [14]–[19]. They result
in difficult optimization problems that can only be evaluated with (limited) Monte Carlo runs and do
not provide much insight into the dispatch methods. MPC approaches [20], [21] address recourse in
decision making, but still rely on Monte Carlo, and may not beappropriate when the number of recourse
opportunities is small, limiting the corrections calculated by MPC. Single market problems are more
tractable [22]–[25] but do not capture the nature of recourse or congestion. Methodologies for assessing
reserves in the presence of significant wind generation was presented in [26] without including two
stages or congestion. Current deterministic dispatch avoids complicated procedures by considering a
worst-case net load to be satisfied, namely the forecast plusthree standard deviations of forecast error
[27]. Other papers (e.g. [28], [29]) investigated a robust version of unit commitment utilizing a DC
flow model without recourse to represent the market model, and [30] used a similar model but is fully
adaptive to the realization of the uncertainties.

The remainder of the paper is organized as follows. Section II sets up the two-stage dispatch model
in detail, and describes the uncertainty model. Section IIIreviews a single bus model and develops
the price of uncertainty. In order to develop this qualitative understanding under limited congestion
patterns we first study small network scenarios. Section IV first investigates a 2-bus network, defines
the concept of back flow and identifies the appropriate structural results, utilizing it to develop a
simple dispatch methodology. Section IV then investigatesgeneral networks with a single congested link
and demonstrates an appropriate reduction mechanism. Section V provides computational experiments
illustrating the performance of the procedure in real networks. Section VI concludes with future work.

II. M ODEL SETUP

A. Network Risk Limiting Dispatch (N-RLD)

Network Risk Limiting Dispatch (N-RLD) is formulated as a two stage optimization problem in an
power network (Figure 1). The first stage represents a marketwhere the SO can buy energy corresponding
to dispatch decisions. Decisions are made at each node of thenetwork. The second stage corresponds to
delivery or real time, which represents a 5 or 15 minute interval during which energy is delivered. Stage
1 typically occurs 24 hours ahead of real-time and slow ramping generation or base load generation is
dispatched at this stage [12]. In some cases, stage1 can represent a market an hour ahead of real-time.
Without loss of generality we call this stage ‘day ahead’. Stage 2 is then the ‘real-time’.

3



D1

D2 D3

D4 D5

C35

C23C12

C45

C14

1

4 5

2 3

g
R
1

g1

g
R
2

g2 g3

g
R
3

g4

g
R
4

PSfrag replacements
g
gr

d1

Fig. 1. Power network example with five nodes. Demand at busi is denoted byDi, the first stage generation bygi and second stage
generation bygRi . The capacity of line between busi and busk is denotedCik and the flows on each line is determined by the net
injection, gi + gRi −Di at each bus.

The SO makes dispatch decisions constrained by ann-bus power network withm transmission lines.
The SO has to satisfy a random loadli at each busi, known only at real-time. He has available for free
wi units of renewable energy, also revealed only at real-time.In stage1, the SO can dispatch generation
gi after observing some information1 available about the random load and wind at the buses. In stage
2 or recourse stage, the SO choosesgRi after observing the random loads and demands to balance the
network. ThegRi ’s can be seen as generation level of fast generators or shedded load. Energy can only
be purchased in the first stage sogi ≥ 0. Renewable generation is not dispatchable and is taken as
negative load, following standard practice. The net load at busi is defined asdi = li − wi and it can
be positive or negative. Excess power at any busi in the second stage can be disposed off for free, so
gRi can be positive or negative.

The cost of dispatching generation at busi in the first stage isci(gi) andqi(gRi ) in the second stage.
In general both costs are represented by increasing, convexfunctions. When not specified, we assume
that both costs are linear and given byci(gi) = αigi andqi(gRi ) = βi(g

R
i )

+, whereαi andβi are prices
in dollars per MW and(x)+ = max(x, 0). Later we show the assumption is not restrictive since while
operating under mild to moderate uncertainty, we are interested in perturbations of the dispatch around
its operating point, and it can be shown that the linear cost segment at that point determine costs.
Moreover, to avoid trivial solutions and arbitrage, assumeday ahead prices are smaller than real time
prices, i.e.,αi ≤ βk for all 1 ≤ i, k ≤ n. The total SO cost for the first stage is the sum of first stage
costs, and the total second stage cost is the sum of the secondstage costs.

Once first stage dispatch decisions are made and renewable generation is realized, second stage
dispatch decisions and power flows in the system are determined by the physical network and its
properties. We consider a DC power flow model [31] for dispatch calculation purposes. We validate the
performance of the dispatch by considering the full AC modelin the case studies. Dispatch decisions
need to respect network flow constraints, and in particular transmission line constraints. The capacity
of the line connecting nodesi andj in the network is given bycij . We also utilize an observation about
congested transmission links in practice. For example, in CAISO, normally only one or two of the main
transmission lines from Northern California to Southern California experience congestion. Thislimited
congestionassumption will be utilized to simplify the dispatch calculation. In particular in this paper
we focus on the scenario with at most one congested link. In future work we generalize this to problems
with k congestion link following the same approach proposed here.

To establish the information structure of the two stage optimization problem, we propose the following

1For example, the information observed in the day-ahead could be the weather information.
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forecasting model. The net load is decomposed as

d = d̂+ e, (1)

where d̂ = [d̂1d̂2 . . . d̂n]
T is the first stage forecast ande = [e1e2 . . . en]

T is a zero mean Gaussian
distributed random vector with covariance matrixΣe = σ2

eΣ
′
e, whereΣ′

e is a known error correlation
matrix (e ∼ N(0, σ2

eΣ
′
e)). Furthermore, the forecast̂d and errore are independent. Moreover, average

performance of the forecast, in the form of forecast error variance σ2
e is provided for each bus or

operating region.
The Gaussian error assumption is justified by recent studies(e.g. [2]) that observe forecast errors are

distributed as a (truncated) Gaussian random variable. Forthe typical variances utilized, the errors in
utilizing a Gaussian distribution is negligible and an accepted practice in dispatch mechanisms. Also
note that the results for Gaussian models carry over to many other distributions with little modification
[8].

B. Formulation and Decomposition of N-RLD

We formulate the mathematical optimization problem in thissection. Before stating the entire problem,
it is convenient to define the following DC-OPF problem

J(q,x) =min
gR,f

qT (gR)+ (2a)

subject togR − x−∇
T f = 0, (2b)

Kf = 0, (2c)

|f | ≤ c, (2d)

whereq is a positive price vector, (2b) is the power balance constraint, ∇T ∈ R
n×m is the mapping

from branch flows to bus injections [32],f is the m × 1 vector of branch flows, (2c) is Kirchoff’s
voltage law that states a weighted sum of flows in a cycle must be 0, (2d) are the capacity constraints
on the flows wherec = [c1 . . . cm]

T and(x)+ = max(0, x). This optimization problem can be seen as
a generic DC-OPF problem with pricesq and demandsx. Since only the positive part of generations
gR is reflected in the cost, energy can be disposed for free.
N-RLD : The network risk limiting dispatch problem can be stated asthe following stochastic optimiza-
tion problem:
(i) Real Time OPF (RT-OPF): Solve the real time OPF problemJ(β,d − g) whereJ is defined in

(2). At real time, the day-ahead dispatch decisionsg are already made, and the realization of the
random variables are known. Therefore the new net demand isd − g, andJ(β,d − g) balances
the network under the real time pricesβ.

(ii) Day Ahead Stochastic Power Flow (DA-SPF):

V ∗(d̂) = min
g≥0

{

αTg + E[J(β,d− g)|d̂]
}

, (3)

where the expectation is taken with respect to the distribution of d conditional on the forecast
d̂. The constraintg ≥ 0 limits the day ahead decisions to purchasing generation power only.
Additionally, g is function of the forecast̂d and the error distribution. The optimal solution to (3)
is called therisk limiting dispatch.
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C. Integration Cost and Price of Uncertainty

A fundamental quantity of interest is the impact of uncertainty in the cost of dispatch. We call
this quantity the integration cost [3], which is defined thedifference between the expected cost of the
procedure and the expected cost of a dispatch clairvoyant ofthe realization ofd. The clairvoyant dispatch
can allocate all the required power in the day ahead by solving the deterministic OPFV ∗

C(d) = J(α,d).
The integration cost for a realization of the information set d̂ is given by

CI(d̂) = V ∗(d̂)− E[V ∗
C (d̂+ e)|d̂]. (4)

An important question is regarding the sensitivity of this cost to the forecast error standard deviation
σe when thebest possible dispatchis utilized. If CI is a linear function ofσe, soCI = pσe, thenp is
the price of uncertainty, a fundamental limit faced byany dispatch procedure. In this paper we show
how it can be calculated for various scenarios.

D. Small-σ Assumption

An important consideration is the order of magnitude of the error standard deviationσe compared
to the entries in the average net load vectorµ and the transmission line capacities. Standard deviation
of day ahead load forecastsσL are1%−−2% of the expected loadµL. Wind error forecasts are more
severe, and error standard deviationsσW of 30% of rated capacityµW have been observed. High wind
penetration scenarios have about30% of total load being generated by wind, and therefore the total
error would be about0.01 + 0.3 ∗ 0.3 = 10% of total load.

In contrast to the financial situation, a relative forecast error of 10% would not change the overall
physical operating characteristic of the network. More precisely, suppose we calculate the deterministic
dispatch based on the forecast valuesd̂ and find busi would be generating power in the first stage.
Then with high probability, busi would still be generating power in the two stage dispatch problem.
Also, the network congestion pattern under the deterministic dispatch and the two-stage dispatch should
not be drastically different. Sections III and IV formalizes these observations.

We call the operating regime in the above scenarios thesmall-σ regime. More rigorously, we have
the following definition.

Definition 1. Let d̂ be the predicted net demand andσe be the standard deviation of the forecast error.
The small-σ assumption denotes the scaling regime where1

σe
d̂ → ∞.

For the simplicity of exposition, we delegate such limits tothe appendix and focus on the intuitive
points of analysis in the main body of the paper. The overall message is that forecast values are very
useful in determining thequalitativebehaviour of the network.

III. SINGLE-BUS NETWORK CASE

This section reviews the risk limiting dispatch control fora single-bus network [8], [33], and analyzes
the price of uncertainty in this scenario. A network can be modeled by a single-bus if congestion never
occurs in the network. Under the same-σ assumption, this is equivalent to the fact that if there is
sufficient capacity under the forecast net-demand, then theforecast errors being small enough compare
to the capacity in the network such that line flow limits wouldnot be hit under almost all realizations.
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A. Risk Limiting Dispatch

Since we only consider a single bus, all variables are scalar. Equivalently, the single bus network
can be thought as ann-bus network without congestion since buses can freely exchange power2. In
this case, the constraint region in (2) reduces to net supplymust equal net demand, and the RT-OPF
becomes

J∗(β, d− g) =min β(gR)+

s.t. gR + g − d = 0

=β(d− g)+.

The DA-SPF in (3) can then be reduced to

g∗ = argmin
g
αg + β E[(d− g)+|d̂] (5a)

s.t. g ≥ 0. (5b)

RLD can then be derived as follows. Consider the unconstrained optimization problem

min
g

αg + β E[(d− g)+|d̂]. (6)

Taking the subgradient with respect tog gives the optimality condition

0 = α− β E[1(d− g > 0)|d̂]
= α− β E[1(d̂+ e− g > 0)|d̂]
= α− β Pr(e > g − d̂|d̂),

rearranging gives
Pr(e > g − d̂|d̂) = Q(g − d̂) =

α

β
, (7)

whereQ(·) is the Gaussian Q function. The risk limiting dispatch (optimal dispatch)g is given by
inverting (7)

g = d̂+Q−1(
α

β
). (8)

Note it is possible thatg < 0, it can be shown that the risk limiting dispatchg∗ (optimal solution to
the constrained problem in (5)) is given by thresholding

g∗ = g+ = [d̂+Q−1(
α

β
)]+. (9)

2More precisely, this fact follows from the fact that withoutcongestions, Kirchoff’s laws reduces to the law of conservation of energy,
which only requires the total power input to be equal to the total power output.
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B. Price of Uncertainty

Since most power systems would not have100% penetration in the near future, we assume that the
net demandd, and its predictiond̂, are positive. Then first we would show the price of uncertainty
exists (i.e. the integration cost is linear inσe), and then calculate its value.

Theorem 1. Supposed > 0. ThenC(d̂) defined in(4) is linear under the small-σ assumption and can
be written as

lim
1

σe
d̂→0

C(d̂) = σep, (10)

whereσe is the standard deviation of the errore and p = βφ(Q−1(α
β
)) (φ(·) is the standard Gaussian

density andQ(·) is the complimentary Gaussian cumulative density function).

Theorem 1 relies on the observation that if net demand is positive (d > 0), then it is always beneficial
to purchase energy in the day ahead as the energy price is higher in real-time, so the optimal schedule
must be positiveg∗ > 0. The positivity constraint in the simplified DA-SPF ((5)) isredundant, and the
cost of uncertainty ((4)) can be explicitly computed. The proof of Theorem 1 is given in Appendix
A. Figure 2 plots the price of uncertainty for different values ofα/β with β set to be 1. Somewhat
surprisingly,p is not monotonic inα/β and it goes to0 asα/β approaches0 or α/β approaches 1.
Intuitively, when α/β is small, the day ahead cost is very low, and the SO can purchase sufficient
amounts of energy to absorb the prediction error. In contrast, whenα/β is close to 1, the day ahead
and real-time costs are similar, so the SO waits until real-time to balance the system once the net load
realization is completely known.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

α/β

p

Fig. 2. The price of uncertainty for different ratios ofα/β.

C. Extremely High Penetration

In some networks renewable power may have a penetration level of more than 100%, violating the
small-σ assumption. For example, in a microgrid where wind or solar energy is abundant, the net demand
could become negative. In this case, the cost of uncertaintyis no longer linear in the standard deviation
of the prediction error and in general cannot be computed in closed form.

IV. CONGESTEDNETWORKS CASE

The RT-OPF in N-RLD for n-bus networks does not admit an analytical solution as in the single bus
case, significantly increasing the complexity of the full dispatch. In particular, it is difficult to obtain the
day ahead dispatchg in closed form. Moreover, the cost of uncertainty can be a complicated function
of the information set and the network capacitiesc. These quantities can be numerically computed
resorting to a Monte Carlo approach, but the computational challenges are formidable due to the high
dimensionality of the problem.
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Instead, the small-σ assumption from Sec. II can be explored to obtain a simple andinterpretable
dispatch. Since the prediction error is a small percentage of the net load, the change in flows caused by
that error is also a small percentage, we assume the prediction error is small compared to botĥd and
c. Under the small-σ assumption, thequalitativeor structural behavior of the power system predicted
in the day-ahead from the forecastd̂ will not differ from its realization in real-time after observing
d. If we expect to purchase power at a bus in the day-ahead, thenafter real-time, we do not expect
power to be shed in that bus. If a transmission line is expected to be congested in a certain direction
in the day-ahead, then the direction of congestion would notbe reversed at real time. Since qualitative
features are consistent with the forecast, a deterministicOPF based on the day-ahead priceα and the net
load forecast̂d will predict congested lines, congestion directions and buses where energy is purchased
correctly. LetP denote the feasible injection region of the network (the setof all power injections that
satisfy the operational constraints) [34]. This deterministic OPF is denominatedNominal Day-Ahead
OPF (NDA-OPF):

J(α, d̂) = min
g

αT (g)+ (11a)

subject tog − d̂ ∈ P. (11b)

In stochastic control terms, NDA-OPF solves the certainty equivalent control problem for N-RLD
(3) [35], [36], by replacing the random quantityd by the deterministic quantitŷd and solving the
optimization problem. Denote the generation schedule fromNDA-OPF byg.

The day ahead scheduleg in the DA-SPF ((3)) can be decomposed as the nominal dispatchadded to
a perturbationg = (g+∆)+ where∆ ∈ R

n is the perturbation. The optimal schedule is determined by
computing∆. Perturbations are expected to be small since the uncertainty is small, so theperturbed
DA-SPF can be significantly simplified. The simplification comes from the small-σ assumption (see
Definition 1), and is manifested in three key observations:

1) If gi < 0, bus i is treated as a source of unlimited energy, since it is shedding energy in the
nominal problem (NDA-OPF). Ifgi > 0, then the perturbed dispatch∆i is not constrained to be
positive sincegi is much larger thanσe∆i under the small-σ assumption.

2) If the line between busesi andk are not congested, then it is not congested in perturbed DA-SPF.
3) If the line between busesi andk is congested fromi to k, then it would not become congested

from k to i in the perturbed DA-SPF.
Going forward, we assume these observations to hold. This iscalled thesmall-σ assumption. We
propose the two step algorithm in Algorithm 1.
Algorithm 1: Procedure to solve Network Risk Limiting Dispatch
Step 1 (NDA-OPF): Solve the nominal problem in (11) using forecast net load andday ahead prices
to obtain the nominal scheduleg and nominal line flowsf .
Step 2 (Perturbed DA-SPF):Solve the DA-SPF ((3)) for the optimal perturbation∆ by substituting
g = g + σe∆

∗ and appropriately normalizing and reducing the problem using Observations(1) − (3)
as

∆∗ = argmin
∆

αT∆+ E[J̃(β, e)|d̂] (12a)

subject to∆i = 0 if gi < 0, (12b)

∆i > 0 if gi = 0, (12c)

9



where

J̃(β, e) = minβ̃T (y)+ (13a)

s.t. y− e−∇T f = 0 (13b)

Kf = 0 (13c)

fik < 0 if f ik = cik, (13d)

and β̃i = βi if gi ≥ 0 and β̃i = 0 otherwise. The optimal DA-SPF dispatch is then given byg =
(g + σe∆)+.

At first glance, (12) seems to be no simpler than the original problem in (3). However, note that the
network capacity constraints (13d) only include the lines that are congested in the nominal problem. In
essence, (12) balances a ’left-over’ network from solving the nominal problem, and (13d) states that if
a line is congested in the nominal problem, no more energy is allowed to flow along the direction of
congestion.

The next subsection explores the normalization and reduction process to define the Perturbed DA-SPF
for two bus and three bus networks. We show the perturbation∆ is the solution to a set of deterministic
equilibrium equations. Then the problem of an arbitrary network with n buses and a single congestion
link is studied and we show the general reduction procedure results in an optimal dispatch control under
the small-σ assumption.

A. Two Bus Network

Consider the two bus network in Fig. 3. For this network, the day ahead dispatch is a vectorg =

21

PSfrag replacements

d1 d2

c

Fig. 3. A two-bus network wherec is the capacity of the line.

[g1 g2]
T of the scheduled generation at each bus. The real-time balancing of the network requires solving

an OPF where the injection region is two dimensional. The RT-OPF becomes

J(β,d− g) = min
gR,f

βT (gR)+ (14a)

subject togR1 + g1 − d1 − f = 0 (14b)

gR2 + g2 − d2 + f = 0 (14c)

|f | < c, (14d)

wheref is the amount of power flowing from bus 1 to bus 2 andc is the capacity on the line.
To apply Algorithm 1, first solve the NDA-OPF (11) for the two bus network. Then, to apply Step

2, we partitionR2 into the five regions in Fig. 4 according to the value of the netdemand forecast̂d.
Each region is defined by whether the transmission link is congested or not, the direction of congestion,
and whether each bus is scheduled to generate power in the nominal problem. The small-σ assumption
enables inference of these facts with high probability fromthe solution of the NDA-OPF.
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Fig. 4. Partition ofR2 with respect tôd whenα1 ≤ α2. The small-σ assumption means that the actual realization ofd is in the same
region asd̂ w.h.p.

RegionsA, B, C andD reduces to the single bus case as analyzed in Section III. In regionsB and
D, since the line capacity is not binding, power can flow from one bus to the other without congestion.
In regionA, bus 1 has excess power and transfer up to capacity to bus2, and then reserve is only
needed for bus 2. RegionC is symmetrical to regionA.

For region E in Fig. 4,d̂1 > −c and d̂2 > c. Since buying at bus 1 is cheaper (α1 < α2), the SO
should transfer up to line capacityc units of energy from bus 1 to bus 2. The NDA-OPF solution is
then

g =

[

d̂1 + c

d̂2 − c

]

.

At first glance, it seems the two buses are now decoupled and can be treated as two isolated buses since
the line between them is congested. However, this viewpointis not correct due to thetwo-stagenature
of the problem and congestion being directional. In the two stage dispatch problem, the SO decides in
the first stage to purchase some energy based on the forecast and error statistics; however the actual
balancing of the network occurs at the second stage. Some averaging of the errors can still occur even
if the line from bus 1 to bus 2 is congested. For example, suppose that in real-timee1 > 0 ande2 < 0.
That is, demand at bus 2 was over-predicted and demand at bus 1was under-predicted. Due to this
configuration, bus 2 needs less thanc units of energy from bus 1, and the remaining energy can be
utilized to satisfy the under-predicted demand in bus1. This represents a flow from bus2 to 1 and does
not violate congestion constraints, since the line was congested from bus1 to 2. Due to this property
of opposing the congestion direction, we denominate this flow a backflow. For example, backflow does
not arise in region A because bus 1 always has an excess of energy and does not require any energy
from bus 2. Similarly for region C.

In regionE, the small-σ assumption implies thatd ∈ E with high probability and the line is not
congested from bus2 to bus1 (Observation(3)). Assuming that errorse1 ande2 have covariance matrix

Σe = σ2
eΣ

′ = σ2
e

[

γ11 ρ
ρ γ22

]

, (15)

the optimal dispatch and price of uncertainty in region E aregiven by:

Theorem 2. Consider the two-bus network in Fig. 3, with pricesα1 andα2 respectively. Without loss
of generality, we assumeα1 ≤ α2. Under the small-σ assumption, the risk limiting dispatch (equation
(3)) is given by

g∗ = g + σe∆
∗,

11



whereg = [d̂1 + c d̂2 − c]T and∆∗ is the unique solution to

α1 = min(β1, β2) Pr(z1 > ∆1, z1 + z2 > ∆1 +∆2) (16a)

α2 = β2 Pr(z2 > ∆2)

+ min(β1, β2) Pr(z2 < ∆2, z1 + z2 > ∆1 +∆2), (16b)

wherez = [z1 z2]
T = e/σe. The cost of uncertainty is linear and the price of uncertainty is given by

p =αT∆∗ (17)

+min(β1, β2){E[(z1 + z2 −∆∗
1 −∆∗

2)
+1(z2 < ∆∗

2)]

+ E[(z1 −∆∗
1)

+1(z2 > ∆∗
2)]}+ β2 E[(z2 −∆∗

2)
+].

Before formally proving Theorem 2, we provide an intuitive explanation of the non-linear equations
in (16). After subtracting the nominal dispatch choice, thenet demands (normalized byσe) are z1
and z2 respectively, and only backflow is allowed. The network reduces to a two bus network with a
unidirectionallink going from bus 2 to bus 1 (Fig. 5). The left hand side of (16) can be seen as the cost

21PSfrag replacements

z1 z2

Fig. 5. The perturbed network consisting of a unidirectional link and normalized demandsz1 = e1/σe, z2 = e2/σ2 .

of purchasing an additional unit of energy at the buses in stage 1, while the right hand side can be seen
as the benefit of having that unit of energy at stage 2. Therefore (16) can be interpreted as balancing
the cost and benefit between buying an additional of unit at stage 1. For example, one additional unit
of energy at bus 1 is useful if two event occurs:z1 > ∆1 (bus 1 does not have enough energy) and
(b) z1 + z2 > ∆1 +∆2 (bus 2 does not have enough energy to transfer to bus 1). Sincepower can be
transferred from bus 2 to bus 1 in the perturbed network (Fig.5), the price of buying an unit of energy
at real time ismin(β1, β2) and the right hand side of (16a) is the expected benefit of having that unit of
energy available. The price of purchasing that unit of energy at stage 1 isα1. At optimality, equilibrium
is achieved between the cost at stage 1 and the expected benefit at stage 2. Similarly, (16b) describes
the equilibrium at bus 2

Figure 6 plots the ratio in the average price between a network where backflow is not taken into
account and a network that allows backflow as a function of thecorrelation between errorse1 and e2.
If backflow is not allowed, then the network becomes two isolated buses. The ratio is always less than
1 since a network with backflow can do no worse than a network without backflow. The ratio is lowest
when the two buses are negatively correlated since backflow averages out the uncertainties in the error.
As the two buses become positively correlated, backflow becomes less useful since both errors tend to
be the same sign and averaging is less useful.

Proof of Theorem 2: Note that Theorem 2 can be proven using the same limiting arguments as
given in Appendix A for Theorem 1. For the sake of clarity and brevity, we present a proof without
going into the limiting details, but the arguments can be easily make rigorous by following Appendix
A.
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Fig. 6. Ratio in prices between using and not using back flow for α1 = α2 = 0.5 andβ1 = β2 = 1. Note the curve is always below
one since a network with back flow can do no worse than a networkwithout backflow.

Any dispatch can be written asg+σe∆. We first prove the optimal∆ is independent ofσe. Substituting
g = g + σe∆, the DA-SPF (Eqn. (3))becomes

minimizeαT (g + σe∆) + E[J(β,d− (g + σe∆))|d̂] (18a)

subject tog + σe∆ ≥ 0. (18b)

By the small-σ assumption, the constraint in Eqn. (18b) is always satisfiedsince g ≥ 0 from the
definition of NDA-OPF. The RT-OPF (Eqn. (14)) becomes

J(β,d− (g + σe∆)) (19a)

=minimizeβT (gR+1)+ (19b)

subject togR+1
1 + g1 + σe∆1 − f − d̂1 − e1 = 0 (19c)

gR+1
2 + g2 + σe∆2 + f − d̂2 − e2 = 0 (19d)

− c ≤ f ≤ c. (19e)

Since the nominal flow isc, let f = c − δ with δ representing the backflow. Substituting the value of
g into Eqn. (19),

J(β,d− (g + σe∆)) (20a)

=minimizeβT (gR+1)+ (20b)

subject togR+1
1 + σe∆1 + δ − e1 = 0 (20c)

gR+1
2 + σe∆2 − δ − e2 = 0 (20d)

0 ≤ δ ≤ 2c. (20e)

By the assumption that the line does not congest from bus2 to bus1, the constraintδ < 2c is always
satisfied and can be dropped. Normalizing Eqn. (20) byσe gives

J(β,d− (g + σe∆)) (21a)

=σeminimizeβT (gR+1)+ (21b)

subject togR+1
1 +∆1 + δ − z1 = 0 (21c)

gR+1
2 +∆2 − δ − z2 = 0 (21d)

δ ≥ 0, (21e)
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where the optimization variablesgR+1 andδ have been normalized byσe andzi := ei/σe. Let J̃ = J/σe,
and note thatJ̃ only depdent ofβ and ∆. Combining (18) and (21),∆ solves the unconstrained
optimization problem

min
∆

αT∆+ E[J̃(β,∆)]. (22)

To solve this optimization problem, we need the gradient ofE[J̃(β,∆)] with respect to∆. The
optimization problem can be analytically solved to yield

J̃(β,∆) =















































min(β1 + β2)(z1 + z2 −∆1 −∆2)

if z1 + z2 > ∆1 +∆2, z2 < ∆2

min(β1 + β2)(z1 −∆1) + β2(z2 −∆2)

if z1 > ∆1, z2 > ∆2

β2(z2 −∆2)

if z1 < ∆1, z2 > ∆2

0 otherwise

= min(β1, β2)[(z1 + z2 −∆1 −∆2)
+1(z2 < ∆2)

+ (z1 −∆1)
+1(z2 > ∆2)] + β2(z2 −∆2)

+.

Using the linearity of expectation and taking derivatives with respect to∆ in αT∆+E[J̃(β,∆)] gives
(16).

Next we prove the price of uncertainty is given by Eqn. (17). The value of full knowledge optimization
problem isE[J(α,d)]. The error is zero mean and by the small-σ assumption,E[J(α,d)] = αTg where
g is the nominal solution. The cost of uncertainty is

u = αT (g + σe∆) + E[J(β,d− (g + σe∆))]− E[J(α,d)]

= σe(α
T∆+ E[J̃(β,∆)]

= σep.

B. N-bus Network with a Single Congested Line

Fig. 7. A zonal map of the California transmission network under CAISO control. The subnetwork within a zone are uncongested under
normal operation. The tie lines to other WECC areas are not shown.
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Most networks consists of a large number of buses and lines, but under normal operating conditions,
only very few lines are congested. For example, the California transmission network can be thought as
divided into three zones connected by major transmission lines shown in Figure 7 and the flows within
a zone are unrestricted [37]. The zonal grouping in CAISO wasdesigned utilizing the idea of collapsing
together buses connected by uncongested transmission lines in a deterministic OPF. We formalize and
extend this intuitive concept for ND-RLD by showing that a general network with a single congested
link reduces to a two bus problem under mild to moderate uncertainty. More concretely, assume the
line from bus1 to bus2 is congested, then

Theorem 3. Given a generic power network. Letg and f be the nominal generation and nominal line
flows obtained by solving the nominal OPF (equation(11)). Under the small-σ assumption, suppose
that f 12 = c12 is the only congestion in the network, then the following holds:

1) There are at most two nodes with positive generation. That is, gi > 0 for at most twoi.
Furthermore, ifg1 ≤ 0, then only one other bus has positive generation.

2) The risk limiting dispatch (equation(3)) takes the form

g∗ = (g +∆)+,

where∆i 6= 0 only if gi > 0.
3) If βi = βk = β for all i, k, then optimization problem reduces to an equivalent problem over a

congested two node network with congestion from bus1′ to 2′ with correlated errors. Letk 6= 1
be the bus with positive generation. Then the first stage costs areα′

1 = α1 andα′
2 = (αk

γk
− γkα1)

and the errors are given by

e′1 = e1 +
n

∑

i=3

γiei e′2 = e2 +
n

∑

i=3

(1− γi)ei, (23)

whereγi ∈ [0, 1] are determined by the topology of the network and can be calculated by (25)
and (26).

Point 1) in Theorem 3 seems strange since it is highly unlikely that only two generators would be
generating in a power network. This result is comes from the assumption that the prices are linear in
the power generated, which is used here to simplify the presentation. In practice, cost functions are
piecewise linear or quadratic. If piecewise linear cost functions are used, then Theorem 3 1) is modified
to stating that there are at most two generators operating attheir marginal cost [12]; if quadratic (or
other convex continuous increasing) cost functions are used, Theorem 3 is modified to stating that there
are at most two different marginal costs among the generators. The details of the derivation is given
in the Appendix. The overall message of Theorem 3 remains unchanged in each case: in a network
with one congested link, the risk limiting dispatch can be calculated by considering a two-bus network
obtained from the original n-bus network.

The proof of this theorem is somewhat technical and is given in the appendix. The theorem states that
the network can be collapsed into a single bus or a two bus network, utilizing an appropriate averaging
of the net demands. To understand how to calculate the bus averaging weightsγi, it is convenient to
simplify (3) (with costβ) by consideringfundamental flows[38]. Pick one spanning tree in the network.
This spanning tree hasn nodes andn−1 edges. The flows on thesen−1 edges is called a fundamental
flow, denoted bỹf ∈ R

n−1. These flows are fundamental in the sense that any flows,f in the network
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can be written in the formf = Rf̃ , whereR ∈ R
m×n−1 is a constant matrix only depending on the

chosen spanning tree.
The constraint (2c) can be eliminated and (2) reduces to:

J∗(β,x) = minβT (gR)+ (24a)

subject togR − x−Af̃ = 0 (24b)

|Rf | ≤ c. (24c)

Let aT
i be theith row of A for i = 1, . . . , n. For each nodei = 3, . . . , n in the network, let̃f (i) be set

of fundamental flows that solve the following set of equations

f
(i)
1 = 0 (25a)

aT
i f̃

(i) = −1 (25b)

aT
k f̃

(i) = 0, k 6= i, k ≥ 3. (25c)

In matrix form, f̃ (i) solves
[

1 0 0 · · · 0
A2

]

f̃ (i) = Ãf̃ (i) = −hi−1,

whereA2 is the (n− 2)× (n− 1) matrix obtained by removing the first two rows ofA andhi−1 is a
vector with entryi− 1 being 1 and all other entries0 . Inverting gives̃f (i) = −Ã−1hi−1 and

γi = aT
1 f̃

(i). (26)

Next we apply Theorem 3 to a three bus single cycle network with equal admittance on each line.
Let the prediction̂d be such that the line from bus 1 to bus 2 is congested. That is,f 12 = c12 in the
nominal problem. There are four possible congestion patterns3 as listed in Figure 8. Busi is labeled
by the sign ofgi. Figure 9 shows the equivalent two bus networks for each of the networks in Fig. 8

0 2

3
+

1 −

(a)

+ 2

3
0

1 −

(b)

+ 2

3
0

1 +

(c)

0 2

3
+

1 +

(d)

Fig. 8. Possible sign patterns ofg when a single line is congested.

after applying Theorem 3. The networks in Fig. 9 are labeled by the first stage costs, the sign patterns
and the forecasted errors at each of the nodes. Let∆′ be the solution to the two bus networks in Fig.
9. Then the controls∆ for the original problem are given in each of the networks in Fig. 9.

Note the result in this section can be extended to the case of anetwork with multiple congested
lines. Namely, given a network withK congested lines, it can be reduced to an equivalent network with
K + 1 buses [39]. The methods for multiple congested lines are thesame for a single congested line,
although the mathematical details are more cumbersome to handle.

3Other patterns are possible, but occur for a set ofd̂ that is of measure zero
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Fig. 9. The equivalent perturbed networks for the networks in Fig. 8 respectively. The left bus is1′ and the right bus is2′. The back
flow is only allowed form2

′ to 1
′.

V. SIMULATION RESULTS

This section explores various numerical examples using theIEEE 9-bus benchmark network. In
particular we compare the performance of ND-RLD with utilizing the standard3 − σ rule. We also
compute the price of uncertainty numerically and compare itto the theoretical prediction.
A. Uncongested Network

Many practical networks have line capacities that are much larger than the typical power flows. For
these networks, they are well approximated by a single bus network. For example, consider the IEEE
9-bus network in Figure 10. The nominal generation and demands from the data included with this

6

3

5

1 4

9
8

2

7

Fig. 10. IEEE 9-bus benchmark network. Bus 1,2,3 are generators and the rest of the buses are loads.

benchmark network [9], [40] is shown in Table II. Note that line flows are significantly smaller than
transmission line capacities. Therefore, under moderately high penetration, the network can be thought
as a network operating without capacity constraints.

Up to this point we have used the DC power flow model, while in reality power flow is AC. It
is known that for transmission networks, due to the lowR/X ratios of the transmission lines, DC
and AC power flows yields similar answers. This is confirmed inour simulations where the difference
in performance of using the risk limiting dispatch under DC and AC power flow models is minimal.
Therefore it is sufficient to use the simpler DC flow model to obtain the dispatch.

Bus 1 2 3 4 5 6 7 8 9
DC Flow 86.6 134.4 94.1 0 -90 0 -100 0 -125
AC Flow 89.8 134.3 94.2 0 -90 0 -100 0 -125

TABLE I
ALL UNITS ARE MW. NEGATIVE NUMBERS ARE THE DEMANDS AT BUSES5, 7, AND 9. THE GENERATIONS NEEDED AT BUSES1, 2,

AND 3 TO MEET THESE DEMANDS UNDER BOTHDC FLOW AND AC FLOW ARE SHOWN.

To analyze the performance of the risk limiting dispatch derived in Section III, we compare it to two
other dispatches. The first one is the currently used3 − σ dispatch, and the second one is the oracle
dispatch where the actual realization of the wind is known atstage 1. We assume that all the generating
buses have a first stage cost4 α = 1 and all buses have the same second stage costβ. For simplicity,

4The nominal generations are determined by an OPF problem, and every generator with non-zero generation has the same marginal
cost. This can be thought asα.
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From bus 1 4 5 3 6 7 8 8 9
To bus 4 5 6 6 7 8 2 9 4

DC Flow 86.6 33.7 -56.3 94.1 37.8 -62.2 - 134.4 72.2 -52.8
AC Flow 89.8 35.2 -55.0 94.2 38.2 -61.9 -134.3 72.11 -54.3
Capacity 250 250 150 300 150 250 250 250 250

TABLE II
ALL UNITS ARE MW. BOTH DC AND AC POWER FLOWS ON EACH LINE OF THE NETWORK IS SHOWN. CAPACITIES ARE THE LONG

TERM EMERGENCY RATING OF THE LINE. THE NETWORK IS UNCONGESTED.

the prediction errors are generated as i.i.d. zero mean Gaussian random variables with varianceσ2. The
predictionsd̂ is taken to the nominal demands in Tab. I.

The risk limiting dispatch is derived by viewing the networkas a single bus. For actual operation, the
amount of reserves to put at each buses in the network need to be determined. Here we spread the reserves
equally among the three generating buses(buses 1,2 and 3). From (8) and the fact that the prediction
errors are independent, the single bus risk limiting dispatch is

∑9
i=1 d̂i + ∆ where∆ =

√
9σQ−1(α

β
).

The network risk limiting dispatch is given by

grld = g +∆ =
[

86.6 134.4 94.1 0 . . . 0
]T

+ 3σQ−1(
α

β
)
[

1
3

1
3

1
3

0 . . . 0
]T

.

The 3−σ control purchases a reserve of 3 times the standard deviation for each bus in the network, or
3 · 9 · σ. Again we spread out the3− σ dispatch over the three generating nodes as

grld = g +∆ =
[

86.6 134.4 94.1 0 . . . 0
]T

+ 9σQ−1(
α

β
)
[

1 1 1 0 . . . 0
]T

.

We simulate the cost for both the DC and AC power flows.
Figure 11 plots the total cost of the three dispatches forβ = 1.5α. As we can see the risk limiting

dispatch performs much better than the3− σ dispatch. There are two reasons why the3− σ dispatch
or rules like it perform badly. The first is that the3 − σ rules is too conservative since it does not
take into account the actual cost of the second stage; the second reason is that the3 − σ dispatch
ignores the potential benefit of averaging between the prediction errors by treating the different buses
as isolated nodes. In contrast, risk limiting dispatch takes these two points into consideration. Figure 12
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Fig. 11. Total costs forβ = 1.5α as a function ofσ. The red, blue and black lines are the total cost for the3− σ, risk limiting, and
the oracle dispatches respectively. The solid lines are thecosts under DC flow while the dotted lines are for AC flows.

is a zoomed in version of Fig. 11 by plotting the total cost only for the risk limiting dispatch and the
oracle dispatch. The cost for the oracle dispatch is constant at 315 up untilσ = 80. This is expected
since the predicted total demand is315 MW, and the prediction errors are zero mean, so the errors
averages out. At higherσ, the capacities in the network become binding and the cost goes up since
not all errors can be averaged. The cost for the risk limitingdispatch is essentially linear for allσ’s.
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Furthermore, the slope of the cost is (very close to) the price of uncertainty calculated in the earlier
sections.

A lower bound for the minimum total cost is the total cost of applying the risk limiting dispatch to a
network with infinite capacities, since an infinite capacitynetwork has lower cost than a finite capacity
one and the risk limiting dispatch is optimal for the former.From Figure 12, this lower bound is almost
met. Thus the risk limiting dispatch is close to optimal and our assumption of viewing an uncongested
network as a single bus network is valid. The slopes of the lines gives the price of uncertainties. As
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Fig. 12. Total costs forβ = 1.5α as a function ofσ. The blue and black lines are the total cost for the risk limiting and the oracle
dispatches respectively. The purple line is the cost of the RLD when applied to an infinite capacity network, which is a lower bound for
the minimum cost of the finite capacity network. The slopes ofthe blue and the purple lines represent the price of uncertainties.

expected, the price of uncertainty for the oracle dispatch is 0 since the actual realization is known at
the first stage. The price of uncertainty of the risk limitingdispatch closely matches that of the single
bus price of uncertainty, while the3− σ price is much higher.

B. Congested Network

To construct a congested network, the network in Fig. 10 is modified by increasing the nominal load
at bus 5 to150 MW and reducing the capacity of the line connecting bus 5 and 6to 75 MW. Then
the line from bus 6 to bus 5 is congested. There are two different first stage costsα1 andα2 and these
are given by the marginal costs of the generators. Letα = 1

2
(α1 + α2) and we normalize all cost by

α. Figure 13 plots the total cost of the three dispatches forβ = 1.5α. Again, we see the risk limiting
dispatch performs much better than the3−σ dispatch. Figure 14 is a zoomed in version of Fig. 13 with
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Fig. 13. Total costs forβ = 1.5α as a function ofσ. The red, blue and black lines are the total cost for the3− σ, risk limiting, and
the oracle dispatches respectively. The solid lines are thecosts under DC flow while the dotted lines are for AC flows. The purple line
is the cost of the rld when applied to a network where only one line has finite capacity, namely the line congested under the nominal
flows. This is a lower bound for the minimum cost of the finite capacity network. The slopes of the blue and the purple lines represent
the price of uncertainties.

the total cost only for the risk limiting dispatch and the oracle dispatch. As expected, the cost of the
oracle dispatch is constant over a wide range ofσ’s. The cost of the risk limiting dispatch is linear and
very close to its lower bound. The lower bound is obtained by applying the risk limiting dispatch to a
network with only one finite capacity line, namely the line congested under the nominal flows. Figure
14 shows that modeling a network with one congested line as a two bus network is very accurate.
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Fig. 14. Total costs forβ = 1.5α as a function ofσ. The blue and black lines are the total cost for the risk limiting and the oracle
dispatches respectively. The purple line is the cost of the RLD when applied to a network where only one line has finite capacity, namely
the line congested under the nominal flows. This is a lower bound for the minimum cost of the finite capacity network. The slopes of the
blue and the purple lines represent the price of uncertainties.

Figure 15 shows the difference in cost of assuming there is nocongestion in the network and
the correct dispatch solution taking the congestion into account. The former calculation ignores the
congestion information in the network. As expected, the later dispatch performs better since it takes
into account the congestion in the network.
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Fig. 15. Total costs forβ = 1.5α as a function ofσ. The blue line is the total cost for the risk limiting dispatch developed in Section
IV. The red line is the total cost if the risk limiting dispatch derived for the congested network in Section III is used.

VI. CONCLUSION

In this paper we addressed the solution of a two-stage stochastic dispatch for system operators. We
showed that a simple control exists under mild to moderate uncertainty about future realizations of net
demand. The control is composed of two parts, one which is thecertainty equivalent control rule, and
another that is a deviation that hedges against the uncertainty by appropriately taking into account costs
and recourse opportunities. Moreover, by incorporating the fact that only a small number of transmission
lines that congest at any given hour, the optimal dispatch can be calculated analytically. The price of
uncertainty is a tool to measure the performance of distinctdispatch procedures. We show that under
mild assumptions on forecast errors, the proposed dispatchachieves the cost bound given by the price
of uncertainty. The proposed procedure also performs rather well in a full AC network.
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APPENDIX

A. Proof of Theorem 1

Mathematically, thesmall-σ assumption means that we are operating in the scaling regimewhere
1
σe
d̂ → ∞. Under this assumption,

C(d̂) = lim
1

σe
d̂→∞

{min
g

αg + β E[(d− g)+|d̂, d > 0]

− αE[d+|d̂, d > 0]}
(a)
= lim

1

σe
d̂→∞

{min
g

αg + β E[(d− g)+|d̂, d > 0]

− αE[d|d̂, d > 0]}
= lim

1

σe
d̂→∞

{min
g

αg + β E[(d̂+ e− g)+|d̂, d > 0]

− αE[d|d̂, d > 0]}
(b)
= lim

1

σe
d̂→∞

{min
∆

α(d̂+∆) + β E[(e−∆)+|d̂, d > 0]

− αE[d̂+ e|d̂, d > 0]}
= lim

1

σe
d̂→∞

{min
∆

α∆+ β E[(e−∆)+|d̂, d > 0]

− αE[e|d̂, d > 0]}
(c)
= σe lim

1

σe
d̂→∞

{min
∆′

α∆′ + β E[(z −∆′)+|d̂, d > 0]}

(d)
= σep,

where(a) follows from the assumptiond > 0, (b) follows from settingg = d̂ + ∆, (c) follows from
changes from variables where∆′ = ∆/σe andz = e/σe and the mean ofe remains0 in the limit and
(d) is follows the calculation below.

From first order conditions, the optimal solution∆′∗ solves

α = β lim
1

σe
d̂→∞

Pr(z > ∆′∗|d̂, d > 0)

= β lim
1

σe
d̂→∞

∫ ∞

min(∆′∗,− 1

σe
d̂)

φ(x)dx = βQ(∆′∗).
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Therefore,∆′∗ = Q−1(α
β
). The price of uncertaintyp can be calculated as

p = lim
1

σe
d̂→∞

{αQ−1(
α

β
) + β E[(z −Q−1(

α

β
))+|d̂, d > 0]}

= αQ−1(
α

β
)

+ β lim
1

σe
d̂→∞

{
∫ ∞

min(Q−1(α
β
,− 1

σe
d̂)

(z −Q−1(
α

β
))φ(z)dz}

= αQ−1(
α

β
) + β(−α

β
Q−1(

α

β
) + φ(Q−1(

α

β
)))

= βφ(Q−1(
α

β
)).

B. Proof of Theorem 3

By assumption only the flow from 1 to 2 is congested, (24) can bereplaced by an equivalent problem
by choosingf12 as a fundamental flow and including only the constraint on it.Without loss of generality,
let f̃1 = f12.

J∗(β,d− g) = minβT (gR)+ (30a)

subject togR − (d− g)−Af̃ = 0 (30b)

f̃1 ≤ C12. (30c)

Writing (30) as a linear program gives

minimizeαTy (31a)

subject toy −Af̃ − d̂ ≥ 0 (31b)

f̃1 ≤ C12 (31c)

y ≥ 0. (31d)

The Lagrangian is
L = αTy − λT (y −Af̃ − d̂) + µ(f̃1 − C12)− νTy,

whereλ, µ, andν are the Lagrangian multipliers. Differentiating with respect toy givesα−λ−ν = 0.
Sinceν are the Lagrangian multipliers associated with the constraint y ≥ 0, but complementary

slacknessyi > 0 only if νi = 0 or λi = αi. Equivalently,gi > 0 only if νi = 0 or λi = αi.
Differentiating with respect tõf gives

ATλ+ µh1 = 0, (32)

whereh1 = [1 0 · · · 0]T is the first standard basis. The dual is

maximizeλT d̂− µC12 (33a)

subject to0 ≤ λ ≤ α (33b)

ATλ+ µh1 = 0 (33c)

µ ≥ 0. (33d)

23



At first glance it seems that the dimension of (33) isn + 1. However since (32) isn − 1 equations
involving n + 1 unknowns, there are only2 independent variables. The next claim gives a precise
characterization of the solution of (33).

Claim 4. The solutions to(33) are in the forms of

λ =













1
0
γ3
...
γn













λ1 +













0
1

1− γ3
...

1− γn













λ2,

whereγi ∈ [0, 1] for i = 3, . . . , n andµ = k(λ2 − λ1), wherek is a positive constant depending on the
graph structure.

Suppose the claim is true. The first statement of Theorem 3 is that only two nodes are generating
energy. From complementary slackness,gi > 0 only if λi = αi. Sinceα has only two degrees of
freedom, for genericα, λi = αi for at most two components. Therefore in general only two nodes
would be generating energy.

The second statement is that only the nodes that generates power would be used to do the perturbation
control. That is,∆i 6= 0 only if gi > 0. The intuition is as follows: supposegi < 0, then under the small
sigma assumption,gi can be viewed as an infinite source of free energy, so no perturbation is needed;
supposegi = 0, if a small unit of energy is purchased at nodei, there is a cheaper option to purchase
the unit of energy somewhere else (orgi would have been positive), therefore∆i = 0.

To show that the problem reduces to a two bus network if allβ are equal, we need to consider the
second stage optimization problem. Now letf denote the set of perturbed flows. Since the line from 1
to 2 is congested in the nominal problem,f̃1 = f12 < 0. Let xi = ∆i + (−gi)

+/σ− zi, where∆i is the
first stage control,(−gi) is the left over energy, andzi is the normalized estimation error. The second
stage optimization problem becomes

J(β, g) = minimizeβTy (34a)

subject toy −Af̃ + x ≥ 0 (34b)

f̃1 ≤ 0 (34c)

y ≥ 0. (34d)

This optimization problem has precisely the same form as (31), with C12 = 0. By Claim 4, the dual of
(34) is

maximize − λ1γ
Tx− λ2(1− γ)Tx (35a)

subject to0 ≤ γλ1 + (1− γ)λ2 ≤ β (35b)

λ2 − λ1 ≥ 0, (35c)

whereγ = [1 0 γ3 · · · γn]T , ai ∈ [0, 1] and depends on the network topology fori = 3, . . . , n. If β’s
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are all the same (orβ1, β2 are smaller than all otherβ’s), the dual reduces to

maximize − λ1x
′
1 − λ2x

′
2 (36a)

subject to0 ≤ λ1 ≤ β1 (36b)

0 ≤ λ2 ≤ β2 (36c)

λ2 − λ1 ≥ 0, (36d)

wherex′
1 = γTx andx′

2 = (1−γ)Tx. This is exactly the dual of a two bus network with predictionerrors
γTz and(1−γ)Tz, leftover energyγT (−g)+ and(1−γ)T (−g)+, and controlsγT∆ and(1− γT )∆.

Let ∆′
1 = γT∆ and∆′

2 = (1−γ)T∆. It can be shown that if there are two generating nodes then one
of them can be taken to be node1. Suppose the other generating node is nodek. To solve equilibrium
equation (16) for∆′

1 and∆′
2, the associated first stage costs areα1 and (αk

γk
− γkα1) respectively.

C. Proof of Claim 4

We prove Claim 4 be guessing the solution and verifying it is correct. We showλ = [1 0 γ3 · · · γn]T
whereγi is given by (26) solves (32). ExpandingATλ gives

ATλ =
n

∑

i=1

aiγi

= a1 +

n
∑

i=3

aiγi

= a1 +

n
∑

i=3

ai(a
T
1 f̃

(i))

= a1 +
n

∑

i=3

ai((̃f
(i))Ta1)

= a1 +
n

∑

i=3

ai((−Ã−1hi−1)
Ta1)

= a1 − (AT
2 (−Ã−1hi−1)

T )a1

= (I− (AT
2 (−Ã−1hi−1)

T ))a1

(a)
= (I−













∗ ∗ ∗ · · · ∗
0 1 0 · · · 0
0 0 1 · · · 0

... 0
0 0 0 · · · 1













)a1

=









∗
0
...
0









,
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where∗ denote a generic number and(a) follows from observing that(Ã−1hi−1)
T is the transpose of

(ÃT )−1 without the first row and the following simple lemma

Lemma 5. Let X be ar × r− 1 matrix and suppose the matrix
[

h1 X
]

is invertible with inverseY.
Let Y1 be the matrix obtained fromY by removing the first row. Then

XY1 =













∗ ∗ ∗ · · · ∗
0 1 0 · · · 0
0 0 1 · · · 0

... 0
0 0 0 · · · 1













.

We still need to show that1 ≥ 0γi ≥ 0. This can be done through graph theory, but it is simpler to
recognize that the flows given by (25) solves a DC OPF problem.For thei’th node, the optimization
problem is to find the least generation need at nodes1 and2, satisfying a demand of1 unit at nodei,
0 demand at all other nodes, and no flow on the line between1 and2. Thereforeγi is the proportion
of power that node1 produced, and1− γi is the proportion of power that node2 produced.

The vector[0 1 1− γ3 · · · 1− γn] is a solution to (32) since1 is in the null space ofAT .

D. Nonlinear Prices

First consider the following nominal OPF problem whereci’s are differentiable

minimize
n

∑

i=1

qi(g
+
i ) (37a)

subject tog −Af̃ − d̂ = 0, (37b)

whereqi(·) is increasing and convex,̃f are the fundamental flows and the line capacities are infinite.
Rewriting (37) as

minimize
n

∑

i=1

qi(y) (38a)

subject toy −Af̃ − d̂ ≥ 0 (38b)

y ≥ 0. (38c)

The Lagrangian of (38) is

L =

n
∑

i=1

qi(y)− λT (y −Af̃ − d̂ ≥ 0)− νTy. (39)

At optimal, the primal and dual variables minimizes the Lagrangian, soq′i(y
∗
i ) − λ∗

i − ν∗
i = 0 and

ATλ∗ = 0.
The null space ofAT is spanned by the1 vector, thereforeλ∗ = λ∗1 for someλ∗. By complementary

slackness, nodei is generating ifνi = 0. The nodes in the network can be divided into two groups,
one group is all the generating node and the other is the non-generating nodes. For all the generating
nodes, the marginal prices are all the same, that is,q′i(y

∗
i ) = q′k(y

∗
k) = λ∗ if yi > 0 and yk > 0. From
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the perturbation control of view, the network consists of many nodes with the same first stage costλ∗,
therefore the perturbation control∆ can be divided up in arbitrary fashion between those nodes.

Now suppose that the network has one congested link. The nominal problem becomes

minimize
n

∑

i=1

qi(y) (40a)

subject toy −Af̃ − d̂ ≥ 0 (40b)

f̃1 ≤ C12 (40c)

y ≥ 0. (40d)

The Lagrangian is

L =

n
∑

i=1

qi(y)− λT (y −Af̃ − d̂ ≥ 0) + µ(f̃1 − C12)− νTy.

At optimal, q′i(y
∗
i )− λ∗

i − ν∗
i = 0 andATλ∗ + µ∗h1 = 0.

From previous results,λ can be decomposed asλ = aλ1 + (1 − a)λ2, wherea1 = 1, a2 = 0 and
ai ∈ [0, 1] for i = 3, . . . , n. The decision variable in the two stage optimization problem becomes
∆′

1 = aT∆ and∆′
2 = (1− a)T∆, and the optimization problem is

min
∆′

1
,∆′

2

λ∗
1∆

′
1 + λ∗

2∆
′
2 + E[J(β,∆′

1,∆
′
2)].

After solving for the optimal∆′
1 and∆′

2, we need to map it back to the original∆i’s. Again, if yi = 0,
then we set∆i = 0. For the rest of the nodes,∆′

1 and∆′
2 can be split up in any fashion as long as it

is consistent.

E. Piecewise Linear Cost Functions

In practice piecewise linear cost functions (convex, increasing) are often used. We start again with
the uncongested network. Since the cost functions are not differentiable, the Lagrangian in (39) is not
differentiable. We use subgradients instead. Given a function f(x) : Rn → R, a vectors ∈ R

n is a
subgradient off at x if f(y)− f(x) ≥ sT (y − x) for all y. The set of all subgradients atx is called
the subdifferential and denoted∂f(x). By the convexity, at optimality,

s∗i − λ∗
i − ν∗

i = 0

for somes∗i ∈ ∂qi(y
∗
i ) andATλ∗ = 0. We still have allλ’s are equal and the two stage problem only

depends∆ = ∆1 +∆2 + · · ·+∆n. In contrast to the differentiable cost case, here the control is only
done at one node, that is,∆ = ∆i for some nodei and∆k = 0 if k 6= i. The reason is that all generating
node except one would be operating at a corner point on their respective cost curves and it is optimal
not to change those corner points. Only one generator would be operating at a point not at the corner,
and all the control should be done at that point. Similarly, for a network with one congested link, only
two generators will be operating at a non-corner point, and the perturbation control is done at those
two points.
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Fig. 16. All generating node except one will be operating at acorner point.
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