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Abstract

Increased uncertainty due to high penetration of renewabiiposes significant costs to the system operators.
The added costs depend on several factors including maesgr performance of renewable generation
forecasting and the specific dispatch procedure. Quangjfiiese costs has been limited to small sample Monte
Carlo approaches applied specific dispatch algorithms. ddmeputational complexity and accuracy of these
approaches has limited the understanding of tradeoffsdmatwdifferent factors. In this work we consider a two-
stage stochastic economic dispatch problem. Our goal isdeige an analytical quantification and an intuitive
understanding of the effects of uncertainties and networigestion on the dispatch procedure and the optimal
cost. We first consider an uncongested network and calctiateisk limiting dispatch. In addition, we derive
the price of uncertainty, a number that characterizes threngic impact of uncertainty on the integration cost
of renewables. Then we extend the results to a network wheeeliok can become congested. Under mild
conditions, we calculate price of uncertainty even in tldsec We show that risk limiting dispatch is given by a
set of deterministic equilibrium equations. The dispatohution yields an important insight: congested links do
not create isolated nodes, even in a two-node network. I fiae network can support backflows in congested
links, that are useful to reduce the uncertainty by aveg@gupply across the network. We demonstrate the
performance of our approach in standard IEEE benchmarkankéw

. INTRODUCTION

The existing electric grid is operated so that online getr@rais sufficient to meet peak period
demand. Buuncertaintiesarising from outages and unpredicted fluctuations in den@anttdrenewable
generation can cause a loss of load event, when online gemedoes not meet demand some load
needs to be disconnected from the power system. To decreadests of load probability, the system
operator (SO) schedules generation and transmission #pactty so it exceeds forecasted peak net
demand by a small percentage (around 5%), to compensatenfalt amount of uncertainty due to
generator contingencies and load forecast errors. Thiiewlal reserve capacity is utilized in real time
as actual loads and contingencies are revealed. Typicallygg and reserve capacity are scheduled
following a ‘3-¢’ rule: the total amount scheduled is the forecast plug’3where ¢ is the standard
deviation of net demand forecasting error. Currently, yy@cal values ofs is around 1% to 2% of
total load.

Due to various incentives and state goals such as the reteepatifolio standards (RPS), renewables
are expected to make up to 30% to 40% of generation mix in the. Uiftreased penetration of renewable
generation increases the uncertainty in the grid [1], [B].such scenario, the current deterministic
dispatch practice would require large reserve capacitycatlons. Such allocations increase energy
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costs significantly and accrue unwanted emissions [3]. kam@le, each additiondl; of reserve costs
CAISO about50 million dollars (based on 2009 costs). In light of the sigmfit financial implications,
various alternative forms of stochastic dispatch proceslinave been studied [4], [5]. The goal of these
procedures is to solve a dispatch program that utilizedaai forecasts and the sequential decision
nature of the problem. Past approaches often resulted grares that were infeasible in practice due to
computational complexity and relying on Monte-Carlo tygg@aches that could only be calculated
with a limited number of scenario samples. The complexitthese procedures makes it even difficult to
reliably evaluate the benefit of smart grid technologiesgurovements in forecasting. Moreover, these
approaches require significant changes in the operatingedues and software of system operators.
In some cases, the forecast error distributions are natedilappropriately or at all [6].

Recently, Risk Limiting Dispatch (RLD) [7],]8] was propases a new dispatch framework. By
utilizing a simplified approach that is applied after unitmooitment and does not consider network
constraints, a very simple analytic dispatch rule can beiobt. The rule proposes an alternative
deviation calculation that depends on error performanc®mfcasting, the costs of various generation
alternatives and the timing of dispatch decisions stagesa$ shown that in uncongested and lossless
networks, the proposed dispatch significantly reducesehewable integration cost. Moreover, reliable
estimates of various metrics such as integration cost,seoms and costs due to forecasting performance
can be easily obtained![3].

The first contribution of this paper is the derivation of rigkiting dispatch for acongested network
This dispatch is denoted the network RLD and we show that #irngple to implement computation-
ally(without the need for Monte Carlo type of simulation®sults in reliable and interpretable dispatch
decisions and can be used to provide stable performanceatsin. We model economic dispatch under
uncertainty as a two-stage dispatch problem where theideésmade for each operating hour. Without
loss of generality, we assume that the first stage occurseatldly ahead market and the second stage
occurs at the real time market. In a day-ahead market (DAM),S0O purchases energy at generators
connected to different buses in the network, utilizing éasts and error distributions for loads and
renewable generation at various buses. In the real-tim&ehdRTM), dispatch decisions are made
utilizing the realized values of all loads, renewable gatiens and physical network constraints such
as transmission limits. We consider a DC power flow model fualygsis and validate our results by
considering full AC model in case studies.

The key observation that makes the problem tractable isithatal networks, only avery small
number of transmission lines are congestedr example, the commonly used IEEE benchmark networks
[9] are far from being congested under normal operationsoAlhe WECC model for the California
network only include a few congested lines|[10]. We expeat the congestion patterns would not shift
excessively under the uncertainty levels typically présethe renewable penetration levels expected in
the near future. Intuitively, knowing the congestion patseshould reduce the complexity of the dispatch
procedure since not all possible network constraints nedzetconsidered. In this paper we formalize
this intuition by developing an accurate picture of a nekn@perating undeexpected congestipthat is
where congestion is predicted in the DAM. We observe a naal fi network operating under expected
congestion due to uncertainty behaves qualitatively dfie than a network under deterministic loads
and generation. We introduce the concepbatk flowto capture this behavior. Back flows are directed
permissible flows in congested links that need to be includea two stage dispatch. The possibility
of back flow is somewhat surprising, as congestion in a two fetsvork in deterministic dispatch
program implies the two buses are decoupled [11]] [12]. V¢e aevelop a computationally simple



dispatch approach that utilizes this structural undeditento compute the dispatch in a simplified
form via a set of equilibrium equations. The proposed apgrazan be easily integrated into existing
unit commitment and dispatch procedures of the system tipera

The second contribution of this paper is in developing thacept of price of uncertaintythat
characterize the intrinsic impact of uncertainty on thet odslispatch. Given a network, the integration
cost is defined as the difference between expected cost thaeptimal dispatch procedure (i.e., RLD)
and the dispatch cost if the SO has a clairvoyant view of atifoand renewable generations|[13]. We
observe that under the expected mild to moderate uncertéemels, the integration cost increases
linearly with the uncertainty in the forecast error and the per unitiodertainty cost of integration is
the price of uncertainty. The price of uncertainty can alsoiriierpreted as the benefit of improving
forecast procedures and can be used as a metric to evaleateetefits of forecasting and provide a
reference point to judge specific dispatch methodologies.

A brief discussion of related works follow. Monte Carlo basdispatch formulations that include
security constraints and DC power flow balance have beernestudcently [4], [14]-19]. They result
in difficult optimization problems that can only be evaluhtgith (limited) Monte Carlo runs and do
not provide much insight into the dispatch methods. MPC aeaqires [[20],[[211] address recourse in
decision making, but still rely on Monte Carlo, and may noapgropriate when the number of recourse
opportunities is small, limiting the corrections calceldtby MPC. Single market problems are more
tractable [22]+[25] but do not capture the nature of receunscongestion. Methodologies for assessing
reserves in the presence of significant wind generation weasepted in[[26] without including two
stages or congestion. Current deterministic dispatchdavoomplicated procedures by considering a
worst-case net load to be satisfied, namely the forecasttpias standard deviations of forecast error
[27]. Other papers (e.g._[28]._[29]) investigated a robustsion of unit commitment utilizing a DC
flow model without recourse to represent the market model,[2€] used a similar model but is fully
adaptive to the realization of the uncertainties.

The remainder of the paper is organized as follows. Se€fleets up the two-stage dispatch model
in detail, and describes the uncertainty model. Sedfidrreliews a single bus model and develops
the price of uncertainty. In order to develop this qualatunderstanding under limited congestion
patterns we first study small network scenarios. Sectidn H&t fivestigates a 2-bus network, defines
the concept of back flow and identifies the appropriate sirattresults, utilizing it to develop a
simple dispatch methodology. Section IV then investigg&®eral networks with a single congested link
and demonstrates an appropriate reduction mechanismosBEiprovides computational experiments
illustrating the performance of the procedure in real neksoSectio VI concludes with future work.

[I. MODEL SETUP
A. Network Risk Limiting Dispatch (N-RLD)

Network Risk Limiting Dispatch (N-RLD) is formulated as advstage optimization problem in an
power network (Figurkl1). The first stage represents a maihkete the SO can buy energy corresponding
to dispatch decisions. Decisions are made at each node okthwrk. The second stage corresponds to
delivery or real time, which represents a 5 or 15 minute waleduring which energy is delivered. Stage
1 typically occurs 24 hours ahead of real-time and slow raggeneration or base load generation is
dispatched at this stage [12]. In some cases, staggn represent a market an hour ahead of real-time.
Without loss of generality we call this stage ‘day aheadagst?2 is then the ‘real-time’.
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Fig. 1. Power network example with five nodes. Demand at:bissdenoted byD;, the first stage generation ky and second stage
generation byg!®*. The capacity of line between busand busk is denotedC;;, and the flows on each line is determined by the net
injection, g; + ¢g* — D; at each bus.

The SO makes dispatch decisions constrained by-bas power network withn transmission lines.
The SO has to satisfy a random lo&adt each bug, known only at real-time. He has available for free
w; units of renewable energy, also revealed only at real-timstagel, the SO can dispatch generation
g; after observing some informatidhavailable about the random load and wind at the buses. I stag
2 or recourse stage, the SO choogésafter observing the random loads and demands to balance the
network. Theg;"’s can be seen as generation level of fast generators or stiddad. Energy can only
be purchased in the first stage §0> 0. Renewable generation is not dispatchable and is taken as
negative load following standard practice. The net load at bus defined asi; = [; — w; and it can
be positive or negative. Excess power at any birsthe second stage can be disposed off for free, so
¢! can be positive or negative.

The cost of dispatching generation at bus the first stage is;(g;) andq;(g) in the second stage.

In general both costs are represented by increasing, cdonetions. When not specified, we assume

that both costs are linear and given §Yg;) = a;g; andg¢;(g?) = B;(g?)™, wherea; and 3; are prices

in dollars per MW andz)* = max(z,0). Later we show the assumption is not restrictive since while
operating under mild to moderate uncertainty, we are isteckin perturbations of the dispatch around

its operating point, and it can be shown that the linear cegiment at that point determine costs.

Moreover, to avoid trivial solutions and arbitrage, assudag ahead prices are smaller than real time
prices, i.e.,o; < [, for all 1 < i,k < n. The total SO cost for the first stage is the sum of first stage
costs, and the total second stage cost is the sum of the setagel costs.

Once first stage dispatch decisions are made and renewahéatjen is realized, second stage
dispatch decisions and power flows in the system are detedmiy the physical network and its
properties. We consider a DC power flow modell [31] for dispatalculation purposes. We validate the
performance of the dispatch by considering the full AC mddethe case studies. Dispatch decisions
need to respect network flow constraints, and in particukmsimission line constraints. The capacity
of the line connecting nodesand; in the network is given by;;. We also utilize an observation about
congested transmission links in practice. For example AiSO, normally only one or two of the main
transmission lines from Northern California to SoutherdifGmia experience congestion. THisnited
congestionassumption will be utilized to simplify the dispatch caktibn. In particular in this paper
we focus on the scenario with at most one congested link.tliréuvork we generalize this to problems
with k& congestion link following the same approach proposed here.

To establish the information structure of the two stagemjatation problem, we propose the following

'For example, the information observed in the day-aheaddcbelthe weather information.



forecasting model. The net load is decomposed as
d=d+e, (1)

whered = [dds...d,]” is the first stage forecast and= [eje,...e,|T is a zero mean Gaussian
distributed random vector with covariance matkix = 02X, whereX, is a known error correlation
matrix (e ~ N(0,02%)). Furthermore, the forecast and errore are independent. Moreover, average
performance of the forecast, in the form of forecast erraiavee o> is provided for each bus or
operating region.

The Gaussian error assumption is justified by recent stdigs[2]) that observe forecast errors are
distributed as a (truncated) Gaussian random variabletHeotypical variances utilized, the errors in
utilizing a Gaussian distribution is negligible and an guted practice in dispatch mechanisms. Also
note that the results for Gaussian models carry over to m#wgr alistributions with little modification

8].

B. Formulation and Decomposition of N-RLD

We formulate the mathematical optimization problem in #@stion. Before stating the entire problem,
it is convenient to define the following DC-OPF problem

J(q,x) =ming" (g")" (2a)
ghtf

subject tog? — x — VTf = 0, (2b)

Kf=0, (2¢)

f| <c, (2d)

whereq is a positive price vector[ (2b) is the power balance coimg{r&” ¢ R"*™ is the mapping
from branch flows to bus injections [32f, is the m x 1 vector of branch flows,[(2c) is Kirchoff's
voltage law that states a weighted sum of flows in a cycle mesg f2d) are the capacity constraints
on the flows where = [¢; ... ¢,]7 and(z)™ = max(0, z). This optimization problem can be seen as
a generic DC-OPF problem with pricesand demands. Since only the positive part of generations
g® is reflected in the cost, energy can be disposed for free.

N-RLD: The network risk limiting dispatch problem can be statedhasfollowing stochastic optimiza-
tion problem:

() Real Time OPF (RT-OPF): Solve the real time OPF probléf®, d — g) where J is defined in
@). At real time, the day-ahead dispatch decisigrare already made, and the realization of the
random variables are known. Therefore the new net demadd-ig, and J(3,d — g) balances
the network under the real time pricgs

(i) Day Ahead Stochastic Power Flow (DA-SPF):

~

VW®=ﬂgg%fé+EU01d—gH&}, (3)

where the expectation is taken with respect to the disiobuof d conditional on the forecast
d. The constraintg > 0 limits the day ahead decisions to purchasing generationep@smly.
Additionally, g is function of the forecasl and the error distribution. The optimal solution fd (3)
is called therisk limiting dispatch



C. Integration Cost and Price of Uncertainty

A fundamental quantity of interest is the impact of unceriaiin the cost of dispatch. We call
this quantity the integration cost!/[3], which is defined thiference between the expected cost of the
procedure and the expected cost of a dispatch clairvoyathieofealization ofd. The clairvoyant dispatch
can allocate all the required power in the day ahead by spltyia deterministic OPF(d) = J(«, d).

The integration cost for a realization of the information des given by

Cr(d) = VH(d) — E[V4(d + e)|d]. (4)

An important question is regarding the sensitivity of thestcto the forecast error standard deviation
0. when thebest possible dispatdis utilized. If C; is a linear function ofr., so C; = po,, thenp is
the price of uncertaintya fundamental limit faced bgny dispatch procedure. In this paper we show
how it can be calculated for various scenarios.

D. Smalls Assumption

An important consideration is the order of magnitude of therestandard deviatiom, compared
to the entries in the average net load vegtoand the transmission line capacities. Standard deviation
of day ahead load forecasts are 1% — —2% of the expected loag,. Wind error forecasts are more
severe, and error standard deviatiefgs of 30% of rated capacity.;; have been observed. High wind
penetration scenarios have abadots of total load being generated by wind, and therefore the tota
error would be abou®.01 + 0.3 % 0.3 = 10% of total load.

In contrast to the financial situation, a relative forecasbreof 10% would not change the overall
physical operating characteristic of the network. Morecjz®ly, suppose we calculate the deterministic
dispatch based on the forecast valdesind find busi would be generating power in the first stage.
Then with high probability, bug would still be generating power in the two stage dispatctblem.
Also, the network congestion pattern under the deterninispatch and the two-stage dispatch should
not be drastically different. Sectiohsl!Ill abd]IV formalizthese observations.

We call the operating regime in the above scenariossthallo regime. More rigorously, we have
the following definition.

Definition 1. Letd be the predicted net demand andbe the standard deviation of the forecast error.
The smalle assumption denotes the scaling regime Whgéerdz — 00.

For the simplicity of exposition, we delegate such limitstihe appendix and focus on the intuitive
points of analysis in the main body of the paper. The overa&ésage is that forecast values are very
useful in determining thegualitative behaviour of the network.

IIl. SINGLE-BUS NETWORK CASE

This section reviews the risk limiting dispatch control éosingle-bus network[_[8], [33], and analyzes
the price of uncertainty in this scenario. A network can beleied by a single-bus if congestion never
occurs in the network. Under the sameassumption, this is equivalent to the fact that if there is
sufficient capacity under the forecast net-demand, theffiotteeast errors being small enough compare
to the capacity in the network such that line flow limits wouldt be hit under almost all realizations.



A. Risk Limiting Dispatch

Since we only consider a single bus, all variables are scBlamivalently, the single bus network
can be thought as an-bus network without congestion since buses can freely angh pow& In
this case, the constraint region [0 (2) reduces to net supplgt equal net demand, and the RT-OPF
becomes

J*(B,d — g) =min S(g")*
stgf+g—d=0

=B(d—g)".
The DA-SPF in[(B) can then be reduced to
g" = argminag + SE[(d — g)*|d] (5a)
s.t.g>0. (5b)

RLD can then be derived as follows. Consider the uncongtdaoptimization problem
min ag + SE[(d - g)7|d). (6)

Taking the subgradient with respect gagives the optimality condition

A

0=a—BE[1(d—g>0)|d]
—a—BE[1(d+e—g>0)|d
= a—fPr(e > g—dld),

rearranging gives
«

Ba (7)

where Q(-) is the Gaussian Q function. The risk limiting dispatch (oyl dispatch)g is given by
inverting (1)

Pr(e > g —d|d) = Q(g —d) =

«

g=J+Q‘1(6)- (8)

Note it is possible thay < 0, it can be shown that the risk limiting dispatgh (optimal solution to

the constrained problem ifl(5)) is given by thresholding
A «
g =g"=[d+Q7(3

B

2More precisely, this fact follows from the fact that withauingestions, Kirchoff’s laws reduces to the law of constowaof energy,
which only requires the total power input to be equal to theltpower output.

JIae 9)



B. Price of Uncertainty

Since most power systems would not haw®% penetration in the near future, we assume that the
net demandi, and its predictiond, are positive. Then first we would show the price of uncetyain
exists (i.e. the integration cost is lineardn), and then calculate its value.

A

Theorem 1. Supposel > 0. ThenC(d) defined in{) is linear under the smal- assumption and can
be written as X
lim C(d) = o.p, (10)
Ul—ed—>0
whereo, is the standard deviation of the errerand p = ﬁgb(Q—l(%)) (¢(+) is the standard Gaussian
density and)(-) is the complimentary Gaussian cumulative density fungtion

Theorentl relies on the observation that if net demand igipegil > 0), then it is always beneficial
to purchase energy in the day ahead as the energy price isrhigheal-time, so the optimal schedule
must be positive/* > 0. The positivity constraint in the simplified DA-SPHE(5))nsdundant, and the
cost of uncertainty [(4)) can be explicitly computed. Thegirof Theorenl]l is given in Appendix
[Al Figure[2 plots the price of uncertainty for different veduof« /3 with g set to be 1. Somewhat
surprisingly,p is not monotonic ina/5 and it goes td) as o/ approache$) or o/ approaches 1.
Intuitively, when /3 is small, the day ahead cost is very low, and the SO can puwcbaficient
amounts of energy to absorb the prediction error. In coptisen«/f is close to 1, the day ahead
and real-time costs are similar, so the SO waits until read-tto balance the system once the net load
realization is completely known.

0 D‘Z 0‘4 D‘,G 0‘,8 1
Fig. 2. The price of uncertainty for different ratios af 3.

C. Extremely High Penetration

In some networks renewable power may have a penetratioh dévaore than 100%, violating the
smallo assumption. For example, in a microgrid where wind or sal@rgy is abundant, the net demand
could become negative. In this case, the cost of uncert&@mniyp longer linear in the standard deviation
of the prediction error and in general cannot be computedased form.

IV. CONGESTEDNETWORKS CASE

The RT-OPF in N-RLD for n-bus networks does not admit an arelysolution as in the single bus
case, significantly increasing the complexity of the fuBmhtch. In particular, it is difficult to obtain the
day ahead dispatcg in closed form. Moreover, the cost of uncertainty can be aplmated function
of the information set and the network capacitiesThese quantities can be numerically computed
resorting to a Monte Carlo approach, but the computatiohallenges are formidable due to the high
dimensionality of the problem.



Instead, the smal- assumption from Sec.JIl can be explored to obtain a simpleiatedpretable
dispatch. Since the prediction error is a small percentdgbeonet load, the change in flows caused by
that error is also a small percentage, we assume the pradietror is small compared to bothand
c. Under the small assumption, thejualitative or structural behavior of the power system predicted
in the day-ahead from the forecadtwill not differ from its realization in real-time after obséng
d. If we expect to purchase power at a bus in the day-ahead,aftenreal-time, we do not expect
power to be shed in that bus. If a transmission line is explettebe congested in a certain direction
in the day-ahead, then the direction of congestion wouldbeoteversed at real time. Since qualitative
features are consistent with the forecast, a determir@®ie based on the day-ahead pricend the net
load forecast will predict congested lines, congestion directions ansesuvhere energy is purchased
correctly. LetP? denote the feasible injection region of the network (theo$etll power injections that
satisfy the operational constraints) [34]. This deterstini OPF is denominateMominal Day-Ahead
OPF (NDA-OPF):

J(a,d) = mina® (g)* (11a)
g
subject tog — d € P. (11b)

In stochastic control terms, NDA-OPF solves the certainguivalent control problem for N-RLD
@) [35], |36], by replacing the random quantity by the deterministic quantityl and solving the
optimization problem. Denote the generation schedule fikibA-OPF byg.

The day ahead schedugein the DA-SPF ((B)) can be decomposed as the nominal dispatdad to
a perturbatiorg = (g+ A)™ where A € R" is the perturbation. The optimal schedule is determined by
computingA. Perturbations are expected to be small since the uncertgirsmall, so theperturbed
DA-SPF can be significantly simplified. The simplification comesnirdhe smalle assumption (see
Definition[), and is manifested in three key observations:

1) If g, < 0, busi is treated as a source of unlimited energy, since it is singddnergy in the
nominal problem (NDA-OPF). Ifj, > 0, then the perturbed dispatek; is not constrained to be
positive sinceg, is much larger thaw.A; under the smalk assumption.

2) If the line between busesandk are not congested, then it is not congested in perturbed BRA-S

3) If the line between busesand k is congested from to k, then it would not become congested
from k to ¢ in the perturbed DA-SPF.

Going forward, we assume these observations to hold. Thisalied thesmall-c assumption. We
propose the two step algorithm in Algorithm 1.

Algorithm 1: Procedure to solve Network Risk Limiting Dispatch

Step 1 (NDA-OPF): Solve the nominal problem im_(IL1) using forecast net load dayl ahead prices
to obtain the nominal schedugeand nominal line flows.

Step 2 (Perturbed DA-SPF)Solve the DA-SPF [[{3)) for the optimal perturbatidx by substituting
g = g + 0.A* and appropriately normalizing and reducing the problermgi$dbservationg1) — (3)
as

A" = arg mAinaTA +E[J(B,e)|d] (12a)
subject toA; =0 if g, < 0, (12b)
A; > 01if g, =0, (12¢c)



where

J(B,e) = ming" (y)* (13a)

sty—e—-Vif=0 (13b)

Kf =0 (13c)

fin < O0f fip = can, (13d)

and 3, = ; if g, > 0 and 5; = 0 otherwise. The optimal DA-SPF dispatch is then givengby-

(8 +o0.A)T.

At first glance, [(IR) seems to be no simpler than the originablem in [3). However, note that the
network capacity constraints (13d) only include the linest tare congested in the nominal problem. In
essence[(12) balances a ’left-over’ network from solvimg mominal problem, and_(1Bd) states that if
a line is congested in the nominal problem, no more energylosved to flow along the direction of
congestion.

The next subsection explores the normalization and realugtiocess to define the Perturbed DA-SPF
for two bus and three bus networks. We show the perturbalios the solution to a set of deterministic
equilibrium equations. Then the problem of an arbitrarywoek with » buses and a single congestion
link is studied and we show the general reduction procedeselts in an optimal dispatch control under
the smalle assumption.

A. Two Bus Network
Consider the two bus network in Figl 3. For this network, tlag dhead dispatch is a vectgr=

1I € IZ

dy ds

Fig. 3. A two-bus network where is the capacity of the line.

[g1 go]* of the scheduled generation at each bus. The real-timedataof the network requires solving
an OPF where the injection region is two dimensional. TheO®F becomes

J(8,d ~g) = minB" (g")" (14a)
g,

subject togl + g, —d; — f =0 (14b)

g4 go—do+ f=0 (14c)

|fl <e, (14d)

where f is the amount of power flowing from bus 1 to bus 2 ani$ the capacity on the line.

To apply Algorithm 1, first solve the NDA-OPE_(l11) for the twasbnetwork. Then, to apply Step
2, we partitionR? into the five regions in Figl4 according to the value of the derhand forecadd.
Each region is defined by whether the transmission link iggested or not, the direction of congestion,
and whether each bus is scheduled to generate power in thmalgmoblem. The small- assumption
enables inference of these facts with high probability fribv solution of the NDA-OPF.

10
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Fig. 4. Partition ofR? with respect tod whena; < as. The smalle assumption means that the actual realizatiokl 6 in the same
region asd w.h.p.

RegionsA, B, C' and D reduces to the single bus case as analyzed in Section llediomsB and
D, since the line capacity is not binding, power can flow frone dmis to the other without congestion.
In region A, bus 1 has excess power and transfer up to capacity t@basad then reserve is only
needed for bus 2. Regiafl is symmetrical to regiom.

For region E in Figl¥d, > —c andd, > c. Since buying at bus 1 is cheaper, (< as), the SO
should transfer up to line capacityunits of energy from bus 1 to bus 2. The NDA-OPF solution is

then .
= _ d1—|—C
& dg—C ‘

At first glance, it seems the two buses are now decoupled anbe#reated as two isolated buses since
the line between them is congested. However, this viewpsinbt correct due to thewo-stagenature
of the problem and congestion being directional. In the ttege dispatch problem, the SO decides in
the first stage to purchase some energy based on the forewhstr@r statistics; however the actual
balancing of the network occurs at the second stage. Sommaganwg of the errors can still occur even
if the line from bus 1 to bus 2 is congested. For example, sspploat in real-time; > 0 ande, < 0.
That is, demand at bus 2 was over-predicted and demand at as Linder-predicted. Due to this
configuration, bus 2 needs less thamnits of energy from bus 1, and the remaining energy can be
utilized to satisfy the under-predicted demand in bu$his represents a flow from b@sto 1 and does
not violate congestion constraints, since the line was estegl from bud to 2. Due to this property
of opposing the congestion direction, we denominate this 8dackflow For example, backflow does
not arise in region A because bus 1 always has an excess @fyemed does not require any energy
from bus 2. Similarly for region C.

In region £, the smalle assumption implies thad € £ with high probability and the line is not
congested from bug to bus1 (Observation3)). Assuming that errorg; ande, have covariance matrix

P 22
the optimal dispatch and price of uncertainty in region E given by:

ot I | (15)

Theorem 2. Consider the two-bus network in Figl. 3, with prices and a, respectively. Without loss
of generality, we assume; < a,. Under the small assumption, the risk limiting dispatch (equation
@) is given by

g =g+o. A",
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whereg = [d; + ¢ dy — ¢” and A* is the unique solution to

ap = min(fy, B2) Pr(zy > Ay, 21 + 20 > Ay + Ay) (16a)
ag = P Pr(zs > Ay)
+ min(f5, fo) Pr(ze < Ag, 21 + 20 > Ay + Ay), (16b)
wherez = [z; z]T = e/o.. The cost of uncertainty is linear and the price of uncertyiis given by
p =al A* (17)

+ min (B, Bo){E[(21 + 22 — AT — A3) T 1(20 < AY)]
+E[(z1 — AT)T1(22 > A3)]} + B2 E[(20 — A3)T].

Before formally proving Theoreml 2, we provide an intuitivgoanation of the non-linear equations
in (16). After subtracting the nominal dispatch choice, titet demands (normalized by,) are z;
and z, respectively, and only backflow is allowed. The network uto a two bus network with a
unidirectionallink going from bus 2 to bus 1 (Fi@] 5). The left hand side[of)(&@n be seen as the cost

lI'—I 2
21 22

Fig. 5. The perturbed network consisting of a unidirectidimk and normalized demands, = ei1 /0., 22 = e2/02 .

of purchasing an additional unit of energy at the buses igesia while the right hand side can be seen
as the benefit of having that unit of energy at stage 2. Thexdfth) can be interpreted as balancing
the cost and benefit between buying an additional of unitagestl. For example, one additional unit
of energy at bus 1 is useful if two event occurs:> A; (bus 1 does not have enough energy) and
(b) 21 + 22 > Ay + A, (bus 2 does not have enough energy to transfer to bus 1). fower can be
transferred from bus 2 to bus 1 in the perturbed network Bjgthe price of buying an unit of energy
at real time ismin(;, 3;) and the right hand side df (16a) is the expected benefit ohlgatiat unit of
energy available. The price of purchasing that unit of epatgstage 1 isy;. At optimality, equilibrium
is achieved between the cost at stage 1 and the expectedtlmrstige 2. Similarly[{16b) describes
the equilibrium at bus 2

Figure[® plots the ratio in the average price between a n&twrere backflow is not taken into
account and a network that allows backflow as a function ofctireelation between erroks and es.
If backflow is not allowed, then the network becomes two igmlebuses. The ratio is always less than
1 since a network with backflow can do no worse than a networkwit backflow. The ratio is lowest
when the two buses are negatively correlated since backflenages out the uncertainties in the error.
As the two buses become positively correlated, backflow imesoless useful since both errors tend to
be the same sign and averaging is less useful.

Proof of Theoreni]2: Note that Theoreril2 can be proven using the same limitingnaegis as
given in AppendiX_A for Theorerill. For the sake of clarity armévity, we present a proof without
going into the limiting details, but the arguments can belgasake rigorous by following Appendix
Al
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Fig. 6. Ratio in prices between using and not using back flamofo= a2 = 0.5 and 81 = 2 = 1. Note the curve is always below
one since a network with back flow can do no worse than a netwittlout backflow.

Any dispatch can be written @&st+o.A. We first prove the optimaA is independent of.. Substituting
g =g+ 0. A, the DA-SPF (Egn.[{3))becomes

minimize o (g + 0.A) + E[J(8,d — (§ + 0.A))|d] (18a)
subject tog + o, A > 0. (18b)

By the smalls assumption, the constraint in Eqih._(18b) is always satisfiedeg > 0 from the
definition of NDA-OPF. The RT-OPF (Eqrl._(114)) becomes

J(B.d - (g +0.A)) (19a)
=minimize g7 (g™ " (19b)
subject togf*! + G, + 0. Ay — f —dy —e; =0 (19c)
9 4Gy + oD+ f—dy— ey =0 (19d)

—c< f<ec (19¢)

Since the nominal flow ig, let f = ¢ — § with § representing the backflow. Substituting the value of
g into Eqn. [19),

J(B,d — (g +0.4)) (20a)
=minimize g7 (g " (20b)
subject togl*! + 0, A; + 5 —e; =0 (20c)
G L o Ay — 0 —e; =0 (20d)
0<6<2e (20e)

By the assumption that the line does not congest from2otesbus1, the constraint < 2c¢ is always
satisfied and can be dropped. Normalizing E@Qnl (20ybygives

J(B,d — (g +0.4)) (21a)
—o.minimize g7 (g * (21b)
subject tog™! + Ay +6 — 2, =0 (21c)
G L Ay~ —25=0 (21d)

0 >0, (21e)
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where the optimization variableg™! andd have been normalized by, andz; := ¢;/0.. Let J= J/oe,
and note that/ only depdent of3 and A. Combining [(18) and[(21)A solves the unconstrained
optimization problem .

min oA+ E[J(B,A)]. (22)

To solve this optimization problem, we need the gradientBi)ﬁ(ﬁ, A)] with respect toA. The
optimization problem can be analytically solved to yield

(min(ﬁl + Ba)(z1 + 20 — A1 — Ay)
if 214+ 20 > A1+ Ag, 20 < Ay
3 min(B; + B2)(21 — A1) + B2(22 — Ag)
J(B,A) = if 21 > Ay, 20 > Ay
62(2’2 - Az)
if 21 <Ay, 20 > Ay
| 0 otherwise
= min(fy, Bo)[(21 + 22 — A1 — Do) T1(29 < Ap)
+ (21 — A 1(29 > Ag)] + Ba(z2 — Ag) ™.

Using the linearity of expectation and taking derivativethwespect toA in a” A + E[J(3, A)] gives
(18).

Next we prove the price of uncertainty is given by Ednl (1 e Value of full knowledge optimization
problem isE[J(«, d)]. The error is zero mean and by the smatkssumptionE[J(«, d)] = a’g where
g is the nominal solution. The cost of uncertainty is

u=a’(g+o.A)+E[J(B,d- (g +0.A))] - E[J(a,d)]
=o.(a"A+E[J(8,4)]

= 0.

B. N-bus Network with a Single Congested Line

Fig. 7. A zonal map of the California transmission networklenCAISO control. The subnetwork within a zone are uncotegeander
normal operation. The tie lines to other WECC areas are noi/ish
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Most networks consists of a large number of buses and lingsyrider normal operating conditions,
only very few lines are congested. For example, the Calidotransmission network can be thought as
divided into three zones connected by major transmissimslshown in Figurgl 7 and the flows within
a zone are unrestricted [37]. The zonal grouping in CAISO eesigned utilizing the idea of collapsing
together buses connected by uncongested transmissi@nitiree deterministic OPF. We formalize and
extend this intuitive concept for ND-RLD by showing that angeal network with a single congested
link reduces to a two bus problem under mild to moderate waicgy. More concretely, assume the
line from bus1 to bus2 is congested, then

Theorem 3. Given a generic power network. Lgtand f be the nominal generation and nominal line
flows obtained by solving the nominal OPF (equat{@d]). Under the smalk assumption, suppose
that f,, = cy2 is the only congestion in the network, then the followingdkol

1) There are at most two nodes with positive generation. Thag,is> 0 for at most twos.
Furthermore, ifg, < 0, then only one other bus has positive generation.
2) The risk limiting dispatch (equatio)) takes the form

g=E+A)",
where A; # 0 only if g, > 0.
3) If 5, = Bx = [ for all i, k, then optimization problem reduces to an equivalent probtever a
congested two node network with congestion from Bus 2’ with correlated errors. Let £ 1

be the bus with positive generation. Then the first stages@sta)| = oy and o, = (% — k)
and the errors are given by

ey =e+ Z%ei ey = e+ Z(l — Yi)ei, (23)
i=3

=3
where~; € [0, 1] are determined by the topology of the network and can be L=kl by (25)
and (26).

Point 1) in Theoreni]3 seems strange since it is highly unjikieat only two generators would be
generating in a power network. This result is comes from #$su@ption that the prices are linear in
the power generated, which is used here to simplify the ptaten. In practice, cost functions are
piecewise linear or quadratic. If piecewise linear costcfioms are used, then Theoréin 3 1) is modified
to stating that there are at most two generators operatirigeat marginal cost[[12]; if quadratic (or
other convex continuous increasing) cost functions ard,uBeeorent B is modified to stating that there
are at most two different marginal costs among the genexaidre details of the derivation is given
in the Appendix. The overall message of Theofldm 3 remaindiamged in each case: in a network
with one congested link, the risk limiting dispatch can biwalated by considering a two-bus network
obtained from the original n-bus network.

The proof of this theorem is somewhat technical and is givethé appendix. The theorem states that
the network can be collapsed into a single bus or a two busamktwitilizing an appropriate averaging
of the net demands. To understand how to calculate the busgg weightsy;, it is convenient to
simplify (3) (with cost3) by consideringundamental flow§38]. Pick one spanning tree in the network.
This spanning tree hasnodes and: — 1 edges. The flows on these- 1 edges is called a fundamental
flow, denoted byf € R"~!. These flows are fundamental in the sense that any fléwsthe network
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can be written in the fornf = Rf, whereR € R™*"~! is a constant matrix only depending on the
chosen spanning tree.
The constraint[(2c) can be eliminated ahd (2) reduces to:

J*(8,x) = ming" (g")* (24a)
subject tog” — x — Af =0 (24b)
IRf| <c. (24c)

Let a’ be theith row of A for i = 1,...,n. For each node = 3,...,n in the network, lef® be set
of fundamental flows that solve the following set of equagion

=0 (25a)
alf® = —1 (25b)
alf® =0, k#i,k>3. (25¢)
In matrix form, £ solves
LOO -+ 01 76) _ AF60) — _p,.
{ A, } f = Af"Y = —h;_q,
where A, is the (n — 2) x (n — 1) matrix obtained by removing the first two rows af andh;_, is a
vector with entryi — 1 being 1 and all other entries . Inverting givesf’ = —A~'h,_; and

Next we apply Theoreril 3 to a three bus single cycle network w@ual admittance on each line.
Let the predictiond be such that the line from bus 1 to bus 2 is congested. That js= ;5 in the
nominal problem. There are four possible congestion pﬁe&s listed in Figurél8. Bus is labeled
by the sign ofg;. Figure[9 shows the equivalent two bus networks for each efmitworks in Fig[18

) +g2 +e2 ,
&* &0 ,AO A+
1% 3 1% 3 1% 3 1% 3
@ (b) () (d)

Fig. 8. Possible sign patterns gfwhen a single line is congested.

after applying Theorer] 3. The networks in Hig. 9 are labeledhle first stage costs, the sign patterns
and the forecasted errors at each of the nodesA’dbe the solution to the two bus networks in Fig.
[@. Then the control\ for the original problem are given in each of the networks ig. B.

Note the result in this section can be extended to the casenaftwork with multiple congested
lines. Namely, given a network witR™ congested lines, it can be reduced to an equivalent netwibhk w
K + 1 buses|[30]. The methods for multiple congested lines areséimee for a single congested line,
although the mathematical details are more cumbersomendidna

30ther patterns are possible, but occur for a sed tiat is of measure zero
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er + 63 €2 + 63 e+ 63 €2 + 26631 + 63 €2 + 63 er + 63 e + 63
(a) Az = A} (b) Ag = A} () AL = A}, Ar = A d) A, = 5, As =
2A%

Fig. 9. The equivalent perturbed networks for the network&ig.[8 respectively. The left bus i and the right bus i€’. The back
flow is only allowed form2’ to 1’.

V. SIMULATION RESULTS

This section explores various numerical examples usinglBtE 9-bus benchmark network. In
particular we compare the performance of ND-RLD with uiilg the standard — o rule. We also
compute the price of uncertainty numerically and compate the theoretical prediction.

A. Uncongested Network
Many practical networks have line capacities that are maoper than the typical power flows. For

these networks, they are well approximated by a single btwsank. For example, consider the IEEE
9-bus network in Figuré_10. The nominal generation and deisdrom the data included with this

Fig. 10. IEEE 9-bus benchmark network. Bus 1,2,3 are gemeraind the rest of the buses are loads.

benchmark network [9],/[40] is shown in Taklé Il. Note thatdiflows are significantly smaller than
transmission line capacities. Therefore, under modsrédiigh penetration, the network can be thought
as a network operating without capacity constraints.

Up to this point we have used the DC power flow model, while ialitg power flow is AC. It
is known that for transmission networks, due to the I&%X ratios of the transmission lines, DC
and AC power flows yields similar answers. This is confirmeaun simulations where the difference
in performance of using the risk limiting dispatch under D@l a&AC power flow models is minimal.
Therefore it is sufficient to use the simpler DC flow model tdadi the dispatch.

Bus 1] 2 | 3 |4 5|

| | 7 9
DC Flow ‘ 86.6 ‘ 134.4‘ 94.1 ‘ 0 ‘ -90 ‘

6 | 8|
0| 100 [ 0 | 125
0 0

AC Flow 89.8 1343 | 94.2 0 -100 -125

TABLE |
ALL UNITS ARE MW. NEGATIVE NUMBERS ARE THE DEMANDS AT BUSES5, 7,AND 9. THE GENERATIONS NEEDED AT BUSEY, 2,
AND 3 TO MEET THESE DEMANDS UNDER BOTHDC FLOW AND AC FLOW ARE SHOWN

To analyze the performance of the risk limiting dispatchivast in Sectiori 1ll, we compare it to two
other dispatches. The first one is the currently u3edo dispatch, and the second one is the oracle
dispatch where the actual realization of the wind is knowstagie 1. We assume that all the generating
buses have a first stage ¢bst = 1 and all buses have the same second stagexoBbr simplicity,

“The nominal generations are determined by an OPF probletheaery generator with non-zero generation has the sameimahrg
cost. This can be thought as
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From bus 1 4 5 3 6 7 8 8 9
To bus 4 5 6 6 7 8 2 9 4
DC Flow 86.6 33.7 -56.3 94.1 37.8 -62.2 -134.4 72.2 -52.8
ACFlow | 898 | 352 | -55.0 | 942 | 38.2 | -61.9 -1343 | 7211 | -54.3
Capacity 250 250 150 300 150 250 250 250 250

TABLE Il
ALL UNITS ARE MW. BOTH DC AND AC POWER FLOWS ON EACH LINE OF THE NETWORK IS SHOWNCAPACITIES ARE THE LONG
TERM EMERGENCY RATING OF THE LINE THE NETWORK IS UNCONGESTED

the prediction errors are generated as i.i.d. zero means@ausandom variables with varianeé. The
predictionsd is taken to the nominal demands in Tab. I.

The risk limiting dispatch is derived by viewing the netw@% a single bus. For actual operation, the
amount of reserves to put at each buses in the network needdetbrmined. Here we spread the reserves
equally among the three generating buses(buses 1,2 ando8). ) and the fact that the prediction
errors are independent, the single bus risk limiting dicipas Z?zl d; + A where A = \/QUQ—l(%).

The network risk limiting dispatch is given by

gl =Jd+A=[866 1344 941 0 ... 0]"
_1,Q T
+30Q 1%)[% s 5 0 ... 0] .

The 3 — o control purchases a reserve of 3 times the standard devifticeach bus in the network, or
3-9-0. Again we spread out thg& — o dispatch over the three generating nodes as

gd=7+A=[866 1344 941 0 ... 0]"

+90—Q‘1(%) m1 10 ... 0"

We simulate the cost for both the DC and AC power flows.

Figure[11 plots the total cost of the three dispatchessfer 1.5a. As we can see the risk limiting
dispatch performs much better than the o dispatch. There are two reasons why the ¢ dispatch
or rules like it perform badly. The first is that tie— o rules is too conservative since it does not
take into account the actual cost of the second stage; trendeeason is that thg — o dispatch
ignores the potential benefit of averaging between the gtiedi errors by treating the different buses
as isolated nodes. In contrast, risk limiting dispatch sakeese two points into consideration. Figuré 12
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0
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Fig. 11. Total costs fo3 = 1.5« as a function ofr. The red, blue and black lines are the total cost for3he o, risk limiting, and

the oracle dispatches respectively. The solid lines aretises under DC flow while the dotted lines are for AC flows.

is a zoomed in version of Fig. L1 by plotting the total costyoiar the risk limiting dispatch and the
oracle dispatch. The cost for the oracle dispatch is cohstaB15 up untilc = 80. This is expected
since the predicted total demand3ss MW, and the prediction errors are zero mean, so the errors
averages out. At higher, the capacities in the network become binding and the cos$ gp since
not all errors can be averaged. The cost for the risk limitiigpatch is essentially linear for aii’s.
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Furthermore, the slope of the cost is (very close to) theepot uncertainty calculated in the earlier
sections.

A lower bound for the minimum total cost is the total cost opng the risk limiting dispatch to a
network with infinite capacities, since an infinite capacigtwork has lower cost than a finite capacity
one and the risk limiting dispatch is optimal for the formferom Figurd 1P, this lower bound is almost
met. Thus the risk limiting dispatch is close to optimal angt assumption of viewing an uncongested
network as a single bus network is valid. The slopes of thesligives the price of uncertainties. As

700,
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Fig. 12. Total costs fo3 = 1.5« as a function ofs. The blue and black lines are the total cost for the risk limitand the oracle
dispatches respectively. The purple line is the cost of thB Rhen applied to an infinite capacity network, which is a éovbound for
the minimum cost of the finite capacity network. The slopeshef blue and the purple lines represent the price of uncdiai

expected, the price of uncertainty for the oracle dispasah since the actual realization is known at
the first stage. The price of uncertainty of the risk limitidigpatch closely matches that of the single
bus price of uncertainty, while the— o price is much higher.

B. Congested Network

To construct a congested network, the network in Eig. 10 idifienl by increasing the nominal load
at bus 5 to150 MW and reducing the capacity of the line connecting bus 5 arid % MW. Then
the line from bus 6 to bus 5 is congested. There are two diffdiest stage costa; and a; and these
are given by the marginal costs of the generators. d.et %(al + az) and we normalize all cost by
a. Figure[13B plots the total cost of the three dispatchessfer 1.5«. Again, we see the risk limiting
dispatch performs much better than the o dispatch. Figuré14 is a zoomed in version of Fig. 13 with
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Fig. 13. Total costs fo = 1.5« as a function ofs. The red, blue and black lines are the total cost for3he o, risk limiting, and
the oracle dispatches respectively. The solid lines arectis¢és under DC flow while the dotted lines are for AC flows. Thepfe line
is the cost of the rld when applied to a network where only ane has finite capacity, namely the line congested under tmeinal
flows. This is a lower bound for the minimum cost of the finitgpaeity network. The slopes of the blue and the purple lingsesent
the price of uncertainties.

the total cost only for the risk limiting dispatch and the @eadispatch. As expected, the cost of the
oracle dispatch is constant over a wide range’sf The cost of the risk limiting dispatch is linear and
very close to its lower bound. The lower bound is obtained fylyang the risk limiting dispatch to a
network with only one finite capacity line, namely the linengested under the nominal flows. Figure
[14 shows that modeling a network with one congested line agabtis network is very accurate.
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Fig. 14. Total costs fo3 = 1.5« as a function ofs. The blue and black lines are the total cost for the risk limitand the oracle
dispatches respectively. The purple line is the cost of thB Rhen applied to a network where only one line has finite capanamely
the line congested under the nominal flows. This is a lowentddar the minimum cost of the finite capacity network. Thepsl® of the
blue and the purple lines represent the price of unceréainti

Figure[I5 shows the difference in cost of assuming there iscamgestion in the network and
the correct dispatch solution taking the congestion intcoant. The former calculation ignores the
congestion information in the network. As expected, therlalispatch performs better since it takes
into account the congestion in the network.

——No Congestion
800| —Single Congestion

Normalize Total Cost

0 20 40 60 80 100 120
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Fig. 15. Total costs fop = 1.5« as a function ofr. The blue line is the total cost for the risk limiting dispatdeveloped in Section
[[V] The red line is the total cost if the risk limiting dispatderived for the congested network in Secfianh Il is used.

VI. CONCLUSION

In this paper we addressed the solution of a two-stage sttichdispatch for system operators. We
showed that a simple control exists under mild to moderateainty about future realizations of net
demand. The control is composed of two parts, one which isénginty equivalent control rule, and
another that is a deviation that hedges against the uneriay appropriately taking into account costs
and recourse opportunities. Moreover, by incorporatimgfétct that only a small number of transmission
lines that congest at any given hour, the optimal dispatechbea calculated analytically. The price of
uncertainty is a tool to measure the performance of distispatch procedures. We show that under
mild assumptions on forecast errors, the proposed disaticieves the cost bound given by the price
of uncertainty. The proposed procedure also performs ratie in a full AC network.
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APPENDIX
A. Proof of Theorerh]1

Mathematically, thesmallo assumption means that we are operating in the scaling reginege
--d — oo. Under this assumption,

C(d)= lim {min ag+ BE[(d— g)*|d,d > 0]
Ldsco 9
— aE[d*|d,d > 0]}
@ lim {min ag+ BE[(d— ¢)F|d,d > 0]
Lidsco 9
— aEld|d,d > 0]}
= lim {min ag+ BE[(d+e—g)|d,d > 0]
Ldsoo 9
— aEld|d,d > 0]}
© lim {min a(d+A)+ BE[(e — A)*|d.d > 0]
L dso00
— aE[d + e|d,d > 0]}
= MH{%naA+6H@—AWWA>m
L dsoo
— aEle|d,d > 0]}
gaemn{%ﬂaﬂ+ﬁEW%ﬁwﬂid>m}
L d—oco !

(d)

= 0OeD,s

where (a) follows from the assumptiod > 0, (b) follows from settingg = d + A, (¢) follows from
changes from variables whert¥ = A/o, and z = ¢/o. and the mean of remains0 in the limit and
(d) is follows the calculation below.
From first order conditions, the optimal solutids* solves
a=p lim Pr(z>A™|d,d>0)
U—led—mo

= £ lim o(x)dr = BQ(A™).

U*led—)OO min(A’*,—id)
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ThereforeA™ = Q—l(%). The price of uncertainty can be calculated as

p= lm {aQ" (5) +BE[(z -Q” (5))+|d7d > 0]}

%d—)oo
=aQ™'(3)
+4 Tim {[ (2= Q7)o
sed=o0 Jmin(@Q1(§,~3-d)
1 g _g -1 g -1 g
=aQ ™ (3) + B-5@7(F) +0(Q7(F)
- w(@-l(%)).

B. Proof of Theoreril3

By assumption only the flow from 1 to 2 is congestéd] (24) carepéaced by an equivalent problem
by choosingf,, as a fundamental flow and including only the constraint owithout loss of generality,

let f1 = fio.

J*(B,d — g) = ming" (g")* (30a)
subject tog” — (d —g) — Af =0 (30b)
fi < Cho. (30c)
Writing (30) as a linear program gives
minimize o’y (31a)
subject toy — Af —d >0 (31b)
fi < Cr (31c)
y > 0. (31d)

The Lagrangian is - . _
L=a"y—AT(y—Af —d) + u(fy — Cr2) ="y,

where, i, andr are the Lagrangian multipliers. Differentiating with resptoy givesa—A—v = 0.
Since v are the Lagrangian multipliers associated with the comgtsa > 0, but complementary
slacknessy; > 0 only if v; = 0 or \;, = «;. Equivalently,g;, > 0 only if v, = 0 or \; = «;.

Differentiating with respect td gives

AT+ pthy =0, (32)
whereh; = [10 --- 0] is the first standard basis. The dual is
maximizeA"d — puC, (33a)
subject to0 < A < « (33b)
ATX+ph; =0 (33c)
> 0. (33d)
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At first glance it seems that the dimension bf]l(33)nis- 1. However since[(32) i% — 1 equations
involving » + 1 unknowns, there are onl® independent variables. The next claim gives a precise
characterization of the solution df (33).

Claim 4. The solutions tq33) are in the forms of

1 0
0 1

A= || N+ | 1= X,

In 11— Tn
where~; € [0,1] for: =3,...,n and u = k(A — A1), wherek is a positive constant depending on the
graph structure.

Suppose the claim is true. The first statement of Thedrem Baisdnly two nodes are generating
energy. From complementary slacknegs,> 0 only if \; = «;. Since a has only two degrees of
freedom, for generiax, \; = «; for at most two components. Therefore in general only twoesod
would be generating energy.

The second statement is that only the nodes that generates pould be used to do the perturbation
control. That isA; # 0 only if g, > 0. The intuition is as follows: suppogg < 0, then under the small
sigma assumptiory; can be viewed as an infinite source of free energy, so no pation is needed:;
supposegj; = 0, if a small unit of energy is purchased at noie¢here is a cheaper option to purchase
the unit of energy somewhere else rwould have been positive), therefofg = 0.

To show that the problem reduces to a two bus network ifiadire equal, we need to consider the
second stage optimization problem. Now fedlenote the set of perturbed flows. Since the line from 1
to 2 is congested in the nominal probleifa,= fi1» < 0. Letz; = A; + (—g,)" /o — z;, whereA; is the
first stage control(—g;) is the left over energy, and is the normalized estimation error. The second
stage optimization problem becomes

J(B,9) = minimize 8"y (34a)
subject toy — Af +x > 0 (34b)

f1<0 (34c)

y > 0. (34d)

This optimization problem has precisely the same forn{al, 8ith C,, = 0. By Claim[4, the dual of
4) is

maximize — Ay x — Xo(1 — v)"x (35a)
subject to0 < v\ + (1 =)\ <8 (35b)
Ay — A > O, (350)

wherey = [1 03 -+ v,]7, a; € [0,1] and depends on the network topology foe 3,...,n. If 3's
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are all the same (of,, 5, are smaller than all othe#’s), the dual reduces to

maximize — \jx] — \oa),

subject to0 < \; <
0< A <5
Ay — A1 >0,

(36a)
(36hb)
(36¢)
(36d)

wherez| = yvT'x andz, = (1—~)Tx. This is exactly the dual of a two bus network with predictérors
~Tz and (1 — )"z, leftover energyy” (—g)* and (1 —~)7(—g)™, and controlsy” A and (1 —~7)A.

Let A} = yTA andA} = (1—~)TA. It can be shown that if there are two generating nodes then on
of them can be taken to be nodeSuppose the other generating node is nbd&o solve equilibrium

equation [(IB) forA] and A}, the associated first stage costs afeand (% — Y1) respectively.

C. Proof of Claim’%

We prove Claini# be guessing the solution and verifying itds@ct. We showA = [1 03 -+ 7,,|”
where~; is given by [26) solved(32). Expanding’ \ gives

ATX = i A7

i=1

* ok ok *
010 0
@a- |00 1 0[)a,
0
00 0 1
*
0
0
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wherex denote a generic number and) follows from observing tha(A‘lhi_l)T is the transpose of
(AT)~1 without the first row and the following simple lemma

Lemma 5. Let X be ar x » — 1 matrix and suppose the matr[>hl X] is invertible with inversey'.
Let Y; be the matrix obtained fronY by removing the first row. Then

ERERE: * |

01 0 0

XYy,= (0 01 0
0

o0 0 - 1]

We still need to show that > 0+; > 0. This can be done through graph theory, but it is simpler to
recognize that the flows given bl {25) solves a DC OPF probfeon.the:’'th node, the optimization
problem is to find the least generation need at nddesd 2, satisfying a demand af unit at nodei,

0 demand at all other nodes, and no flow on the line betwleand 2. Thereforev; is the proportion
of power that nodd produced, and — ~; is the proportion of power that nodeproduced.

The vector[0 1 1 —~3 --- 1 —~,] is a solution to[(3R) sinca is in the null space oA”.

D. Nonlinear Prices
First consider the following nominal OPF problem wheys are differentiable

minimize > ¢i(g;") (37a)
=1

subject tog — Af —d = 0, (37b)

where ¢;(+) is increasing and convex, are the fundamental flows and the line capacities are infinite
Rewriting [37) as

minimize > ¢i(y) (38a)
i=1
subject toy — Af —d > 0 (38b)
y > 0. (38¢)
The Lagrangian of(38) is
L= qy)-N(y-Af-d>0)-v"y. (39)
i=1

At optimal, the primal and dual variables minimizes the laagian, sog¢(y;) — A\ — v = 0 and
ATX =0.

The null space oAA” is spanned by th& vector, therefore\* = \*1 for some)\*. By complementary
slackness, nodé is generating ifv; = 0. The nodes in the network can be divided into two groups,
one group is all the generating node and the other is the rapfgting nodes. For all the generating
nodes, the marginal prices are all the same, thaf/ig;) = ¢.(v;) = A* if y; > 0 andy, > 0. From
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the perturbation control of view, the network consists ongnaodes with the same first stage cast
therefore the perturbation contrdl can be divided up in arbitrary fashion between those nodes.
Now suppose that the network has one congested link. Thenabmpioblem becomes

minimize > ¢i(y) (40a)
i=1

subject toy — Af —d > 0 (40b)
fi <Cr (40c)
y > 0. (40d)

The Lagrangian is
L= qu Ay —Af—d > 0) + u(fy — Cyp) — 7y,

At optimal, ¢/(y;) — A\f — v = 0 and ATA* + p*h; = 0.
From previous results\ can be decomposed as= a\; + (1 — a)\,, wherea; = 1,a, = 0 and
€ [0,1] for ¢ = 3,...,n. The decision variable in the two stage optimization probleecomes
Al =aTA andA, = (1 —a)T A, and the optimization problem is
Anlrun/ N AL+ NAL +E[J(8, AL, AY)].
After solving for the optimalA’} and A}, we need to map it back to the original’s. Again, if y; = 0,

then we setA; = 0. For the rest of the nodeg)] and A}, can be split up in any fashion as long as it
is consistent.

E. Piecewise Linear Cost Functions

In practice piecewise linear cost functions (convex, iasieg) are often used. We start again with
the uncongested network. Since the cost functions are ffetatitiable, the Lagrangian i (39) is not
differentiable. We use subgradients instead. Given a fomcf(x) : R” — R, a vectors € R" is a
subgradient off atx if f(y) — f(x) > s (y — x) for all y. The set of all subgradients atis called
the subdifferential and denotétf (x). By the convexity, at optimality,

* * *

for somes; € dq;(y;) and ATA* = 0. We still have all\’s are equal and the two stage problem only
dependsA = A; + A, +---+ A,,. In contrast to the differentiable cost case, here the obrgronly
done at one node, that i8 = A; for some node andA, = 0 if k& # . The reason is that all generating
node except one would be operating at a corner point on thspective cost curves and it is optimal
not to change those corner points. Only one generator waalldperating at a point not at the corner,
and all the control should be done at that point. Similady,d network with one congested link, only
two generators will be operating at a non-corner point, drel gerturbation control is done at those
two points.
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(a) Corner Operat{b) Non-corner Op-
ing Point erating Point

Fig. 16. All generating node except one will be operating abener point.
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