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Abstract

In this paper, cluster consensus in continuous-time ndtsvof multi-agents with time-varying
topologies via non-identical inter-cluster inputs is $tad The cluster consensus contains two aspects:
intra-cluster synchronization, that the state differasnisetween agents in the same cluster converge to
zero, and inter-cluster separation, that the states of geata in different clusters do not approaéh.
cluster-spanning-tree in continuous-time networks oftiragent systems plays essential role in analysis
of cluster synchronization. Inter-cluster separation banrealized by imposing adaptive inputs that
are identical within the same cluster but different in diffiet clusters, under the inter-cluster common

influence condition. Simulation examples demonstrate ffeeteveness of the derived theoretical results.
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|. INTRODUCTION
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Consensus problems of multi-agent systems have attracteatl battentions from various

contexts (see[ [1]-[3]). In general, the main objective ohsensus problems is to make all
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agents converge to some common state by designing propeithigs. For this purpose, various
consensus algorithms have been proposed [4]-[8].

The results of almost all previous works were concerned widhsensus with a common
consistent state, while we are considering cluster conseng., agents in networks are divided
into several disjoint groups, calledusters in the sense that all agents in the same cluster
completely synchronize but the dynamics in different dustdoes not coincide. In reality, a
number of practical models can be transformed into thistefusonsensus problem, for instance,
social learning network under different environments Bjcial learning focuses on the opinion
dynamics in the society, in which individuals engage in camivation with their neighbors
in order to learn from their experiences. Consider that thieebof each individual is affected
by different religious beliefs or cultural backgrounds.ishffection flags the clusters that each
individual belongs to.

In [10]-[15], the authors considered cluster (group) syoalzation (consensus) problems of
networks with multi-agents. In_[10],[11], for linearly cpled multi-agents systems, the authors
derived conditions on coupling matrix to guarantee groupseasus(intra-cluster synchroniza-
tion) , but the inter-cluster separation was not considehed12], agents in different clusters
have different dynamics of uncoupled node systems, the-@htister separation was not proved
rigorously (but only assumed). Since it is quite difficult poove inter-cluster separation for
general nonlinear coupled systems (up to now, no way to prowg14], the dynamics of nodes
are special, hence, the final states of agents can be givectlgirin this paper, In this paper,
the inter-cluster separation is actually one of main aimBiclv is realized by imposing the
inter-cluster different, intra-cluster identical inputs

In our previous papel [9], we investigated cluster consgpsablem in discrete-time networks
of multi-agents, which provided the basic ideas. Howevéere€ still is big difference between
discrete-time networks and continuous-time system. Iritiaag in comparison with[[9], in the
present paper, the static inter-cluster influence matrif9nis replaced by time-varying inter-
cluster influence matrix sequence; the assumption of eastef self-links in[[9] are removed;
the formation of inputs to a more general scenario are eendhile [9] considered that the
inputs among different clusters only differ by a proportbity constant. Finally, the concepts
relating graph theory are generalized, too. For example pvepose 3-cluster-spanning-tree

across time interval” (see below).
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[I. PRELIMINARIES

In this section, we present some necessary notations amitideis of graph and matrix theory.
For more details, we refer readers to textbodks [17]] [18].

For a matrixL, denoteL;; the element ofL on thei-th row andj-th column.LT denotes the
transpose of.. £, andO,, denote the:-dimensional identity matrix and zero matrik.denotes
the column vector whose components all equal tand 0 denotes the column vector whose
components all equal 1. ||z|| denotes a vector norm of a vectoland || || denotes the matrix
norm of L induced by the vector norm - ||.

An n x n matrix A is called astochastic matrixf A;; > 0 for all 4, j, and}_7_, A;; = 1 for
i=1,---,n. Ann x n matrix L is called aMetzler matrix with zero row sums$ L;; > 0 and
> i1 Lij =0 holds for alli # j, i =1,--- ,n.

A directed graphg = {V, £} consists of a vertex s&f = {v,--- ,v,}, a directed edge set
£ CV xV,ie., an edge is an ordered pair of vertices/inA (directed)path of length/ from
vertexv; to v;, denoted by(v,,--- ,v,,,), iS a sequence df+- 1 distinct vertices withv,, = v;
andv,,,, = v; such that(v,,,v,, . ,) € £&. We say thatg has self-links if(v;,v;) € £ for all
v; € V.

An n x n nonnegative matrixd can be associated with a directed graid) in such a way
that (v;, v;) € £(G(A)) if and only if A;; > 0. Similarly, for a Metzler matrixZ, it is associated
with a graph without self-links, denoted I§}(L).

Definition 1: [9] For a graphG = (V, &), a clusteringC is defined as a disjoint division
of the vertex set, namely, a sequence of subset¥,af = {C;,---,Cx}, that satisfies: (1)
U Co=V: QCNC=0,k#IL

Consider the following continuous-time system with exéradapted inputs:

3i(t) = 3 Lig(O)la (0 = (0] + Lt), i =1 n (1)

wheret € Rt = [0,00) and z;(t) € R denotes the state variable of the agéent;;(t) > 0
denotes the coupling weight from agento 7, I;(t), i = 1,--- ,n are external scalar inputs. Let
Li(t) = —Z;‘:L#i Li;(t), then for eacht > 0, the connection matriX.(t) = [L;(t)]7;-; is

a Metzler matrix with zero row sum. The matrixt) is associated with a time-varying graph
G(L(t)).
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For systems with switching topologies, some researchémsdace the concept of dwell time,
which is a pre-specified positive constant to describe the tength staying in current topology,
i.e., in some time intervalt,,t;], L(t) = L are constant. In this paper, we don't make this
assumption. By using the concept &@kdge [16], we transform the continuous-time case to the
discrete case with some sophisticated analysis.

Definition 2: G(L(t)) is said to have a-edge from vertex; to v; acrossty, t,), if fttf L;;(t)dt >
9. For a given clustering = {Cy,---,Cx}, L(t) has ad-cluster-spanning-tree acro§s, t»)
(w.r.t. C) if each clustelC,, p=1,--- , K, has a vertex,, € V and aj-path (path composed of
J-edges) fromw, to all vertices inC, acrossti, t).

It should be pointed out that the root 6f and the paths from the root to the verticesCin
do not necessarily iff,; the root vertex of a cluster is unnecessarily identicahwaots in other
clusters.

Definition 3: For a given clustering = {Cy,--- ,Cx}, we sayg is cluster-scramblingw.r.t.

C) if for any pair of verticeqv,,,v,,) C C,, there exists a vertex, € V, such that botivy, v,,)
and (vy, v,,) are in&.

In [9], we extended ergodicity coefficient [19] and Hajnahmhieter [[20] to the clustering case

and defined the cluster ergodicity coefficient (wtof a stochastic matri¥d as
N

Do win o A A
pe(A) = min min » min(Ay, Aji)

It can be seen that:(A) € [0, 1] and A is cluster-scrambling (w.r.€) if and only if ¢ (A) > 0.
Furthermore, we sayl is J-cluster-scramblingf pc(A) > 6.

Hajnal diameter proposed ih [20] was also generalized tachhgter case:

Definition 4: [9] For a given clustering and a matrix4, which has row vectord, A,,--- , A,,
define the cluster Hajnal diameter Ag(A) = max,_; .. x max; jec, ||A; — A;| for some norm
-1

Remark 1:In [9], we have generalized Hajnal inequality to the follogicluster Hajnal

inequality, i.e.
Ac(AB) < (1 = pe(A))Ac(B) (2

where A is a stochastic matrix an@ is a matrix or a vector.
This inequality indicates that the cluster Hajnal diametérAB strictly decreases when

compared withB, if A is cluster scrambling, i.eyc(A) > 0.
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IIl. CLUSTER CONSENSUS ANALYSIS

Let z(t) = [x1(t), - ,2,(t)]" € R™ denote the state trajectory of all agents afd) =
[I1(t),- -+, I,(t)]". The system[{1) can be written in the following impact form:

#(t) = L(t)z(t) + 1(t) 3)

Definition 5: System|[(B) is said to bimtra-cluster synchronized any solutionx(t) satisfies
limy oo |2;(t) — 2 (t)] = 0 for all 4,¢/ € C, andp = 1,---, K; inter-cluster separatedf
lim sup,_, . min;ec, jec, k2 |7i(t) —x;(t)] > 0. The system[(1) realizeduster consensus each
solutionz(t) is bounded, intra-cluster synchronized and inter-cluségrarated.

It can be seen that intra-cluster synchronization is edgmiao the stability of the following
cluster consensus subspaee.t. the clustering’:

Se = {xER”: r; =wx;, ifi,7€C,, p=1,--- ,K}

A prerequisite requirement for cluster consensus is faashould be invariant throughl(1).

Lemma 1:If the following conditions are satisfied: (1);(¢) = 1;(¢) for all 7, € C, and all
p=1,---,K; (2). for each pair ofp and g, Zjecq L;;(t) is identical w.r.t. alli € C, at any
time t, then the cluster-consensus subspace is invariant thr@)gh

The proof is similar to Lemma 3 in_[9] and is omitted.

The input is said to bentra-cluster identicalif the condition (1) in Lemmall is satisfied, and
the matrix L(t) hasinter-cluster common influendgécondition (2) is satisfied.

Denote B,,(t) = >jec, Lij(t) wrt.alli € C, at any timet and call B(t) = [B,,(t)] the

inter-cluster common influence matrix

A. Theoretical results

In the following, we assume

« Ay: For anyt > ty, L(t) is Metzler matrix with all row sums zeros and the elements

L;;(t) > 0 are piecewise continuous;
« A (inter-cluster common influengeFor anyt > t,, there exists a zero row sum Metzler

matrix B(t) = [B,4(t)]5,-; € R™*, where

D Lij(t) = Byy(t), i€Cp pg=1,-+ K @)

jeCyq
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We highlight that the concepnter-cluster common influencecoincides with the concept
odrinary lumpabilityin Markov chain theory[[21].

As: For anyi, I;(t) is piecewise continuous, both(¢) and fti I;(s)ds are bounded, and
L(t)=Lt) 2 L), foralli,j€Cpp=1,--- K. LetI(t) = [L(t), -, Ix(t)]".

Remark 2:In this paper, we focus on finding the simplest external isgot guarantee the
intra-cluster synchronization and inter-cluster sepanatHere the inputs are intra-cluster identi-
cal, which counts for intra-cluster synchronization, amei-cluster different and state-independent,
which counts for the inter-cluster separation

Remark 3:If the linearly coupled system can intra-cluster synclzenithe external inputs
proposed in this paper can always be used to guarantee #neciaster separation, which implies
cluster consensus of the linearly coupled systems.

Lemma 2: Supposed(t, ty) is the basic solution matrix of the homogeneous system:

0(t) = L(t)v(t) ()

whereL(t) satisfiesA;, A,. Then, (1).9(t, ¢,) is a stochastic matrix; (2). IE(¢) has aj-cluster-
spanning-tree across time interval,¢;) and fttol L;;(s)ds < M holds for alli # j and some
M, > 0, then®(t,,ty) has aj,-cluster-spanning-tree, whedg = min{1, §}e~ DM,
Proof. 1). Denote®(t, ty) = [®;;(t,t0)] € R™*™. SinceL(t) satisfies assumptiod,, if x(t) =
1,,, then the solution must be(t) = 1,,, which implies each row sum ab(¢, ¢,) equals 1. Next,
we will prove all elements irb(t, ;) are nonnegative. Note that tli¢h column of®(¢,¢,) can
be regarded as the solution of the following equation:
#(t) = L(t)x(t) ©)
x(to) =€}
heree} is ann-dimensional vector whoseth component is 1 and all the other components are
zero. For anyt > t, if iy = ig(t) is the index withz; () = min;_ .. , z;(¢), theni, (t) =
> jzio Lioj((t) — ;5 (t)) > 0. This implies thatmin; z;(¢) is always nondecreasing for all
t > to. Therefore,x(t) > 0 holds fort > t,. Therefore,®(t,t,) is a stochastic matrix.
2). Consider systeni(6), sineg(t) > 0 holds for all j = 1,--- ,n, s0d;(t) > L (t)z;(t),

andx;(t) > eJi Lis(®)ds 5 ~(m-1)M1 Meanwhile, we can conclude thét; (¢,,1,) is positive. For
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eachk # 1,
nt) = 3 / B o () (7)dr
J#k

t
> /efTka(s)dsti(T)l'i(T)dT

to

t
> (M /Lm()d

to
So, if L(t) has aj-edge from vertex to vertexi acrosslty, t,], then®;;(t,,ty) > e~ ("~DMg,
which meansb(t,ty) has ad;-cluster-spanning-tree
We also present the following assumption foft):
A4: There exist an infinite time interval sequeneg t1), [t2,t3), -, [ton, tans1), - - -, Where

to <t <ty <t3 <--- and a positive sequendé; } which satisfiesz,j;"{(5;‘3)”‘1 = +o00. And

for any [tay, tax11), there is a divisionty, = 15, < t;k - < t9-1 = topy1, such thatL(t) has
+1

a d;-cluster-spanning-tree acrogg , t5;) andft” (s)ds < My, i # j with someM; > 0,

m=0,---,n—2.

Then, we have the following theorem.

Theorem 1:Assume thatl(t) satisfies assumptiond,, 4, and A,. If input /(¢) satisfies
assumptionds, then system[{1) intra-cluster synchronizes.

Proof: Under the assumptiongl;, A;, system[(ll) has a unique solution for any given
initial value x(to) [22], which has the formx(t) = ®(t,to)x(to) + ft s)I(s)ds with ®(-,-)
defined in Lemmal2, which implies thétt;t* ¢,,),7 = 0, --- ,n—2 are stochastic matrices and
have ad-cluster-spanning-tree withf, = min{1, d,}e~ ™Y > 0. Lemma 1 in[[9] indicates
that ®(tor.1,%0x) is mi-cluster-scrambling withy, = (§,)"'. By inequality [2), for anyt €
(ton, tan—1), we haveAe(P(t,to)) < [Ti (1 — m)Ac(En).

The assumptiol ;=5 67~ = +oo implies ;> n;, = +oc, which is equivalent tbim,, ., []r_,(1—
ne) = 0. Hence,Aq(®(t,ty)) converges to zero as time tends to infinity. Sirfag) satisfies
the inter-cluster common influence condition, the clustensensus subspace is an invariant
subspace ofb(t, ;). Note thatAc(/(t)) = 0. Thus A (P(¢,t0)I(t)) = 0 for all t > ¢, which
meansAc(fti ®(t,s)I(s)ds) = 0. Therefore, we havé\c(z(t)) < Ac(P(t,t0)x(to)) converges

to zero ast — oo. |
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For any vectorz = [z, -+, 2x] ", define
1(z) = min |z; — zj| (7)
i#]

Theorem 2:Assume thaf.(¢) satisfies assumption$;, .4, and.A,. Let ¥(¢, ty) be the solution
matrix of systemz(t) = B(t)z(t). If I(t) satisfies assumptiosl;, I;(¢) does not converge to
zero,i =1,--- ,n, andlimsup n(ftto W(t,s)I(s)ds) > &' with somed’ > 0, then for almost all
initials x (o), system IIll)tF}eO;ches cluster consensus.

Proof: We only need to prove that for almost all initiat$t,), system reaches inter-cluster

separation. We introduce the Lyapunov exponenfbf (5) deviist

—1
o) = T og 10(t tael ).

From the Pesin’s theory [23], the Lyapunov exponents cag pitk finite values and provide a
splitting of R”. Namely, there is a subspace direct-sum divisith:= @7_,V;, and\; > --- >
As, possiblyJ < n, such that for each € V;, A(v) = A,. It's clear that\; = 0 becauselL(t) is

a Metzler matrix with zero row sum. Lét = @;.,V;.

We make the following claim.

Claim: R" = S¢ + V. This claim is proved in the Appendix. Therefore, for any,) € R",
we can find a vectoy, € S¢ such thatx(ty) — yo € V. Supposey(t) is the solution of system:
y(t) = L)y (t)+1(t), y(to) = yo. Lettingdx(t) = x(t)—y(t), then it satisfiesz(t) = L(t)dx(t)
with dx(ty) = yo — z(ty) € V, which implieslim;_,., dz(t) = 0, i.e. lim;_,[z(t) — y(t)] = 0.

Thus, instead of:(¢), we will discuss whethey(t) € S¢ inter-cluster separate. Furthermore,
we can replacey(t) by a lower-dimensional vectoj(t) € R® with g,(t) = y;(t) for some
i € Cp.

Then, we will discuss the following system:

y(t) = B(t)g(t) + 1(t) (8)
where B(t) is defined in assumptiord, and (¢) is defined in assumptiods. It is well known
that the solution of[(8) can be written as

GO = Wt t)ilte) + / W(t, 5)F(s)ds

to

Since ¥(t,t,) is a stochastic matrix angl(ty) is bounded, we have/;(t) = W(t, to)y(ty) is

always bounded. Hence, for any time sequefige, Z;(¢,) has a convergent sub-sequence, still
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denoted by{t,}. Let Z,(t ft s)ds. From the conditiodim sup,_, . 7.(Z5(t)) > ¢,
one can find a time sequen(:e} ©, such thatr;c(Z2( »)) > ¢'/2. This implies that each pair of
components i, (t,,) are not identical. Without loss of generality, supptise, .., Z,(t,) = Z},
lim,, o0 Zz(fn) = Z3; otherwise, we can choose a sub-sequencéfp} instead. Obviously,
n(Z3) > 5—’ Furthermore, for almost every initial valugt,), associated with almost every
7(to), Z1(t,)7(to) + Z2(t,) has no pair of components identical whenis sufficiently large.
Therefore, for almost every initial valugt,), whenn is sufficiently large(t,) has no identical
components, which implies that the state of one cluster(in) are not identical to anothem
In the following corollaries, we suppose the inputs amorftent clusters differ by propor-

tionality constants,
Li(t) = apu(t), if i€C, 9

aq,- -+, o are constants and(?) is a scale function. Lef = [ay, - - - , ax]T. This kind of input
is easy to construct, as we only need to give a scale inpijtand .
Corollary 1: SupposeL(t) satisfiesA;, Ay, Ay and I(t) has form [9) with.A;. Let (¢, )

be the solution matrix of(t) = B(t)z(t). If u(t) does not converge to zero atich sup

t—o0
rank( ft Ju(s)ds) = K, then for almost all initialsz(¢y) and ¢, systemI[(Ll) can cluster
consensus.
Proof: Let Z3(t) = ft U(t, s)u(s)ds. From the assumptiolim sup rank( ft ,S)u(s)ds) =

l—=o0

K, one can find a time sequenég,}>>, such thatlim,, ., Z3(t,) = Zi and rank(Zg) =K.
Hence, the sef(|there exist i, j, such that [Z;(); = [Z:(];} is of zero measure iR”, which
means that for almost every € R¥, each pair of components iﬁgf are not identical, i.e.
n(Z:¢) > 20" with somed’ > 0. Therefore, all conditions in Theorem 2 hold. u

In the following corollary, we discuss th&atic inter-cluster common influenoase, that is
Aj: There exists a constaiit™* stochastic matrix3 = [B, ] _,, such that

ZLU pq7 ZECp, pvq_l K (10)

J€Cq

Corollary 2: Supposel.(t) satisfies the assumptions, A%, A, and(t) satisfies assumption
A; and [9). Ifu(t) does not converge to zero, then for almost all initialg ) andg, the solution

of system[(ll) can cluster consensus.
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Proof: Note thate®(~%) is the solution matrix of;(t) = Bz(t). According to Corollary
[, we only need to provéimsup, .. rank(ffo eBt=s)y(s)ds) = K. Suppose the eigenvalues
of B are ui,---,ux (possibly overlap), then the eigenvalues 10f,(¢) should beF;(t) =
fti etit=)y(s)ds, i = 1,---, K. From the assumptions,(¢) should be positive and negative
intermittently with respect to time. Hence, there exigts}> , such thaflim,,_,., Fj(f,) = Fy #
0,i=1,---,K. ]

Remark 4:In Corollary 2, the assumption of existence of a static hetaster common
influence matrixB can be weaken to be in the form aft)B, with a scalar function(t).
The sufficient condition can be easily derived from the abawalysis.

Remark 5:The realization of the input$;(¢) is technical: First, to realize inter-cluster sepa-
ration, /;(¢) cannot converge to zero asymptotically; otherwise, itaierice to the system could
disappear; Secong"ti I;(s)ds should be bounded to guarantee boundedness of the systéch, wh
implies that/;(¢) should be positive and negative intermittently with regpet¢ime, which results
in the algebraic difference (without absolute values) leetvthe states in different clusters is
positive and negative intermittently as well. In particul& can be proved that the inter-cluster
absolute difference has infinite zeros, which implies thatalgebraic values cross zeros infinitely
(the proof has not been shown in this paper due to the spaig For example/;(t) = «a; sin(t)

in the following.

IV. SIMULATIONS

In this section, two numerical simulations are providedltestrate the validity of the proposed
theoretic results. The graph models considered here coome [24]. We consider two time-
varying graph models: one is so callgdnearest- neighborhood regular grapffhe graph
has N nodes, ordered byl,---, N}. Each node has2r neighbors{(i + j) mod N : j =
+1,---,£r}, where mod denotes modular operator. The nodes are divitedii groups:
Cr={i:i mod K=k},k=0,---,K—1, whereN mod K = 0. The other one ibipartite
random graph NV (an even integer) nodes are divided into two groups and eamkpdasi/2
nodes. Each node has neighbors, among which there are< m neighbors in the same group
and the remaining in another group. The neighbors are chagbrequal probability.

In these two examples, nodes are divided into two clustetsred by red and blue respectively.
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The non-identical inputs are defined as :

L(t) = apsin(t),p =1, 2.

corresponding to each group witly, a; are randomly selected in [0,10] with the uniform

distribution. Intra-cluster synchronization is measubgddifference of states in same clusters:

Ac(z(t)) = max max |z;(t) — xy(t)]

P i,i'E€C
Inter-cluster separation is measured:pyz(t)) defined in [(¥).

Realize these two graph models respectively. We take alswgdime sequencét, }/ =5 as
a partition of [0, +o00) with 0 = ¢, < ¢; < ---. DenoteAt; = t; — t;_1, and the switching time
interval At; is uniformly distributed on(0, 1).

At every switching time, the graph topology stochasticaliyose from these two topologies
given in the top panels of Figs. 1 (a) and (b) respectively. £e& [t;_;,tx), take L;;(t) =
sin(”(t%t’:l)) if j is a neighbor ofi; otherwise,L;;(t) = 0 and L;;(t) = — >, Li;(t). Pick
d = 1. L(t) hasd-cluster-spanning-trees acrogs t,,3). Furthermore, the input(¢) = sin(¢)
and its integral are both bounded. Meanwhile, we notice tti@inter-cluster common influence
matrix satisfies:B(t) = sz’n(”(%‘:l))B whent,_; <t < t;. DenoteB(t) = b(t)B. V(t,ty) =
el P98 s the solution matrix of system(t) = B(t)z(t).

Therefore, all conditions in Theorems 1 and 2 are satisfiado8e the initial values randomly.
In Fig.1(a) and (b), the dynamical behaviors of the statespéwtted, while nodes in the same
clusters are plotted in same color. In the bottom panels @flRa) and (b) , the blue, red and
green curves respectively show the dynamical behaviorsg.(@f(t)), A.(z(t)) andn.(z(t)) +
n.(v(t)) with respect to the time-varying topologies, whefe) = (). All of them show that the
cluster consensus is reached. Please note that accordimgacguments beforé,(t) = «, sin(¢)
takes negative and positive values intermittently so yfj)ati(s)ds is bounded with respect tQ
but never converges to zero. This implies that there areitefireros ofr. since its algebraic

values cross zeros infinite times, as shown in the third gaoieFig 1 (a,b) respectively.

V. CONCLUSIONS

In this paper, we have investigated cluster consensusemolsl continuous-time networks of

multi-agents with non-identical inter-cluster inputs.fi@ient conditions for cluster consensus
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(@) Network topologies varying fromp-nearest- neighbor(b) Network topologies varying from bipartite random graph
hood regular graph models. models.

Fig. 1. The dynamics of statds:;(¢)} and measured.(z(t)),n.(x(¢)). Red and blue nodes show the two clusters of nodes
respectively.

for systems with time-varying graph topologies were deativBy defining cluster consensus
subspace, cluster consensus problem was transformed tiabidity of the cluster consensus
subspace under inter-cluster common influence conditibe.Separation among states in differ-
ent clusters were guaranteed by external inputs. From &gebraph theory, it was indicated
that the receiving same amount of information for agentshan game cluster is a doorsill for
the complete synchronization of agents in the same clubter. effectiveness of the proposed
theoretical results were demonstrated by numerical sithonis
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VI. APPENDIX

Proof of Claim 1: Define aR™"™ nonsingular matrix° = [Py, - - - , P,] with the first X" column

vectors composed of a basis 8f. Thus, let

> B(t) Lyot

L(t) 2 PT'L(t)P = () Lia(t)
O Lap(t)

i U(t,tg) ®ia(t,t

D(t, tg) £ P1d(t, o) P = (. to) A172( 0)

o (1)272<t7 tO)

whereW (¢, ty) is the solution matrix of system(t) = B(t)x(t). We define theprojection radius
(w.r.t. C) of ®(t,ty) as follows:

L ) 1/t
pe(@(- ) = T { ()]}

and thecluster Hajnal diametefw.r.t. C) of ®(t,t,) as follows:

pcto o) = T Actott i)}

for some norm| - || that is induced by vector norm. Select one single rowb(n, ¢,) from each
cluster and compose these rows into a matrix, denoted by HGLe [Py, - - -, Pk]|. It can be

seen that the rows ai" H corresponding to the same cluster are identical. Then, we ha

E
[®(t,t0) — GH|| = [|P71®(t, to) P — o HP|
Y A
= || . I,
O (I)Qg(t,to)

which implies pc(®(-,t9)) < Ac(P(-,%p)). In Theorem 1,Ax(P(+,t9)) < 1 has been proved.
Thus, pe(®(-, 1)) < 1, which meansb, ,(t,t,) converges to zero matrix exponentially.
It can be seen thab(t,t,) is the solution matrix of systens(t) = P~'L(t)Pw(t). Consider

A

the block form of vectoru(t) = & (¢, to)w(ty):

wy (t) = W(t, to)ws (te) + P1a(t, to)wa(to)

Wy (t) = By o (t, to)ws(ty).

(11)
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pc(®(-,t9)) < 1 implies thatw,(t) converges to0 exponentially. Then define the operators
Ry = limy_,o, U7L(t, to)im(t, to). It can be verified thak, is well defined. Consider a subspace
of R™: V = {[zT,vT]T eR": z=—-Ryv;.

For any n-dimensional vectorw, = [zo,v0]", We rewritew, as a sum ofw} + w2 with
wy = [25,0]7, w2 = [22,v0]". If we takew(ty) = w? and pick 22 such thatw? € V, then
w(t) converges td exponentially. That isPQuw? € V. On the other hand’Qw; corresponds
a vector inSc. Therefore, for anyn-dimensional vector:,, we can findw,, such thatz, =
PQuy = PQuwy + PQu2 € S¢ + V.
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