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Abstract

In this paper, cluster consensus in continuous-time networks of multi-agents with time-varying

topologies via non-identical inter-cluster inputs is studied. The cluster consensus contains two aspects:

intra-cluster synchronization, that the state differences between agents in the same cluster converge to

zero, and inter-cluster separation, that the states of the agents in different clusters do not approach.δ-

cluster-spanning-tree in continuous-time networks of multi-agent systems plays essential role in analysis

of cluster synchronization. Inter-cluster separation canbe realized by imposing adaptive inputs that

are identical within the same cluster but different in different clusters, under the inter-cluster common

influence condition. Simulation examples demonstrate the effectiveness of the derived theoretical results.

Index Terms

Cluster consensus, multi-agent system, cooperative control, linear system

I. INTRODUCTION

Consensus problems of multi-agent systems have attracted broad attentions from various

contexts (see [1]-[3]). In general, the main objective of consensus problems is to make all
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agents converge to some common state by designing proper algorithms. For this purpose, various

consensus algorithms have been proposed [4]-[8].

The results of almost all previous works were concerned withconsensus with a common

consistent state, while we are considering cluster consensus, i.e., agents in networks are divided

into several disjoint groups, calledclusters, in the sense that all agents in the same cluster

completely synchronize but the dynamics in different clusters does not coincide. In reality, a

number of practical models can be transformed into this cluster consensus problem, for instance,

social learning network under different environments [9].Social learning focuses on the opinion

dynamics in the society, in which individuals engage in communication with their neighbors

in order to learn from their experiences. Consider that the belief of each individual is affected

by different religious beliefs or cultural backgrounds. This affection flags the clusters that each

individual belongs to.

In [10]-[15], the authors considered cluster (group) synchronization (consensus) problems of

networks with multi-agents. In [10], [11], for linearly coupled multi-agents systems, the authors

derived conditions on coupling matrix to guarantee group consensus(intra-cluster synchroniza-

tion) , but the inter-cluster separation was not considered. In [12], agents in different clusters

have different dynamics of uncoupled node systems, the inter-cluster separation was not proved

rigorously (but only assumed). Since it is quite difficult toprove inter-cluster separation for

general nonlinear coupled systems (up to now, no way to prove). In [14], the dynamics of nodes

are special, hence, the final states of agents can be given directly. In this paper, In this paper,

the inter-cluster separation is actually one of main aims, which is realized by imposing the

inter-cluster different, intra-cluster identical inputs.

In our previous paper [9], we investigated cluster consensus problem in discrete-time networks

of multi-agents, which provided the basic ideas. However, There still is big difference between

discrete-time networks and continuous-time system. In addition, in comparison with [9], in the

present paper, the static inter-cluster influence matrix in[9] is replaced by time-varying inter-

cluster influence matrix sequence; the assumption of existence of self-links in [9] are removed;

the formation of inputs to a more general scenario are extended, while [9] considered that the

inputs among different clusters only differ by a proportionality constant. Finally, the concepts

relating graph theory are generalized, too. For example, wepropose ”δ-cluster-spanning-tree

across time intervalI” (see below).
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II. PRELIMINARIES

In this section, we present some necessary notations and definitions of graph and matrix theory.

For more details, we refer readers to textbooks [17], [18].

For a matrixL, denoteLij the element ofL on thei-th row andj-th column.L⊤ denotes the

transpose ofL. En andOn denote then-dimensional identity matrix and zero matrix.1 denotes

the column vector whose components all equal to1 and 0 denotes the column vector whose

components all equal to0. ‖z‖ denotes a vector norm of a vectorz and‖L‖ denotes the matrix

norm ofL induced by the vector norm‖ · ‖.

An n× n matrix A is called astochastic matrixif Aij ≥ 0 for all i, j, and
∑n

j=1Aij = 1 for

i = 1, · · · , n. An n× n matrix L is called aMetzler matrix with zero row sumsif Lij ≥ 0 and
∑n

j=1Lij = 0 holds for all i 6= j, i = 1, · · · , n.

A directed graphG = {V, E} consists of a vertex setV = {v1, · · · , vn}, a directed edge set

E ⊆ V × V, i.e., an edge is an ordered pair of vertices inV. A (directed)path of length l from

vertexvj to vi, denoted by(vr1 , · · · , vrl+1
), is a sequence ofl+1 distinct vertices withvr1 = vi

and vrl+1
= vj such that(vrk , vrk+1

) ∈ E . We say thatG has self-links if(vi, vi) ∈ E for all

vi ∈ V.

An n× n nonnegative matrixA can be associated with a directed graphG(A) in such a way

that (vi, vj) ∈ E(G(A)) if and only if Aij > 0. Similarly, for a Metzler matrixL, it is associated

with a graph without self-links, denoted byG(L).

Definition 1: [9] For a graphG = (V, E), a clustering C is defined as a disjoint division

of the vertex set, namely, a sequence of subsets ofV, C = {C1, · · · , CK}, that satisfies: (1)
⋃K

p=1 Cp = V; (2) Ck
⋂

Cl = ∅, k 6= l.

Consider the following continuous-time system with external adapted inputs:

ẋi(t) =

n
∑

j=1

Lij(t)[xj(t)− xi(t)] + Ii(t), i = 1, · · · , n (1)

where t ∈ R
+ = [0,∞) and xi(t) ∈ R denotes the state variable of the agenti, Lij(t) ≥ 0

denotes the coupling weight from agentj to i, Ii(t), i = 1, · · · , n are external scalar inputs. Let

Lii(t) = −
∑n

j=1,j 6=iLij(t), then for eacht > 0, the connection matrixL(t) = [Lij(t)]
n
i,j=1 is

a Metzler matrix with zero row sum. The matrixL(t) is associated with a time-varying graph

G(L(t)).
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For systems with switching topologies, some researchers introduce the concept of dwell time,

which is a pre-specified positive constant to describe the time length staying in current topology,

i.e., in some time interval[t1, t2], L(t) = L are constant. In this paper, we don’t make this

assumption. By using the concept ofδ-edge [16], we transform the continuous-time case to the

discrete case with some sophisticated analysis.

Definition 2: G(L(t)) is said to have aδ-edge from vertexvj to vi across[t1, t2), if
∫ t2
t1

Lij(t)dt >

δ. For a given clusteringC = {C1, · · · , CK}, L(t) has aδ-cluster-spanning-tree across[t1, t2)

(w.r.t. C) if each clusterCp, p = 1, · · · , K, has a vertexvp ∈ V and aδ-path (path composed of

δ-edges) fromvp to all vertices inCp across[t1, t2).

It should be pointed out that the root ofCp and the paths from the root to the vertices inCp

do not necessarily inCp; the root vertex of a cluster is unnecessarily identical with roots in other

clusters.

Definition 3: For a given clusteringC = {C1, · · · , CK}, we sayG is cluster-scrambling(w.r.t.

C) if for any pair of vertices(vp1, vp2) ⊂ Cp, there exists a vertexvk ∈ V, such that both(vk, vp1)

and (vk, vp2) are inE .

In [9], we extended ergodicity coefficient [19] and Hajnal diameter [20] to the clustering case

and defined the cluster ergodicity coefficient (w.r.tC) of a stochastic matrixA as

µC(A) = min
p=1,··· ,K

min
i,j∈Cp

N
∑

k=1

min(Aik, Ajk)

It can be seen thatµC(A) ∈ [0, 1] andA is cluster-scrambling (w.r.t.C) if and only if µC(A) > 0.

Furthermore, we sayA is δ-cluster-scramblingif µC(A) > δ.

Hajnal diameter proposed in [20] was also generalized to thecluster case:

Definition 4: [9] For a given clusteringC and a matrixA, which has row vectorsA1, A2, · · · , An,

define the cluster Hajnal diameter as∆C(A) = maxp=1,··· ,K maxi,j∈Cp
‖Ai −Aj‖ for some norm

‖ · ‖.

Remark 1: In [9], we have generalized Hajnal inequality to the following cluster Hajnal

inequality, i.e.

∆C(AB) ≤ (1− µC(A))∆C(B) (2)

whereA is a stochastic matrix andB is a matrix or a vector.

This inequality indicates that the cluster Hajnal diameterof AB strictly decreases when

compared withB, if A is cluster scrambling, i.e.,µC(A) > 0.
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III. CLUSTER CONSENSUS ANALYSIS

Let x(t) = [x1(t), · · · , xn(t)]
⊤ ∈ R

n denote the state trajectory of all agents andI(t) =

[I1(t), · · · , In(t)]
⊤. The system (1) can be written in the following impact form:

ẋ(t) = L(t)x(t) + I(t) (3)

Definition 5: System (3) is said to beintra-cluster synchronizedif any solutionx(t) satisfies

limt→∞ |xi(t) − xi′(t)| = 0 for all i, i′ ∈ Cp and p = 1, · · · , K; inter-cluster separatedif

lim supt→∞mini∈Ck,j∈Cl,k 6=l |xi(t)−xj(t)| > 0. The system (1) realizescluster consensusif each

solutionx(t) is bounded, intra-cluster synchronized and inter-clusterseparated.

It can be seen that intra-cluster synchronization is equivalent to the stability of the following

cluster consensus subspacew.r.t. the clusteringC:

SC =

{

x ∈ R
n : xi = xj , if i, j ∈ Cp, p = 1, · · · , K

}

A prerequisite requirement for cluster consensus is thatSC should be invariant through (1).

Lemma 1: If the following conditions are satisfied: (1).Ii(t) = Ij(t) for all i, j ∈ Cp and all

p = 1, · · · , K; (2). for each pair ofp and q,
∑

j∈Cq
Lij(t) is identical w.r.t. alli ∈ Cp at any

time t, then the cluster-consensus subspace is invariant through(1).

The proof is similar to Lemma 3 in [9] and is omitted.

The input is said to beintra-cluster identicalif the condition (1) in Lemma 1 is satisfied, and

the matrixL(t) has inter-cluster common influenceif condition (2) is satisfied.

DenoteBpq(t) ,
∑

j∈Cq
Lij(t) w.r.t. all i ∈ Cp at any timet and callB(t) = [Bpq(t)] the

inter-cluster common influence matrix.

A. Theoretical results

In the following, we assume

• A1: For any t ≥ t0, L(t) is Metzler matrix with all row sums zeros and the elements

Lij(t) ≥ 0 are piecewise continuous;

• A2 (inter-cluster common influence): For anyt ≥ t0, there exists a zero row sum Metzler

matrix B(t) = [Bp,q(t)]
K
p,q=1 ∈ RK,K, where

∑

j∈Cq

Lij(t) = Bp,q(t), i ∈ Cp, p, q = 1, · · · , K (4)
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We highlight that the conceptinter-cluster common influencecoincides with the concept

odrinary lumpabilityin Markov chain theory [21].

A3: For any i, Ii(t) is piecewise continuous, bothIi(t) and
∫ t

t0
Ii(s)ds are bounded, and

Ii(t) = Ij(t) , Ĩp(t), for all i, j ∈ Cp, p = 1, · · · , K. Let Ĩ(t) = [Ĩ1(t), · · · , ĨK(t)]
⊤.

Remark 2: In this paper, we focus on finding the simplest external inputs to guarantee the

intra-cluster synchronization and inter-cluster separation. Here the inputs are intra-cluster identi-

cal, which counts for intra-cluster synchronization, and inter-cluster different and state-independent,

which counts for the inter-cluster separation

Remark 3: If the linearly coupled system can intra-cluster synchronize, the external inputs

proposed in this paper can always be used to guarantee the inter-cluster separation, which implies

cluster consensus of the linearly coupled systems.

Lemma 2:SupposeΦ(t, t0) is the basic solution matrix of the homogeneous system:

v̇(t) = L(t)v(t) (5)

whereL(t) satisfiesA1,A2. Then, (1).Φ(t, t0) is a stochastic matrix; (2). IfL(t) has aδ-cluster-

spanning-tree across time interval[t0, t1) and
∫ t1
t0

Lij(s)ds < M1 holds for all i 6= j and some

M1 > 0, thenΦ(t1, t0) has aδ1-cluster-spanning-tree, whereδ1 = min{1, δ}e−(n−1)M1 .

Proof. 1). DenoteΦ(t, t0) = [Φij(t, t0)] ∈ R
n×n. SinceL(t) satisfies assumptionA2, if x(t0) =

1n, then the solution must bex(t) = 1n, which implies each row sum ofΦ(t, t0) equals 1. Next,

we will prove all elements inΦ(t, t0) are nonnegative. Note that thei-th column ofΦ(t, t0) can

be regarded as the solution of the following equation:










ẋ(t) = L(t)x(t)

x(t0) = eni

(6)

hereeni is ann-dimensional vector whosei-th component is 1 and all the other components are

zero. For anyt > t0, if i0 = i0(t) is the index withxi0(t) = minj=1,··· ,n xj(t), then ẋi0(t) =
∑

j 6=i0
Li0j(xj(t) − xi0(t)) ≥ 0. This implies thatminj xj(t) is always nondecreasing for all

t > t0. Therefore,x(t) ≥ 0 holds for t ≥ t0. Therefore,Φ(t, t0) is a stochastic matrix.

2). Consider system (6), sincexj(t) ≥ 0 holds for all j = 1, · · · , n, so ẋi(t) ≥ Lii(t)xi(t),

andxi(t) ≥ e
∫ t

t0
Lii(s)ds ≥ e−(n−1)M1 . Meanwhile, we can conclude thatΦii(t1, t0) is positive. For
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eachk 6= i,

xk(t) =
∑

j 6=k

∫ t

t0

e
∫ t

τ
Lkk(s)dsLkj(τ)xj(τ)dτ

≥

∫ t

t0

e
∫ t

τ
Lkk(s)dsLki(τ)xi(τ)dτ

≥ e−(n−1)M1

∫ t

t0

Lki(τ)dτ

So, if L(t) has aδ-edge from vertexj to vertexi across[t0, t1], thenΦij(t1, t0) ≥ e−(n−1)M1δ,

which meansΦ(t1, t0) has aδ1-cluster-spanning-tree

We also present the following assumption forL(t):

A4: There exist an infinite time interval sequence[t0, t1), [t2, t3), · · · , [t2n, t2n+1), · · · , where

t0 < t1 ≤ t2 < t3 ≤ · · · and a positive sequence{δk} which satisfies
∑+∞

k=1(δk)
n−1 = +∞. And

for any [t2k, t2k+1), there is a division:t2k = t02k < t12k < · · · < tn−1
2k = t2k+1, such thatL(t) has

a δk-cluster-spanning-tree across[tm2k, t
m+1
2k ) and

∫ tm+1

2k

tm
2k

Lij(s)ds < M1, i 6= j with someM1 > 0,

m = 0, · · · , n− 2.

Then, we have the following theorem.

Theorem 1:Assume thatL(t) satisfies assumptionsA1,A2 and A4. If input I(t) satisfies

assumptionA3, then system (1) intra-cluster synchronizes.

Proof: Under the assumptionsA1,A3, system (1) has a unique solution for any given

initial value x(t0) [22], which has the formx(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, s)I(s)ds with Φ(·, ·)

defined in Lemma 2, which implies thatΦ(ti+1
2k , ti2k), i = 0, · · · , n−2 are stochastic matrices and

have aδ′k-cluster-spanning-tree withδ′k = min{1, δk}e
−(n−1)M1 > 0. Lemma 1 in [9] indicates

that Φ(t2k+1, t2k) is ηk-cluster-scrambling withηk = (δ′k)
n−1. By inequality (2), for anyt ∈

[t2n, t2n−1), we have∆C(Φ(t, t0)) ≤
∏n

k=1(1− ηk)∆C(En).

The assumption
∑+∞

k=1 δ
n−1
k = +∞ implies

∑+∞
k=1 ηk = +∞, which is equivalent tolimn→∞

∏n
k=1(1−

ηk) = 0. Hence,∆C(Φ(t, t0)) converges to zero as time tends to infinity. SinceL(t) satisfies

the inter-cluster common influence condition, the cluster consensus subspace is an invariant

subspace ofΦ(t, t0). Note that∆C(I(t)) = 0. Thus∆C(Φ(t, t0)I(t)) = 0 for all t ≥ t0, which

means∆C(
∫ t

t0
Φ(t, s)I(s)ds) = 0. Therefore, we have∆C(x(t)) ≤ ∆C(Φ(t, t0)x(t0)) converges

to zero ast → ∞.
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For any vectorz = [z1, · · · , zK ]
⊤, define

η(z) = min
i 6=j

|zi − zj| (7)

Theorem 2:Assume thatL(t) satisfies assumptionsA1,A2 andA4. LetΨ(t, t0) be the solution

matrix of systemż(t) = B(t)z(t). If I(t) satisfies assumptionA3, Ii(t) does not converge to

zero, i = 1, · · · , n, and lim sup
t→∞

η(
∫ t

t0
Ψ(t, s)Ĩ(s)ds) ≥ δ′ with someδ′ > 0, then for almost all

initials x(t0), system (1) reaches cluster consensus.

Proof: We only need to prove that for almost all initialsx(t0), system reaches inter-cluster

separation. We introduce the Lyapunov exponent of (5) as follows:

λ(v) = lim
t→∞

1

t
log

(

‖Φ(t, t0)v‖

)

.

From the Pesin’s theory [23], the Lyapunov exponents can only pick finite values and provide a

splitting of Rn. Namely, there is a subspace direct-sum division:R
n = ⊕J

j=1Vj, andλ1 > · · · >

λJ , possiblyJ < n, such that for eachv ∈ Vj, λ(v) = λj. It’s clear thatλ1 = 0 becauseL(t) is

a Metzler matrix with zero row sum. LetV = ⊕j>1Vj.

We make the following claim.

Claim: Rn = SC + V . This claim is proved in the Appendix. Therefore, for anyx(t0) ∈ R
n,

we can find a vectory0 ∈ SC such thatx(t0)− y0 ∈ V . Supposey(t) is the solution of system:

ẏ(t) = L(t)y(t)+I(t), y(t0) = y0. Lettingδx(t) = x(t)−y(t), then it satisfies˙δx(t) = L(t)δx(t)

with δx(t0) = y0 − x(t0) ∈ V , which implieslimt→∞ δx(t) = 0, i.e. limt→∞[x(t)− y(t)] = 0.

Thus, instead ofx(t), we will discuss whethery(t) ∈ SC inter-cluster separate. Furthermore,

we can replacey(t) by a lower-dimensional vector̃y(t) ∈ RK with ỹp(t) = yi(t) for some

i ∈ Cp.

Then, we will discuss the following system:

˙̃y(t) = B(t)ỹ(t) + Ĩ(t) (8)

whereB(t) is defined in assumptionA2 and Ĩ(t) is defined in assumptionA3. It is well known

that the solution of (8) can be written as

ỹ(t) = Ψ(t, t0)ỹ(t0) +

∫ t

t0

Ψ(t, s)Ĩ(s)ds

SinceΨ(t, t0) is a stochastic matrix and̃y(t0) is bounded, we haveZ1(t) = Ψ(t, t0)ỹ(t0) is

always bounded. Hence, for any time sequence{tn}, Z1(tn) has a convergent sub-sequence, still

DRAFT



9

denoted by{tn}. Let Z2(t) =
∫ t

t0
Ψ(t, s)Ĩ(s)ds. From the conditionlim supt→∞ ηc(Z2(t)) ≥ δ′,

one can find a time sequence{t̂i}∞i=1 such thatηc(Z2(t̂n)) ≥ δ′/2. This implies that each pair of

components inZ2(t̂n) are not identical. Without loss of generality, supposelimn→∞Z1(t̂n) = Z∗
1 ,

limn→∞ Z2(t̂n) = Z∗
2 ; otherwise, we can choose a sub-sequence of{t̂n} instead. Obviously,

ηc(Z
∗
2) ≥ δ′

2
. Furthermore, for almost every initial valuex(t0), associated with almost every

ỹ(t0), Z1(t̂n)ỹ(t0) + Z2(t̂n) has no pair of components identical whenn is sufficiently large.

Therefore, for almost every initial valuex(t0), whenn is sufficiently large,̃y(t̂n) has no identical

components, which implies that the state of one cluster iny(t̂n) are not identical to another.

In the following corollaries, we suppose the inputs among different clusters differ by propor-

tionality constants,

Ii(t) = αpu(t), if i ∈ Cp (9)

α1, · · · , αK are constants andu(t) is a scale function. Let̃ζ = [α1, · · · , αK ]
⊤. This kind of input

is easy to construct, as we only need to give a scale inputu(t) and ζ̃.

Corollary 1: SupposeL(t) satisfiesA1,A2,A4 and I(t) has form (9) withA3. Let Ψ(t, t0)

be the solution matrix oḟz(t) = B(t)z(t). If u(t) does not converge to zero andlim sup
t→∞

rank(
∫ t

t0
Ψ(t, s)u(s)ds) = K, then for almost all initialsx(t0) and ς̃ , system (1) can cluster

consensus.

Proof: LetZ3(t) =
∫ t

t0
Ψ(t, s)u(s)ds. From the assumptionlim sup

t→∞

rank(
∫ t

t0
Ψ(t, s)u(s)ds) =

K, one can find a time sequence{t̂n}∞n=1 such thatlimn→∞Z3(t̂n) = Z∗
3 and rank(Z∗

3) = K.

Hence, the set{ζ̃|there exist i, j, such that [Z∗
3 ζ̃ ]i = [Z∗

3 ζ̃]j} is of zero measure inRK , which

means that for almost everỹζ ∈ R
K , each pair of components inZ∗

3 ζ̃ are not identical, i.e.

η(Z∗
3 ζ̃) ≥ 2δ′ with someδ′ > 0. Therefore, all conditions in Theorem 2 hold.

In the following corollary, we discuss thestatic inter-cluster common influencecase, that is

A∗
2: There exists a constantRK,K stochastic matrixB = [Bp,q]

K
p,q=1, such that

∑

j∈Cq

Lij(t) = Bp,q, i ∈ Cp, p, q = 1, · · · , K (10)

Corollary 2: SupposeL(t) satisfies the assumptionsA1,A
∗
2,A4 andI(t) satisfies assumption

A3 and (9). Ifu(t) does not converge to zero, then for almost all initialsx(t0) and ς̃, the solution

of system (1) can cluster consensus.
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Proof: Note thateB(t−t0) is the solution matrix ofż(t) = Bz(t). According to Corollary

1, we only need to provelim supt→∞ rank(
∫ t

t0
eB(t−s)u(s)ds) = K. Suppose the eigenvalues

of B are µ1, · · · , µK (possibly overlap), then the eigenvalues ofW2(t) should beFi(t) =
∫ t

t0
eµi(t−s)u(s)ds, i = 1, · · · , K. From the assumptions,u(t) should be positive and negative

intermittently with respect to time. Hence, there exists{t̂n}
∞
n=1 such thatlimn→∞ Fi(t̂n) = F ∗

1 6=

0, i = 1, · · · , K.

Remark 4: In Corollary 2, the assumption of existence of a static inter-cluster common

influence matrixB can be weaken to be in the form ofa(t)B, with a scalar functiona(t).

The sufficient condition can be easily derived from the aboveanalysis.

Remark 5:The realization of the inputsIi(t) is technical: First, to realize inter-cluster sepa-

ration,Ii(t) cannot converge to zero asymptotically; otherwise, its influence to the system could

disappear; Second,
∫ t

t0
Ii(s)ds should be bounded to guarantee boundedness of the system, which

implies thatIi(t) should be positive and negative intermittently with respect to time, which results

in the algebraic difference (without absolute values) between the states in different clusters is

positive and negative intermittently as well. In particular, it can be proved that the inter-cluster

absolute difference has infinite zeros, which implies that the algebraic values cross zeros infinitely

(the proof has not been shown in this paper due to the space limit). For example,Ii(t) = αi sin(t)

in the following.

IV. SIMULATIONS

In this section, two numerical simulations are provided to illustrate the validity of the proposed

theoretic results. The graph models considered here come from [24]. We consider two time-

varying graph models: one is so calledp-nearest- neighborhood regular graph. The graph

hasN nodes, ordered by{1, · · · , N}. Each nodei has2r neighbors:{(i + j) mod N : j =

±1, · · · ,±r}, where mod denotes modular operator. The nodes are divided into K groups:

Ck = {i : i mod K = k}, k = 0, · · · , K − 1, whereN mod K = 0. The other one isbipartite

random graph. N (an even integer) nodes are divided into two groups and each group hasN/2

nodes. Each node hasm neighbors, among which there ares < m neighbors in the same group

and the remaining in another group. The neighbors are chosenwith equal probability.

In these two examples, nodes are divided into two clusters, colored by red and blue respectively.
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The non-identical inputs are defined as :

Ip(t) = αpsin(t), p = 1, 2.

corresponding to each group withα1, α2 are randomly selected in [0,10] with the uniform

distribution. Intra-cluster synchronization is measuredby difference of states in same clusters:

∆C(x(t)) = max
p

max
i,i′∈Cp

|xi(t)− xi′(t)|

Inter-cluster separation is measured byηc(x(t)) defined in (7).

Realize these two graph models respectively. We take a switching time sequence{tk}
+∞
k=0 as

a partition of[0,+∞) with 0 = t0 < t1 < · · · . Denote∆ti = ti − ti−1, and the switching time

interval∆ti is uniformly distributed on(0, 1).

At every switching time, the graph topology stochasticallychoose from these two topologies

given in the top panels of Figs. 1 (a) and (b) respectively. For t ∈ [tk−1, tk), take Lij(t) =

sin(π(t−tk−1)

∆tk
) if j is a neighbor ofi; otherwise,Lij(t) = 0 andLii(t) = −

∑

j 6=i Lij(t). Pick

δ = 1. L(t) hasδ-cluster-spanning-trees across[ti, ti+3). Furthermore, the inputu(t) = sin(t)

and its integral are both bounded. Meanwhile, we notice thatthe inter-cluster common influence

matrix satisfies:B(t) = sin(π(t−tk−1)

∆tk
)B when tk−1 ≤ t < tk. DenoteB(t) = b(t)B. Ψ(t, t0) =

e
∫ t

t0
b(s)dsB is the solution matrix of systeṁz(t) = B(t)z(t).

Therefore, all conditions in Theorems 1 and 2 are satisfied. Choose the initial values randomly.

In Fig.1(a) and (b), the dynamical behaviors of the states are plotted, while nodes in the same

clusters are plotted in same color. In the bottom panels of Fig.1 (a) and (b) , the blue, red and

green curves respectively show the dynamical behaviors ofηc(x(t)), ∆c(x(t)) and ηc(x(t)) +

ηc(v(t)) with respect to the time-varying topologies, wherev(t) , ẋ(t). All of them show that the

cluster consensus is reached. Please note that according tothe arguments before,Ip(t) = αp sin(t)

takes negative and positive values intermittently so that
∫ t

t0
Ii(s)ds is bounded with respect tot,

but never converges to zero. This implies that there are infinite zeros ofηc since its algebraic

values cross zeros infinite times, as shown in the third panels of Fig 1 (a,b) respectively.

V. CONCLUSIONS

In this paper, we have investigated cluster consensus problem in continuous-time networks of

multi-agents with non-identical inter-cluster inputs. Sufficient conditions for cluster consensus
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Fig. 1. The dynamics of states{xi(t)} and measures∆c(x(t)), ηc(x(t)). Red and blue nodes show the two clusters of nodes

respectively.

for systems with time-varying graph topologies were derived. By defining cluster consensus

subspace, cluster consensus problem was transformed to thestability of the cluster consensus

subspace under inter-cluster common influence condition. The separation among states in differ-

ent clusters were guaranteed by external inputs. From algebraic graph theory, it was indicated

that the receiving same amount of information for agents in the same cluster is a doorsill for

the complete synchronization of agents in the same cluster.The effectiveness of the proposed

theoretical results were demonstrated by numerical simulations.
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VI. A PPENDIX

Proof of Claim 1: Define aRn,n nonsingular matrixP = [P1, · · · , Pn] with the firstK column

vectors composed of a basis ofSC. Thus, let

L̂(t) , P−1L(t)P =





B(t) L̂1,2(t)

O L̂2,2(t)



 ,

Φ̂(t, t0) , P−1Φ(t, t0)P =





Ψ(t, t0) Φ̂1,2(t, t0)

O Φ̂2,2(t, t0)



 ,

whereΨ(t, t0) is the solution matrix of systeṁx(t) = B(t)x(t). We define theprojection radius

(w.r.t. C) of Φ(t, t0) as follows:

ρC(Φ(·, t0)) = lim
t→∞

{

‖Φ̂2,2(t, t0)‖

}1/t

and thecluster Hajnal diameter(w.r.t. C) of Φ(t, t0) as follows:

∆C(Φ(·, t0)) = lim
t→∞

{

∆C(Φ(t, t0))

}1/t

for some norm‖ · ‖ that is induced by vector norm. Select one single row inΦ(t, t0) from each

cluster and compose these rows into a matrix, denoted by H. Let G = [P1, · · · , PK ]. It can be

seen that the rows ofGH corresponding to the same cluster are identical. Then, we have

‖Φ(t, t0)−GH‖ = ‖P−1Φ(t, t0)P −





E

O



HP‖

= ‖





Y Z

O Φ̂22(t, t0)



 ‖,

which impliesρC(Φ(·, t0)) ≤ ∆C(Φ(·, t0)). In Theorem 1,∆C(Φ(·, t0)) < 1 has been proved.

Thus,ρC(Φ(·, t0)) < 1, which meanŝΦ2,2(t, t0) converges to zero matrix exponentially.

It can be seen that̂Φ(t, t0) is the solution matrix of systeṁw(t) = P−1L(t)Pw(t). Consider

the block form of vectorw(t) = Φ̂(t, t0)w(t0):










w1(t) = Ψ(t, t0)w1(t0) + Φ̂1,2(t, t0)w2(t0)

w2(t) = Φ̂2,2(t, t0)w2(t0).
(11)
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ρC(Φ(·, t0)) < 1 implies thatw2(t) converges to0 exponentially. Then define the operators

R1 = limt→∞ Ψ−1(t, t0)Φ̂1,2(t, t0). It can be verified thatR1 is well defined. Consider a subspace

of Rn: Ṽ =

{

[z⊤, v⊤]⊤ ∈ R
n : z = −R1v

}

.

For any n-dimensional vectorw0 = [z0, v0]
⊤, we rewritew0 as a sum ofw1

0 + w2
0 with

w1
0 = [z10 , 0]

⊤, w2
0 = [z20 , v0]

⊤. If we takew(t0) = w2
0 and pick z20 such thatw2

0 ∈ Ṽ , then

w(t) converges to0 exponentially. That is,PQw2
0 ∈ V . On the other hand,PQw1

0 corresponds

a vector inSC . Therefore, for anyn-dimensional vectorx0, we can findw0, such thatx0 =

PQw0 = PQw1
0 + PQw2

0 ∈ SC + V .
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