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Abstract. Electric vehicles represent a promising technology for
reducing emissions and dependence on fossil fuels and have started
entering different automotive markets. In order to bolster their
adoption by consumers and hence enhance their penetration rate,
a charging station infrastructure needs to be deployed. This pa-
per studies decentralized policies that assign electric vehicles to a
network of charging stations with the goal to achieve little to no
queueing. This objective is especially important for electric vehi-
cles, whose charging times are fairly long. The social optimality
of the proposed policies is established in the many-server regime,
where each station is equipped with multiple charging slots. Fur-
ther, convergence issues of the algorithm that achieves the optimal
policy are examined. Finally, the results provide insight on how
to address questions related to the optimal location deployment of
the infrastructure.

1. Introduction and model

There has been an increasing penetration of Plug-in Hybrid and pure
Electric Vehicles (PHEV/EV) over the least few years [1] . This is due
to developments in battery technology that have dramatically increased
their range [2], advances in charging technologies that have reduced
their charging times [3], incentives that have lowered their acquisition
and operation cost and an overall desire to lower emissions [4].

On the other hand, they represent a potential source of disruption
to normal grid operations if not integrated carefully because they need
to connect to the distribution network to charge [5, 6]. Currently, EVs
are equipped primarily with lithium-ion batteries, ranging in energy
capacity from 5 kWh for short-range PHEVs to 50 kWh for high per-
formance EVs. Further, today’s and future EVs are designed with a
wide range of specifications to satisfy different customer preferences.
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Their impact on power grid operations will heavily depend on their
market penetration [3]. Estimates vary widely, ranging from 3 to 18
million vehicles by 2025 and from 5 all the way to 40 million vehicles
(approximately 20% of the total US market) by 2030 [4]. Their dis-
ruptive impact is mainly due to the energy load they represent. On
average, under normal charging conditions (1.4 kW) an EV represents
a 1.3-fold of a full household load, whereas fast charging technologies
(7.2 kW) correspond to an almost 3-fold increase [4, 3]. The injection
of such large loads coupled with the possible uneven geographic dis-
tribution of EVs would definitely strain the entire grid as argued in
[7].

Given the current predominance of PHEV vehicles, the literature has
largely focused on scheduling at home overnight charging (see [8, 9, 10]
and references therein). The proposed approaches treat the induced
load as an aggregate and discuss different mechanisms on how to shift
it during night hours to take advantage of the underutilized electricity
generation assets. However, with increasing penetration rates, efficient
operation of an expanding charging station infrastructure becomes a
key issue. Charging EVs is a rather slow process, as even fast charging
takes at least half an hour [4], thus requiring careful scheduling poli-
cies to provide the necessary quality of service to customers. Faster
charging technologies (e.g. DC charging) could mitigate some of these
effects, but as mentioned above, electric utilities have concerns about
possible negative impacts of such technologies on the power grid, if
deployed at large scale. The work to date on charging stations has
mostly focused on modeling and optimizing the architecture of a single
charging station [11, 12, 13].

In this paper, we consider decentralized dispatching policies that as-
sign electric vehicles to a network of charging stations. Our focus is
on guaranteeing quality-of-service to charging customers. Due to the
lengthy charging times, our primary focus is to ensure little to no cus-
tomer queueing. Our results apply to the “many-server” regime, when
each charging station is equipped with multiple charging slots (e.g.
a commercial parking lot, a strip of street parking in a densely urban
area), possibly in a mix of charging technologies (e.g. Level-2 charging,
coupled with very fast DC charging infrastructure).

We provide next a description of the modeling framework. Consider
EVs and a network of charging stations within a specific geographical
region, for example an urban area or a section of the highway system. A
vehicle that needs to recharge broadcasts a signal indicating its location
and battery type and status, and receives responses from the charging
stations in its neighborhood. We assume that the EV has preferences
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among the different charging stations, which we model through costs;
these may be related to the distance of the current location of the EV
to the charging station, or simply whether it is capable of reaching the
station using its remaining battery power. Based on the stations’ re-
sponses, the EV chooses a charging station and immediately proceeds
there. We are interested in designing socially optimal charging strate-
gies; namely, to engineer the response signals from stations to vehicles
and the resulting routing decisions, so that the average cost incurred
by the vehicles is minimized.

We will make the simplifying assumption that the vehicles can be
partitioned into a finite set of types i = 1, . . . , I which encode their
location, preferences, and battery technology. Thus, the signal that
the EV broadcasts to the nearby charging stations indicates the type
of the vehicle. We assume also that the various charging slots available
in the network can be partitioned into a finite set of types j = 1, . . . , J ,
encoding their location and technology. We are interested in the regime
where there are many charging slots of each type: say Nj chargers of
type j, with Nj large (e.g. at least 10). Thus, as mentioned above,
the architecture of the charging station in the network is such that it
comprises of many identical chargers.

Let λi be the rate at which EVs of type i make charging requests.
Let µ−1ij be the expected time it takes for a charger of type j to satisfy a
request of type i; this may be infinite (corresponding to µij = 0), e.g. if
an EV cannot reach the charger or their technologies are incompatible.
Finally, let ci(j) be the cost that an EV of type i incurs on being
assigned to type j; this may be a measure of the distance between the
vehicle and the chargers of type j, or a constant whenever the vehicle
can reach the charger. We set ci(j) = ∞ whenever an EV of type
i can not reach a charger of type j. Without any guidance from the
system/network, we would expect a vehicle of type i to always choose a
charger of type j that minimizes ci(j); however, the following example
shows this behavior to be suboptimal in some cases.

Consider a system with two vehicle classes A and B, and two charger
classes 1 and 2. Suppose that A cannot reach class 2, and B can use
both charger classes, but prefers type 1. That is, cA(2) = ∞ and
cB(1) < cB(2). In this case, if both EV types preferentially go to
chargers of type 1, vehicles of type A may have to queue. If, on the
other hand, vehicles of type B can be directed to chargers of type 2
when few chargers of type 1 remain, queueing can be avoided.

Another example is obtained by considering two EV and charger
classes as before. Suppose that A prefers type 1 and B prefers type
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2; that is, cA(1) < cA(2) and cB(2) < cB(1). Suppose further that
µA1 < µA2 while µB1 = µB2, meaning that it is faster to charge vehicles
of type A at the more distant charger. Clearly, in heavy traffic we
must encourage vehicles of type A to charge at the more distant, fast
charging station 2, while vehicles of type B will correspondingly need
to be directed to the more distant (and not even faster!) charging
station 1.

From a social perspective, the main objective is to to design charging
strategies for a network of stations, where such routing decisions will
happen automatically.

This problem has similarities to the inventory and facility location
problem: we are interested in “distributing” a finite supply of chargers
among vehicles, subject to location constraints, in such a way as to
keep vehicles from being “undersupplied”. Extensive literature exists
on such problems; see, for example, [14] and references therein. How-
ever, there are two key differences in our set-up. The first is that EV
demand is mobile. Thus, demand from the vehicles of type (location)
i can be split between several different charging stations (facilities). In
fact, our work shows that this splitting should be encouraged. The
implication from an algorithmic perspective is that instead of solving
an integer program that typically the case in the standard facility lo-
cation problem, we need to solve its convex relaxation. The second
key difference between our setting and the inventory / facility location
problem is that we wish to avoid centralized decisions. Instead, for our
set-up to be scalable to the size of a large urban or even a metropolitan
area with hundreds of charging stations and thousands of vehicles, we
need the decision-making to be distributed. The latter goal justifies our
formulation for letting the EVs choose their preferred charging station
based on the information communicated to them by nearby stations,
rather than involving some centralized planning scheme.

To achieve this goal and design the required efficient, distributed al-
gorithm for routing EVs to charging stations so as to avoid excessive
delays due to queueing, we employ ideas from queueing theory and
communication systems. We introduce the GPD algorithm (Greedy
Primal-Dual) that has been successfully used in the call center litera-
ture and establish analytic guarantees for its performance in large scale
network of charging stations. Its main feature is its distributed an on-
line nature, and also its automatic adaptability to changing arrival
patterns. We also present two variants (Load Balancing and Freest
Charger Shortest Queue), which are shown to exhibit superior perfor-
mance to the GPD algorithm in selected settings.
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1.1. Modeling Assumptions. We discuss next the main modeling
assumptions. First, we have stochastic assumptions on key processes
of the system under consideration, that lead to the analytic guaran-
tees on the system behavior. Second, we specify which of the system
parameters are known to which participants; the latter assumptions
ensure that the system behaves in a distributed manner.

We begin with stochastic process assumptions.

Assumption 1. The arrival process of charging requests of EVs of
type i satisfies a functional law of large numbers approximation. Let
Ai(t) = #{requests of type i up to time t}; we require

1

r
Ai(rt) =⇒ λit, as r →∞, uniformly on compact sets.

Throughout, the notation =⇒ incicates uniform convergence on com-
pact sets. Furthermore, we require that arrivals have bounded second

moment: E[
(
Ai(t+ 1)− Ai(t)

)2
] <∞ uniformly in t.

The process of service completions of EVs of type i by chargers of
type j satisfies a functional law of large numbers approximation. Specif-
ically, let Sij(t) be the number of EVs of type i that have completed
service with one charger of type j when that charger has spent a total
amount of time t charging vehicles of type i; we require

1

r
Sij(rt) =⇒ µijt, as r →∞, u.o.c.

We also require that service times have bounded second moment: E[
(
Sij(t+

1)− Sij(t)
)2

] <∞ uniformly in t.

These are quite general assumptions, that are satisfied for example
when interarrival and service times are independent and identically
distributed (iid) and possessing finite second moments.

Assumption 1 will be taken to hold throughout the paper. It is suf-
ficient to show that the proposed algorithm has optimal throughput,
meaning that it will successfully recharge all EVs whenever it is pos-
sible to do so (perhaps with queueing delays). However, in order to
provide more precise guarantees, for example on the probability of an
arriving vehicle finding a free charger, we will need more control over
the deviations of the arrival and service processes from their FLLN
approximation. Assumption 2 asserts that the arrival and service pro-
cesses obey a functional central limit theorem.
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Assumption 2. The arrival processes of requests of type i obey the
functional central limit theorem:

1√
r

(
Ai(rt)− λirt

)
=⇒ Wi(t), as r →∞, u.o.c.

Here, Wi are a set of independent Brownian motions (one per EV type)
with some finite variance.

In addition, the service processes of EVs of type i by chargers of type
j obey the functional central limit theorem:

1√
r

(
Sij(rt)− µijrt

)
=⇒ Wij(t), as r →∞, u.o.c.

Here, Wij are a set of independent Brownian motions (one per pair of
vehicle type and charger type) with some finite variance.

These assumptions are standard in the queueing literature. They
hold when the interarrival and service times are iid with finite sec-
ond moment, and typically allow one to model the queueing process
as a reflected Brownian motion. We will comment further on this in
Section 3.3.

We next specify what information is available to which participants.
The system has parameters λi (arrival rate of requests of type i), µij

(service rate of requests of type i by chargers of type j), Nj (number
of chargers of type j), and ci(j) (the cost associated with assigning a
vehicle of type i to a charger of type j). In addition, the scheduling
algorithm will use a parameter β.

Assumption 3. The number of possible types is finite.
The parameters λi are unknown to anyone in the system; the algorithm
will implicitly estimate them.
The parameters µij are assumed to be known to a request for which they
are relevant (e.g., included as part of the exchange between the EV and
the charging stations); if µij is not communicated, it is assumed to be
0.
The costs ci(j) are assumed to be known to the EV for which it is
relevant. Specifically, we require the EV to be able to compare quantities
of the form ci(j) +Kijµ

−1
ij , where Kij will be a quantity communicated

by the charging station.
The parameter β (a small real number) is assumed to be the same at
all charging stations.

Note that all communications and knowledge are local: EVs only
acquire information about nearby stations, and stations only acquire
information about the nearby requests.
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The remainder of the paper is organized as follows: In Section 2 , we
formulate the main algorithm, GPD, and show its throughput optimal-
ity. In Section 3, we present a detailed analysis of the behavior of large
systems, provide Brownian motion approximations for queue sizes and
the associated probability of finding a free charger upon arrival. We
also state a key result (Theorem 1,) whose proof is given in the Appen-
dix. In Section 4, we introduce the Load Balancing (LB) algorithm,
which is designed to spread the load more evenly between chargers to
avoid excess queueing. Section 5 discusses the case when the costs
ci(j) ∈ {0,∞}, i.e. EVs are indifferent between chargers provided they
are within reach. For the case of no user costs, we present another
algorithm, Freest Charger Shortest Queue (FCSQ), which reacts faster
than GPD or LB to changes in the arrival pattern. Section 6 presents
selected simulation results of the behavior of the three algorithms on a
simple system. Finally, Section 7 discussed insights into planning the
charging network, as well as directions for future research.

2. Scheduling policies and throughput optimality

In this section, we formulate the policy that will achieve socially op-
timal average costs while keeping queueing low, if possible. We begin
by formulating the corresponding linear program. Let λij be the av-
erage rate at which vehicles of type i are routed to stations of type j.
The basic linear program we consider is as follows.

minimize
∑
i,j

λijci(j) (1a)

s.t. λi =
∑
j

λij, ∀i (1b)

Nj ≥
∑
i

λij
µij

, ∀j (1c)

over λij ≥ 0, ∀i, j. (1d)

The objective function here is the rate at which costs are incurred. The
constraints are the basic feasibility ones: all arriving requests need to
be assigned, but on average no more than Nj chargers of type j may be
used. Note that the optimal solution may be infinite, corresponding to
insufficient capacity in the system. Call the value of this linear program
S(λ).

We define the feasible region to be the set of routing rates for which
the solution to this linear program is finite and the capacity constraints
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(1c) are strictly satisfied. That is,

Λ = {(λi)i=1,...,I : S(λ) <∞, and Nj >
∑
j

λ∗ij
µij

∀j}

for some optimal solution λ∗ij of (1).
We now introduce the Greedy Primal-Dual (GPD) Algorithm of [15],

which will determine a scheduling rule that implicitly solves the linear
program (1). The parameter β is a small real number that deter-
mines the trade-off between convergence speed and precision of the
solution. While the algorithm is a special case of the one in [15], tech-
nical differences between our setting and that in [15] imply that analytic
guarantees presented in Section 3.3 are not automatic and need to be
established rigorously.

GPD Algorithm:

1. Each charger type maintains a virtual queue variable Qj(t) (this
need not be an integer). The latter are appropriately initialized,
e.g. Qj(0) = 0.

2. When an EV of type i requests service at time t, we locate

j∗ ∈ arg min
j
ci(j) +

βQj(t)

µij

.

That is, all stations in the neighborhood of i communicate pa-
rameters βQj(t) (or βQj(t)/µij), and the user picks the station
j∗ that minimizes ci(j) + βQj(t)/µij. The vehicle announces
its decision to j∗, and the corresponding virtual queue is incre-
mented:

Q∗j 7→ Q∗j +
1

µij∗
.

3. Decrease all virtual queues at rate Nj per time unit, provided
they are positive. (Once a virtual queue hits 0, it stays at level
0 until some EV is routed to it.)

Note that the algorithm runs in continuous time and no synchronization
is necessary between different stations.

One important instance of the algorithm is when ci(j) ∈ {0,∞} for
all i, j; that is, the EVs are indifferent among the charging stations as
long as they can use them at all. We will discuss this case in detail in
Section 5. For now we point out that in this case, the parameter β is
unnecessary.
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The results of [15] imply that whenever Λ 6= ∅, the GPD algorithm
will stabilize all virtual queues. This intuitively means that the algo-
rithm will be routing vehicles to chargers at rates λij ∈ Λ. The more
precise statement is as follows. Let Aij(t) denote the number of vehi-
cles of type i that have been routed to chargers of type j up to time
t. The limit limt→∞

1
t
Aij(t), denoting the average rate, may not exist;

however, any sequence of times t→∞ has a subsequence along which
such the limit does exist. Pick one such set of subsequential limits,
and call it (λij). Then, if Λ 6= ∅, the rates λij satisfy the routing
constraint (1b) and the capacity constraint (1c). In general, we may
have

∑
ij λijci(j) > S(λ), i.e. the rates may not be socially optimal;

note, however, that the algorithm remains throughput-optimal, that
is, it stabilizes the system whenever the arrival rates belong to Λ. In
Section 3 we will see that as β → 0, the algorithm converges to the
socially optimal routing rates.

Note that in the case of Poisson arrival and service process, and with
service rates µij being rational numbers, the virtual queueing system
is a countable state-space Markov process. In that case, there will
be well-defined steady-state rates λij to which the above observations
apply.

Further, note the natural form (from the user’s point of view) of the
routing decision: the EV driver is asked to add to her intrinsic costs
ci(j) a certain charge per unit time βQj(t). This charge will be greater
for the stations that are in high demand, and lower for the stations that
are less congested. We point out that, because the GPD algorithm uses
virtual queues rather than actual queues to make routing decisions, it
can be run in the background of some other scheduling mechanism,
provided a model for the costs ci(·) is available.

3. Limiting regimes

We now describe the asymptotic behavior of the system in certain
limiting regimes. Our interest is in large systems; consequently, we will
be interested in the case λi → ∞. To accommodate the increasing
arrival rate, we will consider Nj → ∞ (many chargers at each sta-
tion), holding the number of charger types and the speed of charging
fixed. We will also consider the effect of taking β → 0, where β is the
parameter used in defining the GPD algorithm.

In order to state the results, we make an assumption on the solution
structure of the linear program (1). Some of the conclusions apply even
when these do not hold; however, the exposition would become more
cumbersome.
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Assumption 4. The optimal solution (λ∗ij) to the linear program is
unique. The optimal set of dual variables (q∗j ) is unique. The pairs (ij)
for which λ∗ij > 0 are called basic activities.

This is a part of the complete resource pooling assumption, which
is commonly made in many-server queueing literature, e.g. [16]. As
pointed out in [16], Assumption 4 holds for generic values of parameters
λij, µij, and ci(j).

We describe briefly the techniques used to obtain the stability and
“fluid-scaled” convergence results in Sections 3.1–3.2, relying only on
Assumption 1 for the underlying stochastic processes. The technique is
standard in the queueing literature, and involves the use of fluid limits
rather than constructions of explicit Lyapunov functions. Specifically,
one proves a functional law of large numbers approximation (“fluid
limit”) for the stochastic processes involved. If the resulting limit-
ing trajectories satisfy certain properties, then one can conclude that
the original stochastic system is stable. (For a system described by
a Markov process, by “stable” we mean positive Harris recurrent.) A
good exposition can be found in [17]. This technique is often extended
by using a Brownian approximation for the underlying stochastic pro-
cesses of arrivals and service completions. Such assumptions allow a
description of the queue lengths on a finer (“diffusion”) scale, where
they are non-vanishing; specifically, queues are approximated by a re-
flected Brownian motion. These techniques present greater technical
challenges, particularly in deriving steady-state results. We discuss
diffusion-scaled approximations in Section 3.3, where our exposition
follows closely the similar results of [16]. A good reference on diffusion
approximations of queueing networks is [18].

Next, we examine specific cases.

3.1. Nj → ∞, β fixed. We begin by considering the regime in which
β is fixed, but the arrival rates and the number of chargers tend to
infinity. More formally, we consider a sequence of systems indexed by
r, with λri = rλi and N r

j = rNj. (Note that r is a superscript, not

the rth power.) In this regime, by results from [15] which we already
stated above, the average routing rates λrij are guaranteed to stabilize
the system provided (λi) ∈ Λ, but are not in general guaranteed to
be socially optimal even as r →∞. One important result comes from
considering large systems. If (λi) ∈ Λ, the system is strictly under-
loaded. Consequently, as r →∞, the probability of an arrival request
having to queue and the average queueing time will both converge to
zero. This is an important consideration in the problem of charging
electric vehicles.
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3.2. Nj fixed, β → 0. This is the regime in which the GPD algo-
rithm converges to the optimal solution of the linear program (1). We
consider a sequence of systems indexed by r, for which βr → 0 and
all other parameters are unchanged. This corresponds to running a
sequence of slightly different GPD algorithms on the same external
pattern of requests.

All the results for this case, follow straightforwardly from [15]; we
rewrite them in the notation of our problem. Let Qr

j(t) be the sequence
of virtual queues. Then, uniformly over any compact time interval of
t ∈ [0, T ], we have

βrQr
j(β

r·) =⇒ qj(·), u.o.c. as βr → 0, (2a)

where the limiting trajectories satisfy

qj(t)→ q∗j , as t→∞. (2b)

Here, the parameters (q∗j ) are the optimal dual variables corresponding
to the capacity constraints (1c).

In addition, we describe the convergence of the routing rates. Let
Xr

ij(t) be the exponentially-weighted average of the routing decisions
up to time t. Then, uniformly on compact sets,

Xr
ij(β

r·) =⇒ xij(·), u.o.c. as βr → 0; (3a)

where the limiting trajectories satisfy

xij(t)→ λ∗ij, as t→∞. (3b)

Here, λ∗ij are the (unique) optimal solution of the linear program (1).
These results only require the functional law of large numbers given

in Assumption 1, but not the functional central limit theorem, as shown
in [15]. If the interarrival and service times are assumed to be Poisson,
and the parameters µij are rational (so that the virtual queueing system
is a countable state-space Markov process), these results imply that
the steady-state routing rates λrij converge to the optimal rates λ∗ij as
βr → 0.

3.3. Nj → ∞, β → 0. In this case, we combine the effects of the pre-
vious two limits. The operational regime we are interested in is known
as the Halfin-Whitt regime [19]. When charging stations have many
individual chargers, it is possible to operate a heavily loaded system
while keeping waiting times short and providing a service guarantee on
the probability of an arriving request having to wait. This effect was
originally observed in a queueing system with a single pool of many
servers, but has since been shown to apply in settings with multiple
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server types, at least under conditions similar to Assumption 4. This
result leads to the “square-root staffing” principle observed in [19].

From the previous sections, we expect to see virtual queues βQj ≈ q∗j .
Our interest will be in the deviations from these values. If β is held
fixed, these deviations may, in general, be large. We will now choose
β → 0 along an appropriate sequence as the size of the system grows
larger. We will establish that after rescaling time, the process βQ(·) can
be described as a Brownian oscillation around q∗. Up to a multiplica-
tive constant, this result is the best possible, whenever the underlying
arrival and service completion processes satisfy the functional central
limit theorem given in Assumption 2. It can be translated into a re-
flected Brownian motion approximation for the actual queue sizes in
the system.

We consider a sequence of systems indexed by r →∞. The request
arrival rates satisfy λri = rλi. The sizes of the charger pools satisfy
N r

j = rNj +
√
rnj + O(1), for some collection of values of nj ∈ R

(possibly negative); this is the “square-root staffing”. (The O(1) term
is included to ensure that N r

j is an integer.) We assume that the
physical limits on the charging rate to not change, so that the charging
rates µij do not change with r. Finally, we choose βr = f(r)−1 for
some function f(r) with r1/2 � f(r) � r; for example, we may take
f(r) = r3/4. (Larger values of f(r), corresponding to smaller values of
βr, will lead to more precise but slower convergence.)

Let Ar
ij(t) be the number of EVs of type i routed to chargers of type

j during the interval [0, t]. In Theorem 1, we will establish that this
quantity can be approximated by λrijt +

√
rB(t) for some Brownian

motion B, provided we consider the system at a time when the GPD
algorithm has reached its steady-state. The result is similar in nature
to [16], but there are technical differences discussed in the proof.

We state the next result next, whose proof is given in the Appendix.

Theorem 1. Assume the arrival process satisfies the FCLT given in
Assumption 2. Let

q̂rj (t) = r−1/2
(
Qr

j(t)− (βr)−1q∗j
)
,

and let

ârij(t) = r−1/2
(
Ar

ij(t)− λ∗ijt
)
.

If (q̂rj (0))→ 0 ∈ RJ , then ârij(·) =⇒ H(W ), where W is the Brownian
motion identified in Assumption 2, and H is a linear mapping defined in
(4) below. (Thus, H(W ) is also a Brownian motion, but with correlated
components.)
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Further, suppose the arrival and service completion processes are
Poisson, and the parameters µij are rational, so that the virtual queue-
ing system becomes a countable state-space Markov process. For each
r consider the associated stationary version of the process. Then,
(q̂rj )→ 0 ∈ RJ .

In order to define the load-balancing linear map H, we introduce
some additional terminology. We call the activities (ij) with λij > 0
basic and let E be the set of basic activities. By Assumption 4, the
solution to (1) is unique. It follows that the bipartite graph with ver-
tices {car types, charger types} and (undirected) edges corresponding
to basic activities is acyclic; that is, it is either a tree or a union of
trees. We can now define the linear map H as follows. For a vector
v = (v1, . . . , vI) ∈ RI , the image w = H(v) (with coordinates indexed
by basic activities (ij)) satisfies

∑
j

wij = vi, ∀i∑
i′ wi′j/µi′j

µij

=

∑
i′′ wi′′j′

µij′
, ∀i, (ij), (ij′). (4)

To see that this is a well-defined map, we show how to solve the above
system of equations. Pick a leaf of one of the connected components of
the basic activity graph, i.e. a vertex with a single edge coming out of
it. On this edge, we either have wij = vi, or can eliminate the variable
wij using the second set of equations. Repeating this process, we will
arrive at a unique solution.

Next, we discuss the implications of the main result. The conclusion
of the theorem asserts that the arrival process to each charger type can
be described as a Brownian oscillation around the optimal rate

∑
i λ
∗
ij;

thus, the arrival process to each charger type satisfies a functional cen-
tral limit theorem. Because we have assumed (Assumption 2) that the
service completion process satisfies it as well, we may approximate the
number of occupied chargers by a Brownian oscillation about its op-
timal point, and the queue size as a reflected Brownian motion with
drift; the drift is given by the collection of parameters nj. In particular,
the probability of an arriving request being asked to queue will depend
on the quantity

∑
q∗jnj, the sum being taken over the connected com-

ponent of the basic activity tree containing the corresponding request
type. (It will also depend on the linear map H of (4).) Note that we
require O(

√
r) overstaffing somewhere in the connected component of
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each EV type, but do not prescribe where. Consequently, it is advan-
tageous to arrange the system to have large connected components to
allow greater freedom in the placement of extra chargers.

4. Load balancing

The GPD algorithm will typically produce rates which place a high
load on one or more of the “least expensive” charger pools. This is
reasonable in a large system, where square-root overstaffing is suffi-
cient to deal with the high load, but may be undesirable in a system
where the charging stations are small. One possibility for mitigating
this is to reduce the value of Nj in the GPD algorithm, so that on
average only a fraction of the chargers may be used. However, this
reduces the stability region of the algorithm. A better way to mitigate
this difficulty is to encourage the charging stations to spread the load
more evenly. Group the charging stations into clusters. (Clusters may
overlap.) Change the objective function of (1) to

minimize
∑
i,j

λijci(j) +
∑
l

Wlρl (5a)

s.t. λi =
∑
j

λij, ∀i (5b)

Nj ≥
∑
i

λij
µij

, ∀j (5c)

ρl ≥
∑
i

λij
Njµij

, ∀j ∈ l (5d)

over λij ≥ 0, ∀i, j. (5e)

where l runs over the clusters, Wl are weights, and ρl is the maximal
load of any charging station in the cluster. Modifying the objective in
this manner means that charging stations within each cluster will “try”
to have equal loads, because only the maximal load within a cluster
is penalized. By adjusting the weight vector Wl, we can change the
relative importance of spreading the load across different stations, and
finding the lowest-cost routing pattern.

The corresponding modification of the GPD algorithm is called the
Load Balancing (LB) algorithm.

LB Algorithm:
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1. Each charger type maintains a virtual queue variable Qj(t),
initialized e.g. to Qj(t) = 0. Each charger type also maintains
a virtual queue Lj(t) for each cluster L to which j belongs.
These are initialized so that

∑
j∈l Lj(t) = Wl for each l. (We

assume that this is possible.)
2. When a vehicle of type i requests service at time t, we locate

j∗ ∈ arg min
j
ci(j) +

β(Qj(t) + Lj(t))

µij

.

The vehicle announces its decision to j∗, and the corresponding
virtual queues are incremented:

Q∗j 7→ Q∗j +
1

µij∗
, L∗j 7→ L∗j +

1

µij∗
.

3. All virtual queues Qj are decreased at a rate Nj per time unit
whenever they are positive. The cluster virtual queues Lj for
j ∈ l are decreased when

∑
j∈l βLj > Wl; if this is the case, we

decrease

Lj 7→ Lj −Nj, ∀j ∈ l.
Note that the algorithm is still distributed, since additional communi-
cation needs to happen only between the charging stations within the
cluster. Namely, stations must communicate their updated values of
Lj whenever these increase, and some entity must decide to decrease
the Lj within the cluster once their sum exceeds β−1Wl.

Similarly to the analysis of GPD, as β → 0 the routing pattern
produced by the LB algorithm will converge to the optimal solution to
(5). The virtual queues βLj will converge to the optimal dual variables
corresponding to the constraints defining the loads, (5d). Further,
under Assumptions 2 and 4, a variant of Theorem 1 can be shown
to hold, with deviations of the routing process from its nominal value
given by some Brownian motion; however, the Brownian motion will
now be more cumbersome to define.

In Section 6, numerical work shows that replacing the GPD algo-
rithm by the LB algorithm can lead to substantial reduction in the
queueing delays encountered by the vehicles.

A feature of the GPD and LB algorithms is that they can be slow
to reach convergence. Specifically, the typical time scale of GPD and
LB is β−1; so as β → 0, the algorithms get more precise but slower at
reacting to shocks. A possibility to mitigate this is to run GPD (or LB)
in the background to identify the set of edges in the basic activity tree,
but then run a different algorithm once that tree has been identified.
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We will return to this idea in Section 5, where we present one such
possible algorithm.

5. The case of No costs

We now consider the special case of ci(j) ∈ {0,∞} for all i and j,
corresponding to vehicles that are indifferent to the choice of charging
station provided they can reach it (and it has compatible technology).
This corresponds to the question of optimizing the throughput, i.e. the
number of vehicles that are served. In this setting, the parameter β in
the GPD algorithm is irrelevant, because the decisions will be the same
for all values of β. In particular, we conclude that the GPD algorithm
always generates routing rates in the feasible region, provided Λ is
nonempty.

Note that if the feasible region is nonempty, the optimal dual vari-
ables corresponding to the capacity constraints (1c) are q∗j = 0. While
of course we will not have Qj(t) = 0 at all times for the virtual queues
under GPD, they will be close to 0, and will periodically hit 0 unless
the system is overloaded.

If the interarrival and service times are exponential, there will be
well-defined (unique) steady-state routing rates λ∗ij, which we know
are feasible for (1). However, if ci(j) ∈ {0,∞}, the optimal solution to
(1) will certainly not be unique. Determining to which optimal solution
the routing rates of GPD converge is difficult; this is another reason to
use some form of load-balancing.

Note that for the GPD algorithm, in the case of zero costs, conver-
gence time is not an issue: routing rates are “always” feasible. However,
for the LB one, the quantity β makes an appearance, since we decre-
ment the cluster queues Lj when

∑
j∈l βLj = Wl. Picking values of

β that are too small will result in imperfect load balancing (although
typically will reduce the maximal loads somewhat). A better, and
faster, possibility is to use the Freest Charger Shortest Queue (FCSQ)
algorithm, modelled on [20].

FCSQ Algorithm:

1. Identify the basic activity tree (e.g. by running GPD in the
background).

2. When a vehicle of type i requests service, if some charger with
ci(j) < ∞ and µij > 0 is available, route the vehicle to the
charging station with the largest fraction of free chargers.
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3. If no charger is available in a charging station, the charging
station sends back an estimate of the time when the vehicle will
enter queueing. The vehicle joins the charging station where
this time is earliest.

The last step of the algorithm is deliberately vague, because many
versions should give essentially similar results. In the simulation pre-
sented in Section 6, we add up the (future) charging times of all of the
EVs in the queue and divide by the number of chargers at the station.
We could add to that the residual charging times of the vehicles that
already charging; or we could replace the exact times by estimates, re-
porting N−1j (

∑
i µ
−1
ij ni), where ni is the number of queued vehicles of

type i.
The FCSQ algorithm should guarantee that, when there are free

chargers, they are divided fairly among the various charger pools, while
when there are queues, they have similar waiting times at all the charg-
ers. This means that when there is a sharp spike in arrivals at one of
the charger pools, these arrivals are quickly spread out as far as pos-
sible, helping the spike dissipate faster. Strong analytic guarantees
are available for a similar algorithm (Longest Queue Freest Server, see
[20]) in the case when the non-zero charging rates µij depend only on
the charging station technology (i.e. µij = µj), and partial results are
available for general parameters. Similar algorithms are common in the
queueing literature, see for example [21], or [22] and references therein.

6. Numerical Illustration

We now consider the toy network shown in Fig. 1 to illustrate the
performance of the various algorithms presented in this work. There
are two EV classes, three charger classes, and each EV class can use
two of the charger classes. The service rates µij are

µ =

(
1 3 0
0 1 2

)
.

We use Nj = 20 for all j. We simulate 10,000 EV arrivals. The first
5,000 arrivals are generated using arrival rates λ = (2.5, 2.2) × 20;
for the second 5,000 arrivals, we reverse the arrival rates to obtain
λ = (2.2, 2.5) × 20. We do this to illustrate the effect of a change
in the arrival pattern that does not change the basic activity tree on
the algorithms under consideration. Note that the system is heavily
loaded, but not overloaded: the load-balancing solution to the linear
program (5), achieved for sufficiently high values of W1, has ρ = 0.91
for the first arrival pattern, and ρ = 0.97 for the second arrival pattern.
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20 20 20

1 1
3 2

Figure 1. The diagram for the toy example indicating
Nj and µij.

In a conventional single-server queue, such heavy loads would result in
long queues and very high probability of having to queue; in the many-
charger setting, however, approximately 70% of the arriving vehicles
are taken into service without having to queue at all.

Fig. 2 presents the delays observed when running the GPD algorithm.
The three curves present the delays encountered by the vehicles routed
to each of the three charging stations. (One of the curves stays at 0
throughout the simulation.) The vertical line indicates the time when
the arrival pattern changes. We see that before the change in the
arrival pattern, a large queue had been forming at station 2 (dashed
line); after the change, it slowly goes away, but a sizeable queue forms
at station 3 (dotted line) instead.

In Fig. 3, we simulate the LB algorithm, putting all of the chargers
into a single cluster. We use W1/β = 1000. The scale is the same as for
the GPD routing; so we see that the delays have gotten shorter. (The
maximal delay has dropped from 1.64 to 1.3.) We also see the marked
change in the pattern after the change in the arrival rate pattern: the
delay at station 2 (dashed line) drops nearly to zero, however, it takes
a while for that to occur. The behavior of the LB algorithm would be
improved if we considered a larger system (Nj > 20).

Fig. 4 shows the delays arisint from FCSQ routing on the same arrival
data. Note that the largest delay is now only 0.94, more than a third
smaller than under GPD. Also, when there is queueing delay, it is
nearly the same at all stations, meaning that there is little incentive
for any one vehicle to disobey the algorithm and go elsewhere. This
is in shaprp contrast to GPD, which tends to produce highly unequal
queueing delays.

7. Discussion and future work

We have constructed a set of algorithms – GPD, LB, and FCSQ –
which collectively route the EVs to chargers in the network in such
a way as to avoid long queueing and adjust to changing demand pat-
terns whenever this is possible. The LB algorithm s designed to balance
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Figure 2. Delays produced by GPD routing

the loads across different charging stations; the FCSQ algorithm cor-
responds to a faster version of LB, which, however, can only be run
after LB or GPD has been used to identify the basic activities along
which routing should happen. All of the algorithms are distributed,
and therefore can scale to a large network.

The algorithms have implications for building the charging network.
As we observed in Section 3.3, square-root overstaffing is needed for
the operation of a system with many chargers in each pool and a small
value of the parameter β with short queueing delays. Moreover, the
overstaffing is aggregated over all of the charging stations in a single
connected component of the basic activity graph. Therefore, for greater
freedom in the placement of extra charging facilities it is desirable to
keep these connected components large. That is, in contrast to the
facility locations problem, we not only allow, but encourage EVs of a
single type to visit multiple charger types.

Two important extensions of this work are of interest. First, it is
desirable to arrange charging stations so that the basic activity graph
for the system will have large connected components. However, this



20 ELENA YUDOVINA AND GEORGE MICHAILIDIS

Figure 3. Delays produced by LB routing

is a highly nonlinear and nonconvex requirement. We would like to
create an algorithm for generating arrangements of charging stations
satisfying this condition. Second, we would like to incorporate the ef-
fect of batteries onto this system. Because of the high load on the
electrical network produced by charging an electric vehicle, it is desir-
able to add battery capacity to the charging stations to smooth the
peak demand. This introduces an additional algorithmic challenge by
introducing demand mobility in time in addition to in space.

Finally, we remark that due to technical challenges, some of the
results concerning the Halfin-Whitt regime remain conjectural. Specif-
ically, there is a gap between the finite-time-horizon results on the
Brownian motion approximations, and steady-state quantities such as
the probability of an arriving request being asked to queue. However,
this gap is not very important in practice because of the diurnal de-
mand pattern.

[Proof of Theorem 1] The overall technique of proof of Theorem 1
follows the proof of [16, Theorem 6.3]. We outline both the argument
and the necessary changes below.
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Figure 4. Delays produced by FCSQ routing

Sketch of proof of Theorem 1. To show the first assertion of the theo-
rem, we begin by demonstrating that if the virtual queues are initially
close to their equilibrium values, then the deviations must remain small
throughout the entire time interval [0, t]. The version of this argument
in [16, Theorem 6.1] does not hold in our case; however, the following
result is true.

Lemma 2 (Version of Theorem 6.1 of [16]). If Qr
j(0) − (βr)−1q∗j =

o(
√
r), then uniformly on any compact set t ∈ [0, T ] we have

βrQr
j(t)− q∗j = o(1), ∀j, uniformly on any compact set t ∈ [0, T ].

Consequently,(
ci(j) +

βrQr
j(t)

µij

)
−
(
ci(j

′) +
βrQr

j′(t)

µij′

)
= o(
√
r), ∀(ij), (ij′) ∈ E ,

uniformly on any compact set t ∈ [0, T ].

We postpone the proof of the lemma to proceed with the rest of the
argument. The first claim of the lemma implies that, for r sufficiently
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large, vehicles will not be routed along non-basic activities, because dif-
ferences in virtual queue sizes dominate the fluctuations in the size of
each virtual queue. The second claim then determines the proportion
of vehicles routed along each of the basic activities. Because the differ-
ences between the quantities controlling the routing are much smaller
than the size of the Brownian fluctuations in the arrivals, the Brownian
fluctuations are unaffected by them.

The stationary result is proved by considering the fluid limits of the
form

√
r(Qr(

√
ru)−q∗j ). The analysis there shows that in steady state,

this deviation is o(
√
r); indeed, it should be o((βr)−1). We refer the

reader to [16, Theorem 6.3, 6.4] for details. �

We now outline the proof of Lemma 2.

Sketch of proof of Lemma 2. Both claims of the lemma are proved us-
ing the technique of local fluid limits. For details, the reader may
consult e.g. [23, Section 8].

For the first assertion, define for all j the local-fluid-scaled queueing
process

q
(r,m)
j (u) = βrQr

j(t
m + βru)− q∗j , u ∈ [0, T ], m = 1, . . . , rβr.

It is standard to show that, as r → ∞, each sequence q
(r,m)
j (·) con-

verges to the family of Lipschitz processes qmj (·) satisfying certain dif-
ferential equations whenever they are defined. Our goal is to show that

maxj q
(r,m)
j (u) decreases whenever it is positive, and does so at some

rate bounded away from 0. Note first that for finite values of q(r,m),
the values of Qr are still almost proportional to their nominal val-
ues q∗j , and therefore all requests must be routed along basic activities
only. Moreover, consider the set of charger types that have the largest
value of qm(u). The routing rule of GPD algorithm ensures that these
charger types will have only those vehicles routed to them that cannot
be routed elsewhere. By Assumption 4, if the maximal value of qm

is positive, then the virtual queues for which qm is maximal will have
arrivals that are smaller than nominal, and of course will be decreased
at the nominal rate. Consequently, when the maximal value of qm is
positive, it must decrease towards its equilibrium value of 0. The time
T is picked to be sufficiently large so that, e.g., if qmj (0) ≤ 1 for all
j, then qmj (T ) = 0 for all j. We obtain that on a single time interval,

q(r,m)(u) is very likely to stay close to 0. Finally, we show that this
holds on all rβr subintervals simultaneously. Suppose not, and pick
the subsequence of intervals m(r) along which q(r,m) first crosses level
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ε < 1. Pick a subsequence along which q(r,m)(0) converges, and ob-
serve that the corresponding local fluid limit contradicts our previous
assertions.

For the second assertion, we define the slightly different local-fluid-
scaled processes

q̂
(r,m)
j (u) = r−1/2

(
βrQr

j(t
m + r−1/2u)− q∗j

)
, u ∈ [0, T ], m = 1, . . . ,

√
r.

Very similar arguments tell us that for finite values of q̂(r,m), the quan-
tities ci(j) + µ−1ij βjQ

r
j are approximately proportional to their nominal

values, and therefore routing decisions are very close to nominal. This
easily implies that the quantities ci(j) + µ−1ij βjQ

r
j stay close to their

nominal values. �
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