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Abstract

We propose new game theoretic approaches to estimate a binary random variable based on sensor

measurements that may have been corrupted by a cyber-attacker. The estimation problem is formulated

as a zero-sum partial information game in which a detector attempts to minimize the probability of an

estimation error and an attacker attempts to maximize this probability. While this problem can be solved

exactly by reducing it to the computation of the value of a matrix, this approach is computationally

feasible only for a small number of sensors. The two key results of this paper provide complementary

computationally efficient solutions to the construction of the optimal detector. The first result provides

an explicit formula for the optimal detector but it is only valid when the number of sensors is roughly

smaller than two over the probability of sensor errors. In contrast, the detector provided by the second

result is valid for an arbitrary number of sensor. While it may result in a probability of estimation error

that is ε above the minimum achievable, we show that this error ε is small when the number of sensors

is large, which is precisely the case for which the first result does not apply.

Index Terms

Adversarial detection, byzantine sensors, cyber security, zero-sum games, estimation.

I. INTRODUCTION

Embedded sensors, computation, and communication have enabled the development of sophis-

ticated sensing devices [17] for a wide range of cyber physical applications that include safety
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monitoring, health-care, surveillance, traffic monitoring, and military applications [5, 6, 15, 20].

However, the deployment of such devices has been slowed by concerns regarding their vulnera-

bility to both stochastic failures and cyber attacks. Of particular concern are scenarios in which

an attacker gains access to the computing platform of a sensing device and manipulates the

output reported by the device to compromise any decision based on that data. This scenario

forces system designers to re-think basic estimation problems in light of security concerns.

In traditional estimation problems one attempts to determine the value of a physical variable

that cannot be measured directly based on a set of “noisy” measurements of that variable [11].

Typically, some form of probabilistic structure is assumed to model how the measurements relate

to the true value of the variable to be estimated. This type of framework is adequate, when

the measurements fluctuate around the variable’s true value, e.g. due to microscopic thermal

fluctuations. However, things are quite different when the measurement device can be controlled

by an entity that actively attempts to degrade the estimation process.

The most basic mechanism to overcome stochastic measurements errors relies on the use of

redundancy. When multiple sensors provide redundant and independent measurements about a

variable that needs to be estimated, the confidence on the estimate increases with the number of

sensors. When some of these sensors are being controlled by an adversary that wants to maximize

the estimation error, the independence assumption is generally not valid and the magnitude of

an estimation error scales differently with the number of sensors. The goal of this paper is to

provide insights regarding what happens in such situations.

We consider the problem of estimating the value of a binary random variable based on

measurements provided by a group of binary sensors. We assume that such measurements

incorporate two types of errors: purely stochastic errors that are responsible for bit-flips with a

given probability, and adversarial errors that are controlled by an adversary that has infiltrated

a subset of the sensors. Which sensors have been manipulated is not known a-priori to the

detection system. We shall see that the (optimal) adversarial errors may actually be stochastic

(corresponding to mixed policies), with probability distributions carefully selected by the attacker

to maximize the probability of an estimation error. In general, these distributions will be a

function of the value of the variable to be estimated. A key novelty of the work presented here

with respect to classical problems of Byzantine faults [10] is that we do not assume perfect
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sensors, i.e., even the sensors that have not been manipulated can report an incorrect value with

a given probability perror ą 0, typically due to limitations of the physical sensing mechanism.

The adversarial estimation problem described above is formulated as a zero-sum game between

a player that wants to estimate the binary random variable with minimal probability of an

estimation error, henceforth called the detector, and a player that wants to maximize the same

probability of error, henceforth called the attacker. This is a game of partial information [3,

8, 12] in that the decision maker only has access to “noisy” sensor measurements that have

been corrupted both by stochastic and by adversarial errors and does not know which sensor

measurements have been compromised by the attacker. Similarly, the attacker also only has

partial information since, while she may know the true value of the variable to be estimated,

she does not know the values of the measurements that are being reported by the sensors that

she has not infiltrated.

To model the fact that the detector may not be certain whether or not an attacker may actually

have infiltrated some of the sensors, we introduce a “probability of attack” parameter pattack that

reflects how certain the detector is about the existence of a malicious attacker. An interesting

feature of the solutions obtained is that the optimal estimation policies are largely insensitive to

this parameter. This is convenient because pattack would typically be hard to guess.

The adversarial estimation problem considered here can be reduced to the computation of the

(mixed) saddle-point of a zero-sum matrix game (cf., Section II). However, even for a relatively

small number of sensors n, the matrix can become very large. To overcome this difficulty we

provide two complementary approaches that scale to a very large number of sensors. The main

result of Section III (Theorem 1) provides an explicit formula for the optimal estimator (i.e.,

the saddle-point policy for the detector) and the corresponding probability of estimation error

(i.e., value of the game) that is valid when the number of sensors is roughly below two over

the probability perror of sensor error. Somewhat unexpectedly the optimal estimator is a mixed

policy that randomizes between a majority rule (i.e., pick the value reported by most sensors)

and another rule that can go against the majority.

The main result of Section IV (Theorem 3) provides an explicit formula for a detection policy

that is valid for an arbitrary number of sensors. While this detection policy is not necessarily

a saddle point, we show that it leads to a probability of estimation error that is, at most, ε
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larger than the optimal. Moreover, the value of ε decays to zero with 1{
?
n, which means that

the estimator provided in Section IV is very close to optimal precisely when the estimator in

Section III does not apply.

The results presented in Section III and IV are obtained using different approaches. In Sec-

tion III, the large zero-sum matrix game is reduced to a 2ˆ 2 matrix game through successive

applications of policy domination and the result follows from the direct solution of the 2 ˆ 2

matrix games. In Section IV, we approximate the original game, where the players make discrete

choices, with a continuous game where the choices are continuous. This relaxation leads to a

game for which we can find the (exact) saddle point, which turns out to be an ε-saddle-point

for the original (discrete) game. The solution of the continuous game (Theorem 2) may be of

independent interest for other adversarial estimation problems.

Related Work

There is a large body of literature regarding game theoretical approaches to cyber and network

security [1–3, 16]. Byzantine attacks have their root in the Byzantine generals problem where

the traitor generals want to prevent the loyal generals from reaching an agreement [10]. Sensor

fusion with Byzantine sensors is presented in [9], where the authors use random binning in sensor

polling to force a Byzantine sensor to either act honestly or reveal its Byzantine identity. This

random binning is not needed when more than half of the sensors are honest. The authors in [7],

describe the Byzantine problem as a zero-sum game problem in which the attacker’s policy is to

manipulate the measurements of the sensor network and the defender measures the sensor value

before picking an action, but without providing any closed-form policies. The game is solved

as a pair of dual linear programming problems and it is shown that deception becomes more

difficult when sensor redundancy is used. The authors in [4] propose a game theoretical model

for virtual coordinate systems that allows hosts in the Internet to determine latency to arbitrary

hosts based on information provided by a subset of sensors. The Byzantine adversary knows

how and what defense strategies are used and adjusts his strategies accordingly. The defender,

on the other side, uses an adaptive threshold to decide if the data should be accepted by the

system or not and thus deter adaptive adversaries. Game theoretic solutions for sensor networks

based on cooperation and selfishness have been reported in [14, 18], where each node needs to

decide whether to forward or not a measurement based on appropriate payoff functions.
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Our recent work in [13] also deals with estimation under stochastic errors and cyber attacks.

In that work we considered a full information game for the attacker and provided minimax pure

policies that may not be saddle-point policies, which leads to more conservative solutions for

the detector. A subset of the results in Section III appeared in the conference paper [19].

II. PROBLEM FORMULATION

The goal of this paper is to estimate the value of a binary random variable X with Bernoulli

distribution

PpX “ 1q “ 1´ PpX “ 0q “ p P p0, 1q, (1)

based on a vector Y – pY1, Y2, . . . , Ynq of n binary “noisy” sensor measurements, where the

measurements Yi, i P t1, 2, . . . , nu are assumed conditionally independent, given X . Specifically,

PpYi “ 1 |X, Yj‰iq “

$

’

&

’

%

perr X “ 0,

1´ perr X “ 1,
(2)

where perr P r0, 1s denotes the sensor error probability. Setting us apart from standard estimation

problems, we consider a scenario where an estimate X̂ of X needs to be constructed based on

version Z – pZ1, Z2, . . . , Znq of the measurement vector Y that may have been “corrupted” by

an attacker. It is assumed that, with a given probability pattack P r0, 1s, the attacker manipulated

the readings of m ď n sensors and therefore only m´ n of the Zi match the corresponding Yi,

but the estimator of X does not know which. The probability pattack P r0, 1s should be viewed

as a design parameter that reflects how certain the estimator is that the measurements have been

manipulated. For pattack “ 0, we recover a standard estimation problem with purely stochastic

measurement errors.

The problem under consideration can be viewed as a two-player partial information game: The

detector must select its estimate X̂ based solely on the vector Z of possibly corrupted sensor

readings. Because the detector does not know which sensors have been manipulated, its decision

must be solely based on the total number of zeros and ones in the vector Z, which corresponds

to the selection of the estimation policy µ : t0, 1, . . . , nu Ñ t0, 1u that is used to compute the

estimate

X̂ “ µ
´

n
ÿ

i“1

Zi

¯

. (3)
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Fig. 1. Detection-Attack Model

Since the domain of µ has n ` 1 elements and its codomain has 2 elements, the set U of all

possible estimation policies contains 2n`1 policies.

We assume that the attacker knows the true value of X and bases her decision on how to

corrupt the m measurements of the manipulated sensors as a function of X . Since the attacker is

not assumed to know the values reported by the remaining sensors, she also suffers from partial

information. We can thus view the attack policy as a function δ : t0, 1u Ñ t0, 1, . . . ,mu, with

the understanding that δpXq determines how many of the m sensors that have been manipulated

will report a zero (the other m´ δpXq will report a one). Since the domain of δ has 2 elements

and its codomain has m` 1 elements, the set D of all possible attack policies contains pm` 1q2

policies.

The model just described is illustrated in Figure 1 and allow us to define adversarial estimation

as a zero-sum game in which the detector selects a policy µ P U and the attacker a policy δ P D

so to minimize and maximize, respectively, the probability of an estimation error

Pµ,δpX̂ ‰ Xq, (4)

where the subscript µ,δ in the probability measure emphasizes the fact that the probability of an

estimation error depends on the players’ policies. Since the sets of policies are finite, we have

a (finite) matrix game defined by a 2n`1 by pm` 1q2 matrix

A–
“

aij
‰

2n`1ˆpm`1q2
,

where aij denotes the probability of an estimation error (4) corresponding to the ith estimation

policy in U and the jth attack policy in D. In general, this game does not have pure saddle-point

equilibria so the players will seek for mixed policies, which correspond to selecting probability

distributions over the sets of actions U and D.

The following result, proved in the appendix, can be used to compute the matrix (4).
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Lemma 1: When the detector utilizes a policy (3) and the attacker utilizes a policy δ that sets

to 0 and to 1 a number of sensors equal to δpXq and m´ δpXq, respectively, the probability of

an estimation error is given by

Pµ,δpX̂ ‰ Xq “ p1´ pq

ˆ

pattack

n´δp0q
ÿ

k“m´δp0q

µpkq

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` p1´ pattackq

n
ÿ

k“0

µpkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

˙

` p

ˆ

pattack

n´δp1q
ÿ

k“m´δp1q

`

1´ µpkq
˘

ˆ

n´m

k ´m` δp1q

˙

p1´ perrq
k´m`δp1qpn´k´δp1qerr

` p1´ pattackq

n
ÿ

k“0

`

1´ µpkq
˘

ˆ

n

k

˙

p1´ perrq
kpn´kerr

˙

. (5)

l

III. CLOSED-FORM SOLUTION FOR EXACT SADDLE-POINT

We have seen that the estimation problem can be seen as a matrix game with 2n`1 policies for

the detector and pm`1q2 policies for the attacker. It turns out that the exponential complexity in

the number of sensors n can be removed using policy domination. For simplicity of presentation,

we show this for the case where it is equally likely that X is 0 or 1 and the number of sensors

is odd (allowing for tie-breaking). When p “ 1{2 in (1), we have perfect symmetry between

the cases X “ 0 and X “ 1, which means that both players should treat 0 and 1 similarly. In

particular, if the detector uses the estimate X̂ “ 1 when the vector Z has k 1’s, then it should

use the estimate X̂ “ 0 when the vector Z has k 0’s and therefore we can restrict our attention

to estimation policies for which

µpkq “ 1´ µpn´ kq. (6)

Similarly, if the attacker decides to set to 0 a certain number of sensors when X “ 0, then

it should set to 1 the same number of sensors when X “ 1 and therefore we can restrict our

attention to attack policies for which

δp0q “ m´ δp1q. (7)

In this case, we can provide explicit formulas for mixed saddle-point policies and for the value

of the game. This result is formulated in terms of the following pure policies:
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1) We define the detector’s majority rule to be the pure policy

µ
´

n
ÿ

i“1

Zi

¯

“ µmajority

´

n
ÿ

i“1

Zi

¯

–

$

’

&

’

%

0
řn
i“1 Zi ď

n´1
2

1
řn
i“1 Zi ě

n`1
2
,

which corresponds to setting X̂ “ 0 if more than half the sensors reported the value 0.

2) We define the detector’s no-consensus rule to be the pure policy

µ
´

n
ÿ

i“1

Zi

¯

“ µno´consensus

´

n
ÿ

i“1

Zi

¯

–

$

’

&

’

%

0 0 ă
řn
i“1 Zi ď

n´1
2

or
řn
i“1 Zi “ n

1 n ą
řn
i“1 Zi ě

n`1
2

or
řn
i“1 Zi “ 0.

This somewhat unexpected policy is like the majority rule, except that if all sensors agree

on a particular value (i.e., Zi “ 1, @i or Zi “ 0, @i), the estimate X̂ should take the

opposite value.

3) We define the attacker’s deception rule to be the pure policy

δpXq “ δdeceptionpXq–

$

’

&

’

%

0 X “ 0

m X “ 1

that, when X “ 0 sets all m manipulated sensors equal to 1 and when X “ 1 sets all m

sensors equal to 0.

4) We define the attacker’s no-deception rule to be the pure policy

δpXq “ δno´deceptionpXq–

$

’

&

’

%

m X “ 0

0 X “ 1

that, when X “ 0 sets all m manipulated sensors equal to 0 and when X “ 1 sets all m

sensors equal to 1.

Theorem 1: Consider p “ 1{2 in (5) and an odd number of sensors n ą 2, for which

m ď min
!n´ 1

2
,
n` 1

2
´

perr

1´ perr

n´ 1

2

)

(8)

with n and perr sufficiently small so that,

perr ď
2

n` 1
, (9)

perr ď

´

1`
n´1

2
!pn´mq!
n´2m`1

2
!

¯´1

, (10)
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and, for the case m ě 2, one also needs

pattack ď
1

1` 1
n

`

n´m
m´1

˘

pn´2m`1
err p1´perrqm´1

perrp1´perrqn´1´pn´1
err p1´perrq

. (11)

In this case, the value of the game is given by

v˚ “ α ` pattack min
!

γ,
γp1´ perrq

n´m ` βγ ` ρppn´merr ´ βq

p1´ perrq
n´m ` pn´merr

)

(12)

and a mixed saddle-point policy corresponds to selecting
$

’

&

’

%

µmajority w.p. 1´ y2

µno´consensus w.p. y2,
(13)

$

’

&

’

%

δdeception w.p. 1´ z2

δno´deception w.p. z2,
(14)

where

y2 “

$

’

&

’

%

Π
´

γ´ρ

p1´perrqn´m`p
n´m
err

¯

β ď pn´merr

0 β ą pn´merr

z2 “ Π
´ pn´merr ´ β

p1´ perrq
n´m ` pn´merr

¯

α – p1´ pattackq

n´1
2
ÿ

k“0

ˆ

n

k

˙

pn´kerr p1´ perrq
k ρ–

n´1
2
ÿ

k“m

ˆ

n´m

k ´m

˙

pn´kerr p1´ perrq
k´m

γ –

n´1
2
ÿ

k“0

ˆ

n´m

k

˙

pn´m´kerr p1´ perrq
k β –

1´ pattack

pattack

`

p1´ perrq
n
´ pnerr

˘

and Π : RÑ R denotes the projection function into the interval r0, 1s:

Πpxq “

$

’

’

’

’

&

’

’

’

’

%

0 x ă 0

x x P r0, 1s

1 x ą 1.

l

1) Discussion: Conveniently, the optimal policy (13) for the detector is largely independent

of the attack probability pattack, whose value may be difficult to know precisely. In essence, the

detector’s policy only depends on pattack because of the threshold condition that defines y2:

β –
1´ pattack

pattack

`

p1´ perrq
n
´ pnerr

˘

ą pn´merr .

Moreover, for m ě 2 and probabilities of attack satisfying (11), the previous inequality holds

true for small values of perr and the saddle-point for the detector only uses the majority rule.
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While the detector’s policy may depend little on pattack, that is obviously not the case for

the probability v˚ of an estimation error corresponding to the saddle-point solution (12). For

example, for very small probabilities of error, the saddle point is essentially given by

v˚ « pattack

ˆ

n´m
n´1

2

˙

p
n`1

2
´m

err ,

which shows that the probability of an estimation error scales linearly with the attack probability.

This formula also shows that the probability of an estimation error scales with the number of

sensors as

p
n`1´2m

2
err . (15)

In the absence of attacks (for which the majority rule would be optimal), we can conclude from

Lemma 1 that the probability of an estimation error is given by

Pµ,δpX̂ ‰ Xq “
n
ÿ

k“n`1
2

ˆ

n

k

˙

pkerrp1´ perrq
n´k,

which, for a small probability perr of sensor error, scales with the number of sensors as

p
n`1

2
err . (16)

From the perspective of the scaling laws (15) and (16), it is as if each one of the m sensors

compromised effectively decreases the total number of sensors by 2m.

2) Proof of Theorem 1: The following proposition (proved in the appendix) is needed to prove

Theorem 1.

Proposition 1: Given an integer n ą 2, for every integers k and ` such that 1 ď k ď n´ 1,
ˆ

n

k

˙

`

pkerrp1 ´ perrq
n´k

´ pn´kerr p1 ´ perrq
k
˘

ď n
`

perrp1 ´ perrq
n´1

´ pn´1
err p1 ´ perrq

˘

, (17)

@perr P p0, 2{pn` 1qs. l

Proof of Theorem 1. Using (6) and (7) in (5) one obtains

Pµ,δpX̂ ‰ Xq “
1

2

ˆ

pattack

n´δp0q
ÿ

k“m´δp0q

µpkq

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` p1´ pattackq

n
ÿ

k“0

µpkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k
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` pattack

n´m`δp0q
ÿ

k“δp0q

µpn´ kq

ˆ

n´m

k ´ δp0q

˙

p1´ perrq
k´δp0qpn´m´k`δp0qerr

` p1´ pattackq

n
ÿ

k“0

µpn´ kq

ˆ

n

k

˙

p1´ perrq
kpn´kerr

˙

.

Making the change of variable n´ k Ñ ` in the 3rd and 4th summations above, we obtain

Pµ,δpX̂ ‰ Xq “ pattack

n´δp0q
ÿ

k“m´δp0q

µpkq

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` p1´ pattackq

n
ÿ

k“0

µpkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k.

Using the fact that n is odd and (6), we can break the summations as follows

Pµ,δpX̂ ‰ Xq “pattack

n´1
2
ÿ

k“m´δp0q

µpkq

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` pattack

n´δp0q
ÿ

k“n`1
2

`

1´ µpn´ kq
˘

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` p1´ pattackq

n´1
2
ÿ

k“0

µpkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

` p1´ pattackq

n
ÿ

k“n`1
2

`

1´ µpn´ kq
˘

ˆ

n

k

˙

pkerrp1´ perrq
n´k

“pattack

n´1
2
ÿ

k“m´δp0q

µpkq

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` pattack

n´1
2
ÿ

k“δp0q

ˆ

n´m

n´m´ k ` δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

´ pattack

n´1
2
ÿ

k“δp0q

µpkq

ˆ

n´m

n´m´ k ` δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

` p1´ pattackq

n´1
2
ÿ

k“0

µpkq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

` α. (18)

With this formula, we can proceed to exclude some of the estimation policies µ based on policy

domination. To do this, we compute the derivative of the probability of an estimation error with

respect to the values of µpkq. When this derivative is positive for every attack policy δ, we know
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that we can restrict our attention to estimation policies for which µpkq “ 0 since the policies

with µpkq “ 1 would be dominated (recall that the detector is the minimizer).

We consider separately four cases that differ by which summations in (18) include specific values

of k:

1) For k such that k ď mintm´ δp0q, δp0qu and 1 ď k ď n´1
2

, we have

dPµ,δpX̂ ‰ Xq

dµpkq
“ p1´ pattackq

ˆ

n

k

˙

´

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k
¯

“ p1´ pattackq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

´

1´
pn´2k

err

p1´ perrq
n´2k

¯

ě 0,

where the last inequality is a consequence of the fact that perr ď 1{2 and n´ 2k ě 1.

2) For k such that m´ δp0q ď k ă δp0q and 1 ď k ď n´1
2

, we have

dPµ,δpX̂ ‰ Xq

dµpkq
“ pattack

ˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

` p1´ pattackq

ˆ

n

k

˙

´

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k
¯

ě 0,

where the last inequality is again a consequence of the fact that perr ď 1{2 and n´2k ě 1.

3) For k such that maxtm´ δp0q, δp0qu ď k and 1 ď k ď n´1
2

, we have

dPµ,δpX̂ ‰ Xq

dµpkq
“ pattack

ˆˆ

n´m

k ´m` δp0q

˙

pk´m`δp0qerr p1´ perrq
n´k´δp0q

´

ˆ

n´m

k ´ δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

˙

` p1´ pattackq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

“ pattack

ˆ

n´m

k ´ δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

´

pk ´ δp0qq!pn´m´ k ` δp0qq!

pk ´m` δp0qq!pn´ k ´ δp0qq!

´1´ perr

perr

¯n´2k

´ 1
¯

` p1´ pattackq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

ě pattack

ˆ

n´m

k ´ δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

´ n´2m`1
2

!
n´1

2
!pn´mq!

´1´ perr

perr

¯n´2k

´ 1
¯

DRAFT
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` p1´ pattackq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

ě p1´ pattackqn
´

perrp1´ perrq
n´1

´ pn´1
err p1´ perrq

¯

“ p1´ pattackqnp
n´1
err p1´ perrq

´´1´ perr

perr

¯n´2

´ 1
¯

ě 0,

where the first inequality is a consequence of the facts that k´ δp0q ě 0, k´m` δp0q ď

k ď n´1
2

, n´m´ k ` δp0q ě n´m´ n´1
2
“ n´2m`1

2
, n´ k ´ δp0q ď n´m; the second

inequality a consequence of the fact that (10) is equivalent to
n´2m`1

2
!

n´1
2

!pn´mq!

1´ perr

perr

ě 1

which implies that
n´2m`1

2
!

n´1
2

!pn´mq!

´1´ perr

perr

¯n´2k

ě 1, @k ď
n´ 1

2
;

the third inequality is a consequence of (17), which is valid in view of (9); and the last

inequality is then a consequence of the fact that perr ď 1{2 and n ą 2.

4) When m ě 2, we also need to consider the case δp0q ď k ă m´ δp0q and 1 ď k ď n´1
2

,

we have

dPµ,δpX̂ ‰ Xq

dµpkq
“ ´ pattack

ˆ

n´m

k ´ δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

` p1´ pattackq

ˆ

n

k

˙

´

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k
¯

ě´ pattack

ˆ

n´m

k ´ δp0q

˙

pn´m´k`δp0qerr p1´ perrq
k´δp0q

` p1´ pattackqn
´

perrp1´ perrq
n´1

´ pn´1
err p1´ perrq

¯

,

where the inequality is a consequence of (17), which is valid in view of (9). Since we are

dealing with a case for which k ď m´ 1 we have that k ´ δp0q ď m´ 1 and, because of

(8), we have that

k ´ δp0q ď m´ 1 ď pn´mqp1´ perrq.

Because of this, we can use the monotonicity of the binomial distribution up to its average,

to conclude that

dPµ,δpX̂ ‰ Xq

dµpkq
ě ´pattack

ˆ

n´m

m´ 1

˙

pn´2m`1
err p1´ perrq

m´1
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` p1´ pattackqn
´

perrp1´ perrq
n´1

´ pn´1
err p1´ perrq

¯

ě 0,

where the last inequality is then a consequence of (11).

The previous inequalities allow us to conclude that we only need to consider estimation policies

with µpkq “ 0 for all values of k that satisfy 1 ď k ď n´1
2

. We are thus left with only two

estimation policies: the majority rule (µp0q “ 0) and the no-consensus rule (µp0q “ 1). For these

pure policies, the probability of an estimation error (18) simplifies as follows: When δp0q “ 0

(which corresponds to the deception rule) we have

Pµ,δpX̂ ‰ Xq “ µp0qpattackpβ ´ p
n´m
err q ` pattackγ ` α,

when δp0q “ m (which corresponds to the no-deception rule) we have

Pµ,δpX̂ ‰ Xq “ µp0qpattack

`

β ` p1´ perrq
n´m

˘

` pattackρ` α, (19)

and when 0 ă δp0q ă m we have

Pµ,δpX̂ ‰ Xq “ µp0qpattackβ ` α. (20)

Comparing (19) with (20), we conclude that the no-deception rule leads to a higher probability of

an estimation error than any policy with 0 ă δp0q ă m, and therefore the former dominates the

latter. We are thus left, with the following 2ˆ2 zero-sum game where the first row corresponds to

the majority rule (µp0q “ 0), the second row to the no-consensus rule (µp0q “ 1), the first column

to the deception rule (δp0q “ 0), and the second column to the no-deception rule (δp0q “ m):

Ã– pattack

»

–

γ ρ

β ` γ ´ pn´merr β ` ρ` p1´ perrq
n´m

fi

fl` α

»

–

1 1

1 1

fi

fl .

It is now straightforward to show that this matrix has a mixed saddle-point

y˚ –

»

–

1´ y2

y2

fi

fl , z˚ –

»

–

1´ z2

z2

fi

fl ,

with value v˚ (cf., e.g., [3]).
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IV. APPROXIMATE SADDLE-POINT

In view of the condition (9), the estimation policy provided by Theorem 1 is only optimal for

a number of sensors n roughly below 2{perr. We shall see in this section that when the number

of sensors is large and the probability of sensor error is not very small, a threshold estimation

policy like the majority rule is almost optimal. However, the proof of this result requires a

completely different approach, which is described next.

The random variable

Z̄ –

n
ÿ

i“1

Zi,

observed by the detector may have different distributions depending on the value of X and

whether or not there is an attack. Specifically,

Z̄ “

$

’

&

’

%

R w.p. 1´ pattack,

S `W w.p. pattack,
(21)

where the random variable R equals the sum of all the Yi and therefore its distribution is

R „

$

’

&

’

%

Binompn, perrq X “ 0,

Binompn, 1´ perrq X “ 1;
(22)

the random variable S equals the sum of the n´m sensors that have not been compromised by

the attacker and therefore has distribution

S „

$

’

&

’

%

Binompn´m, perrq X “ 0,

Binompn´m, 1´ perrq X “ 1;
(23)

and the random variable W equals the sum of the readings of the m sensors compromised by the

attacker. The distribution of W is selected by the attacker and may depend on the value of X ,

with the constraint that its support must lie in the set t0, 1, . . . ,mu. This perspective motivates

the general problem formulated and solved in the next sections.

A. General case

Suppose that one wants to estimate the random variables X with Bernoulli distribution (1)

based on a measurement Z̄ of the form (21) where the conditional distributions of R and S

given X are known and the conditional distribution of W given X is selected by an adversary,
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but its support is limited to a given subset I Ă R. As before, we formulate this as a zero-sum

game where the estimator wants to minimize the probability of an estimation error, whereas the

attacker want to maximize this probability.

We allow the estimation policy to be stochastic and represent it by a function f : RÑ r0, 1s,

with the understanding that, when the estimator observes a value z̄ P R for (21), she selects

X̂ “

$

’

&

’

%

1 w.p. fpz̄q

0 w.p. 1´ fpz̄q.

Denoting by ρx, σx, and ωx, respectively, the conditional distributions of R, S, and W given

that X “ x, we can use the law of total probability (much like in the proof of Lemma 1), to

express the probability of an estimation error as follows:

Jpf, ω0, ω1q– Ppµ̂ ‰ µq

“ pattackp1´ pqPpX̂ “ 1 | X “ 0, Eattackq ` pattack pPpX̂ “ 0 | X “ 1, Eattackq

p1´ pattackqp1´ pqPpX̂ “ 1 | X “ 0, Eattackq ` p1´ pattackq pPpX̂ “ 0 | X “ 1, Eattackq

“ pattackp1´ pq

ż

I

ż

R
fpȳ ` w̄qσ0pdȳqω0pdw̄q ` pattack p

ż

I

ż

R

`

1´ fpȳ ` w̄q
˘

σ1pdȳqω1pdw̄q

` p1´ pattackqp1´ pq

ż

R
fpȳqρ0pdȳq ` p1´ pattackq p

ż

R

`

1´ fpȳq
˘

ρ1pdȳq.

where Eattack denotes the event that the attacker manipulated measurements. Grouping all the

terms that do not depend on f , the above expression can be simplified to

Jpf, ω0, ω1q “ p` pattackp1´ pq

ż

I

ż

R
fpȳ ` w̄qσ0pdȳqω0pdw̄q

´ pattack p

ż

I

ż

R
fpȳ ` w̄qσ1pdȳqω1pdw̄q

` p1´ pattackqp1´ pq

ż

R
fpȳqρ0pdȳq ´ p1´ pattackqp

ż

R
fpȳqρ1pdȳq. (24)

For the above formula to be well defined, we assume that the attacker is only allowed to select

distributions pω0, ω1q in a set A containing all pairs of distributions pω0, ω1q for which the

integrals in (24) exist for every Lebesgue measurable function f .

The problem just defined matches exactly the one considered in Section II when ρ0, ρ1, σ0, σ1

are the binomial distributions defined by (22)–(23) and I – t0, 1, 2, . . . ,mu. However, we

start by computing saddle point policies for the simpler case where ρ0, ρ1, σ0, σ1 are continuous

distributions and I is an interval.

DRAFT



17

B. Continuous-distributions case

When the set I is an interval, the following result provides a sufficient condition for the

problem defined above to have a saddle point solution for which ω0, ω1 are Dirac distributions

at the two extrema of I . While this condition may seem very restrictive, we shall see shortly

that it holds when ρ0, ρ1, σ0, σ1 are Gaussian distributions.

Theorem 2: Suppose that I “ ra, bs, that ρ0, ρ1, σ0, σ1 are continuous distributions (with

probability density functions), and define the set

Z – tz̄ P R : gpz̄q ď 0u, (25)

where1

gpz̄q– pattack

´

p1´ pqσ0pz̄ ´ bq ´ pσ1pz̄ ´ aq
¯

` p1´ pattackq

´

p1´ pqρ0pz̄q ´ pρ1pz̄q
¯

. (26)

Assuming that
ż

Z
σ0pz̄ ´ w̄qdz̄ ď

ż

Z
σ0pz̄ ´ bqdz̄, (27)

ż

Z
σ1pz̄ ´ w̄qdz̄ ě

ż

Z
σ1pz̄ ´ aqdz̄, (28)

@w̄ P I , then the function

f˚pz̄q–

$

’

&

’

%

0 z̄ P RzZ

1 z̄ P Z

for the defender and the functions

ω˚0 pw̄q “ δpw̄ ´ bq, ω˚1 pw̄q “ δpw̄ ´ aq, (29)

for the attacker form a saddle-point for the game with value given by

Jpf˚, ω˚0 , ω
˚
1 q “ p`

ż

Z
gpz̄qdz̄. l

Proof of Theorem 2. When the distributions ρ0, ρ1, σ0, σ1 are continuous (and have pdfs), the

probability of an estimation error (24) can be re-written as

Jpf,ω0, ω1q “ p` pattackp1´ pq

ż

R

ż

I

fpȳ ` w̄qσ0pȳqω0pdw̄qdȳ

1With some abuse of notation, we use here the same symbols ρ0, ρ1, σ0, σ1 for the continuous distributions and for their

probability density functions (pdfs).
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´ pattack p

ż

R

ż

I

fpȳ ` w̄qσ1pȳqω1pdw̄qdȳ

` p1´ pattackqp1´ pq

ż

R
fpȳqρ0pȳqdȳ ´ p1´ pattackq p

ż

R
fpȳqρ1pȳqdȳ

“ p` pattackp1´ pq

ż

R

ż

I

fpz̄qσ0pz̄ ´ w̄qω0pdw̄qdz̄ ´ pattack p

ż

R

ż

I

fpz̄qσ1pz̄ ´ w̄qω1pdw̄qdz̄

` p1´ pattackqp1´ pq

ż

R
fpȳqρ0pȳqdȳ ´ p1´ pattackq p

ż

R
fpȳqρ1pȳqdȳ. (30)

We prove this theorem by showing that the given policies satisfy the following saddle-point

inequalities:

Jpf˚, ω0, ω1q ď Jpf˚, ω˚0 , ω
˚
1 q ď Jpf, ω˚0 , ω

˚
1 q

for every Lebesgue measurable function f and for every pair of functions pω0, ω1q P A. Suppose

first that the attacker selects the distributions (29). In this case, for an arbitrary Lebesgue

measurable function f , (30) leads to

Jpf, ω˚0 , ω
˚
1 q “ p` pattackp1´ pq

ż

R
fpz̄qσ0pz̄ ´ bqdz̄ ´ pattack p

ż

R
fpz̄qσ1pz̄ ´ aqdz̄

` p1´ pattackqp1´ pq

ż

R
fpȳqρ0pȳqdȳ ´ p1´ pattackq p

ż

R
fpȳqρ1pȳqdȳ

“ p`

ż

R
fpz̄qgpz̄qdz̄

ě inf
f

´

p`

ż

R
fpz̄qgpz̄qdz̄

¯

“ p`

ż

Z
gpz̄qdz̄ “ Jpf˚, ω˚0 , ω

˚
1 q, (31)

where the infimum is taken over Lebesgue measurable functions taking values in r0, 1s and is

achieved for the function f˚ that takes the value 1 when gpz̄q ă 0 and 0 otherwise.

Suppose now that the detector uses the function f˚. For arbitrary distributions pω0, ω1q P A,

conclude from (30) that

Jpf˚,ω0, ω1q “ p` pattackp1´ pq

ż

I

ż

Z
σ0pz̄ ´ w̄qdz̄ω0pdw̄q ´ pattack p

ż

I

ż

Z
σ1pz̄ ´ w̄qdz̄ω1pdw̄q

` p1´ pattackqp1´ pq

ż

Z
ρ0pȳqdȳ ´ p1´ pattackq p

ż

Z
ρ1pȳqdȳ

ď p` pattackp1´ pq

ż

I

ż

Z
σ0pz̄ ´ bqdz̄ω0pdw̄q ´ pattack p

ż

I

ż

Z
σ1pz̄ ´ aqdz̄ω1pdw̄q

` p1´ pattackqp1´ pq

ż

Z
ρ0pȳqdȳ ´ p1´ pattackq p

ż

Z
ρ1pȳqdȳ

“ p` pattackp1´ pq

ż

Z
σ0pz̄ ´ bqdz̄ ´ pattack p

ż

Z
σ1pz̄ ´ aqdz̄
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` p1´ pattackqp1´ pq

ż

Z
ρ0pȳqdȳ ´ p1´ pattackq p

ż

Z
ρ1pȳqdȳ

“ p`

ż

Z
gpz̄qdz̄ “ Jpf˚, ω˚0 , ω

˚
1 q,

where the inequality is a consequence of (27)–(28) and the final equalities result from the

definition of g and (31), respectively.

C. Gaussian case

When ρ0, ρ1, σ0, σ1 are Gaussian distributions one can obtain explicit formulas for the saddle-

point policies in Theorem 2.

Corollary 1: Suppose that I “ ra, bs, that each ρx, x P t0, 1u is a normal distribution with

mean ρ̄x and variance σ2
ρ, and that each σx, x P t0, 1u is a normal distribution with mean σ̄x

and variance σ2
σ. Assuming that

max
!b` σ̄0

σ2
σ

,
ρ̄0

σ2
ρ

)

ă min
!a` σ̄1

σ2
σ

,
ρ̄1

σ2
ρ

)

, (32)

and that σ2
σ is sufficiently close to σ2

ρ, then the function

gpz̄q–
pattack

σσ
?

2π

´

p1´ pqe
´
pz̄´b´σ̄0q

2

2σ2
σ ´ pe

´
pz̄´a´σ̄1q

2

2σ2
σ

¯

`
1´ pattack

σρ
?

2π

´

p1´ pqe
´
pz̄´ρ̄0q

2

2σ2
ρ ´ pe

´
pz̄´ρ̄1q

2

2σ2
ρ

¯

, (33)

has a unique zero z̄ “ z˚, the set Z in (25) is of the form

Z – tz̄ P R : z̄ ě z˚u, (34)

the equations (27)–(28) hold, and therefore the function

f˚pz̄q–

$

’

&

’

%

0 z̄ ă z̄˚

1 z̄ ě z̄˚
(35)

for the defender and the functions

ω˚0 pw̄q “ δpw̄ ´ bq, ω˚1 pw̄q “ δpw̄ ´ aq,

for the attacker form a saddle-point with value given by

Jpf˚, ω˚0 , ω
˚
1 q “ p`

ż 8

z˚
gpz̄qdz̄. l
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Remark 1: The corollary’s assumption that “σ2
σ is sufficiently close to σ2

ρ,” is only needed

to make sure that the function (33) has a unique zero. One could construct an explicit bound

on how close the two variances need to be for this to happen along the lines of the proof of

Proposition 2 in the appendix, but we do not include such bound here because it is conservative

and it is straightforward to verify numerically whether or not the function (33) has a unique

zero. l

Proof of Corollary 1. For the given distributions the function (26) is given by (33), which is of

the form (55) in the Proposition 2 in the appendix, for

a2 “
1

2σ2
σ

, b1 “
b` σ̄0

σ2
σ

, c1 “
a` σ̄1

σ2
σ

,

ā2 “
1

2σ2
ρ

, b̄1 “
ρ̄0

σ2
ρ

, c̄1 “
ρ̄1

σ2
ρ

.

Since (32) guarantees that (56) holds, we conclude from Proposition 2 that for a2 sufficiently

close to ā2, (59) has a unique zero z̄ “ z˚ and that

gpz̄q ď 0 ô z̄ ě z˚,

leading to (34).

To verify the conditions (27)–(28), we write them for the given pdfs and the set Z , leading to
ż 8

z˚
e
´
pz̄´w̄´σ̄0q

2

2σ2
σ dz̄ ď

ż 8

z˚
e
´
pz̄´b´σ̄0q

2

2σ2
σ dz̄,

ż 8

z˚
e
´
pz̄´w̄´σ̄1q

2

2σ2
σ dz̄ ě

ż 8

z˚
e
´
pz̄´a´σ̄1q

2

2σ2
σ dz̄,

(modulo a multiplication by σσ
?

2π ą 0). Making appropriate changes of integration variables,

we obtain the equivalent expressions
ż 8

z˚´w̄

e
´
ps̄´σ̄0q

2

2σ2
σ ds̄ ď

ż 8

z˚´b

e
´
ps̄´σ̄0q

2

2σ2
σ ds̄,

ż 8

z˚´w̄

e
´
ps̄´σ̄1q

2

2σ2
σ ds̄ ě

ż 8

z˚´a

e
´
ps̄´σ̄1q

2

2σ2
σ ds̄,

which indeed hold for every w̄ P ra, bs.

D. Binomial case

When ρ0, ρ1, σ0, σ1 are the binomial distributions in (22)–(23), Theorem 2 no longer applies.

However, since binomial distributions can be well approximated by Gaussian distributions, we

shall see that it is possible to use Corollary 1 to compute an ε-saddle point for a small value

DRAFT



21

of ε. We recall that a pair pu˚, d˚q P U ˆ D is an ε-saddle-point with respect to a criterion

J : U ˆD Ñ R when

Jpu˚, d˚q ´ ε ď Jpu˚, d˚q ď Jpu, d˚q ` ε, @u P U , d P D.

For ε “ 0, an ε-saddle-point is just a regular saddle-point.

Theorem 3: Suppose that ρ0, ρ1, σ0, σ1 are the binomial distributions in (22)–(23), that I “

t0, 1, . . . ,mu with

m ă np1´ 2perrq, perr P p0, 1{2q, (36)

and that the function

gpz̄q–
pattack

nperrp1´ perrq
?

2π

´

p1´ pqe´
pz̄´m´nperrq

2

2nperrp1´perrq ´ pe´
pz̄´np1´perrqq

2

2nperrp1´perrq

¯

`
1´ pattack

pn´mqperrp1´ perrq
?

2π

´

p1´ pqe´
pz̄´pn´mqperrq

2

2pn´mqperrp1´perrq ´ pe´
pz̄´pn´mqp1´perrqq

2

2pn´mqperrp1´perrq

¯

, (37)

has a unique zero z̄ “ z˚. Then the function

f˚pz̄q–

$

’

&

’

%

0 z̄ ă z̄˚

1 z̄ ě z̄˚
(38)

for the defender and the functions

ω˚0 pw̄q “ δpw̄ ´mq, ω˚1 pw̄q “ δpw̄q, (39)

for the attacker form an 2ε-saddle-point with value Jpf˚, ω˚0 , ω
˚
1 q satisfying

ˇ

ˇ

ˇ
Jpf˚, ω˚0 , ω

˚
1 q ´ p´

ż 8

z˚
gpz̄qdz̄

ˇ

ˇ

ˇ
ď ε,

for

ε– p1´ pq
`

pattackEpn, perrq ` p1´ pattackqEpn´m, perrq
˘

` p
`

pattackEpn, 1´ perrq ` p1´ pattackqEpn´m, 1´ perrq
˘

, (40)

with

Ep`, qq– max

"

1`
1

2
erf

´ η ´ `q
a

2`qp1´ qq

¯

´
1

2
erf

´`` 1` η ´ `q
a

2`qp1´ qq

¯

`
ÿ̀

k“0

H

ˆ

1

2
erf

´k ` η ` 1´ `q
a

2`qp1´ qq

¯

´
1

2
erf

´ k ` η ´ `q
a

2`qp1´ qq

¯

´

ˆ

`

k

˙

qkp1´ qq`´k
˙

,
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Fig. 2. Function Ep`, qq defined in (41) for η “ 0 (other values of η lead to smaller values).

´
ÿ̀

k“0

H

ˆˆ

`

k

˙

qkp1´ qq`´k ´
1

2
erf

´k ` η ` 1´ `q
a

2`qp1´ qq

¯

`
1

2
erf

´ k ` η ´ `q
a

2`qp1´ qq

¯

˙*

, (41)

where erfpsq– 1?
π

şs

´s
e´t

2
dt, η is equal to the distance between z˚ and its closest integer, and

H denotes the Heaviside step function Hpsq “ 1, @s ě 0 and Hpsq “ 0, @s ă 0. l

The function Ep`, qq in (41) essentially provides an error between the probability that a

Gaussian random variable with mean `q and variance `qp1´qq falls between k`η and k`η`1

and the probability that a binomial random variable with parameters ` and q take the value k.

By the Moivre-Laplace theorem such errors decrease to zero as fast as 1{
?
` (see Figure 2) and

therefore ε in (40) converges to zero as fast as
?
n´m.

The proof of Theorem 3 requires two results stated below. The first (Lemma 3) shows that if we

replace in the criterion J defined by (24) the distributions ρ0, ρ1, σ0, σ1 by “similar” distributions

ρ̃0, ρ̃1, σ̃0, σ̃1, then the resulting new criterion J̃ is “close” to J . The second result (Lemma 2)

then shows that a saddle-point for a criterion J is an ε-saddle-point for another criterion J̃ that

is “close” to J .

Lemma 2: Consider two zero-sum game criteria J : U ˆ D Ñ R and J̃ : Ũ ˆ D̃ Ñ R with

Ũ Ă U and D̃ Ă D, such that

|Jpu, dq ´ J̃pu, dq| ď ε, @u P Ũ , d P D̃, (42)
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for a given ε ě 0. If a pair pu˚, d˚q P Ũ ˆ D̃ Ă U ˆD is a saddle-point with respect to J , then

the same pair pu˚, d˚q is a 2ε-saddle-point with respect to a criterion J̃ . l

It should be emphasized that the error-bound in (42) only needs to hold on the (smaller)

domain of J̃ . The proof of this result is a straightforward consequence of the definitions of

saddle-point and ε-saddle-point equilibria and can be found in the appendix.

Lemma 3: Consider the criteria J defined by (24) using four distributions ρ0, ρ1, σ0, σ1 and

another criteria J̃ defined by

J̃pf, ω0, ω1q “ p` pattackp1´ pq

ż

I

ż

R
fpȳ ` w̄qσ̃0pdȳqω0pdw̄q

´ pattack p

ż

I

ż

R
fpȳ ` w̄qσ̃1pdȳqω1pdw̄q

` p1´ pattackqp1´ pq

ż

R
fpȳqρ̃0pdȳq ´ p1´ pattackqp

ż

R
fpȳqρ̃1pdȳq, (43)

using four alternative distributions ρ̃0, ρ̃1, σ̃0, σ̃1. For every discrete distributions ω0, ω1 of the

form

ω0pw̄q “
8
ÿ

i“´8

piδpw̄ ´ iq,
8
ÿ

i“´8

pi “ 1 (44)

ω1pw̄q “
8
ÿ

i“´8

qiδpw̄ ´ iq,
8
ÿ

i“´8

qi “ 1, (45)

we have that

|Jpf, ω0, ω1q ´ J̃pf, ω0, ω1q| ď ε,

where

ε– p1´ pq
`

c0pattack ` d0p1´ pattackq
˘

` p
`

c1pattack ` d1p1´ pattackq
˘

(46)

c0 – sup
iPZ

ˇ

ˇ

ˇ

ż

R
fpȳ ` iq

`

σ0pdȳq ´ σ̃0pdȳq
˘

ˇ

ˇ

ˇ
, (47)

c1 – sup
iPZ

ˇ

ˇ

ˇ

ż

R
fpȳ ` iq

`

σ1pdȳq ´ σ̃1pdȳq
˘

ˇ

ˇ

ˇ
, (48)

d0 –

ˇ

ˇ

ˇ

ż

R
fpȳq

`

ρ0pdȳq ´ ρ̃0pdȳq
˘

ˇ

ˇ

ˇ
, (49)

d1 –

ˇ

ˇ

ˇ

ż

R
fpȳq

`

ρ1pdȳq ´ ρ̃1pdȳq
˘

ˇ

ˇ

ˇ
. (50)

l
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Proof of Lemma 3. The error J ´ J̃ can be written as

Jpf, ω0, ω1q ´ J̃pf, ω0, ω1q “ pattackp1´ pq

ż

I

ż

R
fpȳ ` w̄q

`

σ0pdȳq ´ σ̃0pdȳq
˘

ω0pdw̄q

´ pattack p

ż

I

ż

R
fpȳ ` w̄q

`

σ1pdȳq ´ σ̃1pdȳq
˘

ω1pdw̄q

` p1´ pattackqp1´ pq

ż

R
fpȳq

`

ρ0pdȳq ´ ρ̃0pdȳq
˘

´ p1´ pattackqp

ż

R
fpȳq

`

ρ1pdȳq ´ ρ̃1pdȳq
˘

,

and therefore, for distributions of the form (44)–(45), we conclude that

Jpf,ω0, ω1q ´ J̃pf, ω0, ω1q “ pattackp1´ pq
8
ÿ

i“´8

pi

ż

R
fpȳ ` iq

`

σ0pdȳq ´ σ̃0pdȳq
˘

´ pattack p
8
ÿ

i“´8

qi

ż

R
fpȳ ` iq

`

σ1pdȳq ´ σ̃1pdȳq
˘

` p1´ pattackqp1´ pq

ż

R
fpȳq

`

ρ0pdȳq ´ ρ̃0pdȳq
˘

´ p1´ pattackqp

ż

R
fpȳq

`

ρ1pdȳq ´ ρ̃1pdȳq
˘

.

Using (47)–(50) that the fact that
ř

i pi “
ř

i qi “ 1, we then obtain

|Jpf, ω0, ω1q´J̃pf, ω0, ω1q| ď c0pattackp1´pq`c1pattack p`d0p1´pattackqp1´pq`d1p1´pattackqp

“ p1´ pq
`

c0pattack ` d0p1´ pattackq
˘

` p
`

c1pattack ` d1p1´ pattackq
˘

.

Proof of Theorem 3. To prove this result we consider two games: one continuous game defined

by (24) with four Gaussian distributions

σ0 „ N
`

σ̄0 – nperr, σσ
2 – nperrp1´ perrq

˘

σ1 „ N
`

σ̄1 – np1´ perrq, σσ
2
˘

ρ0 „ N
`

ρ̄0 – pn´mqperr, σρ
2 – pn´mqperrp1´ perrq

˘

ρ1 „ N
`

ρ̄1 – pn´mqp1´ perrq, σρ
2
˘

,

where the detector picks a Lebesgue measurable function f : RÑ r0, 1s and the attacker a pair

of distributions pω0, ω1q P A with support on the interval I “ r0,ms; and one discrete game

defined by the similar criteria (43) but with four binomial distributions

σ̃0 „ Binompn, perrq, σ̃1 „ Binompn, 1´ perrq,

ρ̃0 „ Binom
`

n´m, perrq, ρ̃1 „ Binom
`

n´m, 1´ perrq.
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where the detector picks a piecewise constant function f : RÑ r0, 1s of the form

fpz̄q “
8
ÿ

k“´8

fk∆pz̄ ´ kq, ∆psq–

$

’

&

’

%

1 s P rη, η ` 1q

0 otherwise
(51)

with η P r´1{2, 0s and fk P t0, 1u, @k and the attacker a pair of (discrete) distributions pω0, ω1q P

A with support on the discrete set t0, 1, . . . ,mu. In the discrete game, the random variable Z̄

observed by the detector is always an integer between 0 and n and therefore we can indeed restrict

the estimation policies f to be of the form (51). Note that the value of f in (51) on the integers

t0, 1, . . . . , nu is exactly the same regardless of the choice of η in the interval η P r´1{2, 0s. We

shall select the value for η shortly to make sure that we can use Lemma 3.

In view of Corollary 1, the continuous game has a saddle-point (38)–(39) provided that (32)

holds and that (33) has a single zero. The former is implied by (36) and the latter holds in

view of the assumption that (37) has a single zero z˚. Moreover, by selecting η equal to the

distance between z˚ and its closest integer, we can make sure that the step-like saddle point

f˚ in (35) is of the form (51). To apply Lemma 2, it remains to show that the criteria J and

J̃ of the continuous and discrete games, respectively, do not differ by more than ε for discrete

distributions ω0, ω1 with support on the set t0, 1, . . . ,mu and piecewise constant functions f of

the form (51). This result is provided by Lemma 3 with ε defined by (46) and

c0 – sup
iPZ,fkPt0,1u

ˇ

ˇ

ˇ

ż

R
fpȳ ` iq

`

σ0pdȳq ´ σ̃0pdȳq
˘

ˇ

ˇ

ˇ
,

c1 – sup
iPZ,fkPt0,1u

ˇ

ˇ

ˇ

ż

R
fpȳ ` iq

`

σ1pdȳq ´ σ̃1pdȳq
˘

ˇ

ˇ

ˇ
,

d0 – sup
iPZ,fkPt0,1u

ˇ

ˇ

ˇ

ż

R
fpȳq

`

ρ0pdȳq ´ ρ̃0pdȳq
˘

ˇ

ˇ

ˇ
,

d1 – sup
iPZ,fkPt0,1u

ˇ

ˇ

ˇ

ż

R
fpȳq

`

ρ1pdȳq ´ ρ̃1pdȳq
˘

ˇ

ˇ

ˇ
,

for f as in (51). To compute c0, we expand the integral as follows

c0 “ sup
iPZ,fkPt0,1u

ˇ

ˇ

ˇ

8
ÿ

k“´8

fk`i

ż k`η`1

k`η

`

σ0pdȳq ´ σ̃0pdȳq
˘

ˇ

ˇ

ˇ

and note that the largest (positive) value of the summation will take place when the fk`i are equal

to 1 when
şk`η`1

k`η

`

σ0pdȳq ´ σ̃0pdȳq
˘

ą 0 and equal to 0 otherwise. Similarly, the most negative
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value for the summation will take place when the fk`i are equal to 1 when
şk`η`1

k`η

`

σ0pdȳq ´

σ̃0pdȳq
˘

ă 0 and equal to 0 otherwise. This leads to

c0 “ sup
iPZ,fkPt0,1u

ˇ

ˇ

ˇ

ˇ

´1
ÿ

k“´8

fk`i

ż k`η`1

k`η

σ0pdȳq `
8
ÿ

k“n`1

fk`i

ż k`η`1

k`η

σ0pdȳq

n
ÿ

k“0

fk`i

ˆ
ż k`η`1

k`η

σ0pdȳq ´

ˆ

n

k

˙

pkerrp1´ perrq
n´k

˙
ˇ

ˇ

ˇ

ˇ

“max

"
ż η

´8

σ0pdȳq `

ż 8

n`1`η

σ0pdȳq
n
ÿ

k“0

H

ˆ
ż k`η`1

k`η

σ0pdȳq ´

ˆ

n

k

˙

pkerrp1´ perrq
n´k

˙

,

´

n
ÿ

k“0

H

ˆˆ

n

k

˙

pkerrp1´ perrq
n´k

´

ż k`η`1

k`η

σ0pdȳq

˙*

“ Epperr, nq.

The formulas for c1, d0, d1 can be similarly derived.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced novel game-theoretic approaches to estimate a binary random variable

based on a vector of binary sensor measurements that may have been corrupted by an attacker,

also known as the Byzantine problem. The problem is formulated as a zero-sum partial informa-

tion game in which a detector attempts to minimize the probability of an estimation error and an

attacker attempts to maximize this probability. We provide two complementary solutions to this

problem: the first builds upon policy domination to provide an optimal estimator that is valid

when the number of sensors n does not exceed 2{perr and the second provides a suboptimal

estimator that is, at most, ε-away from the optimal with ε converging to zero as fas as 1{
?
n.

The two approaches are complementary in that they cover both a small and large number of

sensors. The results presented are limited to the estimation of a static random variable so the key

question for future work is an extension of this work to the estimation of states of a dynamical

system, either in the form of a finite state machine, a Markov chain, or a stochastic differential

or difference equation.

APPENDIX

Proof of Lemma 1. By the law of total probability, we can expand

Pµ,δpX̂ ‰ Xq “ p1´ pq
n
ÿ

k“0

Pµ

´

X̂ “ 1
ˇ

ˇ

n
ÿ

i“1

Zi “ k
¯

Pδ

´

n
ÿ

i“1

Zi “ k
ˇ

ˇX “ 0
¯
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` p
n
ÿ

k“0

Pµ

´

X̂ “ 0
ˇ

ˇ

n
ÿ

i“1

Zi “ k
¯

Pµ

´

n
ÿ

i“1

Zi “ k
ˇ

ˇX “ 1
¯

“ p1´ pq
n
ÿ

k“0

µpkqPδ

´

n
ÿ

i“1

Zi “ k
ˇ

ˇX “ 0
¯

` p
n
ÿ

k“0

`

1´ µpkq
˘

Pδ

´

n
ÿ

i“1

Zi “ k
ˇ

ˇX “ 1
¯

, (52)

where we used the facts that

Pµδ

´

X̂ “ 1
ˇ

ˇ

n
ÿ

i“1

Zi “ k
¯

“µpkq,

Pµδ

´

X̂ “ 0
ˇ

ˇ

n
ÿ

i“1

Zi “ k
¯

“1´ µpkq.

We now proceed to compute the conditional probabilities in (52), which can also be expanded

as follows:

Pδ

´

n
ÿ

i“1

Zi “ k
ˇ

ˇX
¯

“ Pδ

´

n
ÿ

i“1

Zi “ k
ˇ

ˇX, Eattack

¯

pattack ` P
´

n
ÿ

i“1

Yi “ k
ˇ

ˇX
¯

p1´ pattackq,

where Eattack denotes the events that the attacker manipulated measurements. When no measure-

ments have been manipulated, the random variable of interest
řn
i“1 Yi has a binomial distribution

and we simply have that

P
´

n
ÿ

i“1

Yi “ k
ˇ

ˇX
¯

“

ˆ

n

k

˙

$

’

&

’

%

pkerrp1´ perrq
n´k X “ 0,

p1´ perrq
kpn´kerr X “ 1.

(53)

Otherwise, since δpXq sets to 0 and to 1 a number of sensors equal to δpXq and to m´ δpXq,

respectively, we have that

Pδ

´

n
ÿ

i“1

Zi “ k|X, Eattack

¯

“

$

’

&

’

%

fpXq, m´ δpXq ď k ď n´ δpXq

0, otherwise
(54)

where

fpXq “

ˆ

n´m

k ´m` δpXq

˙

pk´m`δpXqerr p1´ perrq
n´k´δpXq.

Equation (5) follows from (53), (54), and (52).

Proof of Lemma 2. Because of (42) and the fact that pu˚, d˚q is a saddle-point for J , we conclude

that

J̃pu˚, d˚q ď ε ` Jpu˚, d˚q ď ε ` Jpu, d˚q ď 2ε ` J̃pu, d˚q, @u P Ũ .
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and also that

J̃pu˚, d˚q ě Jpu˚, d˚q ´ ε ě Jpu˚, dq ´ ε ě J̃pu˚, dq ´ 2ε, @d P D̃

from which we conclude that pu˚, d˚q is indeed a 2ε saddle-point for J̃ .

Proof of Proposition 1. We use an induction argument on k to prove (17): The basis of induction

k “ 1 follows from the equality:
ˆ

n

1

˙ˆ

perrp1 ´ perrq
n´1

´ pn´1
err p1 ´ perrq

˙

“ n

ˆ

perrp1 ´ perrq
n´1

´ pn´1
err p1 ´ perrq

˙

.

To prove the induction step we assume now that (17) holds for some integer k, such that

1 ď k ď n´ 2, and evaluate the left hand side of (17) with k replaced by k ` 1:
ˆ

n

k ` 1

˙ˆ

pk`1
err p1´ perrq

n´k´1
´ pn´k´1

err p1´ perrq
k`1

˙

“

ˆ

n

k

˙ˆ

n´ k

k ` 1

perr

1´ perr

pkerrp1´ perrq
n´k

´
n´ k

k ` 1

1´ perr

perr

pn´kerr p1´ perrq
k

˙

Since

n´ k

k ` 1

perr

1´ perr

ď 1 ô perr ď
k ` 1

n` 1
ð perr ď

2

n` 1

and

n´ k

k ` 1

1´ perr

perr

ě 1 ô perr ď
n´ k

n` 1
ð perr ď

2

n` 1
,

we conclude that
ˆ

n

k ` 1

˙ˆ

pk`1
err p1´ perrq

n´k´1
´ pn´k´1

err p1´ perrq
k`1

˙

ď

ˆ

n

k

˙

`

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k
˘

ď n
`

perrp1´ perrq
n´1

´ pn´1
err p1´ perrq

˘

,

where the last inequality follows from the assumption that (17) holds for every integer k such

that 1 ď k ď n´ 1. This concludes the induction argument.

Proposition 2: Consider a function

gpzq– e´a2z2`b1z`b0 ´ e´a2z2`c1z`c0 ` e´ā2z2`b̄1z`b̄0 ´ e´ā2z2`c̄1z`c̄0 , (55)

with

a2, ā2 ą 0, maxtb1, b̄1u ă mintc1, c̄1u (56)
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There exists a constant δ ą 0 such that when |a2 ´ ā2| ă δ the function gpzq has a single zero

at z “ z˚, is negative before z˚ and positive after z˚. l

Proof of Proposition 2. First note that we can re-write gpzq as

gpzq “ e´a2z2`βzḡpzq

with

ḡpzq– ḡ1pzq ` e
pa2´ā2qz2

ḡ2pzq (57)

ḡ1pzq– epb1´βqz`b0 ´ epc1´βqz`c0 (58)

ḡ2pzq– epb̄1´βqz`b̄0 ´ epc̄1´βqz`c̄0 , (59)

and β such that

b1 ă β ă c1, b̄1 ă β ă c̄1. (60)

Such β exists because of (56). In view of this, to prove that gpzq has a single zero, it suffices

to show that ḡpzq has a single zero. First we note that, because of (60), we have that

lim
z̄Ñ´8

ḡpz̄q “ `8, lim
z̄Ñ8

ḡpz̄q “ ´8,

and therefore, by continuity, ḡpzq must have at least one zero. To show that this function has a

single zero, we prove that it is strictly monotonically decreasing. Taking derivatives of the two

functions in (58)–(59) with respect to z, we obtain

ḡ11pzq “ pb1 ´ βqe
pb1´βqz`b0 ´ pc1 ´ βqe

pc1´βqz`c0

ḡ12pzq “ pb̄1 ´ βqe
pb̄1´βqz`b̄0 ´ pc̄1 ´ βqe

pc̄1´βqz`c̄0 ,

which in view of (56) shows that ḡ1 and ḡ2 are strictly monotone decreasing. Since ḡ2 is strictly

monotone decreasing and

lim
z̄Ñ´8

ḡ2pz̄q “ `8, lim
z̄Ñ8

ḡ2pz̄q “ ´8,

this function has a single zero at some point z˚. To show that epa2´ā2qz2
ḡ2pzq is also strictly

monotone decreasing we consider three cases

1) for z ď 0 and z ď z˚, epa2´ā2qz2
ḡ2pzq is the product of two positive monotone decreasing

functions and therefore is monotone decreasing
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2) for z ě 0 and z ě z˚, epa2´ā2qz2
ḡ2pzq is the product of a positive monotone increasing

function by a negative monotone decreasing function and therefore is monotone decreasing

3) between 0 and z˚, the derivative of epa2´ā2qz2
ḡ2pzq satisfies

epa2´ā2qz2
´

`

2pa2 ´ ā2qz ` pb̄1 ´ βq
˘

epb̄1´βqz`b̄0 ´
`

2pa2 ´ ā2qz ` pc̄1 ´ βq
˘

epc̄1´βqz`c̄0
˘

and we can always pick a2´ā2 sufficiently small so that the sign of
`

2pa2´ā2qz`pb̄1´βq
˘

and p2pa2 ´ ā2qz ` pc̄1 ´ βqq does not change in this interval.
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