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Abstract

In this paper we present a unified framework for solving a general class of problems arising in the

context of set-membership estimation/identification theory. More precisely, the paper aims at providing

an original approach for the computation of optimal conditional and robust projection estimates in a

nonlinear estimation setting where the operator relating the data and the parameter to be estimated is

assumed to be a generic multivariate polynomial function and the uncertainties affecting the data are

assumed to belong to semialgebraic sets. By noticing that the computation of both the conditional and the

robust projection optimal estimators requires the solution to min-max optimization problems that share

the same structure, we propose a unified two-stage approach based on semidefinite-relaxation techniques

for solving such estimation problems. The key idea of the proposed procedure is to recognize that the

optimal functional of the inner optimization problems can be approximated to any desired precision

by a multivariate polynomial function by suitably exploiting recently proposed results in the field of

parametric optimization. Two simulation examples are reported to show the effectiveness of the proposed

approach.

⋄ Accepted for publication in IEEE Transactions on AutomaticControl
∗ V. Cerone and D. Regruto are with Dipartimento di Automaticae Informatica, Politecnico di Torino, 10129 Torino, Italy

vito.cerone@polito.it, diego.regruto@polito.it

⋄J. B. Lasserre is with LAAS-CNRS and Institute of Mathematics, University of Toulouse, 7 Avenue du Colonel Roche 31

077 Toulouse Cedex 4, Francelasserre@laas.fr
§D. Piga is with the Control Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O.

Box 513, 5600 MB, Eindhoven, The Netherlands.D.Piga@tue.nl

March 20, 2018 DRAFT

http://arxiv.org/abs/1408.0532v1


2

I. INTRODUCTION

Estimation theory can roughly be defined as a branch of mathematics dealing with the problem

of inferring the values of some unknown variables, usually called parameters, from a set of em-

pirical data related to the unknown parameters through a given, possibly uncertain, mathematical

relation. Experimental data are usually obtained by means of measurement procedures that are

known to be affected by uncertainty. Most of the results available in the estimation theory

literature are based on a statistical description of the uncertainty affecting the data.

A worthwhile alternative to the stochastic description, isthe so-called bounded-error or set-

membership characterization where measurement errors areassumed to beunknown but bounded

(UBB), i.e., the measurement uncertainties are assumed to belong to a given bounded set. Such a

description seems to be more suitable in those cases where either a priori statistical information

is not available or the errors are better characterized in a deterministic way (e.g., systematic

and class errors in measurement equipments, rounding and truncation errors in digital devices).

Based on the UBB description of the uncertainty, a new paradigm called bounded-error or set-

membership estimation has been proposed starting with the seminal work of Schweppe [1].

In the last three decades, set-membership estimation theory has been the subject of extensive

research efforts which led to a number of relevant results with emphasis on the application of

the set-membership paradigm in the context of system identification. The interested reader is

referred to the book [2], the survey papers [3], [4] and the reference therein for a thorough

review of the fundamental principles of the theory. Set-membership estimation algorithms can

roughly be divided in two main categories: (i) set-valued estimators (see, e.g., [5]–[12] and the

references therein), aimed at deriving either exact or approximate descriptions of the so-called

feasible parameter set, i.e., the set of all possible parameter values consistent with the collected

experimental data and a set of a-priori assumptions; (ii) pointwise estimators (see, e.g., [13]–[18]

and the references therein), that return a single element ofthe parameter space according to a

given selection criteria.

In this paper we focus on the latter category and, in particular, on two classes of pointwise

estimation algorithms calledconditional estimatorsandprojection estimatorsrespectively. In a

nutshell, a set-membership estimation algorithm is calleda conditional estimator when the sought

estimate is constrained to belong to a given set (see, e.g., [15], [17]–[19]), while it is called a

March 20, 2018 DRAFT



3

projection estimator (see, e.g., [14]–[16]) when the parameter estimate is sought by minimizing a

certain norm of the so-called regression error. To the best of the authors’ knowledge, most of the

results presented in the bounded-error literature about conditional and/or projection estimation

are derived under a set of simplifying hypotheses, including the assumptions that: (i) the operator

relating the parameter and the experimental data is linear and is not affected by uncertainty, (ii)

the error affecting the measured data belongs to simple-shaped convex sets (e.g. boxes, ellipsoids)

and (iii) the parameter estimate to be computed is looked forin the entire parameter space or

at most in a linearly parameterized subset of the parameter space.

In this work, by recognizing that the problems of computing the conditional and projection

estimates require the solution to min-max optimization problems that share essentially the same

structure, a unified approach is proposed to approximate to any desired precision the optimal

(either conditional or projection) estimate by assuming that (i) the operator relating the parameter

and the experimental data is a generic nonlinear polynomialfunction possibly dependent on a set

of uncertain variables assumed to belong to a given semialgebraic set, (ii) the error affecting the

measured data belongs to a semialgebraic set and (iii) the parameter estimate to be computed

is sought in a semialgebraic subset of the parameter space. It is worth noticing that in full

generality, solving nonconvex min-max optimization problems is a real challenge for which

no general methodology is available. An exception is a certain class of robust versions of

some convex optimization problems when the uncertainty sethas some special form. In this

case, computationally tractable robust counterparts of these convex problems may exist. See for

instance [20], [21] and the references therein.

The paper is organized as follows. The addressed estimationproblem is formulated in Section

II, where the proposed unified framework is also presented. Atwo-stage approach based on

semidefinite-relaxation techniques for the solution of theconsidered class of estimation problems

is then presented in Section III. The effectiveness of the proposed approach is demonstrated by

means of two simulation examples in Section IV. Concluding remarks end the paper.

II. PROBLEM FORMULATION

In this paper we consider a class of parametric nonlinear set-membership estimation problems

where a given nonlinear operatorF maps the parameterθ ∈ Pθ ⊆ R
ℓ to be estimated into the
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output vectorw ∈ R
N as follows

w = F(θ, εF ) (1)

whereεF is an uncertain variable. The setPθ takes into account possible prior information on

the parameterθ to be estimated. In this workPθ is assumed to be a semialgebraic set of the

form

Pθ =
{
θ ∈ R

ℓ : kz(θ) ≥ 0, z = 1, . . . , s
}

(2)

wherekz, z = 1, . . . , m are multivariate polynomials in theℓ components of the vectorθ. Output

measurementsy ∈ R
N are assumed to be corrupted by bounded noise as follows

y = g(w, εy) (3)

whereg is a polynomial function in the variablew and εy. The uncertain variablesεF and εy

are assumed to belong to the following semialgebraic set

SεF ,εy =
{
εF ∈ R

q, εy ∈ R
N : hi(εF , εy) ≥ 0, i = 1, . . . , r

}
(4)

with hi, i = 1, . . . , r being multivariate polynomials in theq components of the vectorεF and

theN components of the vectorεy. In this work we restrict our attention to the case where the

nonlinear operatorF is a multivariate polynomial function of variablesθ andεF .

In the set-membership estimation framework, all the valuesof θ that are consistent with the

assumed model structure described in (1), collected measurementsy (3) and bounds on the

uncertainty variables (4) are considered as feasible solutions to the estimation problem. The

setDθ of all such values is called thefeasible parameter set(FPS) and can be defined as the

projection onto the parameter spaceR
ℓ of the following setD:

D =
{
(θ, εF , εy) ∈ Pθ × R

q × R
N :

y = g(F(θ, εF ), εy), (εF , εy) ∈ SεF ,εy
}
.

(5)

In this paper we provide a unified approach to address some minmax estimation problems arising

in set-membership identification. In particular we will refer throughout the paper to the general

formulation of the considered identification problems presented in Section II-A.
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A. General min-max formulation of the considered class of SMestimation problems

The contribution of the paper is to provide an approach to solve the following general nonlinear

set-membership estimation problems:

P1: θrob = argmin
θ∈M

max
α∈Sα,θ

J(θ, α) (6)

whereM can be eitherDθ or Pθ or any other possible subset ofRℓ described by a set of

polynomial inequalities,α ∈ R
T ,

Sα,θ =
{
α ∈ R

T : dµ(α, θ) ≥ 0, µ = 1, . . . ,M
}

(7)

is a semialgebraic set, anddµ, µ = 1, . . . ,M are multivariate polynomials in the components

of the vectorsα and θ. In the rest of the paper we will refer to (6) asrobust SM estimation

problemP1. To the best of the authors’ knowledge this is the first attempt towards the solution

of a robust SM estimation problem in such a general form.

It is worth noting that computation of the global optimal solution θrob of problem (6) is

a difficult and challenging problem since (6) is an NP-hard robust nonconvex optimization

problem. As already mentioned, in full generality there is no methodology to solve (6) except for

robust versions of some convex optimization problems when the uncertainty set has some special

form. Indeed, such problems have computationally tractable robust counterparts as described, for

example, in [20], [21].

In sections II-B and II-C reported below, we show that the twoclasses of set-membership

estimation problems considered in the paper (conditional central estimationandrobust projection

estimation) can be interpreted as two specific instances of problemP1.

As will be discussed in details in the following, the approach proposed in this paper to solve

problemP1 relies on the results presented in [22] (see Theorem 1 of thispaper) that were derived

under the following assumption:

Assumption 1:For each fixed value ofθ = θ the setSα,θ is nonempty.

In sections II-B and II-C we show that Assumption 1 is always satisfied for the specific classes

of estimation problems considered in the paper.
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B. Conditional central estimation for set-membership nonlinear errors-in-variables parametric

identification

Consider a single-input single-output (SISO) nonlinear dynamic system which transforms the

noise-free inputxt into the noise-free outputwt according to

wt = f(θ, wt−1, wt−2, . . . wt−na, xt−1, xt−2, . . . xt−nb) (8)

whereθ is the parameter vector to be estimated andf is assumed to be a multivariate polynomial

function. Both input and output data sequences are corrupted by additive noise,ξt and ηt

respectively, i.e.

ut = xt + ξt, yt = wt + ηt. (9)

The noise samplesξt andηt are bounded by given∆ξt and∆ηt respectively, that is:

| ξt |≤ ∆ξt, | ηt |≤ ∆ηt. (10)

The nonlinear errors-in-variables (NEIV) model structuredescribed by (8)–(10) can be written

in the form (1) by setting:

θ = [a1 . . . ana b0 b1 . . . bnb]
T , (11)

w = [w1 w2 . . . wN ], (12)

y = [y1 y2 . . . yN ], (13)

εF = [εF,1 εF,2 . . . εF,N ]
T (14)

εy,t = [η1 ηt−2 . . . ηN ], (15)

F(θ, εF ) = [F1(θ, εF,1) F2(θ, εF,2) . . . FN(θ, εF,N)]
T (16)

where, for allt = 1, 2, . . . , N ,

Ft(θ, εF ) = f(θ, yt−1 − ηt−1, . . . yt−na − ηt−na, ut−1 − ξt−1, . . . ut−nb − ξt−nb). (17)

and

εF,t = [ηt−1 ηt−2 . . . ηt−na ξt ξt−1 . . . ξt−nb]. (18)

The NEIV model structure considered in (8) is quite general and comprises many important

nonlinear model classes usually considered in system identification including, among the other,
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Hammerstein, Wiener and Lur’e models (see, e.g., [23]–[25]), linear-parameter-varying (LPV)

models with polynomial dependence on the scheduling variables [26], [27], polynomial nonlinear

autoregressive (NARX) and nonlinear output error (NOE) models.

In the NEIV bounded error problem considered here, the setSεF ,εy is simply described by the

linear inequalities in (10), whileD in (5) is the set of all parameter values and noise samples

consistent with the collected experimental data, the modelstructure in (8) and (9), and noise

bounds in (10).

As far as the class of linear time-invariant dynamic systemsis considered, the nonlinear operator

F(θ, εF ) simplifies to:

F(θ, εF ) = F (εF )
Tθ (19)

where

F (εF ) = [F1 F2 . . . FN ]
T (20)

and, for allt = 1, 2, . . . , N ,

Ft = [−yt−1 + ηt−1 − yt−2 + ηt−2 . . .− yt−na + ηt−na

ut − ξt ut−1 − ξt−1 . . . ut−nb − ξt−nb] .
(21)

As is well known, the linear EIV identification set-up (see [28] for details) is quite general in

the sense that many other common linear identification problems can be written in this framework.

In fact, the problem of identifying an output error (OE) model is obtained by settingξt = 0, the

case of finite-impulse-response (FIR) models is obtained for na = 0, while the structure in (8)

and (9) turns out to be an equation error (EE) model whenξt = 0 andηt =
∑na

i=1 aiηt−i.

It is worth noting that in the general NEIV problemsD is a nonconvex semialgebraic set since

the constraintsy − F(θ, εF ) = εy in (5) are polynomial functions ofθ and εF and, moreover,

the same property holds true in the simplified linear-time-invariant case, where constraints

y −F(θ, εF ) = εy in (5) are bilinear inθ andεF due to (19).

AlthoughD is the set of all nonlinear dynamic models with structure (8)that are consistent

with experimental data and measurement error bounds, neither the feasible parameter set nor the
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tight outerbounding box derived in [11], [12] can be straightforwardly exploited for controller

design or system behavior simulation. Thus, in many applications, the problem of selecting

a single model among the feasible ones arises. One of the mostcommon choices in the SM

literature is to look for the value of the parameterθ that minimizes the worst caseℓp estimation

error computed over the entire feasible set, i.e.

θc
.
= argmin

θ∈Rℓ
max

(θν ,εF ,εy)∈Dν

‖θν − θ‖p. (22)

where

Dν =
{
(θν , εF , εy) ∈ Pθν × R

q × R
N :

y = g(F(θν , εF ), εy), (εF , εy) ∈ SεF ,εy
}
,

(23)

and‖ · ‖p is the ℓp-norm of a vector.

The estimateθc computed by solving (22) is the so-calledℓp-Chebyshev centerof D, also

calledcentral estimatein the SM literature.

Remark 1: In the casep = ∞, the central estimate is the center of the minimum-volume-box

outerboundingDθ and can be computed by exploiting the convex relaxation approach proposed

in [12].

Although the central estimate provides the minimum of the worst-case estimation error, it may

show some undesirable features in the case of EIV identification or, more generally, when the set

D is nonconvex. More precisely, in those cases, the Chebyshevcenterθc is neither guaranteed

to belong to the setDθ nor to the setPθ and, as a consequence, the identified LTI system

could result inconsistent either with the experimental data or with some of the a-priori physical

information on the parameterθ. In order to avoid such drawbacks, it is most desirable to force

the computed parameter estimate to belong to a given setM by modifying the optimization

problem (22) as follows

θMc
.
= argmin

θ∈M
max

(θν ,εF ,εy)∈Dν

‖θν − θ‖p (24)

whereM ⊂ R
ℓ is assumed to be a semialgebraic set described by polynomialinequalities.

Such a set is: (a)Dθ if our aim is to constrain the computed estimate to belong to the feasible

parameter set, (b)Pθ if it is required to guarantee that the identified system satisfies the set of
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available a-priori information, (c)Dθ ∩Pθ, or (d) any other semialgebraic set if, more generally,

we want to force the identified system to belong to a particular model class. Problem (24)

falls into the class ofConditional set-membership estimation problemsand, in particular,θMc is

referred to as theconditional Chebyshev centerof the feasible parameter setD with respect to

the model classM. The problem of conditional central estimation is still a challenging problem

in the field of set-membership identification/information based-complexity and a number of

papers have appeared in the literature in the last decades onthe subject (we refer the reader

to the paper [18] and the references therein for a thorough review). In particular, conditional

central algorithms have been proposed to effectively address the problems of reduced order

modeling [15], set-membership state smoothing and filtering [29] and worst-case identification

[18]. For such problems, computationally efficient and/or closed-form solutions to the problem

of conditional central estimation have been derived assuming that: (i)F is a linear operator in

both θ andεF , (ii) εF = 0, (iii) M is a linear manifold, and (iv)Sεy is a simple-shaped convex

set (usually a box, an ellipsoid or a polytope). Unfortunately, such assumptions are not satisfied

in many relevant identification problems including, for example, the EIV problem considered in

this section. As an additional motivating example leading to the class of estimation problems

defined in (24), we mention the problem of identifying input-output linear systems that are a-

priori known to be bounded-input bounded-output (BIBO) stable. In this case, we are interested

in computing the optimal estimate of the system parameter, in the Chebyshev center sense, over

the setPstab of all the parameter values that guarantee BIBO stability ofthe system. Since, as

shown in [30], the setPstab is semialgebraic and described by polynomial inequalities, such a

problem naturally leads to a conditional estimation problem of the general form (24) where the

setM = Pstab.

Remark 2: It is worth remarking that in problem (24)Sα,θ coincides withDν whereα =

(θν , εF , εy). Therefore, sinceDν does not depend onθ, Assumption 1 is satisfied as long as

Dν is a nonempty set, that is a common assumption in Set-membership identification, often

satisfied in practice unless the identification problem is not well posed (e.g. the considered

a-priori assumption on the system to be identified are completely wrong).
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C. Robust conditional projection estimation

Another class of estimator of particular interest in the set-membership/information-based

complexity (IBC) framework is given by the so-called projection algorithms (see, e.g., [14], [16]

and the references therein) where the parameter estimate iscomputed by solving an optimization

problem of the following form:

θp = argmin
θ∈M

‖eR(εF , θ)‖p (25)

whereeR = y − F(θ, εF ) is the so-called regression error (see, e.g., [31], [32]) and the setM

either coincides withRℓ or is a subset ofRℓ. In the latter case the obtained estimator is called

a conditional projection algorithm(see, e.g., [15]). The optimization criterion‖eR‖p is widely

adopted in the identification literature (see, e.g., [31], [33], [34] and the references therein)

and, in particular, the popular least-square estimator (see, e.g., [31], [32]) is obtained by setting

p = 2, M = R
ℓ and assuming thatεF = 0 where 0 is the null element of the spaceRℓ.

Projection estimators and their optimality properties have been extensively investigated in the

SM framework and a number of interesting results have been derived (see, e.g., [14], [16], [19]).

However, to the best of the authors’ knowledge, most of such results have been obtained under

the assumptions that: (i)F is a linear operator in bothθ and εF , (ii) M is a linear manifold,

(iii) Sεy is a simple-shaped convex set (usually a box, an ellipsoid ora polytope) and, most

important, (iv) assuming that the operatorF is not affected by uncertainty, i.e.,εF = 0. In this

work, we consider the following generalization of (25)

θrp = arg min
θ∈M

max
(εF ,εy)∈SεF ,εy

‖eR(θ, εF )‖p (26)

where, in order to take care of the effects of the uncertaintyaffecting the problem, we look for the

parameter estimateθrp that minimizes the worst caseℓp regression error computed over the entire

uncertainty setSεF ,εy . As far as the setM is concerned, we only assume thatM be a subset

of Rℓ described by polynomial inequalities. In such a way, the user is allowed, for example, to

constrain the optimal estimate to belong to the feasible parameter set (M = Dθ), to guarantee

thatθrp satisfies the available a-priori physical information (M = Pθ) or, more generally, to force

the estimated model to belong to a specific, possibly reduced-order, model class (see, e.g., [15],

[19]). In the rest of the paper we refer toθrp as therobust p-norm projection estimateor RPE for

short. It is worth noticing that the problem of computing theoptimal projection estimate for the
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casep = 2 (least squares estimate) in the presence of an uncertaintyεF 6= 0 under the restricting

assumptions thatF is linear operator and the setSεF ,εy is convex, has been widely studied also

outside the context of set-membership estimation and a number of different approaches have

been proposed (see, e.g., paper [35] and the references therein for a thorough review of the

available methods and results).

Remark 3: It is worth remarking that in problem (26)Sα,θ coincides withSεF ,εy whereα =

(εF , εy). Therefore, sinceSεF ,εy does not depend onθ, Assumption 1 is satisfied for allθ ∈ R
ℓ as

long asSεF ,εy is a nonempty set, that is a common assumption in Set-membership identification,

often satisfied in practice unless the considered a-priori assumption on the measurement errors

are completely wrong.

III. A SEMIDEFINITE RELAXATION APPROACH

In this section a two-stage approach is proposed to approximate to any desired precision

the global optimal solution to the general SM robust identification problem (6). The proposed

approach is based on the following basic observations:

(i) problem (6) is atwo-players non-cooperative game(see, e.g., [36]) whereM andSα,θ are

the action sets of the first and the second player respectively;

(ii) from the point of view of the second player,P1 is a parametric optimization problem(see

[22] and the references therein) in the sense that the optimal value of the inner maximization

problem in (6) is a function of the decision of player 1, i.e. the value of the parameterθ;

(iii) the optimal value functionJ̃ of the parametric inner maximization problem is given by

J̃(θ)
.
= J(θ, α∗(θ)) = max

α∈Sα,θ

J(θ, α) (27)

and it is a function of parameterθ only.

Thanks to observations (i)–(iii) above, onceJ̃(θ) is known, problemP1 simplifies to the following

optimization problem:

P2: θrob = argmin
θ∈M

J̃(θ). (28)

Unfortunately, a general methodology to derive an exact closed-form expression for function

J̃(θ) is not available and, therefore, a two-stage procedure is proposed here to approximate the

global optimal solution of problemP1. In the first stage, a polynomial functioñJ∗
τ (θ) of degree
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2τ , upper approximating (in a strong sense) the optimal value function J̃(θ) of the parametric

inner maximization problem is computed. Then, in the secondstage, problemP2 is replaced

with the following polynomial optimization problem:

P3: θτ = arg min
θ∈M

J̃∗
τ (θ). (29)

A. Polynomial approximation of the functioñJ(θ)

Polynomial approximation of the functioñJ(θ) is performed here by exploiting the method-

ology for parametric polynomial optimization proposed in [22]. However, in order to apply the

results presented in [22], we first need to compute a setRθ ⊂ R
ℓ outerboundingM, whose

shape is simple enough to allow one to easily compute all the moments of a Borel probability

measureϕ with uniform distribution onRθ. In this work we exploit the SDP-relaxation based

procedure proposed in [12] to compute the minimum-volume axis-aligned box containing the

setM. Once the boxRθ = [θ, θ] ⊂ R
ℓ, i.e.,

Rθ = {θ ∈ R
ℓ : φk(θ) ≥ 0, φk(θ)

.
= (θk − θk)(θk − θk), k = 1, . . . , ℓ}

has been computed, we can formulate the following optimization problem where we look for the

upper polynomial approximatioñJτ (θ) of the optimal value functioñJ(θ) such that the integral
∫
Rθ
J̃τ (θ)dϕ(θ) is minimized:

min
J̃τ (θ)

∫

Rθ

J̃τ (θ)dϕ

s.t. J̃τ (θ) ≥ J(θ, α) ∀(θ, α) ∈ Rθ × Sα,θ.

(30)

By noticing that (i) the objective function can be written asa linear combination of the moments

of the uniform distribution measure supported onRθ and (ii) the inequality constraint can

be approximately replaced by a SOS constraint, the following semidefinite relaxed problem
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is obtained ( [22]):




min
λβ ,σµ,ψk

∑

β∈Nℓ
2τ

λβγβ

s.t.
∑

β∈N
p
2i

λβθ
β − J(θ, α) = σ0(θ, α) +

M∑

µ=1

σµ(θ, α)dµ(α, θ) +

ℓ∑

k=1

ψk(θ, α)φk(θ)

σµ ⊂ Σ[θ, α], µ = 1, . . . ,M

ψk ⊂ Σ[θ, α], k = 1, . . . , ℓ

deg(σ0) ≤ 2τ ; deg(σµdµ) ≤ 2τ, µ = 1, . . . ,M, deg(ψkφk) ≤ 2τ, k = 1, . . . , ℓ,
(31)

where for eachβ = [β1 . . . βℓ] ∈ N
ℓ andθ = [θ1 . . . θℓ] the notationθβ stands for the monomial

θβ11 θ
β2
2 . . . θβℓℓ , Nℓ

2τ = {β ∈ N
ℓ :

∑
j βj ≤ 2τ}, Σ[θ, α] is the set of SOS polynomials in the

variablesθ andα, while γβ are the moments of the Borel probability measureϕ with uniform

distribution onRθ, defined as (see, e.g., [37]):

γβ
.
=

∫

Rθ

θβdϕ(θ). (32)

Lemma 1: If Rθ×Sα,θ contains an open set, then the semidefinite program (31) has an optimal

solution(λ
∗

β, σ
∗
µ, ψ

∗

k), µ = 0, . . . ,M , k = 1, . . . , ℓ, provided that tau is sufficiently large.

A detailed proof of Lemma 1 is postponed to the Appendix.

Next, by applying the results presented in [22] about parametric polynomial optimization, it

is possible to show that the optimal solution of (31) enjoys the important property stated in the

following theorem:

Theorem 1: ([22]) Let (λ
∗

β, σ
∗
µ, ψ

∗

k), µ = 0, . . . ,M , k = 1, . . . , ℓ, be an optimal solution of

problem (31) for a given degreeτ and let us define the polynomial̃J∗
τ (θ) =

∑
β∈Nℓ

2τ
λ
∗

βθ
β. Then,

J̃∗
τ (θ) converges to the optimal value functioñJ(θ) for theL1(Rθ, ϕ)-norm asτ goes to infinity,

i.e.: ∫

Rθ

|J̃∗
τ (θ)− J̃(θ)| dϕ(θ) → 0. (33)

For the proof of Theorem 1 we refer the reader to the paper [22]. We also have the following

property.

Proposition 1: The optimal value functionθ 7→ J̃(θ) is upper semicontinuous (u.s.c.) onRθ.
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Proof: Let (θn) ⊂ Rθ be a sequence such thatθn → θ asn→ ∞, and

lim sup
z→θ

J̃(z) = lim
n→∞

J̃(θn).

Next, for eachn ∈ N, let α∗(θn) be an arbitrary maximizer inSα,θ for the max problem in

(27). By compactness ofRθ andSα,θ, there is a subsequence denoted(nℓ), ℓ ∈ N, and a point

(α, θ) ∈ Sα,θ ×Rθ such that(α∗(θnℓ
), θnℓ

) → (α, θ) as ℓ → ∞. Consequently, using continuity

of J ,

lim sup
z→θ

J̃(z) = lim
n→∞

J̃(θn) = lim
ℓ→∞

J(θnℓ
, α∗(θnℓ

)) = J(θ, α) ≤ max
α∈Sα,θ

J(θ, α) = J̃(θ),

which proves that̃J is u.s.c.

Thanks to Theorem 1 we are in the position of proving the following result, which shows that

the solution to problemP3 converges to the solution ofP2 (and hence problemP1) as τ goes

to infinity.

Theorem 2: Let J̃∗
τ (θ), τ ∈ N, be the polynomial defined in Theorem 1. Consider the

polynomial optimization problemP3 in (29) with optimal value denoted byJ∗
τ , and letθ∗τ ∈ M

be an optimal solution ofP3. Let Ĵτ = mink≤τ J
∗
k = J̃∗

k(τ)(θ
∗
k(τ)) for somek(τ) ∈ [1, . . . , τ ].

Then:

lim
τ→∞

(
min
k≤τ

J∗
k

)
= lim

τ→∞
Ĵτ = min

θ∈M
max
α∈Sα,θ

J(θ, α) =: J∗. (34)

Moreover, if J̃(θ) is continuous onM and θrob in (28) is unique, thenθ∗k(τ) → θrob as τ → ∞.

If θrob is not unique then any accumulation point of the sequence(θ∗k(τ)), τ ∈ N, is a global

minimizer of problemmin{J̃(θ) : θ ∈ M}.

Proof: Observe that being̃J∗
τ (θ) continuous onRθ (hence onM), it has a global minimizer

θ∗τ ∈ M, for everyτ . From Theorem 1,̃J∗
τ (θ)

L1(Rθ ,ϕ)
→ J̃(θ) (i.e., convergence in theL1(Rθ, ϕ)-

norm). Hence, by [38, Theorem 2.5.3], there exists a subsequence(τℓ) such thatJ̃∗
τℓ
(θ) → J̃(θ),

ϕ-almost uniformly onRθ.

Next, by Proposition 1, the optimal value mapping̃J is u.s.c. onRθ (hence onM). With

ǫ > 0 fixed, arbitrary, letB(ǫ)
.
= {θ ∈ M : J̃(θ) < J∗ + ǫ} and letκ

.
= ϕ(B(ǫ)). As J̃ is u.s.c.,

B(ǫ) is nonempty, open, and thereforeκ > 0. As J̃∗
τℓ
(θ) → J̃(θ), ϕ-almost uniformly onRθ,

there exists a Borel setAκ ∈ B(Rθ) such thatϕ(Aκ) < κ and J̃∗
τℓ
(θ) → J̃(θ), uniformly on

Rθ \ Aκ. Hence, as∆
.
= (Rθ \ Aκ) ∩B(ǫ) 6= ∅, one has

lim
ℓ→∞

J̃∗
τℓ
(θ) = J̃(θ) ≤ J∗ + ǫ, ∀ θ ∈ ∆,
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and so, asJ∗
τ ≤ J̃∗

τ (θ) on ∆, one obtainslim
ℓ→∞

J∗
τℓ
≤ J∗ + ǫ. As ǫ > 0 was arbitrary, one finally

gets lim
ℓ→∞

J∗
τℓ
= J∗. On the other hand, by monotonicity of the sequence(Ĵτ ),

J∗ ≤ lim
τ→∞

Ĵτ = lim
ℓ→∞

Ĵτℓ ≤ lim
ℓ→∞

J∗
τℓ

= J∗, (35)

and so (34) holds.

Next, let θ∗τ ∈ M be a global minimizer ofJ̃∗
τ (θ) on M. As M is compact, there exists

θ ∈ M and a subsequenceτℓ such thatθ∗k(τℓ) → θ as ℓ → ∞. In addition, fromJ̃∗
τ (θ) ≥ J̃(θ)

for everyτ and everyθ ∈ Rθ,

J∗ ≤ J̃(θ∗k(τℓ)) ≤ J̃∗
k(τℓ)

(θ∗k(τℓ)) = Ĵτℓ .

So using (35) and lettingℓ → ∞ yields the desired resultJ∗ = J̃(θ). So if the minimizer of

J̃ on M is unique, one hasθ = θrob, and as the converging subsequence(τℓ) was arbitrary, the

desired result follows. If the minimizer is not unique then every accumulation pointθ is a global

minimizer sinceJ∗ = J̃(θ), as just shown above.

Remark 4: Even though the sequencẽJ∗
τ → J̃ for the L1-norm, the sequencẽJ∗

τ , τ ∈ N, is

not necessarily monotone (meaningJ̃∗
τ (θ) ≥ J̃∗

τ+1(θ) for all τ ∈ N, θ ∈ Rθ, does not necessarily

holds). For this reason, it would be useful to know bounds on the distance betweeñJ∗
τ and J̃

for each fixed value ofτ . Unfortunately, computation of such bounds is a difficult open problem

that requires further investigation.

B. Solution to problemP3 via SDP relaxation

Once a polynomial approximatioñJ∗
τ (θ) of the optimal value functionJ̃(θ) of the inner

maximization problem in (6) has been computed as discussed in III-A, we are in the position

of solving problemP3 which is a multivariate polynomial optimization problem inthe variable

θ on the compact semi-algebraic setM. By applying the moments-based relaxation approach

proposed in [39], a hierarchy of SDP relaxations(Qt), t ∈ N, can be constructed with the

following properties:

- The resulting sequence(infQt), t ∈ N, of optimal values is monotone non decreasing and

converges to the optimal valueJ∗
τ of problemP3.

- If the global minimizerθτ ∈ M of P3 is unique then the vector of “first-order” moments

of an optimal solutiony of Qt converges toθτ as t→ ∞.
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For more details on SDP relaxations for generalized moment problems, the interested reader is

referred, e.g., to [37]. In fact, in view of recent results in[40] and [41], the convergence is finite

provided that the problem satisfies a set of mild conditions (see [41] and the references therein

for details), that is,generically, the optimal valueJ∗
τ is attained at a particular relaxation in the

hierarchy, i.e.,J∗
τ = infQt for somet. Finally, another recent result by Nie [42] ensures that

generically, eventually some rank test is passed at some stept in the hierarchy, which permits to

detect finite convergence at stept, and extract global minimizers (whichgenericallyare finitely

many). The reader is referred to the papers [41], [42] for a discussion on the precise technical

meaning of the wordgenericallyin this context.

Remark 5: [Exploiting sparsity] At a first sight, the applicability of the relaxation-based

procedure proposed in this paper seems to be limited in practice to small-size identification

problems, due to large dimensions of the SDP problems involved in the two stages of the proposed

approach. That is certainly true for problemP1 in its general form (6), where the functional

J(θ, α) is a generic multivariate polynomial and the setsM andSα,θ are generic semialgebraic

sets. However, in view of the discussion and results reported in works [12], [23], it is possible

to show that a number of identification problems arising fromreal-word applications enjoy a

peculiar sparsity structure, calledcorrelative sparsityin the framework of large-scale optimization

(see, e.g., [43], [44]), which can be exploited to significantly reduce the computational complexity

and the size of the involved SDP optimization problems either by means of the approach proposed

in [43], [45] or by means of the ad-hoc procedure presented in[11]. More specifically, it is

possible to show that a number of set-membership identification problems leads to semialgebraic

optimization where the constraints and the functional satisfy the so-calledrunning intersection

property(see [45]), a condition that guarantees convergence of the solution of the relaxed problem

to the global optimum of the polynomial problem also when thecorrelative sparsity pattern is

used to derive semidefinite relaxations of reduced complexity (see, e.g., [43], [44]). Analysis

of the correlative sparsity structure of problemP1 cannot be performed in general, since it

requires to precisely specify the mathematical structure of the setsM and Sα,θ. At the same

time, providing a general discussion on the subject of sparsity exploitation in the context of

SDP relaxation for polynomial problems is far beyond the scope of the paper, and the interested

reader is referred to papers [43]–[45]. However, we will tryto provide here a sketch of the main
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ideas, covering the subject mostly at the level of intuition.

Let {1, . . . n} be the union
⋃p

k=1 Ik of subsetsIk ⊂ {1, . . . n}. A polynomial optimization

problem is said to enjoy a correlative type of sparsity structure if: (i) each polynomial involved

in the description of the set of constraints is only concerned with variables{Xi : i ∈ Ik} for

somek; (ii) the functional to be optimizedJ can be written as the sumJ = J1 + . . . + Jp

such that eachJk only involves variables{Xi : i ∈ Ik}. Furthermore, the problem satisfies the

running intersection property if the following condition is fulfilled:

Ik+1 ∩
k⋃

j=1

Ij ⊆ Is, for somes ≤ k

The subsets{Ik} can be detected either by inspection or by exploiting the systematic approach

proposed in [43] and implemented in the software package [46]. If the problem enjoys a

correlative sparsity structure, this can be used to derive SDP relaxations of lower complexity, as

described in [43], [45]. Essentially, the intuitive idea underlying the approaches proposed in [43],

[45] is the following: if the constraints and the objective function can be properly decomposed

in subsets/subfunctionals depending only on a small subsetof variables, then “sparse” SDP

relaxations can be constructed. This means that the involved SOS polynomials depend, each one,

only on a small subset of variables of the original polynomial optimization problem. The fact

that the linear EIV identification and the nonlinear Hammerstein identification problems enjoy

a correlative sparsity structure satisfying the running intersection property, has been proved

in previous papers [12], [23]. The same arguments/reasoning can be used to show that the

polynomial approximation/optimization problems obtained by applying the approach proposed

in this paper to the problem of conditional central estimation problem (24), enjoy the correlative

sparsity structure and satisfy the running intersection property for many different choices of the

set M including, e.g., the caseM = D. This is also true for a number of problems in the

class of robust conditional projection estimators including the nonlinear nonconvex robust least

squares problem considered in Example 2 of Section IV.

Remark 6: It is worth-remarking that, by exploiting recent results presented in [47], the two-

stage relaxation-based procedure proposed in this sectioncan be extended to a more general

class of problems where the functionJ(θ, α) in problemP1 is a non-polynomial semialgebraic

function.
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IV. SIMULATION EXAMPLES

The capabilities of the presented approach are shown in thissection by means of two simulation

examples.

Example 1

The first illustrative example comes from the problem addressed in [48] on the identification

of ARX models based on quantized measurements. Consider thesystem analyzed in [48], i.e.,

w(t) = θo1w(t− 1) + θo2u(t) + d(t) = 0.6w(t− 1) + 0.6u(t) + d(t), (36)

where u(t) and w(t) are the input and output signals at timet, respectively, andd(t) is an

unknown additive disturbance which is assumed to belong to the interval [−0.1, 0.1]. The

system is simulated using a white input signalu(t) uniformly distributed within[−2.5, 2.5]

and a disturbanced(t) with uniform distribution in the interval[−0.1, 0.1]. The outputw(t) is

measured by a binary sensor with thresholdC = 1, i.e.,

y(t) =





1 if w(t) ≥ 1

0 otherwise
(37)

wherey(t) is the output of the binary sensor. Indeed, the system outputw(t) is not accessible

and only its measurementy(t) is available. The estimate of the parametersθ of the system in

(36) is computed based on a collection ofN = 200 input/output measurements. Note thaty(t)

can be written in the form of (3) as follows:

y(t) = w(t) + εy(t), (38)

with εy(t) s.t.

εy(t) ≤ 0 if y(t) = 1,

εy(t) ≥ −1 if y(t) = 0.
(39)

Based on eqs. (39), the uncertainty setSεy can be written in terms of nonnegative inequality

constraints as

Sεy =
{
εy ∈ R

N : ht(εy) ≥ 0, t = 1, . . . , N
}
, (40)

with

ht(εy)
.
=





−εy(t) if y(t) = 1,

εy(t) + 1 if y(t) = 0.
(41)

March 20, 2018 DRAFT



19

Substitution of eq. (38) into (36) leads to the following relation between input and noise-corrupted

outputy(t):

y(t) = θ1 (y(t− 1)− εy(t− 1)) + θ2u(t) + d(t) + εy(t). (42)

The FPSDθ for the considered system is thus defined as the projection over the parameter space

of the setD defined by (42), (40) and the a-priori assumption on the disturbanced(t), i.e.

D =
{
(θ, d, εy) ∈ R

2+2N : y(t) = θ1 (y(t− 1)− εy(t− 1)) + θ2u(t) + d(t) + εy(t),

ht(εy) ≥ 0, −0.1 ≤ d(t) ≤ 0.1, t = 1, . . . , N} .
(43)

Note thatD is described by polynomial constraints because of the product between the unknown

parameterθ1 and the noiseεy(t−1) in the equality constraint appearing in (43). In this example

we will compute theℓ2-norm conditional Chebyshev centerθDc of the FPSD with respect toDθ

itself, i.e.,

θDc
.
= arg min

θ∈Dθ

max
(θν ,d,εy)∈D

‖θν − θ‖22. (44)

In order to compute a solution to problem (44) through the procedure discussed in the paper, an

outer-bounding boxRθ of the FPSDθ is first evaluated by means of the approach proposed in

[12] for bounding the parameters of linear systems in the bounded-error EIV framework. The

computed outer-bounding boxRθ is reported in Fig. 1, together with the true FPSDθ. Then, a

polynomial J̃τ (θ)∗ of degree2τ (with τ = 2) upper approximating the function

J̃(θ) = max
(θν ,d,εy)∈D

‖θν − θ‖22, (45)

is computed by solving the SDP problem (31). It is worth remarking that problem (31) enjoys

a particular structured sparsity which is used to reduce thecomputational complexity in con-

structing the SOS polynomials in (31). In fact, the objective function‖θν − θ‖22 in (45) only

depends on the model parametersθν , while each constraint definingD in (43) only depends on

a small subset of variables, namely, the model parametersθν , the disturbanced(t) and the noise

samplesεy(t − 1) and εy(t). A correlative sparsity structure satisfying conditions in Remark 5

can be easily detected through a procedure similar to the onediscussed in [12] in the context

of set-membership EIV identification. The obtained 4-degree polynomialJ̃τ (θ)∗ given by

J̃τ (θ)
∗ =0.939− 0.795θ1 − 0.037θ2 − 1.039θ21 − 3.731θ1θ2 + 4.315θ22+

2.617θ31 + 0.790θ21θ2 + 2.473θ1θ
2
2 − 4.567θ32+ (46)

− 0.968θ41 + 1.740θ31θ2 − 7.267θ21θ
2
2 + 7.917θ1θ

3
2 − 1.166θ42,
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Fig. 1. Exact Feasible Parameter SetDθ (grey region), outer-bounding boxRθ (region inside the box), (unconditional)

Chebyshev center (�), exact conditional Chebyshev centerθDc (×), approximation of the conditional Chebyshev center computed

with the proposed two-stage approach (O).

is plotted in Fig. 2, together with the true functioñJ(θ) in (45), which in turn has been obtained

by gridding.
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Fig. 2. True functionJ̃(θ) in (45) (gray) and computed polynomial approximatioñJ∗
τ (θ) (black).
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The (unconditional) Chebyshev center of the FPS is computedby minimizing J̃τ (θ)∗ over the

outer-bounding boxRθ, while an approximation of the conditional Chebyshev center is computed

by solving problemP3 via the SDP relaxation approach discussed in Section III-B.Both the

unconditional and the conditional Chebyshev center are reported in Fig. 1, which shows that

the unconditional one does not belong to the FPS, while the computed approximation of the

conditional Chebyshev center does. In the same figure, the exact conditional Chebyshev center

θDθ
c , that is, the minimum of the true functioñJ(θ) over the exact FPSDθ is also reported

showing that the proposed relaxation approach is able to provide a good approximation of

the global optimal solution to problem (44). The CPU time taken to compute the conditional

Chebyshev centerθDθ
c is about 1320 seconds on a 2.40-GHz Intel Pentium IV with 3 GB of RAM.

More specifically, the time required to compute the polynomial approximationJ̃(θ) (i.e. time

required to compute the solution to problem (31)) is about450 seconds, while the second step

(solution to minimization problemP3 with order of relaxation2) takes about870 seconds. The

maximum amount of memory used by Matlab during the computation was about 891 MB. The

solver SeDuMi has been used to solve the SDP problem (31) and the SDP problems relaxingP3.

Example 2

In this example, the method is applied to the problem of robust estimation of a non-linear-in-

the-parameter static model when both the input and the output measurements are corrupted by

bounded noise.

The multi-input-single-output(MISO) data-generating system is given by

w(t) = θo1x1(t) + θo1θ
o
2x2(t) + θo3x3(t) + (θo1)

2 x4(t) + θo4θ
o
5x5(t) + (θo5)

2 x6(t) + θo4θ
o
6x7(t) =

(47)

= 1x1(t) + (1 · 0.6)x2(t)− 0.5x3(t) + 1x4(t) + 0.3 · 0.8x5(t) + (0.8)2x6(t)− 0.3 · 0.5x7(t),

(48)

wherexi(t), with i = 1, . . . , 7, is the i-th noise-free input andw(t) is the noise-free output at

time t. The inputsxi(t) are i.i.d. random processes uniformly distributed in the interval [−1, 1]

with length N = 400. Both the inputsxi(t) and the outputw(t) are corrupted by additive
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uncertaintiesξi(t) andη(t), respectively, i.e.,

ui(t) =xi(t) + ξi(t), i = 1, . . . , 7, (49)

y(t) =w(t) + η(t), (50)

whereξi(t) andη(t) are white-noise processes uniformly distributed in the intervals[−∆ξi, ∆ξi] =

[−0.2, 0.2] (for all i = 1, . . . , 7) and [−∆η, ∆η] = [−0.25, 0.25], respectively. The signal-to-

noise ratio on the inputs,SNRxi, and on output,SNR
w

, defined as

SNRxi = 10 log

{
N∑

t=1

x2i (t)

/
N∑

t=1

ξ2i (t)

}
, (51)

SNR
w
= 10 log

{
N∑

t=1

w2(t)

/
N∑

t=1

η2(t)

}
, (52)

are 13 db (for alli = 1, . . . , 7) and 16 db, respectively. Let us denote withθ = [θ1, θ2, θ3, θ4, θ5, θ6]

the parameters of the model to be estimated. The FPSDθ is then given by the projection over

the parameter space of the following set:

D =
{
(θ, ξ, η) ∈ R

3+5N : y(t) = θ1 (x1(t)− ξ1(t)) + θ1θ2 (x2(t)− ξ2(t)) +

+ θ3 (x3(t)− ξ3(t)) + θ21 (x4(t)− ξ4(t))+

+ θ4θ5 (x5(t)− ξ5(t)) + (θ5)
2 (x6(t)− ξ6(t)) + θ4θ6 (x7(t)− ξ7(t))+

+ η(t),

|η(t)| ≤ ∆η, |ξi(t)| ≤ ∆ξi, t = 1, . . . , N, i = 1, . . . , 7} .

(53)

Now, let ŷ(t, θ) be the output of the model to be estimated, given by:

ŷ(t, θ) = θ1u1(t) + θ1θ2u2(t) + θ3u3(t) + θ21u4(t) + θ4θ5u5(t) + (θ5)
2 u6(t) + θ4θ6u7(t). (54)

In this example, we compute the parameter estimateθ∗ = [θ∗1, θ
∗
2, θ

∗
3, θ

∗
4, θ

∗
5, θ

∗
6] that minimizes

the worst-caseℓ2-loss functionV(θ, ξ), defined as

V(θ, ξ) =
N∑

t=1

(y(t)− ŷ(t, θ))2 , (55)
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over all possible realizations of the input uncertaintiesξi(t) in the interval[−∆ξi, ∆ξi] under the

constraint that the identified parameters belong to the FPS.The considered estimation problem

can be formulated as the followingmin-maxoptimization problem:

θ̂∗ = argmin
θ∈D

max
ξ∈Sξ

V(θ, ξ), (56)

whereSξ is defined as

Sξ = {ξ : |ξi(t)| ≤ ∆ξi, for all i = 1, . . . , 7, t = 1, . . . , N} . (57)

It is worth noting that problem (56) is: (i) a nonlinear nonconvex least squares problems,

due to the nonlinear-in-parameter structure of the system to be estimated; (ii) a robust nonlinear

least-square problem, due to the presence of uncertainty inall the explanatory variables; (iii)

a nonconvex constrained least square problem, since the optimal estimate is looked for over

the feasible parameter setDθ. Therefore, problem (56) is a challenging estimation problem for

which, to the best of the authors’ knowledge, no solution hasbeen previously proposed in the

literature.

Here, the solution to Problem (56) is computed by applying the two-stage relaxation based

method presented in the paper, which leads to the following estimate of the model parameters:

θ̂∗ =
[
θ̂∗1, θ̂

∗
2, θ̂

∗
3, θ̂

∗
4, θ̂

∗
5, θ̂

∗
6

]
= [0.98, 0.57, −0.54, 0.36, 0.79, −0.59] . (58)

It is worth remarking that, in order to apply the proposed method, an outer-bounding box of the

feasible setD has been computed by suitable modifications of the algorithmproposed in [11].

Furthermore, as in Example 1, problem (56) enjoys a particular sparsity structure which has

been exploited to reduce the computational load in solving (56). In fact, the objective function

V(θ, ξ) is given by the sum ofN terms (y(t)− ŷ(t, θ))2, each one involving only the model

parametersθ and the noise samplesξi(t) (with i = 1, . . . , 7) as unknown variables. Furthermore,

each constraint definingSξ in (57) only depends on the noise variableξi(t). Similarly, each

constraint defining the setD in (53) only involves a small subset of optimization variables,

namely: the model parametersθ, the input noise samplesξi(t) (with i = 1, . . . , 7) and the output

noise sampleη(t). By stacking the variablesθ, ξi(t), η(t) in the vector

X = [θ1, . . . , θ6, ξ1(1), . . . , ξ7(1), . . . , ξ1(N), . . . , ξ7(N), η(1), . . . , η(N)] . (59)
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The index setsIt (with t = 1, . . . , N) introduced in Remark 5 and satisfying therunning

intersection propertycan be defined as

It = {1, . . . , 6, 6 + 7(t− 1) + 1, . . . , 6 + 7(t− 1) + 7, 6 + 7N + t} . (60)

In this way, each constraint definingD in (53) is only concerned with variables{Xi : i ∈ It},

that isθ, ξi(t) (with i = 1, . . . , 7) andη(t).

The performance of the estimated model is tested on a validation set withNval = 100

input/output measurements. The noise-free outputw(t) and the estimated output signalŷ(t, θ̂∗)

are plotted in Fig. 3, while the difference betweenw(t) andŷ(t, θ̂∗) is depicted in Fig. 4 showing

a good agreement between the two signals. The CPU time taken to compute the parameter

estimateθ̂∗ is about7 hours. More specifically, the time required to compute the solution to

problem (31) withτ = 2 is about2.5 hours, while the second step (solution to minimization

problemP3 with order of relaxation2) takes about4.5 hours. The maximum amount of memory

used by Matlab during the computation was about 1.9 GB. Basedon the authors’ experience,

although sparsity is exploited, the identification problemconsidered in this example becomes

computationally intractable (in commercial workstationsand using general purpose SDP solvers

like SeDuMi) when models with more that 7 parameters are considered.
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Fig. 3. Noise-free output signalw(t) (thick line) and estimated output̂y(t, θ̂∗) (thin line).
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Fig. 4. Estimate output errorw(t)− ŷ(t, θ̂∗).

V. CONCLUSIONS

In this work we have presented a two-stage approach, based onsuitable convex semidefi-

nite relaxations, for approximating the global optimal solution to a general class of min-max

constrained semialgebraic optimization problems arisingin the framework of set-membership

estimation theory. We have shown that the proposed methodology can be profitably applied

to the problem of computing bothconditional centraland robust projectionestimators in a

nonlinear setting where the operator relating the data and the parameter to be estimated is

assumed to be a generic multivariate polynomial function and the uncertainties affecting the data

are assumed to belong to semialgebraic sets. The key idea of the approach is to first compute a

convergent polynomial approximation of the optimal value function of the inner maximization

problem. Once such an approximation has been computed, the outer minimization problem

reduces to a standard polynomial optimization problem solved by constructing a convergent

hierarchy of semidefinite relaxations. Two simulation examples have been reported to show the

effectiveness of the proposed approach. In particular, in the first example we have demonstrated

that the presented two-stage algorithm provides good approximation of the global optimum of
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the considered min-max estimation problems, while in the second example we have shown that

the proposed methodology can be applied to compute the solution to a challenging nonconvex

constrained robust least square estimation problem.

APPENDIX

Proof of Lemma 1.

To prove that the semidefinite program (31) has an optimal solution, we prove that Slater’s

condition holds for its dual, which is the semidefinite program:

max
z

L
z
(J(θ, α))

Mτ (z) � 0

Mτ−rµ(dµ z) � 0, µ = 1, . . . ,M

Mτ−1(φk z) � 0, k = 1, . . . , ℓ

L
z
(θβ) = γβ, ∀β ∈ N

ℓ
2τ

(61)

where

• z = (zκ), κ ∈ N
ℓ+T
2τ , is a sequence indexed in the canonical basis of monomials(θβαν), of

R[θ, α]2τ (the vector space of polynomials of degree at most2τ ).

• Mτ (z) is the moment matrix of orderτ , associated with the sequencez.

• Mτ−rµ(dµ z) is the localizing matrix of orderτ − rµ, associated with the sequencez and

the polynomialdµ ∈ R[θ, α] (and whererµ
.
= ⌈(deg dµ)/2⌉).

• L
z
: R[θ, α] → R is the so-called Riesz functional:

p


=

∑

(β,ν)∈Nℓ+T

pβν θ
β αν


 7→ L

z
(p) =

∑

(β,ν)∈Nℓ+T

pβν zβ,ν , p ∈ R[θ, α].

For more details on moment and localizing matrices, and how they are used in polynomial

optimization, the interested reader is referred to [37]. Now let O be an open set contained in

Rθ×Sα,θ, with projectionO1 onRθ. Letϕ be the Borel probability measure uniformly distributed

on Rθ with moments(γβ). Let ψ be the Borel probability measure onRθ × Sα,θ defined by:

ψ(A× B)
.
=

∫

A

Q(B | θ)ϕ(dθ), B ∈ B(Sα,θ), A ∈ B(Rθ),
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whereQ(·|·) is a stochastic kernel onRθ × Sα,θ such thatQ(· | θ) is the probability measure

uniformly distributed onSα,θ if θ ∈ O1, and Q(·|θ) is any probability measure onSα,θ if

θ ∈ Rθ \O1. Then letz be the sequence of moments associated withψ, i.e.,

zβ,ν
.
=

∫
θβ αν dψ(θ, α), ∀ (β, ν) ∈ N

ℓ+T
2τ .

ThenMτ (z) ≻ 0, Mτ−rµ(dµ z) ≻ 0, µ = 1, . . . ,M , andMτ−1(φk z) ≻ 0, k = 1, . . . , ℓ as well.

Indeed suppose for instance thatMτ (z)p = 0 for some vectorp 6= 0. Let p̃ ∈ R[θ, α]τ be the

polynomial with coefficient vectorp.

0 = 〈p,Mτ(z) p〉 =

∫
p̃(θ, α)2 dψ(θ, α) = 0,

but this implies that̃p vanishes on the whole open setO, in contradiction withp 6= 0. Similarly,

let µ ∈ {1, . . . ,M} be arbitrary, and suppose thatMτ−rµ(z)p = 0 for some vectorp 6= 0, and

let p̃ ∈ R[θ, α]τ−rµ be the polynomial with coefficient vectorp.

0 = 〈p,Mτ−rµ(z) p〉 =

∫
p̃(θ, α)2 dµ(θ, α) dψ(θ, α) = 0,

but this implies that̃p vanishes on the whole open setO, in contradiction withp 6= 0. A similar

argument shows thatMτ−1(φk z) ≻ 0 for everyk = 1, . . . , ℓ. Moreover, from the definitions of

ψ andϕ,

L
z
(θβ) =

∫

Rθ×Sα,θ

θβ dψ(θ, α) =

∫

Rθ

θβ ϕ(dθ) = γβ, β ∈ N
ℓ
2τ ,

and soz is admissible for (61). Therefore Slater’s condition holdsfor (61), and by a well-known

result of convex optimization, the dual of (61) (i.e. (31)) has a optimal solution if its value is

finite.

But the value of the primal semidefinite program (31) is bounded below by
∫
Rθ
J(θ, α)dϕ(θ).

Moreover, there existsM > 0 such thatM − J(θ, α) > 0 on Rθ ×Sα,θ. Therefore by Putinar’s

Positivstellensatz, there exists some integerτ0 such that

M − J(θ, α) = σ0(θ, α) +
M∑

µ=1

σµ(θ, α)dµ(α, θ) +
ℓ∑

k=1

ψk(θ, α)φk(θ)

wheredeg(σ0) ≤ 2τ0, deg(σµdµ) ≤ 2τ0, µ = 1, . . . ,M , anddeg(ψkφk) ≤ 2τ0, k = 1, . . . , ℓ.

Hence the optimal value of (31) is finite wheneverτ ≥ τ0 and so (31) has an optimal solution.

�

March 20, 2018 DRAFT



28

REFERENCES

[1] F. Schweppe, “Recursive state estimation: unknown but bounded error and system input,”IEEE Trans. Aut. Control, vol.

AC-13, pp. 556–558, 1968.

[2] M. Milanese, J. P. Norton, H. Piet-Lahanier, and E. Walter, Eds.,Bounding approaches to system identification. New

York: Plenum Press, 1996.

[3] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic systems with set membership uncertainty: an overview,”

Automatica, vol. 27(6), pp. 997–1009, 1991.

[4] E. Walter and H. Piet-Lahanier, “Estimation of parameter bounds from bounded-error data: a survey,”Mathematics and

Computers in simulation, vol. 32, pp. 449–468, 1990.

[5] M. Milanese and G. Belforte, “Estimation theory and uncertainty interval evaluation in presence of unknown but bounded

errors: linear families of models and estimators,”IEEE Transactions on Automatic Control, vol. 27, pp. 408–414, 1982.

[6] E. Fogel and F. Huang, “On the value of information in system identification-bounded noise case,”Automatica, vol. 18,

pp. 229–238, 1982.

[7] R. Pearson, “Block-sequential algorithms for set-theoretic estimation,”SIAM J. on Matrix Anal. Appl., vol. 9, no. 4, pp.

513–527, 1988.

[8] S. Veres, “Polyhedron updating and relaxation for on-line parameter and state bounding,” inProc. of IFAC Symposium on

System Identification, 1994, pp. 371–376.

[9] A. Vicino and G. Zappa, “Sequential approximation of feasible parameter sets for identification with set membership

uncertainty,”IEEE Transaction on Automatic Control, vol. 41, pp. 774–785, 1996.

[10] L. Chisci, A. Garulli, A. Vicino, and G. Zappa, “Block recursive parallelotopic bounding in set membership identification,”

Automatica, vol. 34, no. 1, pp. 15–22, 1998.

[11] V. Cerone, D. Piga, and D. Regruto, “Improved parameters bounds for set-membership EIV problems,”International

Journal of Adaptive Control and Signal Processing, vol. 57, no. 2, pp. 208–227, 2011.

[12] ——, “Set-Membership Error-in-Variables Identification Through Convex Relaxation Techniques,”IEEE Transactions on

Automatic Control, vol. 57, no. 2, pp. 517–522, 2012.

[13] M. Milanese and R. Tempo, “Optimal algorithms theory for robust estimation and prediction,”IEEE Trans. Automatic

Control, vol. AC-30, no. 8, pp. 730–738, 1985.

[14] B. Kacewicz, M. Milanese, A. Vicino, and R. Tempo, “Optimality of central and projection algorithms for bounded

uncertainty,”Systems and control letters, vol. 8, pp. 161–171, 1986.

[15] B. Kacewicz, M. Milanese, and A. Vicino, “Conditionally optimal algorithms and estimation of reduced order models,” J.

Complexity, vol. 4, pp. 73–85, 1988.

[16] M. Milanese, “Properties of least-squares estimates in Set-membership identification,”Automatica, vol. 35, no. 5, pp.

767–776, 1999.

[17] A. Garulli, “Tight error bounds for projection algorithms in conditional set-memberhip estimation,”Systems and Control

Letters, vol. 37, pp. 293–300, 1999.

[18] A. Garulli, A. Vicino, and G. Zappa, “Conditional central algorithms for worst-case set-membership identification and

filtering,” IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 14–23, 2000.

[19] A. Garulli, B. Kacewics, A. Vicino, and G. Zappa, “ErrorBounds for Conditional Algorithms in Restricted Complexity

Set Membership Identification,”IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 160–164, 2000.

March 20, 2018 DRAFT



29

[20] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, “Robustness,” in Handbook of Semidefinite Programming: Theory,

Algorithms, and Applications, H. Wolkowicz, R. Saigal, and L. Vandenberghe, Eds. Boston:Kluwer Academic Publishers,

2000.

[21] A. Ben-Tal, S. Boyd, and A. Nemirovski, “Extending scope of robust optimization: Comprehensive robust counterparts of

uncertain problems,”Math. Program. Ser. B, vol. 107, pp. 63–89, 2006.

[22] J. B. Lasserre, “A “joint+marginal” approach to parametric polynomial optimization,”SIAM J. Optimiz., vol. 20, no. 4,

pp. 1995–2022, 2010.

[23] V. Cerone, D. Piga, and D. Regruto, “Bounded error identification of Hammerstein systems through sparse polynomial

optimization ,” Automatica, vol. 48, no. 10, pp. 2693–2698, 2012.

[24] ——, “Bounding the parameters of block-structured nonlinear feedback systems,”International Journal of Robust and

Nonlinear Control, vol. DOI: 10.1002/rnc.1813, 2012.

[25] V. Cerone and D. Regruto, “Parameter bounds evaluationof Wiener models with noninvertible polynomial nonlinearities,”

Automatica, vol. 42, pp. 1775–1781, 2006.
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