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Abstract

In this paper we present a unified framework for solving a gangass of problems arising in the
context of set-membership estimation/identification tigedore precisely, the paper aims at providing
an original approach for the computation of optimal cormditil and robust projection estimates in a
nonlinear estimation setting where the operator relatirgdata and the parameter to be estimated is
assumed to be a generic multivariate polynomial functiod #re uncertainties affecting the data are
assumed to belong to semialgebraic sets. By noticing tleatamputation of both the conditional and the
robust projection optimal estimators requires the sofutam min-max optimization problems that share
the same structure, we propose a unified two-stage appraeaell lon semidefinite-relaxation techniques
for solving such estimation problems. The key idea of theppsed procedure is to recognize that the
optimal functional of the inner optimization problems cam &pproximated to any desired precision
by a multivariate polynomial function by suitably exploig recently proposed results in the field of
parametric optimization. Two simulation examples are rigubto show the effectiveness of the proposed

approach.
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. INTRODUCTION

Estimation theory can roughly be defined as a branch of mathesrdealing with the problem
of inferring the values of some unknown variables, usuadlijec parametersfrom a set of em-
pirical data related to the unknown parameters through engipossibly uncertain, mathematical
relation. Experimental data are usually obtained by me&dmeeasurement procedures that are
known to be affected by uncertainty. Most of the results lakée in the estimation theory
literature are based on a statistical description of theetamty affecting the data.

A worthwhile alternative to the stochastic descriptionthie so-called bounded-error or set-
membership characterization where measurement erroesauened to banknown but bounded
(UBB), i.e., the measurement uncertainties are assumeeldodpto a given bounded set. Such a
description seems to be more suitable in those cases wtikes aipriori statistical information
is not available or the errors are better characterized iretarchinistic way (e.g., systematic
and class errors in measurement equipments, rounding andation errors in digital devices).
Based on the UBB description of the uncertainty, a new pgradialled bounded-error or set-
membership estimation has been proposed starting with éhenal work of Schweppe [1].
In the last three decades, set-membership estimationythexs been the subject of extensive
research efforts which led to a number of relevant resulth eimphasis on the application of
the set-membership paradigm in the context of system ifigation. The interested reader is
referred to the book [2], the survey papers [3], [4] and thierence therein for a thorough
review of the fundamental principles of the theory. Set-rhership estimation algorithms can
roughly be divided in two main categories: (i) set-valuetineators (see, e.g., [5]-[12] and the
references therein), aimed at deriving either exact or@apprate descriptions of the so-called
feasible parameter sete., the set of all possible parameter values consistéhtthwe collected
experimental data and a set of a-priori assumptions; (intpose estimators (see, e.d., [13]-18]
and the references therein), that return a single elemetiteoparameter space according to a
given selection criteria.

In this paper we focus on the latter category and, in padicun two classes of pointwise
estimation algorithms calledonditional estimatorand projection estimatorsespectively. In a
nutshell, a set-membership estimation algorithm is calednditional estimator when the sought

estimate is constrained to belong to a given set (see, &%), [L7]-[19]), while it is called a
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projection estimator (see, e.d., [14]-16]) when the pat@mestimate is sought by minimizing a
certain norm of the so-called regression error. To the biefteoauthors’ knowledge, most of the
results presented in the bounded-error literature aboodittonal and/or projection estimation
are derived under a set of simplifying hypotheses, inclgdine assumptions that: (i) the operator
relating the parameter and the experimental data is linedrisanot affected by uncertainty, (ii)
the error affecting the measured data belongs to simplpesheonvex sets (e.g. boxes, ellipsoids)
and (iii) the parameter estimate to be computed is lookednfdhe entire parameter space or
at most in a linearly parameterized subset of the paramptares

In this work, by recognizing that the problems of computihg tonditional and projection
estimates require the solution to min-max optimizationbpgms that share essentially the same
structure, a unified approach is proposed to approximatenyodasired precision the optimal
(either conditional or projection) estimate by assumiraj {f) the operator relating the parameter
and the experimental data is a generic nonlinear polyndunmaition possibly dependent on a set
of uncertain variables assumed to belong to a given senbigdgeset, (ii) the error affecting the
measured data belongs to a semialgebraic set and (iii) tteamgder estimate to be computed
is sought in a semialgebraic subset of the parameter space.worth noticing that in full
generality, solving nonconvex min-max optimization pehk is a real challenge for which
no general methodology is available. An exception is a oertéass of robust versions of
some convex optimization problems when the uncertaintyhast some special form. In this
case, computationally tractable robust counterparts egdltonvex problems may exist. See for
instance([20],[[21] and the references therein.

The paper is organized as follows. The addressed estimatadolem is formulated in Section
Il, where the proposed unified framework is also presentedwé-stage approach based on
semidefinite-relaxation techniques for the solution of¢besidered class of estimation problems
is then presented in Section lll. The effectiveness of tlwpased approach is demonstrated by

means of two simulation examples in Section IV. Concludiegarks end the paper.

Il. PROBLEM FORMULATION

In this paper we consider a class of parametric nonlineamssbbership estimation problems

where a given nonlinear operat@ maps the parametér<c Py C R’ to be estimated into the
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output vectorw € R" as follows

wherec is an uncertain variable. The sg} takes into account possible prior information on
the parametef to be estimated. In this worl, is assumed to be a semialgebraic set of the
form

739:{QERZZICZ(Q)ZO,Z:L...,S} 2

wherek,, z = 1,...,m are multivariate polynomials in thecomponents of the vectér Output

measurementg € RY are assumed to be corrupted by bounded noise as follows

Yy = g(wagy) (3)

whereg is a polynomial function in the variabler ande,. The uncertain variablesy ande,

are assumed to belong to the following semialgebraic set
Sy ={er €R% e, e RY : hy(ep,e,) > 0,i=1,...,7} (4)

with h;, i = 1,...,r being multivariate polynomials in the components of the vectar- and

the N components of the vectar,. In this work we restrict our attention to the case where the
nonlinear operatof is a multivariate polynomial function of variablésandc .

In the set-membership estimation framework, all the valokeg that are consistent with the
assumed model structure described[ih (1), collected meamntsy (3) and bounds on the
uncertainty variabled {4) are considered as feasible isalutto the estimation problem. The
setD, of all such values is called thieasible parameter s€FPS) and can be defined as the

projection onto the parameter spakeé of the following setD:

D:{(@,&F,éy)EPQXRqXRN: ()
5
y:g(f(eng)agy)v (5F76y) ES&F@y}‘

In this paper we provide a unified approach to address somaaxiestimation problems arising
in set-membership identification. In particular we will@ethroughout the paper to the general

formulation of the considered identification problems prasd in Sectio II-A.

March 20, 2018 DRAFT



A. General min-max formulation of the considered class ofeSkimation problems

The contribution of the paper is to provide an approach teesthie following general nonlinear

set-membership estimation problems:

P1. 0, = arg ggﬂ arggxg J(0,a) (6)

where M can be eitherD, or P, or any other possible subset & described by a set of

polynomial inequalitiesq € RT,
Soo={a€eR" 1 dy(a,0) >0,n=1,..., M} (7)

is a semialgebraic set, ant}, 1 = 1,..., M are multivariate polynomials in the components
of the vectorsa and 6. In the rest of the paper we will refer t6](6) asbust SM estimation
problemP1. To the best of the authors’ knowledge this is the first attetoywards the solution
of a robust SM estimation problem in such a general form.

It is worth noting that computation of the global optimal win 6., of problem [6) is
a difficult and challenging problem sincgl (6) is an NP-harbusi nonconvex optimization
problem. As already mentioned, in full generality thereasnmethodology to solve [6) except for
robust versions of some convex optimization problems wheruncertainty set has some special
form. Indeed, such problems have computationally traetattbust counterparts as described, for
example, in([20], [[21].

In sectiondII-B and II-C reported below, we show that the wlasses of set-membership
estimation problems considered in the papenditional central estimatioandrobust projection
estimation can be interpreted as two specific instances of proldtdm

As will be discussed in details in the following, the appitogroposed in this paper to solve
problemP1 relies on the results presentedlinl[22] (see Theorem 1 optper) that were derived

under the following assumption:
Assumption 1:For each fixed value of = 0 the setS,, 5 is nonempty.

In sectionsTI-B and TI-C we show that Assumptidn 1 is alwagsssied for the specific classes

of estimation problems considered in the paper.
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B. Conditional central estimation for set-membership nwedr errors-in-variables parametric

identification
Consider a single-input single-output (SISO) nonlineamaiyic system which transforms the
noise-free inputr; into the noise-free output; according to
Wy = f(e, Wi—1, Wt—2; - - - Wt—na, Tt—1, Tt—2, - - 'xt—nb) (8)

wheref is the parameter vector to be estimated gndg assumed to be a multivariate polynomial
function. Both input and output data sequences are codupte additive noise&; and n;
respectively, i.e.

ug =T+ &, Yp = Wi+ N 9
The noise sample§ andn, are bounded by giverA¢; and A, respectively, that is:
| & S AL, | |[< Ang. (10)

The nonlinear errors-in-variables (NEIV) model structdescribed by[(8)£(10) can be written

in the form [1) by setting:

O=lar ... am by b1 ... bul, (11)

W = [w1 ws...wn], (12)

y =1[y1 v2---unl, (13)

er =[er1 €ra ... €rN] (14)

Eyt = [M Ne—2. .. 1N ], (15)

F(0.er) = [Fi(0,er1) Fo(0,p2) ... Fn(0,ern)] (16)

where, for allt =1,2,..., N,

ft(e, €F) = f(e, Ye—1 — M—15 - - - Yt—na — Mt—na, Ut—1 — ft—b oo Up—nb — &—nb)- (17)

and

Ert = [m—l Ne—2 - Ni—na & §t—1 - - -&—nb]- (18)

The NEIV model structure considered inl (8) is quite general aomprises many important

nonlinear model classes usually considered in systemifab@tion including, among the other,
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Hammerstein, Wiener and Lur'e models (see, elg., [23]3[Abjear-parameter-varying (LPV)
models with polynomial dependence on the scheduling vi@sgR6], [27], polynomial nonlinear
autoregressive (NARX) and nonlinear output error (NOE) eled

In the NEIV bounded error problem considered here, theSsgt, is simply described by the
linear inequalities in[(1I0), whil® in (§) is the set of all parameter values and noise samples
consistent with the collected experimental data, the mestteicture in [(8) and[{9), and noise
bounds in[(1D).

As far as the class of linear time-invariant dynamic systesm®nsidered, the nonlinear operator

F(0,er) simplifies to:

F(O,er) = F(ep)'0 (19)
where
Flep)=[F F, ... Fy|' (20)
and, for allt =1,2,..., N,
Fy=[=Ye14+ M1 — Y2+ M—2- - = Yt—na + Nt—na
(21)

Uy — ft Ug—1 — gt—l coUg—nb — ft—nb] .

As is well known, the linear EIV identification set-up (sed@]2or details) is quite general in
the sense that many other common linear identification problcan be written in this framework.
In fact, the problem of identifying an output error (OE) mbaeobtained by setting, = 0, the
case of finite-impulse-response (FIR) models is obtainedifo= 0, while the structure in[(8)

and [9) turns out to be an equation error (EE) model when 0 andn, = >\, a;n—;.

It is worth noting that in the general NEIV problersis a nonconvex semialgebraic set since
the constraintyy — F(0,cr) = ¢, in (B) are polynomial functions of andecr and, moreover,
the same property holds true in the simplified linear-timeariant case, where constraints
y — F(0,er) = ¢, in (B) are bilinear ind andey due to [(19).

Although D is the set of all nonlinear dynamic models with structlifett@&t are consistent

with experimental data and measurement error bounds endfib feasible parameter set nor the

March 20, 2018 DRAFT



tight outerbounding box derived in [11], [12] can be straigtwardly exploited for controller
design or system behavior simulation. Thus, in many apiptiog, the problem of selecting
a single model among the feasible ones arises. One of the enasthon choices in the SM
literature is to look for the value of the paramefethat minimizes the worst cagg estimation

error computed over the entire feasible set, i.e.

f, = argmin ma g, —0|,. 22
gmin - max | I (22)

where

D, ={(0,,cr,2,) € Py, x RI x RV :

y=9(F(O,,er),&y), (cp,&y) € SeF,ey} ,

and|| - ||, is the,-norm of a vector.

(23)

The estimated, computed by solving[(22) is the so-callég-Chebyshev centeof D, also

called central estimaten the SM literature.

Remark 1: In the case = oo, the central estimate is the center of the minimum-volurme-b
outerboundingD, and can be computed by exploiting the convex relaxationcsmbr proposed
in [12].

Although the central estimate provides the minimum of thesivoase estimation error, it may
show some undesirable features in the case of EIV identdicatr, more generally, when the set
D is nonconvex. More precisely, in those cases, the Chebystmsterd,. is neither guaranteed
to belong to the seDy nor to the setP, and, as a consequence, the identified LTI system
could result inconsistent either with the experimentahdat with some of the a-priori physical
information on the parametér In order to avoid such drawbacks, it is most desirable toeor
the computed parameter estimate to belong to a givem\édby modifying the optimization
problem [22) as follows

9./\/1

[

= i 6, — 6 24
argmin =~ max | Il (24)

where M C R’ is assumed to be a semialgebraic set described by polynansialalities.
Such a set is: (&P, if our aim is to constrain the computed estimate to belongh&feasible

parameter set, (b, if it is required to guarantee that the identified systemsfias the set of
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available a-priori information, (cpy NPy, or (d) any other semialgebraic set if, more generally,
we want to force the identified system to belong to a particat@del class. Probleni(R4)
falls into the class ofConditional set-membership estimation probleansl, in particularg is
referred to as theonditional Chebyshev centef the feasible parameter st with respect to
the model class\. The problem of conditional central estimation is still aénging problem
in the field of set-membership identification/informatioaskd-complexity and a number of
papers have appeared in the literature in the last decadéiseosubject (we refer the reader
to the paper[[18] and the references therein for a thorougiewg. In particular, conditional
central algorithms have been proposed to effectively as$dthe problems of reduced order
modeling [15], set-membership state smoothing and filief#8] and worst-case identification
[18]. For such problems, computationally efficient and/lmsed-form solutions to the problem
of conditional central estimation have been derived assgrthat: (i) F is a linear operator in
both 6 andep, (i) e = 0, (iii) M is a linear manifold, and (ivp., is a simple-shaped convex
set (usually a box, an ellipsoid or a polytope). Unfortuhateuch assumptions are not satisfied
in many relevant identification problems including, for ex#e, the EIV problem considered in
this section. As an additional motivating example leadiaghe class of estimation problems
defined in [[24), we mention the problem of identifying inputtput linear systems that are a-
priori known to be bounded-input bounded-output (BIBO)#taln this case, we are interested
in computing the optimal estimate of the system parametahe Chebyshev center sense, over
the setP,,,, of all the parameter values that guarantee BIBO stabilityhef system. Since, as
shown in [30], the seP,,,, is semialgebraic and described by polynomial inequalisesh a
problem naturally leads to a conditional estimation problef the general form (24) where the
set M = Pgiap-

Remark 2: It is worth remarking that in probleni (P45, , coincides withD, wherea =
(0,,er,¢y). Therefore, sinceD, does not depend of, Assumption_ ]l is satisfied as long as
D, is a nonempty set, that is a common assumption in Set-mehipeidentification, often
satisfied in practice unless the identification problem is well posed (e.g. the considered

a-priori assumption on the system to be identified are cotelylevrong).
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C. Robust conditional projection estimation

Another class of estimator of particular interest in the-raetmbership/information-based
complexity (IBC) framework is given by the so-called prdjen algorithms (see, e.gl, [14], [16]
and the references therein) where the parameter estimedeniguted by solving an optimization

problem of the following form:
0, = axg min lea(er, 0)l, (25)

whereer =y — F(0,cF) is the so-called regression error (see, elg., [31], [32%) thre setM
either coincides witiR’ or is a subset oR’. In the latter case the obtained estimator is called
a conditional projection algorithn(see, e.g.,[ [15]). The optimization criteridr||, is widely
adopted in the identification literature (see, e.g.) [3BB]] [34] and the references therein)
and, in particular, the popular least-square estimata, @4., [31],[[32]) is obtained by setting
p = 2, M = R’ and assuming thatz = 0 where0 is the null element of the spade’.
Projection estimators and their optimality propertiesenéeen extensively investigated in the
SM framework and a number of interesting results have begwedi(see, e.g.| [14]/ [16]. [19]).
However, to the best of the authors’ knowledge, most of seshilts have been obtained under
the assumptions that: (if is a linear operator in both andsp, (i) M is a linear manifold,
(i) S., is a simple-shaped convex set (usually a box, an ellipsoid polytope) and, most
important, (iv) assuming that the operatéris not affected by uncertainty, i.esp = 0. In this

work, we consider the following generalization 6f(25)

P arggrelﬂ (ap,azr)lgéipsy HeR( 7€F)||p ( )

where, in order to take care of the effects of the uncertaiffgcting the problem, we look for the
parameter estimat& that minimizes the worst cagg regression error computed over the entire
uncertainty setS,, ., . As far as the seiM is concerned, we only assume thit be a subset
of R described by polynomial inequalities. In such a way, the isallowed, for example, to
constrain the optimal estimate to belong to the feasiblamater set 1 = Dy), to guarantee
thatd, satisfies the available a-priori physical informatiow( (= 7) or, more generally, to force
the estimated model to belong to a specific, possibly redoceer, model class (see, e.q.,[15],
[19]). In the rest of the paper we refer &) as therobust p-norm projection estimater RPE for

short. It is worth noticing that the problem of computing thgtimal projection estimate for the
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casep = 2 (least squares estimate) in the presence of an uncertgingy0 under the restricting
assumptions that is linear operator and the sét,. ., is convex, has been widely studied also
outside the context of set-membership estimation and a aumbdifferent approaches have
been proposed (see, e.g., paper [35] and the referencesntier a thorough review of the

available methods and results).

Remark 3: It is worth remarking that in problend (2j, s coincides withS,, ., wherea =
(er,€y). Therefore, since., ., does not depend ah Assumptior 1L is satisfied for &l R’ as
long asS., ., is a nonempty set, that is a common assumption in Set-mefpedentification,
often satisfied in practice unless the considered a-prgsumption on the measurement errors

are completely wrong.

[1l. A SEMIDEFINITE RELAXATION APPROACH

In this section a two-stage approach is proposed to appaigirto any desired precision
the global optimal solution to the general SM robust idecdifon problem[(6). The proposed
approach is based on the following basic observations:

(i) problem [6) is atwo-players non-cooperative ganigee, e.g., [36]) wherd1 andS, o are
the action sets of the first and the second player respegtivel

(i) from the point of view of the second playd?l is a parametric optimization probler(see
[22] and the references therein) in the sense that the optah#e of the inner maximization
problem in [6) is a function of the decision of player 1, ilee tvalue of the parametér

(iii) the optimal value function/ of the parametric inner maximization problem is given by

J(0) = J(0,a*(8)) = max J(6,a) (27)

a€Sq 0

and it is a function of parametéronly.
Thanks to observations (i)—(iii) above, onﬁ@.‘?) is known, problenP1 simplifies to the following

optimization problem:

P2: 0, = arg min J(0). (28)
Unfortunately, a general methodology to derive an exactezrleform expression for function

J(0) is not available and, therefore, a two-stage procedureapgszed here to approximate the

global optimal solution of probler®1. In the first stage, a polynomial functioﬁ(@) of degree
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27, upper approximating (in a strong sense) the optimal valuetfon J(0) of the parametric
inner maximization problem is computed. Then, in the secstade, problenP2 is replaced

with the following polynomial optimization problem:

P3: 6, = arg min J*(6). (29)
gemM T
(S

A. Polynomial approximation of the functiof‘(@)

Polynomial approximation of the functiosi(#) is performed here by exploiting the method-
ology for parametric polynomial optimization proposed 22]. However, in order to apply the
results presented in [22], we first need to compute aizxetc R’ outerboundingM, whose
shape is simple enough to allow one to easily compute all tomemts of a Borel probability
measurep with uniform distribution onR,. In this work we exploit the SDP-relaxation based
procedure proposed in_[12] to compute the minimum-volumis-akgned box containing the
set M. Once the boxR, = [0,0] C RY, i.e.,

Ro = {0 €R" : ¢4(0) >0, ¢u(0) = (O — ) (0 — 0;), k=1,....0}

has been computed, we can formulate the following optinangiroblem where we look for the
upper polynomial approximatioﬁi;(@) of the optimal value functiom?(&) such that the integral
Iz, J.(0)dp(6) is minimized:
win [ J,(0)dy
Jr(0) SRy

s.t.J.(0) > J(0,a) V(0,a) € Ry X Suyp.

(30)
By noticing that (i) the objective function can be writtenaaBnear combination of the moments

of the uniform distribution measure supported & and (ii) the inequality constraint can

be approximately replaced by a SOS constraint, the follgnsemidefinite relaxed problem
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is obtained ([[22]):

BENéT
M l
st Y A’ = J(0,0) = 00(0,0) + Y 0,0, 0)du(cr, 0) + > (0, ) Gy (0)
BENE, n=1 k=1

o, CY0,a], p=1,....M
@DkCZ[@,a], k=1,...,¢

deg(og) < 27; deg(o,d,) <27, p=1,..., M, deg(vroy) <271, k=1,....,¢,

(31)
where for eachs = [3; ... 3/ € N* andd = [¢; ...0,] the notationd” stands for the monomial
0005 .0, N = {8 € N': 3.8, < 2r}, X[0,a] is the set of SOS polynomials in the
variablesf and«, while v3 are the moments of the Borel probability measurgith uniform

\

distribution onRy, defined as (see, e.g., [37]):

7 = /R 0%d,0(6). (32)

Lemma 1:If Ry xS, contains an open set, then the semidefinite prograim (31)rhagtamal
solution (X, 7%, %), p=0,...,M, k=1,...,¢, provided that tau is sufficiently large.
A detailed proof of Lemmall is postponed to the Appendix.

Next, by applying the results presented |in|[22] about patampolynomial optimization, it
is possible to show that the optimal solution [0fl(31) enjdys important property stated in the
following theorem:

Theorem 1: ([22]) Let (X;,5%,¢y), o= 0,..., M, k = 1,...,¢, be an optimal solution of
problem [(31) for a given degreeand let us define the polynomiit(ﬁ) = ZﬁeNgT X;@ﬁ. Then,
J:(#) converges to the optimal value functioiid) for the L, (R, ¢)-norm asr goes to infinity,

ie.
|J3(6) — J(8)] dio(6) — 0. (33)
Ro
For the proof of Theorer] 1 we refer the reader to the péaper. [&2] also have the following
property.

Proposition 1: The optimal value functio® — J () is upper semicontinuous (u.s.c.) &.
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Proof: Let (6,,) C Ry be a sequence such that— 0 asn — oo, and

limsup J(z) = lim J(6,).

2—0 n—o0

Next, for eachn € N, let o*(,) be an arbitrary maximizer i$,, for the max problem in
(27). By compactness dR, and S, 4, there is a subsequence denoted), ¢ € N, and a point
(a,0) € Sup X Ry such that(a*(6,,),0,,) — (o, 0) asl — co. Consequently, using continuity
of J,

nr?j;lp J(z) = lim J(6,) = Jim (B, 0" (0,)) = J(0,0) < max J(0,0) = J(0),
which proves that/ is u.s.c. n
Thanks to Theorerl 1 we are in the position of proving the feithg result, which shows that
the solution to probleniP3 converges to the solution ¢#2 (and hence probler®Rl) as goes
to infinity.

Theorem 2: Let J*(), 7 € N, be the polynomial defined in Theoref 1. Consider the
polynomial optimization probler®3 in (29) with optimal value denoted hy*, and letd* € M

be an optimal solution oP3. Let J, = min<, J; = j,j(ﬂ(e,j(ﬂ) for somek(r) € [1,...,7].
Then:
lim (min J;;) = lim J, = min max J(6,a) = J*. (34)
T—00 \ k<7 T—00 0eM a€S, 0

Moreover, if J(#) is continuous onM andf,, in (28) is unique, therﬁ),’;(T) — 0, ST — 00.
If 6., is not unique then any accumulation point of the seque{ﬂg@;)), 7 € N, is a global
minimizer of problemmin{.J(0) : 6 € M}.
Proof: Observe that being(6) continuous orR, (hence onM), it has a global minimizer

67 € M, for everyr. From Theoreni]1,*(6) 1(Rg?) J(0) (i.e., convergence in thé, (R, ©)-
norm). Hence, by [38, Theorem 2.5.3], there exists a sulesemgir,) such that/: (6) — J(6),
p-almost uniformly onRR,.

Next, by Propositiori]1, the optimal value mappirgis u.s.c. onR, (hence onM). With
¢ > 0 fixed, arbitrary, letB(c) = {# € M : J(A) < J* + ¢} and letx = ¢(B(¢)). As J is u.s.c.,
B(¢) is nonempty, open, and therefore> 0. As f;(@) — J(0), ¢-almost uniformly onR,,
there exists a Borel set,, € B(Ry) such thatp(A,) < x and J: (8) — J(6), uniformly on
Ro \ A.. Hence, asA = (Ry \ A.) N B(e) # 0, one has

lim J5(0) = J(0) < J*+e¢,  VOEA,

£—00
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and so, as/* < J*() on A, one obtainslim J;, < J* +c. As ¢ > 0 was arbitrary, one finally
—00
getszlim Jr = J*. On the other hand, by monotonicity of the seque(£s,
—00

J*<lim J; = lim J,, < lim J: = J*, (35)
{— 00 £

T—00 {—00
and so[(34) holds.
Next, let 9 ¢ M be a global minimizer of/*() on M. As M is compact, there exists
6 € M and a subsequenee such thaty; ., — 6 as¢ — oc. In addition, from.J*(6) > J(6)

for everyr and everyd € Ry,

-~

T < J0500) < Tiimy i) = T

So using [(3b) and letting — oo yields the desired result* = J(6). So if the minimizer of
J on M is unique, one ha8 = 6,,,, and as the converging subsequefgg¢ was arbitrary, the
desired result follows. If the minimizer is not unique thesey accumulation poird is a global
minimizer since.J* = .J(0), as just shown above. u
Remark 4: Even though the sequendé — J for the L;-norm, the sequencé’, 7 € N, is
not necessarily monotone (meanifig(¢) > J*,,(0) for all 7 € N, 6 € Ry, does not necessarily
holds). For this reason, it would be useful to know boundstandistance betweei: and ./
for each fixed value of. Unfortunately, computation of such bounds is a difficuleogroblem

that requires further investigation.

B. Solution to probleni3 via SDP relaxation

Once a polynomial approximatiori*(¢) of the optimal value function/(#) of the inner
maximization problem in[{6) has been computed as discuss@dtA] we are in the position
of solving problemP3 which is a multivariate polynomial optimization problemtime variable
0 on the compact semi-algebraic set. By applying the moments-based relaxation approach
proposed in[[39], a hierarchy of SDP relaxatiof@;), t € N, can be constructed with the
following properties:

- The resulting sequendénf Q,), ¢ € N, of optimal values is monotone non decreasing and
converges to the optimal valug of problemP3.

- If the global minimizerd, € M of P3 is unique then the vector of “first-order” moments

of an optimal solutiony of Q; converges td#, ast — oo.
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For more details on SDP relaxations for generalized momefti@ms, the interested reader is
referred, e.g., ta_[37]. In fact, in view of recent resultd40] and [41], the convergence is finite
provided that the problem satisfies a set of mild conditiae® ([41] and the references therein
for details), that isgenerically the optimal valueJ* is attained at a particular relaxation in the
hierarchy, i.e.,J* = inf Q, for somet. Finally, another recent result by Nie [42] ensures that
generically eventually some rank test is passed at sometsiiephe hierarchy, which permits to
detect finite convergence at stgpand extract global minimizers (whiaenericallyare finitely
many). The reader is referred to the papérs [41], [42] forsguision on the precise technical

meaning of the wordyenericallyin this context.

Remark 5: [Exploiting sparsity] At a first sight, the applicability of the relaxation-based
procedure proposed in this paper seems to be limited in ipeatd small-size identification
problems, due to large dimensions of the SDP problems iedalv the two stages of the proposed
approach. That is certainly true for problei in its general form[(6), where the functional
J (6, a) is a generic multivariate polynomial and the satsandS,, » are generic semialgebraic
sets. However, in view of the discussion and results regartevorks [12], [23], it is possible
to show that a number of identification problems arising frogal-word applications enjoy a
peculiar sparsity structure, calledrrelative sparsityn the framework of large-scale optimization
(see, e.q.,[43].[44]), which can be exploited to signifibareduce the computational complexity
and the size of the involved SDP optimization problems eitlyemeans of the approach proposed
in [43], [45] or by means of the ad-hoc procedure presentefil1. More specifically, it is
possible to show that a number of set-membership identdicgroblems leads to semialgebraic
optimization where the constraints and the functionalsgatine so-calledunning intersection
property(see[45]), a condition that guarantees convergence ofilaéen of the relaxed problem
to the global optimum of the polynomial problem also when toerelative sparsity pattern is
used to derive semidefinite relaxations of reduced comiyidsee, e.g.,[[43],[144]). Analysis
of the correlative sparsity structure of probldPl cannot be performed in general, since it
requires to precisely specify the mathematical structdrthe setsM and S, 4. At the same
time, providing a general discussion on the subject of syaexploitation in the context of
SDP relaxation for polynomial problems is far beyond thepgcof the paper, and the interested

reader is referred to papefs [43]-{45]. However, we willtmyprovide here a sketch of the main
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ideas, covering the subject mostly at the level of intuition

Let {1,...n} be the union{J}_, I, of subsets; C {1,...n}. A polynomial optimization
problem is said to enjoy a correlative type of sparsity stieecif: (i) each polynomial involved
in the description of the set of constraints is only concéréth variables{X; : i € I;;} for
somek; (ii) the functional to be optimized/ can be written as the sumh = J, +... + J,
such that eacly;, only involves variable X; : 7 € I }. Furthermore, the problem satisfies the

running intersection property if the following conditios fulfilled:

k
L N U I; C I,,for somes < k
j=1

The subsetg/,} can be detected either by inspection or by exploiting theéesyatic approach
proposed in [[43] and implemented in the software packagé. [46the problem enjoys a
correlative sparsity structure, this can be used to deriYe &laxations of lower complexity, as
described in[[43],[[45]. Essentially, the intuitive ideadenlying the approaches proposed in![43],
[45] is the following: if the constraints and the objectiwenttion can be properly decomposed
in subsets/subfunctionals depending only on a small sublsetriables, then “sparse” SDP
relaxations can be constructed. This means that the ind@@S polynomials depend, each one,
only on a small subset of variables of the original polyndmojatimization problem. The fact
that the linear EIV identification and the nonlinear Hamrtersidentification problems enjoy
a correlative sparsity structure satisfying the runnintgrigection property, has been proved
in previous papers. [12]/ [23]. The same arguments/reagooam be used to show that the
polynomial approximation/optimization problems obtalngy applying the approach proposed
in this paper to the problem of conditional central estimaproblem[(24), enjoy the correlative
sparsity structure and satisfy the running intersectiaperty for many different choices of the
set M including, e.g., the cas@1 = D. This is also true for a number of problems in the
class of robust conditional projection estimators inahgdihe nonlinear nonconvex robust least
squares problem considered in Example 2 of Section IV.

Remark 6: It is worth-remarking that, by exploiting recent resultegented in [47], the two-
stage relaxation-based procedure proposed in this sectinrbe extended to a more general
class of problems where the functiofid, o) in problemP1 is a non-polynomial semialgebraic

function.
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IV. SIMULATION EXAMPLES

The capabilities of the presented approach are shown iséictson by means of two simulation

examples.

Example 1
The first illustrative example comes from the problem adskdsn [48] on the identification

of ARX models based on quantized measurements. Considesygtem analyzed in [48], i.e.,
w(t) =07w(t — 1) + 05u(t) + d(t) = 0.6w(t — 1) + 0.6u(t) + d(t), (36)

where u(t) and w(t) are the input and output signals at timerespectively, andi(¢) is an
unknown additive disturbance which is assumed to belonghéimterval [-0.1, 0.1]. The
system is simulated using a white input signdt) uniformly distributed within[—2.5, 2.5]
and a disturbanceé(t) with uniform distribution in the interval—0.1, 0.1]. The outputw(¢) is
measured by a binary sensor with thresh@le- 1, i.e.,

1 ifw(t)>1
y(t) = { (37)

0 otherwise
wherey (t) is the output of the binary sensor. Indeed, the system outfitit is not accessible
and only its measurement(t) is available. The estimate of the parametérsf the system in
(38) is computed based on a collection ®f= 200 input/output measurements. Note thydt)

can be written in the form of {3) as follows:

y(t) = w(t) +ey(t), (38)

with ¢,(¢) s.t.

(1) <0 i y(t) =1,
(39)
e,(t) > —1 if y(t) =0,

Based on eqs[(89), the uncertainty Sef can be written in terms of nonnegative inequality
constraints as
S, ={e, eRY i y(g,) >0, t=1,...,N}, (40)

with

ht(‘gy) = { (41)
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Substitution of eq[(38) intd_(36) leads to the followingatabn between input and noise-corrupted
outputy (¢):

y(t) =01 (y(t — 1) —g,(t — 1)) + Oou(t) + d(t) + g,(1). (42)
The FPSD, for the considered system is thus defined as the projectientbe parameter space
of the setD defined by [(4R),[(40) and the a-priori assumption on the distuced(t), i.e.

D={(0.dg,) e R** : y(t) = 0; (y(t — 1) — g,(t — 1)) + Oou(t) + d(t) + &,(2), @3
hi(e,) >0, —0.1<d(t) <01, t=1,...,N}.

Note thatD is described by polynomial constraints because of the mtdaetween the unknown
parametep); and the noise,(t —1) in the equality constraint appearing [n{43). In this exaenpl
we will compute thel,-norm conditional Chebyshev cent#r of the FPSD with respect taD,
itself, i.e.,

6P = i 6, — 6|3 44
e = arg min (efﬁiﬁ(ep“ 15 (44)

In order to compute a solution to problem{44) through thecedure discussed in the paper, an
outer-bounding boxR, of the FPSD; is first evaluated by means of the approach proposed in
[12] for bounding the parameters of linear systems in thended-error EIV framework. The
computed outer-bounding bdky is reported in Figl 1, together with the true FP%. Then, a
polynomiali(e)* of degree2r (with 7 = 2) upper approximating the function

T . o 2
J(0) = 0,0 10, — 0|3, (45)

is computed by solving the SDP problem](31). It is worth rekimay that problem[(31) enjoys
a particular structured sparsity which is used to reducectimaputational complexity in con-
structing the SOS polynomials il (31). In fact, the objestiunction||d, — 6|3 in (45) only

depends on the model parametérswhile each constraint defining in (43) only depends on
a small subset of variables, namely, the model paraméjetbe disturbancé(¢) and the noise
samples:, (t — 1) ande,(t). A correlative sparsity structure satisfying conditionsRemark’5

can be easily detected through a procedure similar to thedmoeissed in[[12] in the context

of set-membership EIV identification. The obtained 4-deguelynomialj;(9)* given by
i(@)* =0.939 — 0.7956; — 0.0370y — 1.03907 — 3.73160,0, + 4.31505+
2.6176; + 0.7900705 + 2.4730,05 — 4.56705+ (46)

— 0.96807 + 1.740030, — 7.2676705 + 7.9176,05 — 1.16605,
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Fig. 1. Exact Feasible Parameter 34 (grey region), outer-bounding boRy (region inside the box), (unconditional)
Chebyshev centem], exact conditional Chebyshev cenédt (x), approximation of the conditional Chebyshev center caegbu

with the proposed two-stage approach (O).

is plotted in Fig[2, together with the true functicﬁﬁe) in (45), which in turn has been obtained
by gridding.
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Fig. 2. True functionf(@) in (@5) (gray) and computed polynomial approximatﬁh(@) (black).
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The (unconditional) Chebyshev center of the FPS is compoyedinimizing i(@)* over the
outer-bounding bosR,, while an approximation of the conditional Chebyshev ceisteomputed
by solving problemP3 via the SDP relaxation approach discussed in Se¢tion] lIB&h the
unconditional and the conditional Chebyshev center arerteg in Fig.[1, which shows that
the unconditional one does not belong to the FPS, while tmepated approximation of the
conditional Chebyshev center does. In the same figure, thet @onditional Chebyshev center
6P¢, that is, the minimum of the true functio(d) over the exact FP®, is also reported
showing that the proposed relaxation approach is able twiggoa good approximation of
the global optimal solution to problemh_(44). The CPU timeetako compute the conditional
Chebyshev centéd” is about 1320 seconds on a 2.40-GHz Intel Pentium IV with 3 GBAIM.
More specifically, the time required to compute the polymjnaipproximationj(@) (i.e. time
required to compute the solution to probleml(31)) is abgiit seconds, while the second step
(solution to minimization problen3 with order of relaxatior2) takes aboug870 seconds. The
maximum amount of memory used by Matlab during the computatias about 891 MB. The

solver SeDuMi has been used to solve the SDP prolleim (31)nen8DP problems relaxings.

Example 2
In this example, the method is applied to the problem of rbbgmation of a non-linear-in-
the-parameter static model when both the input and the butgasurements are corrupted by
bounded noise.
The multi-input-single-outpu{MISQO) data-generating system is given by
W(t) = 0321 (t) + 05055 (t) + 0523(t) + (09)% 24(t) + 050225 (t) + (02)° we(t) + 05052+ (t) =
(47)
= 121() 4 (1-0.6)x(t) — 0.523(t) + La4(t) + 0.3 - 0.8z5(t) + (0.8)x6(t) — 0.3 - 0.527(t),
(48)
wherex;(t), with ¢ = 1,...,7, is thei-th noise-free input anav(t) is the noise-free output at

time ¢. The inputsz;(¢) are i.i.d. random processes uniformly distributed in therval [—1, 1]
with length N = 400. Both the inputsz;(t) and the outputw(¢) are corrupted by additive
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uncertainties;(t) andn(t), respectively, i.e.,
y(t) =w(t) +n(t), (50)

whereg;(t) andn(t) are white-noise processes uniformly distributed in therivals|— A¢;, A& =
[—0.2, 0.2] (for all i =1,...,7) and[—-An, An] =[-0.25, 0.25], respectively. The signal-to-

noise ratio on the input§NR,,, and on outputSNR,,, defined as

N N
SNR,, = 101log {Z HONEY gf(t)} , (51)
t=1

t=1
N N

SNR,, = 10log {Z wi(t) /> n?(t)} , (52)
t=1 t=1

are 13 db (foralf = 1,...,7) and 16 db, respectively. Let us denote Witk [0, 02, 05, 04, 05, 4]
the parameters of the model to be estimated. The PP% then given by the projection over

the parameter space of the following set:
D= {(0,6,n) € R™™ : y(t) = 01 (w1(t) — &u(t)) + Ou8 (w2(t) — &2(1) +
+ 05 (w3(t) — &(8)) + 67 (za(t) — &a(t)) +
+ 60,05 (5(t) — & (8)) + (65)" (26(t) — &6(1)) + 0485 (27(t) — &(1)) +
+ (1),
Int)] < An, &) <A, t=1,...,N, i=1,...,7}.
(53)
Now, lety(¢,6) be the output of the model to be estimated, given by:
V(t,0) = 0,u1(t) + 0102us(t) + Ozus(t) + 07us(t) + 0,05us(t) + (05)% ue(t) + 0,05u-(t). (54)
In this example, we compute the parameter estirfiate [0}, 65, 05, 05, 0%, 6;] that minimizes

the worst-casé,-loss functionV (6, ¢), defined as

V(0,€) = Z —y(t,0))* (55)
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over all possible realizations of the input uncertaingigs) in the interval—A¢&;, A&;] under the
constraint that the identified parameters belong to the HR8.considered estimation problem

can be formulated as the followingin-maxoptimization problem:

A~

0" = argreréliglrgrg?v(@,f), (56)
whereS; is defined as
Se={&: &) < Ag, forall i=1,...,7, t=1,...,N}. (57)

It is worth noting that problem[(5%6) is: (i) a nonlinear noneex least squares problems,
due to the nonlinear-in-parameter structure of the systebetestimated; (ii) a robust nonlinear
least-square problem, due to the presence of uncertain@yl ithe explanatory variables; (iii)
a nonconvex constrained least square problem, since thmalpéstimate is looked for over
the feasible parameter s&%. Therefore, probleni (56) is a challenging estimation pFobfor
which, to the best of the authors’ knowledge, no solution lesn previously proposed in the
literature.

Here, the solution to Problenh (56) is computed by applyirg tino-stage relaxation based

method presented in the paper, which leads to the followstgnate of the model parameters:

A~

0+ = [é;, 03, 0%, 0%, 0%, 65| =[0.98, 0.57, —0.54, 0.36, 0.79, —0.59]. (58)

It is worth remarking that, in order to apply the proposedhodt an outer-bounding box of the
feasible setD has been computed by suitable modifications of the algorpphoposed in[[11].
Furthermore, as in Example 1, probleml(56) enjoys a padticsparsity structure which has
been exploited to reduce the computational load in solVB®).(In fact, the objective function
V(6,¢€) is given by the sum ofV terms (y(t) — y(t,0))*, each one involving only the model
parameter$ and the noise samples(t) (with i = 1,...,7) as unknown variables. Furthermore,
each constraint defining, in (57) only depends on the noise varialgli¢t). Similarly, each
constraint defining the seb in (§3) only involves a small subset of optimization varesl
namely: the model parametéetsthe input noise samples(t) (with i = 1,...,7) and the output
noise sampley(t). By stacking the variable8, &;(¢), n(t) in the vector

X =0, ..., b6, &1(1),.0; &(1), oy &(N),oy &(N), n(1), - n(N)]. (59)
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The index setsl; (with ¢ = 1,..., N) introduced in Remark]5 and satisfying thenning

intersection propertycan be defined as
L={1,...,6,6+7(t—1)+1,...,64+70t—1)+7,6+7TN+1t}. (60)

In this way, each constraint definir in (53) is only concerned with variablgsX; : i € I,},
that is @, &(t) (with i =1,...,7) andn(t).

The performance of the estimated model is tested on a vaidaet with N,,; = 100
input/output measurements. The noise-free outp(t) and the estimated output signalt, *)
are plotted in Fig13, while the difference betweety) andy (¢, 6*) is depicted in FiglJ4 showing
a good agreement between the two signals. The CPU time takeorpute the parameter

estimated* is about7 hours. More specifically, the time required to compute thietsm to

problem [(31) withr = 2 is about2.5 hours, while the second step (solution to minimization

problemP3 with order of relaxatior?) takes about.5 hours. The maximum amount of memory

used by Matlab during the computation was about 1.9 GB. Basethe authors’ experience,

although sparsity is exploited, the identification probleonsidered in this example becomes

computationally intractable (in commercial workstati@ml using general purpose SDP solvers

like SeDuMi) when models with more that 7 parameters areidensd.

Output signal
o

0 20 40 60 80 100
Sample

Fig. 3. Noise-free output signa¥(t) (thick line) and estimated outp@t(ué*) (thin line).
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Fig. 4. Estimate output errow (¢t) — y (¢, 6%).

V. CONCLUSIONS

In this work we have presented a two-stage approach, baseslitable convex semidefi-
nite relaxations, for approximating the global optimalwmn to a general class of min-max
constrained semialgebraic optimization problems arismghe framework of set-membership
estimation theory. We have shown that the proposed metbhggatan be profitably applied
to the problem of computing botbhonditional centraland robust projectionestimators in a
nonlinear setting where the operator relating the data &edparameter to be estimated is
assumed to be a generic multivariate polynomial functich thie uncertainties affecting the data
are assumed to belong to semialgebraic sets. The key iddw @fpiproach is to first compute a
convergent polynomial approximation of the optimal valuadtion of the inner maximization
problem. Once such an approximation has been computed, utee minimization problem
reduces to a standard polynomial optimization problem esblisy constructing a convergent
hierarchy of semidefinite relaxations. Two simulation epées have been reported to show the
effectiveness of the proposed approach. In particulahenfirst example we have demonstrated

that the presented two-stage algorithm provides good appation of the global optimum of
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the considered min-max estimation problems, while in treosd example we have shown that
the proposed methodology can be applied to compute thei@oltd a challenging nhonconvex

constrained robust least square estimation problem.

APPENDIX
Proof of Lemmall.

To prove that the semidefinite program|(31) has an optimaltieol, we prove that Slater’s

condition holds for its dual, which is the semidefinite pragr
max Ly (J (6, a))
M., (z) = 0
M;,_, (d,z) = 0, p=1,....M (61)
M, i(¢pz) = 0, k=1,...1¢

L,(0°) =75,  VBEN;,
where
« z=(z,), k € N5T, is a sequence indexed in the canonical basis of monorftiéig’), of
R[0, oo, (the vector space of polynomials of degree at ngt
« M, (z) is the moment matrix of order, associated with the sequenze
« M._, (d,z) is the localizing matrix of order — r,, associated with the sequenzeand
the polynomiald,, € R[#, o] (and wherer, = [(degd,,)/2]).

« L,:R[f,a] — R is the so-called Riesz functional:

p|= Z Psv 96 = Lz(p) = Z Ppv 28,0, pE R[9>a]-

(8,v)ENEHT (B,v)ENGHT
For more details on moment and localizing matrices, and Huey tare used in polynomial
optimization, the interested reader is referred[to [37]JwNet O be an open set contained in
Ro xSa.0, With projectionO; onRy. Lety be the Borel probability measure uniformly distributed
on Ry with moments(v;z). Let ¢» be the Borel probability measure &y x S, defined by:

wmxB%3AQBWMMﬁ B € B(Sap), A € B(Ry).
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where Q(-|-) is a stochastic kernel oRy x S, such thatQ(-|#) is the probability measure
uniformly distributed onS, if 6 € O, and Q(-|¢) is any probability measure 08, if
0 € Ry \ O1. Then letz be the sequence of moments associated withe.,

2, = /95 o dy(0, a), v (B8,v) € NgIT.

ThenM,(z) ~ 0, M., (d,z) =0, pn=1,.... M, andM._(¢,2) - 0, k= 1,...,¢ as well.
Indeed suppose for instance thet, (z)p = 0 for some vectop # 0. Let p € R[f, o], be the
polynomial with coefficient vectop.

0 = (p.M,(2)p) = / 56, ) di(6, ) = 0,

but this implies thap vanishes on the whole open g2t in contradiction withp # 0. Similarly,
let n € {1,..., M} be arbitrary, and suppose th&f,_, (z)p = 0 for some vectop # 0, and
let p € R[0, a]._,, be the polynomial with coefficient vecter

0= ®»M._, (z)p) = /]5(9,04)2 d,(0,a)dy(d,a) =0,

but this implies thap vanishes on the whole open et in contradiction withp # 0. A similar

argument shows thaVl, (¢, z) > 0 for everyk = 1,...,¢. Moreover, from the definitions of

1 and y,
L,(0°) = / 0% dy(0,a) = / 0° o(d9) = 3,  BENS,
RoXSa,0 Ro

and soz is admissible for[(61). Therefore Slater’'s condition hdiois(©1), and by a well-known
result of convex optimization, the dual df (61) (i.e_(31p9sha optimal solution if its value is
finite.

But the value of the primal semidefinite progrdml(31) is babelow byfRG J(0,a)dp().
Moreover, there existd/ > 0 such thatV/ — J(6,a) > 0 on Ry x S, . Therefore by Putinar’s

Positivstellensatz, there exists some integesuch that

M = J(0,0) = 09(0,0) + Y 0,,(0, a)d,u(c,0) + > (0, ) 61(6)

p=1
where deg(oy) < 27, deg(o,d,) < 21, p = 1,..., M, anddeg(¢rdr) < 210, k = 1,..., L.
Hence the optimal value of (B1) is finite whenever 7, and so[(3[l) has an optimal solution.
0
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