
1

Stochastic Stability of Event-triggered Anytime

Control

Daniel E. Quevedo, Member, IEEE, Vijay Gupta, Member, IEEE, Wann-Jiun

Ma, Student Member, IEEE, Serdar Yüksel, Member, IEEE

Abstract

We investigate control of a non-linear process when communication and processing capabilities are

limited. The sensor communicates with a controller node through an erasure channel which introduces

i.i.d. packet dropouts. Processor availability for control is random and, at times, insufficient to calculate

plant inputs. To make efficient use of communication and processing resources, the sensor only transmits

when the plant state lies outside a bounded target set. Control calculations are triggered by the received

data. If a plant state measurement is successfully received and while the processor is available for

control, the algorithm recursively calculates a sequence of tentative plant inputs, which are stored in

a buffer for potential future use. This safeguards for time-steps when the processor is unavailable for

control. We derive sufficient conditions on system parameters for stochastic stability of the closed loop

and illustrate performance gains through numerical studies.

I. INTRODUCTION

Due to the tight coupling among the cyber and the physical cores in many cyber-physical

systems, it is imperative to develop systematic design principles for controllers with limited com-

munication and processing resources. Both the areas of control with communication constraints

D. Quevedo is with the School of Electrical Engineering & Computer Science, The University of Newcastle, Australia,

dquevedo@ieee.org. V. Gupta and W. J. Ma are with the Department of Electrical Engineering, University of Notre

Dame, USA, vgupta2@nd.edu, wma1@nd.edu. S. Yüksel is with the Department of Mathematics and Statistics, Queen’s

University, Kingston, ON K7L 3N6 Canada, yuksel@mast.queensu.ca. Research supported for the first author under

Australian Research Council’s Discovery Projects funding scheme (project number DP0988601) and in part for the second and

third authors by NSF awards 0846631 and 0834771.

October 30, 2018 DRAFT

ar
X

iv
:1

31
2.

23
90

v1
 [

m
at

h.
O

C
]

 9
 D

ec
 2

01
3

2
2

Erasure Channel

x(k)

Plant

x(k) 2 Bd ?

Anytime Control
Algorithm

b(k)

N(k)
Availability
Processor w(k)

u(k) x(k)

(�(k)x(k), �(k))

Fig. 1. Event-triggered Anytime Control with Unreliable Communications.

Control design in the presence of practical communication channels and protocols has been

studied in the area of networked control systems. Of particular interest to the present work is

the literature on control across analog erasure channels; see, e.g., [1]–[4]. Apart from arising

from data transmission across a wireless channel, data loss may also arise due to congestion in

a communication network, possibly transmitted by a control loop. To minimize this source of

data loss, one can conceive event triggered communication schemes in which sensors transmit

information only if the system state exceeds a certain bound; see, e.g., [5]–[9]. Recently, work

has also been done on designing event triggering rules to ensure stability in the face of data

dropouts. However, most works are restricted to single integrator dynamics [10], [11] or are

numerical studies [12].

On the other hand, various works have also considered the impact of limited or time-varying

processing power on closed-loop control [13]–[15]. Interestingly, event-triggered and self-triggered

updates of the control inputs have also been proposed to ensure less demand on the processor on

average by calculating the control input on demand [6], [16]. The direction of anytime control

has also shown promise [17]–[20]. Such algorithms calculate a coarse control input even with

limited processing resources and refine the input as more processing resources become available.

The quality of control inputs is thus time-varying, but no control input is obtained only rarely.

Notwithstanding the advances discussed above, relatively few works have considered control

design under both limited communication and processing resources. Optimal control design

for arbitrary non-linear processes under communication and processing constraints is likely a

challenging problem, since certainty equivalence would not hold in general [21]. Accordingly,

December 9, 2013 DRAFT

Fig. 1. Event-triggered Anytime Control with Unreliable Communications.

and control with limited and time-varying processor availability have accordingly received much

attention.

Control design in the presence of practical communication channels and protocols has been

studied in the area of networked control systems. Of particular interest to the present work is

the literature on control across analog erasure channels; see, e.g., [1]–[4]. Apart from arising

from data transmission across a wireless channel, data loss may also arise due to congestion in

a communication network, possibly transmitted by a control loop. To minimize this source of

data loss, one can conceive event triggered communication schemes in which sensors transmit

information only if the system state exceeds a certain bound; see, e.g., [5]–[9]. Recently, work

has also been done on designing event triggering rules to ensure stability in the face of data

dropouts. However, most works are restricted to single integrator dynamics [10], [11] or are

numerical studies [12].

On the other hand, various works have also considered the impact of limited or time-varying

processing power on closed-loop control [13]–[15]. Interestingly, event-triggered and self-triggered

updates of the control inputs have also been proposed to ensure less demand on the processor on

average by calculating the control input on demand [6], [16]. The direction of anytime control

has also shown promise [17]–[20]. Such algorithms calculate a coarse control input even with

limited processing resources and refine the input as more processing resources become available.

October 30, 2018 DRAFT

3

The quality of control inputs is thus time-varying, but no control input is obtained only rarely.

Notwithstanding the advances discussed above, relatively few works have considered control

design under both limited communication and processing resources. Optimal control design

for arbitrary non-linear processes under communication and processing constraints is likely a

challenging problem, since certainty equivalence would not hold in general [21]. Accordingly,

in the present note we consider a pre-designed control law, and focus on the implementation of

this controller in the presence of both communication and processing limitations. As depicted

in Fig. 1, we consider a discrete-time non-linear plant being controlled across a communication

network that stochastically erases data transmitted across it. To reduce congestion in the network,

the sensor employs an event triggered communication strategy. However, due to time-varying

availability of the processing resources, it is not guaranteed that the processor can calculate a

control input at all time steps when the sensor transmits (even if the network does not erase the

data). To maximally utilize the processing resources, the controller employs an anytime control

algorithm. Under such a setting, we analyze stochastic stability of the closed loop. Our main

stability results are stated in terms of an inequality that relates open-loop growth of the plant

state, packet erasure probability, and parameters of the processor availability model. For the

particular case where processing resources are available at every time step, our result reduces to

a sufficient condition for stochastic stability of non-linear control in where sensor communicates

according to an event-triggering condition across an analog i.i.d. erasure link. This may be of

independent interest.

Notation: We write N for {1, 2, . . .} and N0 for N∪{0}. R represents the real numbers and

R≥0 , [0,∞). The p× p identity matrix is denoted via Ip, 0p×q is the p× q all-zeroes matrix,

0p , 0p×p, and 0p , 0p×1. The notation {x}K stands for {x(k) : k ∈ K}, where K ⊆ N0.

We adopt the conventions
∑`2

k=`1
ak = 0 and

∏`2
k=`1

ak = 1, if `1 > `2 and irrespective of

ak ∈ R. The superscript T refers to transpose. The Euclidean norm of a vector x is denoted via

|x| =
√
xTx. A function ϕ : R≥0 → R≥0 is of class-K∞ (ϕ ∈ K∞), if it is continuous, zero at

zero, strictly increasing, and unbounded. The probability of an event Ω is denoted by Pr{Ω}
and the conditional probability of Ω given Γ by Pr{Ω |Γ}. The expected value of a random

variable x given Γ is denoted by E{x |Γ}, while E{x} refers to the unconditional expectation.

The expression x ∼ ν denotes that the random variable x has probability distribution ν and

Eν{x} denotes the expectation under probability distribution ν.

October 30, 2018 DRAFT

4

II. EVENT-DRIVEN CONTROL OVER AN ERASURE CHANNEL

We consider non-linear (and possibly open-loop unstable) plants, sampled periodically with

sampling interval Ts > 0 (see Fig. 1),

x(k + 1) = f(x(k), u(k)), k ∈ N0, (1)

where x ∈ Rn is the plant state, and u ∈ U ⊆ Rp with 0p ∈ U is the (possibly constrained)

plant input. The initial state x(0) is arbitrarily distributed. The plant is equipped with a sensor,

which has direct access to the plant state at the sampling instants k ∈ N0.

To save on communication expenditure, the sensor adopts an event-triggered transmission

strategy, in which the sensor transmits only at instances k ∈ N0, where x(k) 6∈ Bd , {x ∈
Rn : |x| < d}. This transmission is across an erasure channel which introduces random packet

dropouts. To keep communication costs low, the controller does not send acknowledgments back

to the sensor and no re-transmissions are allowed. We introduce two discrete random processes,

namely {γ}N0 and {β}N0 . The binary transmission success process {γ}N0 describes packet loss:

a successful transmission at time k is denoted by γ(k) = 1 and a packet erasure by γ(k) = 0.

The ternary process {β}N0 incorporates the event-based transmission rule,

β(k) =




γ(k) if the sensor transmitted at time k,

2 if the sensor did not transmit at time k.
(2)

Thus, β(k) = 2⇔ |x(k)| < d. We assume that β(k) is known to the controller at time k through

monitoring of received energy in the sensor transmission band. Transmission outcomes trigger

the functions carried out by the controller. The scalar d ∈ R≥0 is a design parameter, which

determines communication channel utilization and control performance. Elucidating the trade-off

between these quantities is one of the motivations of the present work.

When implementing discrete-time control systems, it is generally assumed that the processing

resources available to the controller are such that the desired control law can be evaluated within

a fixed time-delay, say δ ∈ (0, Ts). However, in practical networked and embedded systems, the

processing resources available for control calculations may vary and, at times, be insufficient to

generate a control input within the prescribed time-delay δ [15]. In the sequel we will further

develop our anytime control algorithm of [20], [22] to seek favorable trade-offs between processor

October 30, 2018 DRAFT

5

and communication availability, and control performance. We will assume that the plant model (1)

is globally stabilizable via state feedback.

Assumption 1 (Stabilizability): There exist V : Rn → R≥0, ϕ1, ϕ2 ∈ K∞, κ : Rn → U, and a

constant ρ ∈ [0, 1), such that

ϕ1(|x|) ≤ V (x) ≤ ϕ2(|x|), ∀x ∈ Rn,

V (f(x, κ(x))) ≤ ρV (x), ∀x /∈ Bd.
(3)

To encompass processing constraints, we will assume that the controller needs processor time

to carry out mathematical computations, such as evaluating κ. However, input-output operations

and simple operations at a bit level, e.g., writing data into buffers, shifting buffer contents and

setting values to zero, do not require processor time.

Before proceeding we note that a direct implementation of κ used in Assumption 1, when

processing resources are time varying, sensor transmissions are event-triggered, and the sensor

transmissions are affected by dropouts, results in the baseline event-based algorithm

u(k) =




κ(x(k)) if β(k) = 1 and processor is available,

0p otherwise,
(4)

where the symbol u(k) with k ∈ N0 denotes the plant input which is applied during the interval

[kTs + δ, (k+ 1)Ts + δ). Whilst the baseline algorithm is intuitive, our previous works [20], [22]

suggest that it will be outperformed by more elaborate control formulations.

III. EVENT-DRIVEN ANYTIME CONTROL ALGORITHM

The anytime algorithm is based on the following idea: control calculations are triggered

whenever a new measurement is successfully received. However, the precise number of control

inputs calculated depends on the processing resources available. At time intervals when the

controller is provided with more processing resources than are needed to evaluate the current

control input, the algorithm calculates a sequence of tentative future plant inputs. The sequence

is stored in a local buffer and may be used when, at some future time steps, the processor

availability precludes any control calculations even though new state information is received.

In our recent work [20], [22], we analyzed this algorithm for the simpler case where the

controller has direct access to plant state x(k) at all instants k ∈ N0. In the present work we

alleviate this assumption by considering that sensor transmissions are event-triggered and through

October 30, 2018 DRAFT

6 6

OUTPUT 0p

SET b(k) Sb(k � 1), j 1, � x(k)

WHILE processor is available AND j  ⇤

END

OUTPUT b1(k)

IF j = 1 THEN SET b(k) 0⇤p END

CASE �(k) = 1

OUTPUT b1(k)

b(k) Sb(k � 1)

�(k) = 2 SET � f(�, bj(k)), j j + 1 �(k) = 0

EVALUATE bj(k) (�) CASECASE

b(k) 0⇤p

Fig. 2. Operating modes of anytime Algorithm A1 during the time interval [kTs, (k + 1)Ts). A detailed description can be

found in Fig. 3 of [23].

provided by previously calculated buffered values (if available). The instances �(k) = 2 refer to

situations where the plant state is at the desired region Bd, and x(k) is not sent to the controller.

In this scenario, the plant input is set to zero, the buffer is emptied, and the controller is switched

off until the system state moves out of the desired region Bd and a new state measurement is

received. Fig. 2 outlines the proposed algorithm. In this figure,

S ,

2
666664

0p Ip 0p . . 0p

...

0p 0p Ip

0p 0p

3
777775
2 R⇤p⇥⇤p, b(k) =

2
666664

b1(k)

b2(k)
...

b⇤(k)

3
777775
,

where {b}N0 denote the buffer states for a given buffer size ⇤ 2 N and each bj(k) 2 Rp,

j 2 {1, . . . ,⇤}.

For future use, we will denote by N(k) 2 {0, 1, . . . ,⇤} the total number of iterations of the

while-loop which are carried out during the interval t 2 [kTs, (k + 1)Ts). Thus, as described

above, if N(k) � 1, then the entire sequence of tentative controls is {b1(k), b2(k), . . . , bN(k)(k)}
and the plant input is set to b1(k). If N(k) = 0, then the plant input depends on the variable

�(k). If �(k) 2 {0, 1} (i.e., x(k) does not lie inside the desired region), then u(k) is taken as the

first p elements of the shifted state b(k) = Sb(k� 1). If, on the other hand, �(k) = 2 indicating

that x(k) 2 Bd, then the buffer is emptied and the plant input is set to zero, see Fig. 2.

Algorithm A1 amounts to a dynamic state feedback policy with internal state variable b(k)

which provides the plant input u(k) and suggested plant inputs at future time steps. If new

state information is received and more processor time is available, a longer trajectory of control

inputs is calculated and stored in the buffer. If the buffer runs out of tentative plant inputs,

December 9, 2013 DRAFT

Fig. 2. Operating modes of anytime Algorithm A1 during the time interval [kTs, (k + 1)Ts).

a communication channel which introduces random dropouts. In addition, to save energy and

processing resources, the controller is event-triggered. More precisely, the actions taken by the

controller are guided by the value of β(k) and the processor availability.

If β(k) = 1, then the controller uses x(k) to calculate tentative control values, provided the

processor is available for control. This sequence will be stored in a buffer. If the processor is

not available or β(k) = 0, then the controller does not do any calculations and the plant input is

provided by previously calculated buffered values (if available). The instances β(k) = 2 refer to

situations where the plant state is at the desired region Bd, and x(k) is not sent to the controller.

In this scenario, the plant input is set to zero, the buffer is emptied, and the controller is switched

off until the system state moves out of the desired region Bd and a new state measurement is

received. Fig. 2 outlines the proposed algorithm. In this figure,

S ,




0p Ip 0p . . 0p
...

0p 0p Ip

0p 0p



∈ RΛp×Λp, b(k) =




b1(k)

b2(k)
...

bΛ(k)



,

where {b}N0 denote the buffer states for a given buffer size Λ ∈ N and each bj(k) ∈ Rp,

j ∈ {1, . . . ,Λ}.
For future use, we will denote by N(k) ∈ {0, 1, . . . ,Λ} the total number of iterations of the

October 30, 2018 DRAFT

7

Step 1: At time t = 0,
SET b(−1)← 0Λp, k ← 0

Step 2: IF t ≥ kTs,
THEN

SWITCH β(k)

CASE 2,
SET b(k)← 0Λp, j ← 1;
GOTO Step 4;

CASE 0,
SET j ← 1, b(k)← Sb(k − 1);
GOTO Step 4;

OTHERWISE

INPUT x(k);
SET χ← x(k), j ← 1, b(k)← Sb(k − 1);

END

END

Step 3: WHILE “sufficient processor time is available” and j ≤ Λ and time t < (k + 1)Ts,
EVALUATE uj(k) = κ(χ);
IF j = 1, THEN

OUTPUT u1(k);
SET b(k)← 0Λp;

END

SET bj(k)← uj(k);
IF “sufficient processor time is not available” or t ≥ (k + 1)Ts, THEN

GOTO Step 5;
END

SET χ← f(χ, uj(k)), j ← j + 1;
END

Step 4: IF j = 1, THEN

OUTPUT b1(k);
END

Step 5: SET k ← k + 1 and GOTO Step 2;

Fig. 3. Algorithm A1

October 30, 2018 DRAFT

8

while-loop which are carried out during the interval t ∈ [kTs, (k + 1)Ts). Thus, as described

above, if N(k) ≥ 1, then the entire sequence of tentative controls is {b1(k), b2(k), . . . , bN(k)(k)}
and the plant input is set to b1(k). If N(k) = 0, then the plant input depends on the variable

β(k). If β(k) ∈ {0, 1} (i.e., x(k) does not lie inside the desired region), then u(k) is taken as the

first p elements of the shifted state b(k) = Sb(k− 1). If, on the other hand, β(k) = 2 indicating

that x(k) ∈ Bd, then the buffer is emptied and the plant input is set to zero, see Fig. 2.

Algorithm A1 amounts to a dynamic state feedback policy with internal state variable b(k)

which provides the plant input u(k) and suggested plant inputs at future time steps. If new

state information is received and more processor time is available, a longer trajectory of control

inputs is calculated and stored in the buffer. If the buffer runs out of tentative plant inputs,

then actuator values are set to zero. The algorithm does not require prior knowledge of future

processor availability and hence can be employed in shared systems where the controller task

can be preempted by other computational tasks at the processor.

IV. STOCHASTIC STABILITY - PRELIMINARIES

For our subsequent analysis, it is convenient to investigate how many values in the state b(k)

stem from evaluating κ, ` ∈ N0. As in [20], [22], we will refer to this value as the effective

buffer length (at time k), and denote it as λ(k) ∈ {0, 1, . . . ,Λ}, k ∈ N0 with λ(−1) = 0. It is

easy to see that for all k ∈ N0 we have

λ(k) =





N(k) if N(k) ≥ 1,

max{0, λ(k − 1)− 1}, if N(k) = 0 and β(k) ∈ {0, 1},

0 if β(k) = 2.

To investigate stability, we make the following assumptions:

Assumption 2 (Processor availability): The sampling time of the plant (1) is such that pro-

cessor availability for control at different time-instants is independent and identically distributed

(i.i.d.). Thus, the process {N}N0 has conditional probability distribution pj , Pr{N(k) =

j | β(k) = 1}, where pj ∈ [0, 1) are given and with j ∈ {0, 1, 2, . . . ,Λ}. For other realizations

of β(k), no plant inputs are calculated, thus, Pr{N(k) = 0 | β(k) ∈ {0, 2}} = 1. �
Assumption 3 (Erasure channel): The binary transmission success process {γ}N0 has condi-

tional probabilities Pr{γ(k) = 1 | |x(k)| ≥ d} = q, Pr{γ(k) = 0 | |x(k)| < d} = 1. �

October 30, 2018 DRAFT

9

Assumption 4 (Open-loop bound): There exists α ≥ ρ such that

V (f(χ,0p)) ≤ αV (χ), ∀χ ∈ Rn. (5)

where ρ, V and ϕ2 are as in (3). Further, E
{
ϕ2(|x(0)|)

}
<∞. �

It is worth noting that, by allowing for α > 1, Assumption 4 does not require that the open-loop

system x(k+ 1) = f(x(k),0p) be asymptotically stable. Further, note that Assumptions 1 and 4

are stated in terms of the same function V , see also [20, Section IV-A].
To go beyond stability and investigate stationarity, it is convenient to impose the following

assumptions on the control policy κ
Assumption 5 (Continuity of κ): The control law κ in (3) is such that κ(x) = 0n for all x ∈ Bd

and κ is continuous on Rn. �

V. STABILITY WITH THE BASELINE ALGORITHM

If the baseline algorithm is used and Assumption 2 holds, then

x(k + 1) =




f(x(k), κ(x(k))), if N(k) ≥ 1,

f(x(k),0p), if N(k) = 0.
(6)

The following result establishes conditions on system parameters which ensure that the closed

loop (6) is stable in a stochastic sense.
Theorem 1 (Stability with baseline algorithm): Consider (6) and define D , ϕ2(d). Suppose

that Assumptions 1 to 4 hold and that

Γ , (1− q)α + q
(
p0α + (1− p0)ρ

)
< 1, (7)

where ρ ∈ [0, 1) is the closed-loop bound in (3), α is the bound in (5), q is the transmission

success probability, and p0 is the probability of the processor not being available for control.

Then for all x ∈ N0,

E
{
ϕ1(|x(k)|)

}
≤ ΓkE

{
ϕ2(x(0))

}
+
q(1− p0)(α− ρ)D

1− Γ
<∞.

Proof: Note that, for i.i.d. processor and channel availabilities {x}N0 in (6) is Markovian.

This can be verified by noting that conditioning on x(k) makes the event outcome β(k) depend

on γ(k) only. To analyze stochastic stability using Lyapunov functions (see, e.g., [23]), we use

the law of total expectation to write

E
{
V (x(1))

∣∣x(0) = χ
}

=
2∑

j=0

E
{
V (x(1))

∣∣x(0) = χ, β(0) = j
}
Pr{β(0) = j |x(0) = χ}.

October 30, 2018 DRAFT

10

If we now use (2), (3), (5) and the definition of Bd, then:

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 0
}
≤ αV (χ)

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 2
}
≤ αV (χ) < αϕ2(d),

(8)

For β(0) = 1, x(0) is received. Using (5) and (6), we have

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 1
}

=
∑

j∈N0

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 1, N(0) = j
}

×Pr{N(0) = j |x(0) = χ, β(0) = 1} ≤
(
p0α + (1− p0)ρ

)
V (χ). (9)

Now, if x(0) ∈ Bd, then β(0) = 2, thus (V) and (8) provide

E
{
V (x(1))

∣∣x(0) = χ ∈ Bd
}
≤ αV (χ). (10)

Further, since α− Γ = q(1− p0)(α− ρ) > 0 (see (7)) and V (χ) < D for all χ ∈ Bd, we have

(α− Γ)V (χ) < (α− Γ)D ⇒ αV (χ) < ΓV (χ) + (α− Γ)D, ∀χ ∈ Bd. (11)

On the other hand, if x(0) 6∈ Bd, then (in view of Assumption 3), Pr{β(0) = 0 |x(0) 6∈ Bd} =

1− q, and Pr{β(0) = 1 |x(0) 6∈ Bd} = q. Thereby, substitution of (8) and (9) into (V) provides:

E
{
V (x(1))

∣∣x(0) = χ 6∈ Bd
}
≤ ΓV (χ). (12)

Expressions (10)–(12) lead to:

E
{
V (x(1))

∣∣x(0) = χ
}
< ΓV (χ) + (α− Γ)D = ΓV (χ) + q(1− p0)(α− ρ)D.

Consequently, Proposition 3.2 of [23], and (3) give

E
{
ϕ1(|x(k)|) |x(0) = χ

}
≤ ΓkV (χ) +

q(1− p0)(α− ρ)D

1− Γ
,

for all k ∈ N0. Using the law of total expectation and (3) yields the first inequality. The second

follows from Assumption 4.

It is worth noting that whilst the condition (7) is independent of the size of Bd, the ultimate

bound is increasing in d. We can also consider two special cases. If d = 0 and q = 1, so that the

sensor transmits at every instant k ∈ N0 and the communication channel does not introduce any

dropouts, (7) reduces to p0α+(1−p0)ρ < 1, thus recovering our earlier result [20, Thm.1]. If the

processor is available at every time-step (i.e., p0 = 0), then the situation amounts to event-based

October 30, 2018 DRAFT

11

control for non-linear systems using an erasure channel. In this case, the sufficient condition (7)

becomes (1− q)α + ρq < 1.

Theorem 2 (Stationarity with baseline algorithm): Consider (6), suppose that Assumptions 1

to 5 hold and that (7) holds. Then, there exists an invariant probability measure for {x}N0 .

Furthermore, under every such invariant probability measure π,

Eπ{ϕ1(|x|)} ≤ q(1− p0)(α− ρ)ϕ2(d)/(1− Γ).

Proof: Let P(Rn) denote the set of probability measures on Rn and define for every Borel

B, vT (B) = (1/T)E{∑T−1
k=0 1{x(k)∈B}}, such that vT ∈ P(Rn) forms an expected empirical

occupation measure sequence. We then have,

〈vT , ϕ1〉 ,
∫
vT (dx)ϕ1(|x|) =

1

T
E

{ T−1∑

k=0

ϕ1(|x(k)|)
}
.

Let t0 ∈ N. By Theorem 1, we have that E{ϕ1(|x(k)|)} and the subsequence {〈vT , ϕ1〉, T ≥ t0}
are uniformly bounded by some Mt0 < ∞. Define Nr := {x : ϕ1(|x|) ≤ r}. Since ϕ1 is

monotone and unbounded, by an application of Markov’s inequality, we have

Mt0 ≥
∫
vT (dx)ϕ1(|x|) ≥

∫

X\Nr

vT (dx)ϕ1(|x|) ≥ rvT (Rn\Nr).

Thus, vT (Nr) ≥ 1 −Mt0/r, and hence for every ε = Mt0/r > 0, there exists a compact set

NMt0/ε
= {x : ϕ1(|x|) ≤ Mt0/ε} such that vt(NMt0/ε

) ≥ 1 − ε. The sequence {vt, t ≥ t0} is,

hence, a tight sequence with a converging subsequence vtk converging to some v∗ ∈ P(Rn).

By (6), if x(t) ∈ Bd the control action is zero and outside Bd, either zero control is applied or

κ(x(t)) is applied. Since κ is continuous and is zero inside Bd (see Assumption 5), the Markov

chain is weak Feller.1 Consequently, it can be shown that every limit of such a subsequence is

invariant (see, e.g., [24, Ch. 12]) and satisfies 〈vT , ϕ1〉 ≤Mt0 . By Theorem 1, by increasing t0,

Mt0 can be taken to be arbitrarily close to q(1− p0)(α− ρ)ϕ2(d)/(1− Γ).

VI. STABILITY WITH THE ANYTIME ALGORITHM

The analysis of the event-based anytime algorithm is more involved than that of the baseline

system (6). First, due to buffering, {x}N0 will in general not be a Markov process. Further, the

1A Markov chain {x(k)}k∈N0 is (weak) Feller if E{h(x(k + 1))|x(k) = χ} is continuous in χ, for every continuous and

bounded function h.

October 30, 2018 DRAFT

12

distribution of {β}N0 is difficult to derive for general plant models. This makes the approaches

of [20], [22] insufficient to treat the present case.

For ease of exposition, we assume that the initial effective buffer length, λ(0) = 0, and denote

the time steps where λ(k) = 0 via K = {ki}i∈N0 , where k0 = 0 and ki+1 = inf
{
k ∈ N : k >

ki, λ(k) = 0
}

, i ∈ N0. We also describe the amount of time steps between consecutive elements

of K via the process {∆i}i∈N0 , where ∆i , ki+1 − ki. It is easy to see that

β(ki + `) ∈ {0, 1}, ∀` ∈ {1, 2, . . . ,∆i − 1}, ∀i ∈ N0 (13)

whereas β(ki) ∈ {0, 1, 2}, ∀i ∈ N0 and x(k∗) ∈ Bd ⇒ k∗ ∈ K. In contrast to the cases examined

in [20], [22], due to the event-triggering mechanism, {∆i}i∈N0 is, in general, not i.i.d. In fact,

the distribution of ∆i depends on x(ki) and is difficult to characterize. To study stability of the

event-based anytime algorithm, we will develop a state-dependent random-time drift condition.

Our first result, states that whilst {x}N0 is in general not Markovian, the state sequence at the

time steps ki ∈ K, is a Markov process.

Lemma 1 (Markov property of the sampled process): Consider (1) controlled via Algorithm

A1 and suppose that Assumptions 2 and 3 hold. Then {x}K is Markovian. �
Proof: The definition of K gives that ∀ki ∈ K we have u(ki) = 0p, b(ki) = 0Λp, λ(ki) =

N(ki) = 0. Thus, the plant state at time ki+1 depends only on x(ki) and the sample paths

{N(ki + 1), N(ki + 2), . . . , N(ki+1− 1)} and {γ(ki + 1), γ(ki + 2), . . . , γ(ki+1− 1)}. The result

follows since {N}N0 and {γ}N0 are i.i.d.

The following result provides a sufficient condition for stochastic stability of the closed loop

when the event-based anytime control algorithm of Section III is used over an erasure channel.

Theorem 3 (Stability with Algorithm A1): Suppose that Assumptions 1 to 4 hold and define

Ω , α
∑

j∈N
ρj−1Pr{∆i = j | β(ki+1) 6= 2}. (14)

If Algorithm A1 is used and Ω < 1, then

max
k∈{ki,ki+1,...,ki+1−1}

E
{
ϕ1(|x(k)|)

}
≤ 1 + α− ρ

1− ρ ΩiE
{
ϕ2(x(0))

}
+
ϕ2(d)

1− Ω
<∞, ∀i ∈ N. (15)

Proof: We first note that for all ki ∈ K and ` ∈ {1, . . . ,∆i−1}, u(ki) = 0p and u(ki+`) =

κ(x(ki + `)). Therefore, the function V (x(ki+1)) can be bounded by using (3) and (5), leading

to

E{V (x(ki+1)) |x(ki) = χ,∆i = j} ≤ αρj−1V (χ),∀χ ∈ Rn. (16)

October 30, 2018 DRAFT

13

To account for event-based transmission, we consider instances where the buffer is emptied

triggered by β(k) = 2. At these instances, (16) holds; further, V (ki+1) < D , ϕ2(d). Thus,

E{V (x(ki+1)) |x(ki) = χ,∆i = j, β(ki+1) = 2} < D, ∀j ∈ N. (17)

By using the law of total expectation twice, we thus obtain,

E{V (x(ki+1)) |x(ki) = χ} = E{V (x(ki+1)) |x(ki) = χ, β(ki+1) = 2}Pr{β(ki+1) = 2 |x(ki) = χ}

+ E{V (x(ki+1)) |x(ki) = χ, β(ki+1) 6= 2}Pr{β(ki+1) 6= 2 |x(ki) = χ}

≤ D + E{V (x(ki+1)) |x(ki) = χ, β(ki+1) 6= 2} (18)

= D +
∑

j∈N
E{V (x(ki+1)) |x(ki) = χ, β(ki+1) 6= 2,∆i = j}Pr{∆i = j |x(ki) = χ, β(ki+1) 6= 2}

≤ D +
∑

j∈N
αρj−1V (χ)Pr{∆i = j |x(ki) = χ, β(ki+1) 6= 2} = D + ΩV (χ),∀χ ∈ Rn,

with Ω as in (14) and where, to derive the last equality, we have used Assumption 2. Since {x}K
is Markovian, [23, Prop. 3.2] yields that Ω < 1 guarantees

E
{
V (x(ki)) |x(k0) = χ

}
≤ ΩiV (χ) +

D

1− Ω
, ∀i ∈ N0.

Now, since (16) holds, by a method similar to the one used in the proof of [22, Thm.1], we can

establish the (admittedly loose) bound:

E

{
ki+1−1∑

k=ki

V (x(k))

∣∣∣∣x(k0) = χ

}
≤ 1 + α− ρ

1− ρ ΩiV (χ) +
D

1− Ω
, ∀i ∈ N. (19)

Using the law total expectation, (3) and Assumption 4 gives (15).

The above result establishes a sufficient condition for the system to be stochastically stable.

The quantity (14) is stated in terms of a conditional distribution of ∆i, which can be characterized

as follows:

Lemma 2 (Conditional distribution of ∆i): Suppose that Assumptions 2 and 3 hold and that

Algorithm A1 is used. We then have

Pr{∆i = j | β(ki+1) 6= 2}
1− q + p0q

=





1 if j = 1,

θTGj−2e1 if j ≥ 2,
∀(i, j) ∈ N0 × N, (20)

where θT = q
[
p1 . . . pΛ

]
and eT1 =

[
1 0 . . . 0

]
. In (20), the entries of the matrix

G = [g`j], `, j ∈ {1, 2, . . . ,Λ} are g`j = pjq, ∀(`, j) ∈ {3, 4, . . . ,Λ} × {1, 2, . . . , `− 2} ∪
{1, 2, . . . ,Λ} × {`, `+ 1, . . . ,Λ}; and g`(`−1) = 1− q + (p0 + p`−1)q, ∀` ∈ {2, 3, . . . ,Λ}. �

October 30, 2018 DRAFT

14

Proof: We first note that our focus is on the time sequences of the form Ii , {ki +

1, . . . , ki+1} where ki ∈ K, i ∈ N0 and where β(k) 6= 2, ∀k ∈ Ii. Given Assumptions 2

and 3 and the buffering mechanism described in Section III, it follows that {λ(k)} during every

interval k ∈ Ii, i ∈ N0, is a homogeneous Markov Chain. The process ∆i then amounts to the

first return times to 0 of this finite Markov Chain. To characterize the latter, we need to evaluate

the transition probabilities g`j , Pr{λ(k + 1) = j |λ(k) = `, k ∈ Ii, k + 1 ∈ Ii}. Without loss

of generality, we will set k = 0. We begin by considering transitions from ` ∈ {0, 1} to 0:

g`0 = Pr{N(1) = 0 |β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}

+ Pr{N(1) = 0 |β(1) = 1}Pr{β(1) = 1 | β(1) 6= 2} = (1− q) + p0q, ∀` ∈ {0, 1}.

For ` ∈ {2, 3, . . . ,Λ}, we have g`0 = 0. The buffer length diminishes by one for the scenarios

considered below:

g`(`−1) = Pr{N(1) = 0 |β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}+ Pr{N(1) = 0 |β(1) = 1}

×Pr{β(1) = 1 | β(1) 6= 2}+ Pr{N(1) = `− 1 |β(1) = 1}Pr{β(1) = 1 | β(1) 6= 2}

= (1− q) + p0q + p`−1q, ∀` ∈ {2, 3, . . . ,Λ}.

The other transitions are related to when λ(k + 1) = N(k + 1), for (`, j) ∈
{
{3, 4, . . . ,Λ} ×

{1, 2, . . . , `− 2}
}
∪
{
{1, 2, . . . ,Λ} × {`, `+ 1, . . . ,Λ}

}
∪
{

0× {1, 2, . . . ,Λ}
}

. Here we have:

g`j = Pr{λ(1) = j |λ(0) = `, β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}

+ Pr{λ(1) = j |λ(0) = `, β(1) = 1}Pr{β(1) = 1 | β(1) 6= 2}

= Pr{N(1) = j |β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}+ Pr{N(1) = j |β(1) = 1}

×Pr{β(1) = 1 | β(1) 6= 2} = 0(1− q) + pjq = pjq.

The derivation of (20) now follows as in [22, Lemma 2] by setting up a recursion on the first

passage time of state ` ∈ {1, . . . ,Λ} to 0 and then considering the transitions away from 0.

As a consequence of Lemma 2, Ω in (14) can be written as:

Ω = α(1− q + p0q)
(
1 + ρθT (I − ρG)−1e1

)
,

and the stability condition in Theorem 3, Ω < 1, becomes
[
p1 . . . pΛ

]
(IΛ − ρG)−1e1 <

1− α + αq(1− p0)

αρq(1− q(1− p0))
,

which is independent of the size of Bd.

October 30, 2018 DRAFT

15

Sufficient conditions for stationarity can be stated as follows:

Theorem 4 (Stationarity with Algorithm A1): Suppose that Assumptions 1 to 5 hold. If Algo-

rithm A1 is used and Ω < 1, then there exists an invariant probability measure for {x}K as well

as for the aggregated Markov process, {x[k,k−(Λ−1)]}k∈N, where

x[k,k−(Λ−1)] , {x(k), x(k − 1), · · · , x(k − Λ + 1)}.

Furthermore, under every invariant probability measure π, Eπ{V (x)} < ϕ2(d)/(1− Ω). �
Proof: First note that if N(k) ≥ 1, then u(k) is determined by the current state. If the

processor is not available, then either u(k) has been determined by the states which are at most

Λ time stages old, or u(k) = 0p. Since the processor availability is independent of the state, the

stochastic process {x[k,k−Λ+1]} is Markovian. Let z(k) , x[k,k−Λ+1]. From Assumption 5, {z}N0

is also weak Feller.

We first invoke Theorem 2.1 in [25] with K containing the sequence of stopping times. Since

E{V (x(ki+1)) |x(ki) = χ} ≤ V (χ)− (1− Ω)V (χ) +D, ∀χ ∈ Rn, (21)

and the sampled chain is weak Feller, it follows that {x}K admits an invariant probability

measure.

Define Ṽ (z(k)) , V (x(k)). Now, note that by (18), with Ω < 1, E{Ṽ (z(ki+1)) | z(ki) =

χ} ≤ D + ΩṼ (χ), ∀χ. Thus, E{Ṽ (z(ki+1)) | z(ki) = χ} ≤ Ṽ (χ)− (1− Ω)Ṽ (χ) +D, ∀χ, and

since V is monotone increasing and by Assumption 4, there exists a compact set S such that

for 1 − Ω > ζ > 0, E{V (x(ki+1)) |x(ki) = x} ≤ V (x) − ζV (x) + D1x∈S , ∀x ∈ Rn. Since

V (x(t)) is bounded from below outside Bd, and x(k) /∈ Bd for k /∈ K, and that (19) implies that

for some M1 <∞

E

{
ki+1−1∑

k=ki

V (x(k))

∣∣∣∣x(k0) = χ

}
≤M1,

it follows that supxki
E{ki+1−ki |xki} <∞. Finally, by Assumption 4, if xt ∈ S then x[t+Λ−1,t] ∈

S̄ where S̄ is a compact set. Thus, Theorem 2.2 in [25] implies that there exists an invariant

probability distribution, π, for {z}N0 .

Since (21) holds, with PmV (χ) := E{V (x(km))|x(k0) = χ}, following arguments similar to

the proof of Theorem 2.2 of [25], for every realization of x(k0), it follows that

(1− Ω) lim sup
T→∞

1

T
E

{
T−1∑

i=0

V (x(ki))

}
≤ lim sup

T→∞

1

T

(
V (x(k0)) +

T−1∑

i=0

D

)
.

October 30, 2018 DRAFT

16

2

The channel utilization result illustrates that the channel utilization based on the anytime control

algorithm is less than the one based on the baseline algorithm.

!

"

1 1.5 2 2.50

0.2

0.4

0.6

0.8

1
Baseline Algorithm
Anytime Algorithm

Fig. 1. Boundaries of stability regions for the example considered.

0 2 4 6 8 10
0

10

20

30

40

d

J

Anytime Algorithm

Baseline Algorithm

Fig. 2. Empirical cost when controlling with the anytime algorithm and with the baseline algorithm as a function of the

parameter d.

February 13, 2013 DRAFT

Fig. 4. Boundaries of stability: Ω = 1 (solid line) and Γ = 1 (dashed).

20 40 60 80 100

0.2

0.25

0.3

0.35

Channel Utilization (%)

J

Anytime Algorithm

Baseline Algorithm

d = 0.1

d = 4

d = 3

d = 1
d = 2

Fig. 5. Empirical cost versus channel utilization for different values of d.

Thus, lim supT→∞(1/T)
∑T−1

m=0 P
mV (x(km)) ≤ D/(1−Ω). Applying Fatou’s lemma, we obtain

lim sup
T→∞

Eπ

{
1

T

T−1∑

i=0

min(N, V (x(ki)))

}
≤ Eπ

{
lim sup
T→∞

1

T

T−1∑

i=0

min(N, V (x(ki)))

}
≤ D

1− Ω
.

Then, by the monotone convergence theorem, by letting N →∞,

lim sup
T→∞

Eπ

{
1

T

T−1∑

i=0

V (x(ki))

}
≤ D

1− Ω
.

Thus, there exists an invariant probability measure both for the original chain and for the

sampled chain; under every such invariant probability measure π, Eπ{V (x)} < D/(1− Ω).

VII. NUMERICAL EXAMPLES

We first compare the stability conditions derived for a specific case. Suppose that the buffer

length is given by Λ = 4, whereas pi = 0.2, i ∈ {0, . . . , 4}, and q = 0.75. The stability region

boundaries, see (7) and (14), in terms of α and ρ are depicted in Fig. 4. It can be seen that

October 30, 2018 DRAFT

17

the guaranteed stable region (under the curve) provided by our results is larger when using

Algorithm A1 than when using (4).

Next, we consider an open-loop unstable constrained plant model of the form (1), but with

additive noise: 
x1(k + 1)

x2(k + 1)


 =


 x2(k) + u1(k)

−sat(x1(k) + x2(k)) + u2(k)


+


w1(k)

w2(k)




where

sat(µ) =





−10, if µ < −10,

µ if µ ∈ [−10, 10],

10, if µ > 10,

see [20, Example 2]. The initial condition x(0) and the disturbance w(k) are zero-mean i.i.d.

Gaussian with unit covariance. The control policy κ is taken as κ(x) = [−x2 0.505sat(x1 +

x2)]T , x ∈ R2. If we choose V (x) = 2|x|, then direct calculations give that

V
(
f(x, κ(x))

)
= 0.99|sat(x1 + x2)| ≤ 0.99|x1 + x2|

≤ 1.98 max{|x1|, |x2|} −max{|x1|, |x2|}+ |x| ≤ 1.98|x|.

Thus, Assumption 1 holds with ρ = 0.99, and ϕ1(s) = ϕ2(s) = 2s. Processor availability and

Λ are taken as above, but we now set q = 0.4. Performance is evaluated through the empirical

cost J , 1
50

(∑49
k=0 |x(k)|2

)
and the Channel Utilization (%), calculated as

Total number of time steps at which β(k) 6= 2

Total number of time steps
(%).

By averaging over 104 realizations, Fig. 5 is obtained. As can be seen in that figure, the proposed

event-based anytime control algorithm gives better trade-offs between empirical cost and channel

utilization.

VIII. CONCLUSIONS

This work considered the control of a non-linear process with both communication and process-

ing constraints. A sensor node transmits data to the controller across a channel that stochastically

erases data. The control algorithm is executed over a processor that can provide only limited,

time-varying and a priori unknown processing resources. To reduce the communication frequency,

the sensor utilizes an event-triggered scheme. Similarly, to better utilize the processor availability,

October 30, 2018 DRAFT

18

the control input is calculated by using an anytime control algorithm. For the resulting system,

we present stochastic stability and stationarity results. Numerical studies illustrate that significant

performance gains can be obtained by using the proposed algorithm. Future work includes the

extension of the analysis to noisy systems, and establishing further stability properties such as

ergodicity and rates of convergence to equilibrium.

REFERENCES

[1] V. Gupta, A. F. Dana, J. P. Hespanha, R. M. Murray, and B. Hassibi, “Data transmission over networks for estimation and

control,” IEEE Trans. Automat. Contr., vol. 54, pp. 1807–1819, Aug. 2009.

[2] O. C. Imer, S. Yüksel, and T. Ba̧sar, “Optimal control of LTI systems over unreliable communication links,” Automatica,

vol. 42, pp. 1429–1439, Sept. 2006.

[3] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of control and estimation over lossy

networks,” Proc. IEEE, vol. 95, pp. 163–187, Jan. 2007.

[4] D. E. Quevedo and D. Nešić, “Robust stability of packetized predictive control of nonlinear systems with disturbances and

Markovian packet losses,” Automatica, vol. 48, pp. 1803–1811, Aug. 2012.

[5] L. Li, M. Lemmon, and X. Wang, “Event-triggered state estimation in vector linear processes,” in Proc. Amer. Contr. Conf.,

pp. 2138–2143, 2010.

[6] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE Trans. Automat. Contr., vol. 52,

pp. 1680–1685, Sept. 2007.

[7] Y. Xu and J. Hespanha, “Optimal communication logics in networked control systems,” in Proc. IEEE Conf. Decis. Contr.,

pp. 3527–3532, 2004.

[8] C. Ramesh, H. Sandberg, and K. H. Johansson, “Steady state performance analysis of multiple state-based schedulers with

CSMA,” in Proc. IEEE Conf. Decis. Contr., 2011.

[9] M. Xia, V. Gupta, and P. J. Antsaklis, “Networked state estimation over a shared communication medium,” in

Proc. Amer. Contr. Conf., 2013.

[10] M. Rabi and K. H. Johansson, “Scheduling packets for event-triggered control,” in Proc. Europ. Contr. Conf., pp. 3779–

3784, 2009.

[11] R. Blind and F. Allgöwer, “Analysis of networked event-based control with a shared communication medium: Part 1 -

pure aloha,” in Proc. IFAC World Congr., 2011.

[12] A. Cervin and T. Henningsson, “Scheduling of event-triggered controllers on a shared network,” in Proc. IEEE

Conf. Decis. Contr., pp. 3601—3606, 2008.

[13] L. K. McGovern and E. Feron, “Closed-loop stability of systems driven by real-time dynamic optimization algorithms,”

in Proc. IEEE Conf. Decis. Contr., vol. 4, (Phoenix, AZ), pp. 3690–3696, Dec. 1999.

[14] D. Henriksson and J. Åkesson, “Flexible implementation of model predictive control using sub-optimal solutions,” Tech.

Rep. Internal Report No. TFRT-7610-SE, Dep. of Automatic Control, Lund University, 2004.

[15] P. Andrianiaina, A. Seuret, and D. Simon, “Robust system control method with short execution deadlines.” European Patent

Application EP 2 568 346 A1, Airbus Operations Toulouse, March 2013.

[16] A. Cervin, M. Velasco, P. Martı́, and A. Camacho, “Optimal online sampling period assignment: Theory and experiments,”

IEEE Trans. Contr. Syst. Technol., vol. 18, June 2010.

[17] R. Bhattacharya and G. J. Balas, “Anytime control algorithms: Model reduction approach,” AIAA Journal of Guidance,

Control and Dynamics, vol. 27, pp. 767–776, Sept.–Oct. 2004.

[18] L. Greco, D. Fontanelli, and A. Bicchi, “Almost sure stability of anytime controllers via stochastic scheduling,” in

Proc. IEEE Conf. Decis. Contr., (New Orleans, LA), pp. 5640–5645, Dec. 2007.

October 30, 2018 DRAFT

19

[19] V. Gupta and F. Luo, “On a control algorithm for time-varying processor availability,” IEEE Trans. Automat. Contr., vol. 58,

Mar. 2013.

[20] D. E. Quevedo and V. Gupta, “Sequence-based anytime control,” IEEE Trans. Automat. Contr., vol. 58, pp. 377–390, Feb.

2013.

[21] C. Ramesh, H. Sandberg, and K. H. Johansson, “On the dual effect in state-based scheduling of networked control systems,”

in Proc. Amer. Contr. Conf., pp. 2216–2221, 2011.

[22] D. E. Quevedo and V. Gupta, “Stability of sequence-based anytime control with Markovian processor availability,” in Proc.

Austr. Contr. Conf., 2011.

[23] S. P. Meyn, “Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function,” SIAM Journal

on Control and Optimization, vol. 27, pp. 1409–1439, Nov. 1989.

[24] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. Cambridge University Press, 2009.

[25] S. Yüksel and S. P. Meyn, “Random-time, state-dependent stochastic drift for Markov chains and application to stochastic

stabilization over erasure channels,” IEEE Trans. Automat. Contr., vol. 58, no. 1, pp. 47–59, 2013.

October 30, 2018 DRAFT

1

Stochastic Stability of Event-triggered Anytime

Control

Daniel E. Quevedo, Member, IEEE, Vijay Gupta, Member, IEEE, Wann-Jiun

Ma, Student Member, IEEE, Serdar Yüksel, Member, IEEE

Abstract

We investigate control of a non-linear process when communication and processing capabilities are

limited. The sensor communicates with a controller node through an erasure channel which introduces

i.i.d. packet dropouts. Processor availability for control is random and, at times, insufficient to calculate

plant inputs. To make efficient use of communication and processing resources, the sensor only transmits

when the plant state lies outside a bounded target set. Control calculations are triggered by the received

data. If a plant state measurement is successfully received and while the processor is available for

control, the algorithm recursively calculates a sequence of tentative plant inputs, which are stored in

a buffer for potential future use. This safeguards for time-steps when the processor is unavailable for

control. We derive sufficient conditions on system parameters for stochastic stability of the closed loop

and illustrate performance gains through numerical studies.

I. INTRODUCTION

Due to the tight coupling among the cyber and the physical cores in many cyber-physical

systems, it is imperative to develop systematic design principles for controllers with limited com-

munication and processing resources. Both the areas of control with communication constraints

D. Quevedo is with the School of Electrical Engineering & Computer Science, The University of Newcastle, Australia,

dquevedo@ieee.org. V. Gupta and W. J. Ma are with the Department of Electrical Engineering, University of Notre

Dame, USA, vgupta2@nd.edu, wma1@nd.edu. S. Yüksel is with the Department of Mathematics and Statistics, Queen’s

University, Kingston, ON K7L 3N6 Canada, yuksel@mast.queensu.ca. Research supported for the first author under

Australian Research Council’s Discovery Projects funding scheme (project number DP0988601) and in part for the second and

third authors by NSF awards 0846631 and 0834771.

October 30, 2018 DRAFT

ar
X

iv
:1

31
2.

23
90

v1
 [

m
at

h.
O

C
]

 9
 D

ec
 2

01
3

2
2

Erasure Channel

x(k)

Plant

x(k) 2 Bd ?

Anytime Control
Algorithm

b(k)

N(k)
Availability
Processor w(k)

u(k) x(k)

(�(k)x(k), �(k))

Fig. 1. Event-triggered Anytime Control with Unreliable Communications.

Control design in the presence of practical communication channels and protocols has been

studied in the area of networked control systems. Of particular interest to the present work is

the literature on control across analog erasure channels; see, e.g., [1]–[4]. Apart from arising

from data transmission across a wireless channel, data loss may also arise due to congestion in

a communication network, possibly transmitted by a control loop. To minimize this source of

data loss, one can conceive event triggered communication schemes in which sensors transmit

information only if the system state exceeds a certain bound; see, e.g., [5]–[9]. Recently, work

has also been done on designing event triggering rules to ensure stability in the face of data

dropouts. However, most works are restricted to single integrator dynamics [10], [11] or are

numerical studies [12].

On the other hand, various works have also considered the impact of limited or time-varying

processing power on closed-loop control [13]–[15]. Interestingly, event-triggered and self-triggered

updates of the control inputs have also been proposed to ensure less demand on the processor on

average by calculating the control input on demand [6], [16]. The direction of anytime control

has also shown promise [17]–[20]. Such algorithms calculate a coarse control input even with

limited processing resources and refine the input as more processing resources become available.

The quality of control inputs is thus time-varying, but no control input is obtained only rarely.

Notwithstanding the advances discussed above, relatively few works have considered control

design under both limited communication and processing resources. Optimal control design

for arbitrary non-linear processes under communication and processing constraints is likely a

challenging problem, since certainty equivalence would not hold in general [21]. Accordingly,

December 9, 2013 DRAFT

Fig. 1. Event-triggered Anytime Control with Unreliable Communications.

and control with limited and time-varying processor availability have accordingly received much

attention.

Control design in the presence of practical communication channels and protocols has been

studied in the area of networked control systems. Of particular interest to the present work is

the literature on control across analog erasure channels; see, e.g., [1]–[4]. Apart from arising

from data transmission across a wireless channel, data loss may also arise due to congestion in

a communication network, possibly transmitted by a control loop. To minimize this source of

data loss, one can conceive event triggered communication schemes in which sensors transmit

information only if the system state exceeds a certain bound; see, e.g., [5]–[9]. Recently, work

has also been done on designing event triggering rules to ensure stability in the face of data

dropouts. However, most works are restricted to single integrator dynamics [10], [11] or are

numerical studies [12].

On the other hand, various works have also considered the impact of limited or time-varying

processing power on closed-loop control [13]–[15]. Interestingly, event-triggered and self-triggered

updates of the control inputs have also been proposed to ensure less demand on the processor on

average by calculating the control input on demand [6], [16]. The direction of anytime control

has also shown promise [17]–[20]. Such algorithms calculate a coarse control input even with

limited processing resources and refine the input as more processing resources become available.

October 30, 2018 DRAFT

3

The quality of control inputs is thus time-varying, but no control input is obtained only rarely.

Notwithstanding the advances discussed above, relatively few works have considered control

design under both limited communication and processing resources. Optimal control design

for arbitrary non-linear processes under communication and processing constraints is likely a

challenging problem, since certainty equivalence would not hold in general [21]. Accordingly,

in the present note we consider a pre-designed control law, and focus on the implementation of

this controller in the presence of both communication and processing limitations. As depicted

in Fig. 1, we consider a discrete-time non-linear plant being controlled across a communication

network that stochastically erases data transmitted across it. To reduce congestion in the network,

the sensor employs an event triggered communication strategy. However, due to time-varying

availability of the processing resources, it is not guaranteed that the processor can calculate a

control input at all time steps when the sensor transmits (even if the network does not erase the

data). To maximally utilize the processing resources, the controller employs an anytime control

algorithm. Under such a setting, we analyze stochastic stability of the closed loop. Our main

stability results are stated in terms of an inequality that relates open-loop growth of the plant

state, packet erasure probability, and parameters of the processor availability model. For the

particular case where processing resources are available at every time step, our result reduces to

a sufficient condition for stochastic stability of non-linear control in where sensor communicates

according to an event-triggering condition across an analog i.i.d. erasure link. This may be of

independent interest.

Notation: We write N for {1, 2, . . .} and N0 for N∪{0}. R represents the real numbers and

R≥0 , [0,∞). The p× p identity matrix is denoted via Ip, 0p×q is the p× q all-zeroes matrix,

0p , 0p×p, and 0p , 0p×1. The notation {x}K stands for {x(k) : k ∈ K}, where K ⊆ N0.

We adopt the conventions
∑`2

k=`1
ak = 0 and

∏`2
k=`1

ak = 1, if `1 > `2 and irrespective of

ak ∈ R. The superscript T refers to transpose. The Euclidean norm of a vector x is denoted via

|x| =
√
xTx. A function ϕ : R≥0 → R≥0 is of class-K∞ (ϕ ∈ K∞), if it is continuous, zero at

zero, strictly increasing, and unbounded. The probability of an event Ω is denoted by Pr{Ω}
and the conditional probability of Ω given Γ by Pr{Ω |Γ}. The expected value of a random

variable x given Γ is denoted by E{x |Γ}, while E{x} refers to the unconditional expectation.

The expression x ∼ ν denotes that the random variable x has probability distribution ν and

Eν{x} denotes the expectation under probability distribution ν.

October 30, 2018 DRAFT

4

II. EVENT-DRIVEN CONTROL OVER AN ERASURE CHANNEL

We consider non-linear (and possibly open-loop unstable) plants, sampled periodically with

sampling interval Ts > 0 (see Fig. 1),

x(k + 1) = f(x(k), u(k)), k ∈ N0, (1)

where x ∈ Rn is the plant state, and u ∈ U ⊆ Rp with 0p ∈ U is the (possibly constrained)

plant input. The initial state x(0) is arbitrarily distributed. The plant is equipped with a sensor,

which has direct access to the plant state at the sampling instants k ∈ N0.

To save on communication expenditure, the sensor adopts an event-triggered transmission

strategy, in which the sensor transmits only at instances k ∈ N0, where x(k) 6∈ Bd , {x ∈
Rn : |x| < d}. This transmission is across an erasure channel which introduces random packet

dropouts. To keep communication costs low, the controller does not send acknowledgments back

to the sensor and no re-transmissions are allowed. We introduce two discrete random processes,

namely {γ}N0 and {β}N0 . The binary transmission success process {γ}N0 describes packet loss:

a successful transmission at time k is denoted by γ(k) = 1 and a packet erasure by γ(k) = 0.

The ternary process {β}N0 incorporates the event-based transmission rule,

β(k) =




γ(k) if the sensor transmitted at time k,

2 if the sensor did not transmit at time k.
(2)

Thus, β(k) = 2⇔ |x(k)| < d. We assume that β(k) is known to the controller at time k through

monitoring of received energy in the sensor transmission band. Transmission outcomes trigger

the functions carried out by the controller. The scalar d ∈ R≥0 is a design parameter, which

determines communication channel utilization and control performance. Elucidating the trade-off

between these quantities is one of the motivations of the present work.

When implementing discrete-time control systems, it is generally assumed that the processing

resources available to the controller are such that the desired control law can be evaluated within

a fixed time-delay, say δ ∈ (0, Ts). However, in practical networked and embedded systems, the

processing resources available for control calculations may vary and, at times, be insufficient to

generate a control input within the prescribed time-delay δ [15]. In the sequel we will further

develop our anytime control algorithm of [20], [22] to seek favorable trade-offs between processor

October 30, 2018 DRAFT

5

and communication availability, and control performance. We will assume that the plant model (1)

is globally stabilizable via state feedback.

Assumption 1 (Stabilizability): There exist V : Rn → R≥0, ϕ1, ϕ2 ∈ K∞, κ : Rn → U, and a

constant ρ ∈ [0, 1), such that

ϕ1(|x|) ≤ V (x) ≤ ϕ2(|x|), ∀x ∈ Rn,

V (f(x, κ(x))) ≤ ρV (x), ∀x /∈ Bd.
(3)

To encompass processing constraints, we will assume that the controller needs processor time

to carry out mathematical computations, such as evaluating κ. However, input-output operations

and simple operations at a bit level, e.g., writing data into buffers, shifting buffer contents and

setting values to zero, do not require processor time.

Before proceeding we note that a direct implementation of κ used in Assumption 1, when

processing resources are time varying, sensor transmissions are event-triggered, and the sensor

transmissions are affected by dropouts, results in the baseline event-based algorithm

u(k) =




κ(x(k)) if β(k) = 1 and processor is available,

0p otherwise,
(4)

where the symbol u(k) with k ∈ N0 denotes the plant input which is applied during the interval

[kTs + δ, (k+ 1)Ts + δ). Whilst the baseline algorithm is intuitive, our previous works [20], [22]

suggest that it will be outperformed by more elaborate control formulations.

III. EVENT-DRIVEN ANYTIME CONTROL ALGORITHM

The anytime algorithm is based on the following idea: control calculations are triggered

whenever a new measurement is successfully received. However, the precise number of control

inputs calculated depends on the processing resources available. At time intervals when the

controller is provided with more processing resources than are needed to evaluate the current

control input, the algorithm calculates a sequence of tentative future plant inputs. The sequence

is stored in a local buffer and may be used when, at some future time steps, the processor

availability precludes any control calculations even though new state information is received.

In our recent work [20], [22], we analyzed this algorithm for the simpler case where the

controller has direct access to plant state x(k) at all instants k ∈ N0. In the present work we

alleviate this assumption by considering that sensor transmissions are event-triggered and through

October 30, 2018 DRAFT

6 6

OUTPUT 0p

SET b(k) Sb(k � 1), j 1, � x(k)

WHILE processor is available AND j  ⇤

END

OUTPUT b1(k)

IF j = 1 THEN SET b(k) 0⇤p END

CASE �(k) = 1

OUTPUT b1(k)

b(k) Sb(k � 1)

�(k) = 2 SET � f(�, bj(k)), j j + 1 �(k) = 0

EVALUATE bj(k) (�) CASECASE

b(k) 0⇤p

Fig. 2. Operating modes of anytime Algorithm A1 during the time interval [kTs, (k + 1)Ts). A detailed description can be

found in Fig. 3 of [23].

provided by previously calculated buffered values (if available). The instances �(k) = 2 refer to

situations where the plant state is at the desired region Bd, and x(k) is not sent to the controller.

In this scenario, the plant input is set to zero, the buffer is emptied, and the controller is switched

off until the system state moves out of the desired region Bd and a new state measurement is

received. Fig. 2 outlines the proposed algorithm. In this figure,

S ,

2
666664

0p Ip 0p . . 0p

...

0p 0p Ip

0p 0p

3
777775
2 R⇤p⇥⇤p, b(k) =

2
666664

b1(k)

b2(k)
...

b⇤(k)

3
777775
,

where {b}N0 denote the buffer states for a given buffer size ⇤ 2 N and each bj(k) 2 Rp,

j 2 {1, . . . ,⇤}.

For future use, we will denote by N(k) 2 {0, 1, . . . ,⇤} the total number of iterations of the

while-loop which are carried out during the interval t 2 [kTs, (k + 1)Ts). Thus, as described

above, if N(k) � 1, then the entire sequence of tentative controls is {b1(k), b2(k), . . . , bN(k)(k)}
and the plant input is set to b1(k). If N(k) = 0, then the plant input depends on the variable

�(k). If �(k) 2 {0, 1} (i.e., x(k) does not lie inside the desired region), then u(k) is taken as the

first p elements of the shifted state b(k) = Sb(k� 1). If, on the other hand, �(k) = 2 indicating

that x(k) 2 Bd, then the buffer is emptied and the plant input is set to zero, see Fig. 2.

Algorithm A1 amounts to a dynamic state feedback policy with internal state variable b(k)

which provides the plant input u(k) and suggested plant inputs at future time steps. If new

state information is received and more processor time is available, a longer trajectory of control

inputs is calculated and stored in the buffer. If the buffer runs out of tentative plant inputs,

December 9, 2013 DRAFT

Fig. 2. Operating modes of anytime Algorithm A1 during the time interval [kTs, (k + 1)Ts).

a communication channel which introduces random dropouts. In addition, to save energy and

processing resources, the controller is event-triggered. More precisely, the actions taken by the

controller are guided by the value of β(k) and the processor availability.

If β(k) = 1, then the controller uses x(k) to calculate tentative control values, provided the

processor is available for control. This sequence will be stored in a buffer. If the processor is

not available or β(k) = 0, then the controller does not do any calculations and the plant input is

provided by previously calculated buffered values (if available). The instances β(k) = 2 refer to

situations where the plant state is at the desired region Bd, and x(k) is not sent to the controller.

In this scenario, the plant input is set to zero, the buffer is emptied, and the controller is switched

off until the system state moves out of the desired region Bd and a new state measurement is

received. Fig. 2 outlines the proposed algorithm. In this figure,

S ,




0p Ip 0p . . 0p
...

0p 0p Ip

0p 0p



∈ RΛp×Λp, b(k) =




b1(k)

b2(k)
...

bΛ(k)



,

where {b}N0 denote the buffer states for a given buffer size Λ ∈ N and each bj(k) ∈ Rp,

j ∈ {1, . . . ,Λ}.
For future use, we will denote by N(k) ∈ {0, 1, . . . ,Λ} the total number of iterations of the

October 30, 2018 DRAFT

7

Step 1: At time t = 0,
SET b(−1)← 0Λp, k ← 0

Step 2: IF t ≥ kTs,
THEN

SWITCH β(k)

CASE 2,
SET b(k)← 0Λp, j ← 1;
GOTO Step 4;

CASE 0,
SET j ← 1, b(k)← Sb(k − 1);
GOTO Step 4;

OTHERWISE

INPUT x(k);
SET χ← x(k), j ← 1, b(k)← Sb(k − 1);

END

END

Step 3: WHILE “sufficient processor time is available” and j ≤ Λ and time t < (k + 1)Ts,
EVALUATE uj(k) = κ(χ);
IF j = 1, THEN

OUTPUT u1(k);
SET b(k)← 0Λp;

END

SET bj(k)← uj(k);
IF “sufficient processor time is not available” or t ≥ (k + 1)Ts, THEN

GOTO Step 5;
END

SET χ← f(χ, uj(k)), j ← j + 1;
END

Step 4: IF j = 1, THEN

OUTPUT b1(k);
END

Step 5: SET k ← k + 1 and GOTO Step 2;

Fig. 3. Algorithm A1

October 30, 2018 DRAFT

8

while-loop which are carried out during the interval t ∈ [kTs, (k + 1)Ts). Thus, as described

above, if N(k) ≥ 1, then the entire sequence of tentative controls is {b1(k), b2(k), . . . , bN(k)(k)}
and the plant input is set to b1(k). If N(k) = 0, then the plant input depends on the variable

β(k). If β(k) ∈ {0, 1} (i.e., x(k) does not lie inside the desired region), then u(k) is taken as the

first p elements of the shifted state b(k) = Sb(k− 1). If, on the other hand, β(k) = 2 indicating

that x(k) ∈ Bd, then the buffer is emptied and the plant input is set to zero, see Fig. 2.

Algorithm A1 amounts to a dynamic state feedback policy with internal state variable b(k)

which provides the plant input u(k) and suggested plant inputs at future time steps. If new

state information is received and more processor time is available, a longer trajectory of control

inputs is calculated and stored in the buffer. If the buffer runs out of tentative plant inputs,

then actuator values are set to zero. The algorithm does not require prior knowledge of future

processor availability and hence can be employed in shared systems where the controller task

can be preempted by other computational tasks at the processor.

IV. STOCHASTIC STABILITY - PRELIMINARIES

For our subsequent analysis, it is convenient to investigate how many values in the state b(k)

stem from evaluating κ, ` ∈ N0. As in [20], [22], we will refer to this value as the effective

buffer length (at time k), and denote it as λ(k) ∈ {0, 1, . . . ,Λ}, k ∈ N0 with λ(−1) = 0. It is

easy to see that for all k ∈ N0 we have

λ(k) =





N(k) if N(k) ≥ 1,

max{0, λ(k − 1)− 1}, if N(k) = 0 and β(k) ∈ {0, 1},

0 if β(k) = 2.

To investigate stability, we make the following assumptions:

Assumption 2 (Processor availability): The sampling time of the plant (1) is such that pro-

cessor availability for control at different time-instants is independent and identically distributed

(i.i.d.). Thus, the process {N}N0 has conditional probability distribution pj , Pr{N(k) =

j | β(k) = 1}, where pj ∈ [0, 1) are given and with j ∈ {0, 1, 2, . . . ,Λ}. For other realizations

of β(k), no plant inputs are calculated, thus, Pr{N(k) = 0 | β(k) ∈ {0, 2}} = 1. �
Assumption 3 (Erasure channel): The binary transmission success process {γ}N0 has condi-

tional probabilities Pr{γ(k) = 1 | |x(k)| ≥ d} = q, Pr{γ(k) = 0 | |x(k)| < d} = 1. �

October 30, 2018 DRAFT

9

Assumption 4 (Open-loop bound): There exists α ≥ ρ such that

V (f(χ,0p)) ≤ αV (χ), ∀χ ∈ Rn. (5)

where ρ, V and ϕ2 are as in (3). Further, E
{
ϕ2(|x(0)|)

}
<∞. �

It is worth noting that, by allowing for α > 1, Assumption 4 does not require that the open-loop

system x(k+ 1) = f(x(k),0p) be asymptotically stable. Further, note that Assumptions 1 and 4

are stated in terms of the same function V , see also [20, Section IV-A].
To go beyond stability and investigate stationarity, it is convenient to impose the following

assumptions on the control policy κ
Assumption 5 (Continuity of κ): The control law κ in (3) is such that κ(x) = 0n for all x ∈ Bd

and κ is continuous on Rn. �

V. STABILITY WITH THE BASELINE ALGORITHM

If the baseline algorithm is used and Assumption 2 holds, then

x(k + 1) =




f(x(k), κ(x(k))), if N(k) ≥ 1,

f(x(k),0p), if N(k) = 0.
(6)

The following result establishes conditions on system parameters which ensure that the closed

loop (6) is stable in a stochastic sense.
Theorem 1 (Stability with baseline algorithm): Consider (6) and define D , ϕ2(d). Suppose

that Assumptions 1 to 4 hold and that

Γ , (1− q)α + q
(
p0α + (1− p0)ρ

)
< 1, (7)

where ρ ∈ [0, 1) is the closed-loop bound in (3), α is the bound in (5), q is the transmission

success probability, and p0 is the probability of the processor not being available for control.

Then for all x ∈ N0,

E
{
ϕ1(|x(k)|)

}
≤ ΓkE

{
ϕ2(x(0))

}
+
q(1− p0)(α− ρ)D

1− Γ
<∞.

Proof: Note that, for i.i.d. processor and channel availabilities {x}N0 in (6) is Markovian.

This can be verified by noting that conditioning on x(k) makes the event outcome β(k) depend

on γ(k) only. To analyze stochastic stability using Lyapunov functions (see, e.g., [23]), we use

the law of total expectation to write

E
{
V (x(1))

∣∣x(0) = χ
}

=
2∑

j=0

E
{
V (x(1))

∣∣x(0) = χ, β(0) = j
}
Pr{β(0) = j |x(0) = χ}.

October 30, 2018 DRAFT

10

If we now use (2), (3), (5) and the definition of Bd, then:

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 0
}
≤ αV (χ)

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 2
}
≤ αV (χ) < αϕ2(d),

(8)

For β(0) = 1, x(0) is received. Using (5) and (6), we have

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 1
}

=
∑

j∈N0

E
{
V (x(1))

∣∣x(0) = χ, β(0) = 1, N(0) = j
}

×Pr{N(0) = j |x(0) = χ, β(0) = 1} ≤
(
p0α + (1− p0)ρ

)
V (χ). (9)

Now, if x(0) ∈ Bd, then β(0) = 2, thus (V) and (8) provide

E
{
V (x(1))

∣∣x(0) = χ ∈ Bd
}
≤ αV (χ). (10)

Further, since α− Γ = q(1− p0)(α− ρ) > 0 (see (7)) and V (χ) < D for all χ ∈ Bd, we have

(α− Γ)V (χ) < (α− Γ)D ⇒ αV (χ) < ΓV (χ) + (α− Γ)D, ∀χ ∈ Bd. (11)

On the other hand, if x(0) 6∈ Bd, then (in view of Assumption 3), Pr{β(0) = 0 |x(0) 6∈ Bd} =

1− q, and Pr{β(0) = 1 |x(0) 6∈ Bd} = q. Thereby, substitution of (8) and (9) into (V) provides:

E
{
V (x(1))

∣∣x(0) = χ 6∈ Bd
}
≤ ΓV (χ). (12)

Expressions (10)–(12) lead to:

E
{
V (x(1))

∣∣x(0) = χ
}
< ΓV (χ) + (α− Γ)D = ΓV (χ) + q(1− p0)(α− ρ)D.

Consequently, Proposition 3.2 of [23], and (3) give

E
{
ϕ1(|x(k)|) |x(0) = χ

}
≤ ΓkV (χ) +

q(1− p0)(α− ρ)D

1− Γ
,

for all k ∈ N0. Using the law of total expectation and (3) yields the first inequality. The second

follows from Assumption 4.

It is worth noting that whilst the condition (7) is independent of the size of Bd, the ultimate

bound is increasing in d. We can also consider two special cases. If d = 0 and q = 1, so that the

sensor transmits at every instant k ∈ N0 and the communication channel does not introduce any

dropouts, (7) reduces to p0α+(1−p0)ρ < 1, thus recovering our earlier result [20, Thm.1]. If the

processor is available at every time-step (i.e., p0 = 0), then the situation amounts to event-based

October 30, 2018 DRAFT

11

control for non-linear systems using an erasure channel. In this case, the sufficient condition (7)

becomes (1− q)α + ρq < 1.

Theorem 2 (Stationarity with baseline algorithm): Consider (6), suppose that Assumptions 1

to 5 hold and that (7) holds. Then, there exists an invariant probability measure for {x}N0 .

Furthermore, under every such invariant probability measure π,

Eπ{ϕ1(|x|)} ≤ q(1− p0)(α− ρ)ϕ2(d)/(1− Γ).

Proof: Let P(Rn) denote the set of probability measures on Rn and define for every Borel

B, vT (B) = (1/T)E{∑T−1
k=0 1{x(k)∈B}}, such that vT ∈ P(Rn) forms an expected empirical

occupation measure sequence. We then have,

〈vT , ϕ1〉 ,
∫
vT (dx)ϕ1(|x|) =

1

T
E

{ T−1∑

k=0

ϕ1(|x(k)|)
}
.

Let t0 ∈ N. By Theorem 1, we have that E{ϕ1(|x(k)|)} and the subsequence {〈vT , ϕ1〉, T ≥ t0}
are uniformly bounded by some Mt0 < ∞. Define Nr := {x : ϕ1(|x|) ≤ r}. Since ϕ1 is

monotone and unbounded, by an application of Markov’s inequality, we have

Mt0 ≥
∫
vT (dx)ϕ1(|x|) ≥

∫

X\Nr

vT (dx)ϕ1(|x|) ≥ rvT (Rn\Nr).

Thus, vT (Nr) ≥ 1 −Mt0/r, and hence for every ε = Mt0/r > 0, there exists a compact set

NMt0/ε
= {x : ϕ1(|x|) ≤ Mt0/ε} such that vt(NMt0/ε

) ≥ 1 − ε. The sequence {vt, t ≥ t0} is,

hence, a tight sequence with a converging subsequence vtk converging to some v∗ ∈ P(Rn).

By (6), if x(t) ∈ Bd the control action is zero and outside Bd, either zero control is applied or

κ(x(t)) is applied. Since κ is continuous and is zero inside Bd (see Assumption 5), the Markov

chain is weak Feller.1 Consequently, it can be shown that every limit of such a subsequence is

invariant (see, e.g., [24, Ch. 12]) and satisfies 〈vT , ϕ1〉 ≤Mt0 . By Theorem 1, by increasing t0,

Mt0 can be taken to be arbitrarily close to q(1− p0)(α− ρ)ϕ2(d)/(1− Γ).

VI. STABILITY WITH THE ANYTIME ALGORITHM

The analysis of the event-based anytime algorithm is more involved than that of the baseline

system (6). First, due to buffering, {x}N0 will in general not be a Markov process. Further, the

1A Markov chain {x(k)}k∈N0 is (weak) Feller if E{h(x(k + 1))|x(k) = χ} is continuous in χ, for every continuous and

bounded function h.

October 30, 2018 DRAFT

12

distribution of {β}N0 is difficult to derive for general plant models. This makes the approaches

of [20], [22] insufficient to treat the present case.

For ease of exposition, we assume that the initial effective buffer length, λ(0) = 0, and denote

the time steps where λ(k) = 0 via K = {ki}i∈N0 , where k0 = 0 and ki+1 = inf
{
k ∈ N : k >

ki, λ(k) = 0
}

, i ∈ N0. We also describe the amount of time steps between consecutive elements

of K via the process {∆i}i∈N0 , where ∆i , ki+1 − ki. It is easy to see that

β(ki + `) ∈ {0, 1}, ∀` ∈ {1, 2, . . . ,∆i − 1}, ∀i ∈ N0 (13)

whereas β(ki) ∈ {0, 1, 2}, ∀i ∈ N0 and x(k∗) ∈ Bd ⇒ k∗ ∈ K. In contrast to the cases examined

in [20], [22], due to the event-triggering mechanism, {∆i}i∈N0 is, in general, not i.i.d. In fact,

the distribution of ∆i depends on x(ki) and is difficult to characterize. To study stability of the

event-based anytime algorithm, we will develop a state-dependent random-time drift condition.

Our first result, states that whilst {x}N0 is in general not Markovian, the state sequence at the

time steps ki ∈ K, is a Markov process.

Lemma 1 (Markov property of the sampled process): Consider (1) controlled via Algorithm

A1 and suppose that Assumptions 2 and 3 hold. Then {x}K is Markovian. �
Proof: The definition of K gives that ∀ki ∈ K we have u(ki) = 0p, b(ki) = 0Λp, λ(ki) =

N(ki) = 0. Thus, the plant state at time ki+1 depends only on x(ki) and the sample paths

{N(ki + 1), N(ki + 2), . . . , N(ki+1− 1)} and {γ(ki + 1), γ(ki + 2), . . . , γ(ki+1− 1)}. The result

follows since {N}N0 and {γ}N0 are i.i.d.

The following result provides a sufficient condition for stochastic stability of the closed loop

when the event-based anytime control algorithm of Section III is used over an erasure channel.

Theorem 3 (Stability with Algorithm A1): Suppose that Assumptions 1 to 4 hold and define

Ω , α
∑

j∈N
ρj−1Pr{∆i = j | β(ki+1) 6= 2}. (14)

If Algorithm A1 is used and Ω < 1, then

max
k∈{ki,ki+1,...,ki+1−1}

E
{
ϕ1(|x(k)|)

}
≤ 1 + α− ρ

1− ρ ΩiE
{
ϕ2(x(0))

}
+
ϕ2(d)

1− Ω
<∞, ∀i ∈ N. (15)

Proof: We first note that for all ki ∈ K and ` ∈ {1, . . . ,∆i−1}, u(ki) = 0p and u(ki+`) =

κ(x(ki + `)). Therefore, the function V (x(ki+1)) can be bounded by using (3) and (5), leading

to

E{V (x(ki+1)) |x(ki) = χ,∆i = j} ≤ αρj−1V (χ),∀χ ∈ Rn. (16)

October 30, 2018 DRAFT

13

To account for event-based transmission, we consider instances where the buffer is emptied

triggered by β(k) = 2. At these instances, (16) holds; further, V (ki+1) < D , ϕ2(d). Thus,

E{V (x(ki+1)) |x(ki) = χ,∆i = j, β(ki+1) = 2} < D, ∀j ∈ N. (17)

By using the law of total expectation twice, we thus obtain,

E{V (x(ki+1)) |x(ki) = χ} = E{V (x(ki+1)) |x(ki) = χ, β(ki+1) = 2}Pr{β(ki+1) = 2 |x(ki) = χ}

+ E{V (x(ki+1)) |x(ki) = χ, β(ki+1) 6= 2}Pr{β(ki+1) 6= 2 |x(ki) = χ}

≤ D + E{V (x(ki+1)) |x(ki) = χ, β(ki+1) 6= 2} (18)

= D +
∑

j∈N
E{V (x(ki+1)) |x(ki) = χ, β(ki+1) 6= 2,∆i = j}Pr{∆i = j |x(ki) = χ, β(ki+1) 6= 2}

≤ D +
∑

j∈N
αρj−1V (χ)Pr{∆i = j |x(ki) = χ, β(ki+1) 6= 2} = D + ΩV (χ),∀χ ∈ Rn,

with Ω as in (14) and where, to derive the last equality, we have used Assumption 2. Since {x}K
is Markovian, [23, Prop. 3.2] yields that Ω < 1 guarantees

E
{
V (x(ki)) |x(k0) = χ

}
≤ ΩiV (χ) +

D

1− Ω
, ∀i ∈ N0.

Now, since (16) holds, by a method similar to the one used in the proof of [22, Thm.1], we can

establish the (admittedly loose) bound:

E

{
ki+1−1∑

k=ki

V (x(k))

∣∣∣∣x(k0) = χ

}
≤ 1 + α− ρ

1− ρ ΩiV (χ) +
D

1− Ω
, ∀i ∈ N. (19)

Using the law total expectation, (3) and Assumption 4 gives (15).

The above result establishes a sufficient condition for the system to be stochastically stable.

The quantity (14) is stated in terms of a conditional distribution of ∆i, which can be characterized

as follows:

Lemma 2 (Conditional distribution of ∆i): Suppose that Assumptions 2 and 3 hold and that

Algorithm A1 is used. We then have

Pr{∆i = j | β(ki+1) 6= 2}
1− q + p0q

=





1 if j = 1,

θTGj−2e1 if j ≥ 2,
∀(i, j) ∈ N0 × N, (20)

where θT = q
[
p1 . . . pΛ

]
and eT1 =

[
1 0 . . . 0

]
. In (20), the entries of the matrix

G = [g`j], `, j ∈ {1, 2, . . . ,Λ} are g`j = pjq, ∀(`, j) ∈ {3, 4, . . . ,Λ} × {1, 2, . . . , `− 2} ∪
{1, 2, . . . ,Λ} × {`, `+ 1, . . . ,Λ}; and g`(`−1) = 1− q + (p0 + p`−1)q, ∀` ∈ {2, 3, . . . ,Λ}. �

October 30, 2018 DRAFT

14

Proof: We first note that our focus is on the time sequences of the form Ii , {ki +

1, . . . , ki+1} where ki ∈ K, i ∈ N0 and where β(k) 6= 2, ∀k ∈ Ii. Given Assumptions 2

and 3 and the buffering mechanism described in Section III, it follows that {λ(k)} during every

interval k ∈ Ii, i ∈ N0, is a homogeneous Markov Chain. The process ∆i then amounts to the

first return times to 0 of this finite Markov Chain. To characterize the latter, we need to evaluate

the transition probabilities g`j , Pr{λ(k + 1) = j |λ(k) = `, k ∈ Ii, k + 1 ∈ Ii}. Without loss

of generality, we will set k = 0. We begin by considering transitions from ` ∈ {0, 1} to 0:

g`0 = Pr{N(1) = 0 |β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}

+ Pr{N(1) = 0 |β(1) = 1}Pr{β(1) = 1 | β(1) 6= 2} = (1− q) + p0q, ∀` ∈ {0, 1}.

For ` ∈ {2, 3, . . . ,Λ}, we have g`0 = 0. The buffer length diminishes by one for the scenarios

considered below:

g`(`−1) = Pr{N(1) = 0 |β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}+ Pr{N(1) = 0 |β(1) = 1}

×Pr{β(1) = 1 | β(1) 6= 2}+ Pr{N(1) = `− 1 |β(1) = 1}Pr{β(1) = 1 | β(1) 6= 2}

= (1− q) + p0q + p`−1q, ∀` ∈ {2, 3, . . . ,Λ}.

The other transitions are related to when λ(k + 1) = N(k + 1), for (`, j) ∈
{
{3, 4, . . . ,Λ} ×

{1, 2, . . . , `− 2}
}
∪
{
{1, 2, . . . ,Λ} × {`, `+ 1, . . . ,Λ}

}
∪
{

0× {1, 2, . . . ,Λ}
}

. Here we have:

g`j = Pr{λ(1) = j |λ(0) = `, β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}

+ Pr{λ(1) = j |λ(0) = `, β(1) = 1}Pr{β(1) = 1 | β(1) 6= 2}

= Pr{N(1) = j |β(1) = 0}Pr{β(1) = 0 | β(1) 6= 2}+ Pr{N(1) = j |β(1) = 1}

×Pr{β(1) = 1 | β(1) 6= 2} = 0(1− q) + pjq = pjq.

The derivation of (20) now follows as in [22, Lemma 2] by setting up a recursion on the first

passage time of state ` ∈ {1, . . . ,Λ} to 0 and then considering the transitions away from 0.

As a consequence of Lemma 2, Ω in (14) can be written as:

Ω = α(1− q + p0q)
(
1 + ρθT (I − ρG)−1e1

)
,

and the stability condition in Theorem 3, Ω < 1, becomes
[
p1 . . . pΛ

]
(IΛ − ρG)−1e1 <

1− α + αq(1− p0)

αρq(1− q(1− p0))
,

which is independent of the size of Bd.

October 30, 2018 DRAFT

15

Sufficient conditions for stationarity can be stated as follows:

Theorem 4 (Stationarity with Algorithm A1): Suppose that Assumptions 1 to 5 hold. If Algo-

rithm A1 is used and Ω < 1, then there exists an invariant probability measure for {x}K as well

as for the aggregated Markov process, {x[k,k−(Λ−1)]}k∈N, where

x[k,k−(Λ−1)] , {x(k), x(k − 1), · · · , x(k − Λ + 1)}.

Furthermore, under every invariant probability measure π, Eπ{V (x)} < ϕ2(d)/(1− Ω). �
Proof: First note that if N(k) ≥ 1, then u(k) is determined by the current state. If the

processor is not available, then either u(k) has been determined by the states which are at most

Λ time stages old, or u(k) = 0p. Since the processor availability is independent of the state, the

stochastic process {x[k,k−Λ+1]} is Markovian. Let z(k) , x[k,k−Λ+1]. From Assumption 5, {z}N0

is also weak Feller.

We first invoke Theorem 2.1 in [25] with K containing the sequence of stopping times. Since

E{V (x(ki+1)) |x(ki) = χ} ≤ V (χ)− (1− Ω)V (χ) +D, ∀χ ∈ Rn, (21)

and the sampled chain is weak Feller, it follows that {x}K admits an invariant probability

measure.

Define Ṽ (z(k)) , V (x(k)). Now, note that by (18), with Ω < 1, E{Ṽ (z(ki+1)) | z(ki) =

χ} ≤ D + ΩṼ (χ), ∀χ. Thus, E{Ṽ (z(ki+1)) | z(ki) = χ} ≤ Ṽ (χ)− (1− Ω)Ṽ (χ) +D, ∀χ, and

since V is monotone increasing and by Assumption 4, there exists a compact set S such that

for 1 − Ω > ζ > 0, E{V (x(ki+1)) |x(ki) = x} ≤ V (x) − ζV (x) + D1x∈S , ∀x ∈ Rn. Since

V (x(t)) is bounded from below outside Bd, and x(k) /∈ Bd for k /∈ K, and that (19) implies that

for some M1 <∞

E

{
ki+1−1∑

k=ki

V (x(k))

∣∣∣∣x(k0) = χ

}
≤M1,

it follows that supxki
E{ki+1−ki |xki} <∞. Finally, by Assumption 4, if xt ∈ S then x[t+Λ−1,t] ∈

S̄ where S̄ is a compact set. Thus, Theorem 2.2 in [25] implies that there exists an invariant

probability distribution, π, for {z}N0 .

Since (21) holds, with PmV (χ) := E{V (x(km))|x(k0) = χ}, following arguments similar to

the proof of Theorem 2.2 of [25], for every realization of x(k0), it follows that

(1− Ω) lim sup
T→∞

1

T
E

{
T−1∑

i=0

V (x(ki))

}
≤ lim sup

T→∞

1

T

(
V (x(k0)) +

T−1∑

i=0

D

)
.

October 30, 2018 DRAFT

16

2

The channel utilization result illustrates that the channel utilization based on the anytime control

algorithm is less than the one based on the baseline algorithm.

!

"

1 1.5 2 2.50

0.2

0.4

0.6

0.8

1
Baseline Algorithm
Anytime Algorithm

Fig. 1. Boundaries of stability regions for the example considered.

0 2 4 6 8 10
0

10

20

30

40

d

J

Anytime Algorithm

Baseline Algorithm

Fig. 2. Empirical cost when controlling with the anytime algorithm and with the baseline algorithm as a function of the

parameter d.

February 13, 2013 DRAFT

Fig. 4. Boundaries of stability: Ω = 1 (solid line) and Γ = 1 (dashed).

20 40 60 80 100

0.2

0.25

0.3

0.35

Channel Utilization (%)

J

Anytime Algorithm

Baseline Algorithm

d = 0.1

d = 4

d = 3

d = 1
d = 2

Fig. 5. Empirical cost versus channel utilization for different values of d.

Thus, lim supT→∞(1/T)
∑T−1

m=0 P
mV (x(km)) ≤ D/(1−Ω). Applying Fatou’s lemma, we obtain

lim sup
T→∞

Eπ

{
1

T

T−1∑

i=0

min(N, V (x(ki)))

}
≤ Eπ

{
lim sup
T→∞

1

T

T−1∑

i=0

min(N, V (x(ki)))

}
≤ D

1− Ω
.

Then, by the monotone convergence theorem, by letting N →∞,

lim sup
T→∞

Eπ

{
1

T

T−1∑

i=0

V (x(ki))

}
≤ D

1− Ω
.

Thus, there exists an invariant probability measure both for the original chain and for the

sampled chain; under every such invariant probability measure π, Eπ{V (x)} < D/(1− Ω).

VII. NUMERICAL EXAMPLES

We first compare the stability conditions derived for a specific case. Suppose that the buffer

length is given by Λ = 4, whereas pi = 0.2, i ∈ {0, . . . , 4}, and q = 0.75. The stability region

boundaries, see (7) and (14), in terms of α and ρ are depicted in Fig. 4. It can be seen that

October 30, 2018 DRAFT

17

the guaranteed stable region (under the curve) provided by our results is larger when using

Algorithm A1 than when using (4).

Next, we consider an open-loop unstable constrained plant model of the form (1), but with

additive noise: 
x1(k + 1)

x2(k + 1)


 =


 x2(k) + u1(k)

−sat(x1(k) + x2(k)) + u2(k)


+


w1(k)

w2(k)




where

sat(µ) =





−10, if µ < −10,

µ if µ ∈ [−10, 10],

10, if µ > 10,

see [20, Example 2]. The initial condition x(0) and the disturbance w(k) are zero-mean i.i.d.

Gaussian with unit covariance. The control policy κ is taken as κ(x) = [−x2 0.505sat(x1 +

x2)]T , x ∈ R2. If we choose V (x) = 2|x|, then direct calculations give that

V
(
f(x, κ(x))

)
= 0.99|sat(x1 + x2)| ≤ 0.99|x1 + x2|

≤ 1.98 max{|x1|, |x2|} −max{|x1|, |x2|}+ |x| ≤ 1.98|x|.

Thus, Assumption 1 holds with ρ = 0.99, and ϕ1(s) = ϕ2(s) = 2s. Processor availability and

Λ are taken as above, but we now set q = 0.4. Performance is evaluated through the empirical

cost J , 1
50

(∑49
k=0 |x(k)|2

)
and the Channel Utilization (%), calculated as

Total number of time steps at which β(k) 6= 2

Total number of time steps
(%).

By averaging over 104 realizations, Fig. 5 is obtained. As can be seen in that figure, the proposed

event-based anytime control algorithm gives better trade-offs between empirical cost and channel

utilization.

VIII. CONCLUSIONS

This work considered the control of a non-linear process with both communication and process-

ing constraints. A sensor node transmits data to the controller across a channel that stochastically

erases data. The control algorithm is executed over a processor that can provide only limited,

time-varying and a priori unknown processing resources. To reduce the communication frequency,

the sensor utilizes an event-triggered scheme. Similarly, to better utilize the processor availability,

October 30, 2018 DRAFT

18

the control input is calculated by using an anytime control algorithm. For the resulting system,

we present stochastic stability and stationarity results. Numerical studies illustrate that significant

performance gains can be obtained by using the proposed algorithm. Future work includes the

extension of the analysis to noisy systems, and establishing further stability properties such as

ergodicity and rates of convergence to equilibrium.

REFERENCES

[1] V. Gupta, A. F. Dana, J. P. Hespanha, R. M. Murray, and B. Hassibi, “Data transmission over networks for estimation and

control,” IEEE Trans. Automat. Contr., vol. 54, pp. 1807–1819, Aug. 2009.

[2] O. C. Imer, S. Yüksel, and T. Ba̧sar, “Optimal control of LTI systems over unreliable communication links,” Automatica,

vol. 42, pp. 1429–1439, Sept. 2006.

[3] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of control and estimation over lossy

networks,” Proc. IEEE, vol. 95, pp. 163–187, Jan. 2007.

[4] D. E. Quevedo and D. Nešić, “Robust stability of packetized predictive control of nonlinear systems with disturbances and

Markovian packet losses,” Automatica, vol. 48, pp. 1803–1811, Aug. 2012.

[5] L. Li, M. Lemmon, and X. Wang, “Event-triggered state estimation in vector linear processes,” in Proc. Amer. Contr. Conf.,

pp. 2138–2143, 2010.

[6] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE Trans. Automat. Contr., vol. 52,

pp. 1680–1685, Sept. 2007.

[7] Y. Xu and J. Hespanha, “Optimal communication logics in networked control systems,” in Proc. IEEE Conf. Decis. Contr.,

pp. 3527–3532, 2004.

[8] C. Ramesh, H. Sandberg, and K. H. Johansson, “Steady state performance analysis of multiple state-based schedulers with

CSMA,” in Proc. IEEE Conf. Decis. Contr., 2011.

[9] M. Xia, V. Gupta, and P. J. Antsaklis, “Networked state estimation over a shared communication medium,” in

Proc. Amer. Contr. Conf., 2013.

[10] M. Rabi and K. H. Johansson, “Scheduling packets for event-triggered control,” in Proc. Europ. Contr. Conf., pp. 3779–

3784, 2009.

[11] R. Blind and F. Allgöwer, “Analysis of networked event-based control with a shared communication medium: Part 1 -

pure aloha,” in Proc. IFAC World Congr., 2011.

[12] A. Cervin and T. Henningsson, “Scheduling of event-triggered controllers on a shared network,” in Proc. IEEE

Conf. Decis. Contr., pp. 3601—3606, 2008.

[13] L. K. McGovern and E. Feron, “Closed-loop stability of systems driven by real-time dynamic optimization algorithms,”

in Proc. IEEE Conf. Decis. Contr., vol. 4, (Phoenix, AZ), pp. 3690–3696, Dec. 1999.

[14] D. Henriksson and J. Åkesson, “Flexible implementation of model predictive control using sub-optimal solutions,” Tech.

Rep. Internal Report No. TFRT-7610-SE, Dep. of Automatic Control, Lund University, 2004.

[15] P. Andrianiaina, A. Seuret, and D. Simon, “Robust system control method with short execution deadlines.” European Patent

Application EP 2 568 346 A1, Airbus Operations Toulouse, March 2013.

[16] A. Cervin, M. Velasco, P. Martı́, and A. Camacho, “Optimal online sampling period assignment: Theory and experiments,”

IEEE Trans. Contr. Syst. Technol., vol. 18, June 2010.

[17] R. Bhattacharya and G. J. Balas, “Anytime control algorithms: Model reduction approach,” AIAA Journal of Guidance,

Control and Dynamics, vol. 27, pp. 767–776, Sept.–Oct. 2004.

[18] L. Greco, D. Fontanelli, and A. Bicchi, “Almost sure stability of anytime controllers via stochastic scheduling,” in

Proc. IEEE Conf. Decis. Contr., (New Orleans, LA), pp. 5640–5645, Dec. 2007.

October 30, 2018 DRAFT

19

[19] V. Gupta and F. Luo, “On a control algorithm for time-varying processor availability,” IEEE Trans. Automat. Contr., vol. 58,

Mar. 2013.

[20] D. E. Quevedo and V. Gupta, “Sequence-based anytime control,” IEEE Trans. Automat. Contr., vol. 58, pp. 377–390, Feb.

2013.

[21] C. Ramesh, H. Sandberg, and K. H. Johansson, “On the dual effect in state-based scheduling of networked control systems,”

in Proc. Amer. Contr. Conf., pp. 2216–2221, 2011.

[22] D. E. Quevedo and V. Gupta, “Stability of sequence-based anytime control with Markovian processor availability,” in Proc.

Austr. Contr. Conf., 2011.

[23] S. P. Meyn, “Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function,” SIAM Journal

on Control and Optimization, vol. 27, pp. 1409–1439, Nov. 1989.

[24] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. Cambridge University Press, 2009.

[25] S. Yüksel and S. P. Meyn, “Random-time, state-dependent stochastic drift for Markov chains and application to stochastic

stabilization over erasure channels,” IEEE Trans. Automat. Contr., vol. 58, no. 1, pp. 47–59, 2013.

October 30, 2018 DRAFT

