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Modular design of jointly optimal controllers

and forwarding policies for wireless control

Burak Demirel∗†, Zhenhua Zou∗, Pablo Soldati‡ and Mikael Johansson∗

Abstract

We consider the joint design of packet forwarding policies and controllers for wireless control

loops where sensor measurements are sent to the controller over an unreliable and energy-constrained

multi-hop wireless network. For fixed sampling rate of the sensor, the co-design problem separates into

two well-defined and independent subproblems: transmission scheduling for maximizing the deadline-

constrained reliability and optimal control under packet loss. We develop optimal and implementable

solutions for these subproblems and show that the optimally co-designed system can be efficiently found.

Numerical examples highlight the many trade-offs involved and demonstrate the power of our approach.

Index Terms

Optimal control; Wireless sensor networks; Markov decision process

I. INTRODUCTION

Cyber-physical systems (CPS) represent a new class of networked embedded systems where

requirements on the communication infrastructure are intimately coupled with computational and

control requirements. Examples of CPS applications include building management and automa-

tion, Internet of things, intelligent transportation systems, and smart grids [4], [5]. The industrial

practice for designing such systems has been to disregard the computation and communication

aspects when designing the controller. This works well if the performance requirements are low,

or if there is a significant separation between the time scale of computation and communication,
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on the one hand, and control, on the other. It is then often possible to make the communication

and computation appear reliable and predictable at the time scale of the control loop. When

communication, computation and control do interact, the burden of ensuring reliable system-

level performance is typically put on the control system. Using high-level abstractions of the

deficiencies introduced by unreliable communication and resource-constrained hardware, control

algorithms are synthesized to be robust to these uncertainties. However, robustification of control

laws can come at a high performance price, and it is sometimes simply not possible to compensate

for networking shortcomings in control software.

We argue that efficient CPS systems must be based on the joint design of communication,

computation, and control. At the same time, it is essential that such a joint design is modular, with

well-defined interfaces between control algorithms and networking and computation primitives.

Modularity allows for specialized development and innovation within each component without

affecting the logical correctness of the overall system, and has been a key to massive prolifer-

ation in computing and communications. To this end, this paper explores modular co-design of

networked control systems with certain optimality properties of the overall system.

Networked control has been an active area of research for more than a decade, and the literature

is by now rather extensive, see e.g., [6], [7] and the references therein. The research has mainly

focused on control design methods that rely on high-level abstractions of the communication

network in terms of its latency or loss. State-of-the-art control design techniques are extremely

powerful when the control system is able to cope with the network deficiencies. However, when

the resulting closed-loop performance is unsatisfactory they typically do not provide any specifics

on how the communication system should be modified to yield better performance. For instance,

it is not immediately clear if a shorter sampling interval is better if it also results in a higher packet

loss rate in the network. On the communication side, current networking protocols tend to focus

on maximizing the long-term throughput or to minimize the energy cost of communication,

and do not provide any direct ways to influence control-relevant network performances such

as individual packet latency. In fact, little is known about which combinations of end-to-end

loss and per-packet deadline guarantees are achievable for a single packet transmitted over an

unreliable multi-hop network, and only recently have researchers started to address real-time

communication over unreliable networks.
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A. Related Work

Insight into the co-design problem can be obtained from related work in digital control, real-

time scheduling, and networked control. We briefly review some of the work that is most relevant

for the developments in this paper.

In many cases, faster sampling gives better control performance, but it also results in controllers

that are more ill-conditioned and more sensitive to numerical errors that arise in fixed-point

implementations (see e.g., [8]). Faster sampling also consumes more computing resources. It is,

therefore, often argued that one should choose the longest sampling period that gives acceptable

performance. These arguments have led to a number of well-accepted rules-of-thumb for sample

time selection (see e.g., [8], [9]). In a multi-tasking environment, more periodic tasks could run

reliably on the same machine if they run less frequently. The precise number of tasks that can

be run depends on what scheduling policy is used. The celebrated schedulability analysis by Liu

and Layland [10] characterized the maximum utilization for which all tasks can be guaranteed

to meet their deadlines under rate-monotonic and earliest-deadline first scheduling. The natural

co-design framework is then to adjust the sampling times of controllers to optimize the overall

system performance while maintaining schedulability guarantees, see e.g., [11], [12].

Co-design for networked control systems is more complex, since sampling interval, latency

distribution and reliability of end-to-end transmissions all influence the achievable closed-loop

performance. Even when these parameters are fixed, the associated optimal control problems have

been solved rather recently. Nilsson et al. [6] developed linear-quadratic Gaussian optimal control

for discrete-time systems with stochastic (networked-induced) delay. Sinopoli et al. [13] focused

on the impact of packet losses and developed minimum variance estimators and characterized

their performance, while Imer et al. [14] and Schenato et al. [15] considered linear-quadratic

control under packet losses and established a separation principle under the assumption of reliable

and instantaneous acknowledgements from the actuator to controller. The combination of random

delays and packet losses was considered by Drew et al. in [16]. Robinson and Kumar [17]

allowed for uncertain communication also between controller and actuator and studied an optimal

controller placement problem (of how to allocate a total uncertainty between the sensor-controller

and the controller-actuator communication).

On the networking side, it is well accepted that industrial communication needs reliable packet
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delivery [18], [19], but research on wireless communications with hard per-packet deadline

constraints is difficult and has appeared only recently. Hou et al. [20] proposed a tractable model

for deadline-constrained traffic where all packets arrive at the beginning of an interval and expire

at the end of the interval. The main restriction of this work and its extensions [21], [22] is that it

only deals with a single-hop (star) network topology, while most practical deployments of low-

power wireless networks rely on multi-hop communications. In particular, recent communication

standards for real-time wireless control, such as WirelessHART [23], ISA-100 [24] and IEEE

802.15.4e [25], are converging towards a design that combines a multi-hop and multi-path

routing with a globally synchronized multi-channel Time Division Multiple Access (TDMA).

The communication solutions provided in the present paper target precisely these technologies. A

number of recent papers [26], [27] have studied reliable real-time communications over multi-

hop networks. Saifullah et al. [26] formulated a scheduling problem for multiple deadline-

constrained periodic data flows in WirelessHART networks and proved that the problem is NP

hard. A heuristic scheduling algorithm without any guarantees on on-time packet delivery was

also proposed. A practical scheduling scheme that routes packets on paths with the minimum

number of consecutive losses was developed in [27].

Several attempts to develop co-design procedures for wireless control systems have appeared in

the literature. Early attempts focused on resource-constrained scenarios where the amount of bits

that can be communicated over a wireless channel during a sampling interval is limited and needs

to be allocated to different control loops [28], or assumed that only a single controller can access

the communication medium at each sampling instant [29]. Liu and Goldsmith [30] included

detailed models of the communication system, but considered simple network topologies and their

designs were neither modular nor optimal. Rabi et al. [31] focused on co-design of contention-

based medium access and networked estimation and studied the interplay between the number of

contenders, the sampling interval, and the latency and loss distributions of the sensor-estimator

communication. For WirelessHART networks, our earlier paper [32] argued for structuring the

communication schedule into network primitives such as unicast and convergecast, and developed

latency-optimal schedules under the assumption that communication links are reliable. In parallel

work to this paper, Saifullah et al. [33] developed a heuristic controller-communication co-

design approach to calculate sampling intervals of multiple controllers to optimize their overall

control performance and ensure schedulability of the real-time communication. The co-design
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Fig. 1: Our co-design framework separates the system design into two well-defined subproblems
that admit optimal solutions: deadline-constrained maximum reliability routing, which charac-
terizes the achievable pairs of end-to-end loss and per-packet deadline guarantees, and linear-
quadratic Gaussian optimal control under latency and loss. The optimal system-level design is
obtained by combing these two primitives.

aspect investigated how the additional latency introduced by heuristic retransmission policies

(which improve end-to-end reliability) impact the closed-loop performance. Some recent work

has studied the energy cost of the wireless network while considering the control performance.

Park et al. [34] tuned protocol parameters to minimize the energy consumption in a wireless

network with star-topology while satisfying a desired control performance. Mo et al. [35] later

proposed a stochastic sensor scheduling algorithm to minimize the expected estimation error

covariance under given energy constraints. In our initial work [1], we developed a framework

to decompose the co-design problem into well-defined control and communication tasks. We

subsequently extended the framework to account also for the energy expenditure in the wireless

network [3].

B. Contributions

This paper proposes a co-design framework that finds the jointly optimal controller and

multi-hop packet forwarding policy for single-loop wireless control systems. The key is to

parameterize the system design in terms of the sample-time of the digital control loop, and to

note that the co-design problem then separates into two well-defined sequential design tasks:

to schedule the multi-hop network to maximize the deadline-constrained reliability, and to

design a controller with optimum performance under (independent) packet losses; see Fig 1.

Drawing on our recent work on deadline-constrained scheduling [36], [37], we demonstrate how

the network scheduling problem can be solved to optimality and how this characterizes the

November 2, 2018 DRAFT



DRAFT. 6

achievable energy-constrained loss-latency region for the multi-hop wireless network. Likewise,

for a given communication latency and loss probability, we develop extensions to the work of

Schenato et al. [15] that compute optimal controllers and estimate the associated closed-loop

performance. Finally, optimality of the co-design is established by a novel monotonicity result

for linear-quadratic control under independent packet loss. More specifically, the paper contains

the following key contributions:

• We present a co-design framework for wireless control systems where sensor data is for-

warded on an unreliable and energy-constrained multi-hop network.

• By restricting our attention to a time-triggered control architecture, we show that the optimal

system performance can be attained by a modular design parameterized by the sampling

time of the digital control loop.

• On the networking side, we derive an optimal multi-hop forwarding policy which maximizes

the probability of on-time packet delivery, subject to an energy constraint.

• On the controller side, we develop the optimal controller under packet losses and characterize

its performance. A novel monotonicity result for linear-quadratic control under independent

packet losses is established and used to prove optimality of the co-design framework.

• In numerical examples, we illustrate the power of our framework and explore the trade-offs

between sample period, on-time packet delivery probability, network energy consumption

and the overall system performance.

C. Outline

The paper is organized as follows. Models and assumptions for the process, sensor, controller,

actuator, and network are introduced in §II. Then, an optimal and modular co-design framework

is proposed in §III. In §IV, the networking and controller subproblems are solved, and optimality

of the co-design framework is established. Numerical examples are used to illustrate the power

of our framework in §V, and conclusions, discussions and directions for future work are stated

in §VI. The appendix details proofs of the main theorems.

D. Notation

In this paper, N denotes all nonnegative integers, Rn denotes the n-dimensional Euclidean

space, Rm×n is the set of all m × n real matrices, and Sn≥0

(
Sn>0

)
denotes the cone of real
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symmetric (positive semi-definite) matrices of dimension n × n. We write the m × n matrix

of all zeros as 0m×n, and the n × n identity matrix as In×n; col{λi} is the column vector

with components λi. Let Be(p), N (µ, σ2) and Uni(a, b) denote the Bernoulli distribution, the

normal distribution and the uniform (or rectengular) distribution, respectively. Finally, 1x∈A is

the indicator function of the set A.

II. MODEL AND PROBLEM FORMULATION

This section summarizes the models and assumptions under which we develop a modular

co-design framework with provably optimal performance.

A. Process and sensor

We consider the control of a stochastic linear system

dx(t) = Ax(t)dt+Bu(t)dt+ dvc , x(0) = x0 ,

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control signal, A ∈ Rn×n and B ∈ Rn×m are the

system matrices, and vc is a Wiener process with incremental covariance Rc
v ∈ Sn≥0. Similarly,

the initial state x0 is modeled as a random variable having a normal distribution with zero mean

and covariance Σ0 ∈ Sn≥0, i.e., x0 ∼ N (0,Σ0). A noisy measurement of the system output

y(kh) = C̃x(kh) + w(kh)

is taken every sample period h. Here, w(kh) is a discrete-time white noise Gaussian pro-

cess, independent of the disturbance vc, and with zero mean and covariance Rw ∈ Sm≥0, i.e.,

w(kh) ∼ N (0, Rw). The sensor measurements are time-stamped and sent over an unreliable

multi-hop network as illustrated in Fig. 2.

B. Controller and actuator

We assume the controller and the actuator nodes are co-located, and the control commands are

sent from the controller node to the actuator node without information loss or delay. Additionally,

the controller and actuator nodes are assumed to be synchronized to the global clock and operate
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Fig. 2: Networked control system with timing diagram for sensor, controller and actuator. A
sensor takes periodic samples of the system output. The samples are transmitted over a lossy
multi-hop wireless network and arrive at the controller with a time-varying delay; packets are
dropped if they are unable to meet the per-packet deadline. The controller updates the actuator
signal periodically with a fixed lag relative to the time of the sensor readings.

with a fixed lag τ ≤ h relative to the sampling times of the sensor. As shown in Fig. 2, the

applied actuator command in each sampling interval is then

u(t) =

{
u(kh− h), kh ≤ t < kh+ τ ,

u(kh), kh+ τ ≤ t < kh+ h .

(1)

In summary, the controller uses the information sensed at time kh and available at time kh+ τ

to compute the control action between the controller updates
[
kh+ τ, (k + 1)h+ τ

)
for k ∈ N.

C. Multi-hop wireless network

The multi-hop wireless network consists of a set of nodes N = {1, . . . , Z} equipped with

half-duplex radio transceivers. The destination node (collocated with the controller) is labeled

Z. We represent the network topology as a directed graph G = (N ,L) with nodes N and

links L. The presence of a directed link (i, j) ∈ L means that node i is able to deliver a

packet successfully to node j. Nodes are synchronized to the global clock and communication is

slotted. Each slot is ts milliseconds long and allows for the transmission of a single packet and

the reception of the associated acknowledgement from the next-hop node. Packet transmissions

are unreliable and considered successful only if both the packet and the acknowledgement are
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delivered successfully. We assume independent erasure events following a Bernoulli process

with loss probabilities p = [pij] (i.e., packet transmission on link (i, j) fails with probability pij ,

independently of other links). Moreover, nodes do not have access to the current channel state,

only their statistics (i.e., loss probabilities on their outgoing links).

The main source of energy consumption in a sensor network is the radio transmission. In

this paper, we assume a constraint ε on the average number of transmission attempts on the

wireless sensor network per millisecond in order to guarantee a desired life time. For ease of

presentation, we normalize the energy cost of one transmission to one unit of energy.

Based on the time-triggered sensing and control model in § II-A and § II-B, one packet is

injected in the network every sampling period h and must reach the destination node Z within

a hard deadline τ , after which it is declared as a loss. The network problem is then to develop

a packet forwarding policy π that determines if a node should forward a packet or drop it, and

to which node it should attempt to transmit, while considering the hard packet deadline and the

energy constraint limiting the expected number of transmission attempts.

D. System-level performance and co-design objective

We aim at developing a multi-hop packet forwarding policy π, satisfying the energy constraint,

and a controller that together minimize the continuous-time closed-loop loss function

Jc = E

{∫ T

0

 x(t)

u(t)

ᵀ Qc
xx Q

c
xu

Qcᵀ
xu Q

c
uu

 x(t)

u(t)

 dt+ xᵀ(T)Qc
0x(T)

}
, (2)

subject to the stochastic system constraints

dx = Axdt+Budt+ dvc,

y(s) = ρπkC̃x(kh) + w(kh), kh+ τ ≤ s ≤ kh+ h+ τ

for k ∈ N. Here, Qc
xx and Qc

0 are symmetric and positive semi-definite matrices while Qc
uu is

symmetric and positive definite. The controller computes the control sequence {u(k)}k≥0 based

on the available sensor information y(s). Note that sensor data is delayed by a fixed time τ and

may be lost; ρπk ∈ {0, 1} is an indicator variable representing whether or not the forwarding

policy π was able to deliver the k-th sensor data packet within the time limits, specified by the

hard deadline τ . The expectation in Eq. (2) is taken over the random process and measurement
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disturbances, the initial condition, as well as over the random packet losses on the individual

links in the network. We denote the aforementioned optimization problem OP1.

III. A MODULAR CO-DESIGN FRAMEWORK

In this section, we will describe the key ideas behind our co-design framework for linear

quadratic control over unreliable and energy-constrained multi-hop networks. The framework is

modular as it separates the co-design problem into two well-defined design tasks: one for the

controller and another one for the network. It is optimal since it allows to find the jointly optimal

networking and control design subject to our assumptions and restrictions.

In its general form, the co-design problem is to jointly optimize the closed-loop control loss

over the fixed time lag τ (i.e., the deadline of the packet), the sampling interval h (i.e., the

packet generation rate), the packet forwarding policy π, and the control law u for computing the

actuator command. It is important to notice that closed-loop loss is stated in continuous time

to allow for comparison of solutions that use different sampling intervals. As we will show in

§ IV-B, the fact that the actuator holds the control signals over the intervals
[
kh + τ, kh + h

)
allows the optimization problem OP1 to be converted to an equivalent discrete-time problem

minimize
τ,h,π,u

Jd(h, τ)

subject to

{
ξk+1 = Φ(h, τ)ξk + Γ(h, τ)uk + vk

yk = ρπkC̃ξk + wk.

To establish modularity and optimality, we will demonstrate in § IV-C that for a fixed sampling

period h and time lag τ ≤ h, the optimal control loss is monotone decreasing in the deadline-

constrained reliability ρπ = E{ρπk}, i.e., the probability that a packet arrives at the controller

node within a deadline τ . This implies that for a given τ and h and under the restriction of one-

sample delayed time-triggered control architectures, the optimal co-designed system is obtained

by the following two distinguished sequential design problems:

(a) developing a packet forwarding policy π? of the network that maximizes the deadline-

constrained reliability with deadline of D = b τ
ts
c time slots subject to energy constraint, i.e.,

π? = argmax
π

ρπ

subject to Cπ ≤ Creq,
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where Cπ is the average number of transmissions per injected packet attempted by the

forwarding policy π and Creq = εh is the constraint on the average number of transmissions

per injected packet due to the energy constraint ε.

(b) computing the control action using the optimal linear-quadratic controller under packet loss,

i.e.,

minimize
u

Jd(h, τ)

subject to

{
ξk+1 = Φ(h, τ)ξk + Γ(h, τ)uk + vk

yk = ρπ
?

k C̃ξk + wk

where ρπ?

k ∈ {0, 1} is an indicator variable for on-time packet delivery by π?. We will show

that under Bernoulli link losses and the optimal forwarding policy, we have ρπ?

k ∼ Be(ρπ
?
).

Lastly, the optimal solution is obtained by sweeping over all admissible τ and h values, and

identifying the pair of τ and h values with minimum control loss.

IV. CO-DESIGN FOR LINEAR-QUADRATIC CONTROL

We now turn our attention to the development of the optimal control design and forwarding

policies required by the co-design framework for linear-quadratic optimal control over a network

where packet losses on individual links follow independent Bernoulli processes. The deadline-

constrained maximum-reliability forwarding problem, defined and solved in § IV-A, provides

the optimal network operation for a fixed sampling interval h and time lag τ . The optimal

control under independent packet losses is developed in § IV-B. Finally, § IV-C establishes a

monotonicity property of the optimal control loss that allows to conclude optimality of the design.

A. Deadline-constrained maximum reliability forwarding

The data flow from sensor to controller node is periodic, with a new packet being produced

every h milliseconds. Since the controller disregards packets that have not been delivered within

the deadline τ ≤ h, nodes can drop packets that will not be able to meet their deadline, which

implies that there will be at most one sensor packet in the network at any point in time. Moreover,

since the packet loss processes on links are assumed to be memoryless, the optimal policy for

the periodic flow can be constructed by the repeated application of the optimal forwarding policy
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for a single transient packet. In the deadline-constrained forwarding problem, we pose a strict

deadline of D = b τ
ts
c time slots and look for forwarding policies that maximize the probability

that the sensor packet is delivered to the destination node (directly connected to the controller)

within the deadline. Since the packet is injected every h milliseconds and there is at most one

packet on the network during this interval, the energy constraint then can be transformed into

the constraint on the average number of transmissions per injected packet Creq = εh.

More specifically, we consider a scenario where a single packet, generated by the source node

at time t = 0, should be transmitted over a multi-hop wireless network to the destination node

Z within a deadline of D time slots, and the expected number of transmissions of each packet

should be smaller than Creq. The goal is to derive an optimal forwarding policy π? with the

maximum packet delivery reliability.

1) Constrained Markov Decision Process Formulation: The deadline-constrained packet for-

warding problem can be formulated as a finite-horizon Markov decision process (MDP) [38]

with the horizon equal to the packet deadline D.

The state s(t) of the MDP is the packet location at time t. The state at the next time s(t+ 1)

depends on the action a(t) that chooses whether or not to attempt a transmission, and if a

transmission is attempted, to which next-hop node the packet should be addressed. The state

transition probability Pr{s(t+ 1)|s(t), a(t)}, which describes the probability that the next state

is s(t + 1) given that the current state is s(t) and the current action is a(t), is determined by

the loss probability of the associated link. If the action is to hold the packet (i.e., a(t) = s(t)),

then s(t + 1) = s(t). On the other hand, if the action is to forward the packet, then the packet

can be either at node s(t) or at neighbor a(t) to which the packet is forwarded. Recall that pij

denotes the loss probability of link (i, j). In summary, the state transition probability is

Pr{s(t+ 1)|s(t), a(t)} =



1 if a(t) = s(t), s(t+ 1) = s(t),

ps(t)a(t) if a(t) 6= s(t), s(t+ 1) = s(t),

1− ps(t)a(t) if a(t) 6= s(t), s(t+ 1) = a(t),

0 otherwise.

There is no reward for each action, but a terminal reward µD
(
s(D)

)
is given if the packet is

at the destination node Z at the last time slot D, and the energy cost c
(
s(t), a(t)

)
is incurred
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when the action is to transmit the packet. They are defined separately as

µD
(
s(D)

)
=

1 if s(D) = Z,

0 otherwise;

c
(
s(t), a(t)

)
=

1 if a(t) 6= s(t),

0 otherwise.

Note that in the MDP formulation, we enforce the packet to stay at the destination if it arrives

before the deadline, and the reward is collected only at the deadline time t = D.

The core problem of an MDP is to find a sequence of actions such that the expectation of the

sum of the rewards is maximized or the sum of the costs is minimized. We define a decision

rule that prescribes the action in each state at a specified time, and a policy composed by a

sequence of decision rules at each time. In the most general case, the decision rule should

depend on the previous states and actions, and can prescribe actions randomly. More precisely,

let H(t) be the set of all possible histories where a history is a sequence of previous states

and actions, i.e.,
(
s(0), a(0), . . . , s(t − 1), a(t − 1), s(t)

)
. The decision rule is a function d(t) :

H(t)→ P
(
A(t)

)
that maps H(t) into a set of probability distributions on the action space A(t)

of all possible actions. Since the MDP is a process of finite-horizon with length D, the policy

is π ,
(
d(0), d(1), . . . , d(D− 1)

)
, indexed by time. Under a policy π, the expected total reward

(deadline-constrained packet reliability) is defined as

ρπ , Eπ
s(0)

{
µD
(
s(D)

)}
,

where s(0) is the initial packet location (i.e., the source node). Note the expectation E is taken

over the probability space induced by policy π. Similarly, the expected energy cost of an end-

to-end packet delivery on the network is

Cπ , Eπ
s(0)

{t=D−1∑
t=0

c
(
s(t), a(t)

)}
.

November 2, 2018 DRAFT



DRAFT. 14

The maximum deadline-constrained reliability with energy cost constraint problem is then

maximize
π

ρπ

subject to Cπ ≤ Creq.
(3)

2) Randomized policy: This problem falls into the category of constrained MDP (CMDP). The

standard solution if we are only interested in the total reward is to use linear programming [38].

However, we are also interested in the structure of the optimal policy to understand which

forwarding logic to implement in individual nodes. To this end, we use the Lagrangian approach

proposed in [39] for CMDP to convert it to a non-constrained weighted sum problem.

The Lagrange dual problem of (3) is

minimize
δ

max
π
{ρπ − δ · Cπ}+ δ · Creq

subject to δ ≥ 0 .
(4)

Our finite-horizon CMDP can be cast as an infinite-horizon CMDP with total cost criterion. The

Markov state s is extended to include the time from t = 0 to t = D (i.e. states are now node-time

pairs). It goes to the next state with time t + 1 only if the current state’s time is t. We define

a termination state to which all the states with time D + 1 are directed. This is an absorbing

state with no reward and cost. All other parameters including rewards, costs and state transition

probabilities remain the same. It can be shown that this is a contracting MDP as defined in [39,

Def. 2.4]. Hence, by [39, Thm. 4.8 ii], the duality gap is zero. To solve problem (4), we hence

need to solve the weighted sum maximization of reliability and energy, i.e.,

max
π
{ρπ − δ · Cπ} (5)

for a given δ ≥ 0.

By treating the weighted energy cost δ · Cπ as a negative reward scaled by δ in the MDP

formulation, a history-independent and deterministic optimal policy for the weighted sum maxi-

mization can be found by dynamic programming [38]. The details of the dynamic programming

framework will be developed in § IV-A3. Note that the maximum reliability forwarding problem

with no energy constraint is a special case of problem (5) with δ = 0.

We will first show that an optimal policy for the minimum energy problem can be constructed

by randomizing between two deterministic policies, each of which is optimal for a different
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value of δ in the weighted sum problem. We further explicitly derive these two policies and

specify the probabilities at which they are selected in the optimal randomized policy.

Let C?(δ), ρ?(δ) and π?(δ) be the optimal energy, reliability and policy in the weighted sum

problem for a given δ, respectively. Define C , {C?(δ), for all δ} and ∆C , {δ : C?(δ) = C}
for a given C ∈ C. We have the following results:

Lemma 1 C is a finite set. For a given C ∈ C, ρ?(δ) is unique for all δ ∈ ∆C .

Proof: See Appendix VII. �

Theorem 2 Let C(1) = max{C ∈ C : C ≤ Creq} and C(2) = min{C ∈ C : C > Creq} with the

associated unique reliability ρ(1) and ρ(2). The maximum reliability of the forwarding problem is

ρ? = ρ(1) +
Creq − C(1)

C(2) − C(1)
(ρ(2) − ρ(1)). (6)

Suppose that the history-independent and deterministic optimal policies that attain (ρ(1), C(1))

and (ρ(2), C(2)) are π(1) and π(2) respectively. An optimal policy π? for the minimum energy

problem is obtained by random selection of policies π(1) and π(2) with probabilities

θ(1) =
C(2) − Creq

C(2) − C(1)
; θ(2) =

Creq − C(1)

C(2) − C(1)
.

Proof: Lemma 1 shows the existence of C(1) and C(2) and the uniqueness of ρ(1) and ρ(2). The

rest of the proof is in Appendix VII. �

The theorem states that the optimal forwarding policy is to make a random selection between

two history-independent and deterministic policies, each found by dynamic programming. Com-

bined with the assumption that link losses are independent, we can conclude that the packet loss

by the optimal forwarding policy is a Bernoulli random process.

3) General dynamic programming framework: Next, we will develop a general dynamic

programming framework to solve the weighted sum maximization problem (5).

Since the MDP state is composed of the packet location, let the maximum utility at time t

and node i be

U?
i (t) = ρ?i (t)− δC?

i (t).

This quantity describes the optimal utility for packet delivery within the next D − t time slots;
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ρ?i (t) and C?
i (t) are the corresponding optimal reliability and optimal energy cost, respectively.

To this end, our aim is to develop optimal forwarding policies that attain U?
i (0), the maximum

utility of node i at t = 0 with a deadline of D time slots. This quantity can be computed

recursively by dynamic programming from t = D − 1 to t = 0, starting from initial condition

U?
i (D) =

1 if i = Z,

0 if i 6= Z;

ρ?i (D) =

1 if i = Z,

0 if i 6= Z;
C?
i (D) = 0.

At each step t < D, the maximum utility U?
i (t) at node i is characterized by the Bellman equation,

U?
i (t) = max

{
max
j∈Ni

U j
i (t), U i

i (t)
}

(7)

where U j
i (t) is the utility of forwarding to a neighbor j ∈ Ni, and U i

i (t) is the utility of

withholding the packet at node i, respectively. These utilities are computed as

U j
i (t) = (1− pij)U?

j (t+ 1)︸ ︷︷ ︸
Success forwarding

+ pijU
?
i (t+ 1)︸ ︷︷ ︸

Failed forwarding

− δ︸︷︷︸
Energy cost

;

U i
i (t) = U?

i (t+ 1).

An illustration of the Bellman equation update for two outgoing links are shown in Fig. 3. Note

that in each step t, the update in Eq. (7) requires only the maximum utility U?
i (t+ 1) of node i

and the maximum utility U?
j (t+ 1) of node j where j is its one-hop away neighbor.

Fig. 3: An illustration of Bellman equation at node i and time t for two outgoing links.

The optimal action at time t forwards the packet to the node j?i (t) that obtains the maximum
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in Eq. (7), and j?i (t) is given by

j?i (t) =


i if U i

i (t) ≥ U j
i (t) ∀j ∈ Ni;

arg max
j∈Ni

U j
i (t) otherwise.

(8)

Note that withholding the packet does not consume energy, and that we break ties arbitrarily.

With Eq. (8), one can compute ρ?i (t) and C?
i (t). If j?i (t) 6= i, then

ρ?i (t) =
(
1− pij?i (t)

)
ρ?j?i (t)(t+ 1) + pij?i (t)ρ

?
i (t+ 1);

C?
i (t) =

(
1− pij?i (t)

)
C?
j?i (t)(t+ 1) + pij?i (t)C

?
i (t+ 1) + 1.

On the other hand, if j?i (t) = i, then

ρ?i (t) = ρ?i (t+ 1) C?
i (t) = C?

i (t+ 1).

The forwarding policy from the dynamic programming framework is composed of the actions

at each possible packet location and time. We can implement this policy in a distributed fashion

at each node without need for inter-node coordination. A node stores only the policy associated

with itself as a lookup table indexed by time. At run time, if a node holds the packet, then

it forwards the packet according to the lookup table. We also showed in Theorem 2 that the

optimal forwarding policy is to make a random selection between two policies found by dynamic

programming framework. A naive implementation of the optimal forwarding policy would be to

randomly select one of the deterministic policies when the packet is created, mark the packet

accordingly, and let intermediate nodes forward according to the chosen policy.

We also observe that the dynamic programming framework allows nodes to find their optimal

forwarding policy based on the statistics of their outgoing links and the "offered deadline-

constrained utilities” U?
j (t+1) of one-hop away parents in a distributed fashion, see Algorithm 1.

This step can be done a priori if the link statistics do not change, or at a slow time-scale using

message-passing between nodes. The complexity of the dynamic programming framework is of

order O(D|N |2): the |N | nodes have to be scanned from the destination towards the source and

from the deadline t = D − 1 backwards in time to t = 0. In each such iteration, each node has

to consider the option of forwarding to each of its maximum |N | outgoing neighbors.
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Algorithm 1 Distributed implementation of the DP

U?
i (D) = 0 ∀i 6= Z, U?

Z(t) = 1 ∀t ∈ [0, D]
for t = D − 1 to 0 do

for i = 1 to Z − 1 do
Compute maximum utility U?

i (t) by Eq. (7),
Compute optimal action j?i (t) by Eq. (8),
Transmit U?

i (t) reliably to neighbor j where i ∈ Nj .
end for

end for

B. Linear-quadratic Gaussian control for fixed forwarding policy

Under a deadline-constrained forwarding policy π, the network delivers sensor packets with

a fixed delay of τ = Dts seconds, and loses samples independently with probability 1− ρπ. In

what follows, we will drop superscript π for simplicity of notation. Moreover, we denote the

process state by xk = x(kh), the control signal by uk = u(kh), the process noise by vk = v(kh),

and measurement noise by wk = w(kh).

The evolution of the system between sampling instants can be described in terms of the

extended state vector ξk , col{xk, uk−1} as

ξk+1 =

 eAh
∫ h
h−τ e

AsdsB

0m×n 0m×m


︸ ︷︷ ︸

, Φ(h,τ)

ξk +

∫ h−τ0
eAsdsB

Im×m


︸ ︷︷ ︸

, Γ(h,τ)

uk +

In×n
0m×n


︸ ︷︷ ︸

, G

vk ,

yk = ρk

[
C̃ 01×m

]
︸ ︷︷ ︸

, C

ξk + wk ,

where vk and wk are zero mean discrete-time Gaussian white noise process with

E

{vk
wk

[vᵀk wᵀ
k

]}
=

Rv 0

0 Rw

 , (9)

where Rv ,
∫ h

0
eAsRc

ve
Aᵀsds.

The continuous-time loss function (2) can be transformed into an equivalent discrete-time loss

Jd = E

{
N−1∑
k=0

 ξk
uk

ᵀ  Ξξξ(h, τ) Ξξu(h, τ)

Ξᵀ
ξu(h, τ) Ξuu(h, τ)

 ξk
uk

+ ξᵀNΞ0ξN

}
,
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where N = dT
h
e,

Ξξξ(h, τ) ,

Qτ
xx + Φᵀ(τ)Qh−τ

xx Φ(τ) Qτ
xu + Φᵀ(τ)Qh−τ

xx Γ(τ)

Qτᵀ
xu + Γᵀ(τ)Qh−τ

xx Φ(τ) Qτ
uu + Γᵀ(τ)Qh−τ

xx Γ(τ)

 ,
Ξξu(h, τ) ,

Φᵀ(τ)Qh−τ
xu

Γᵀ(τ)Qh−τ
xu

 ,
Ξuu(h, τ) , Qh−τ

uu

with Φ(t) = eAt, Γ(t) =
∫ t

0
Φ(s)Bds, Qt

xx =
∫ t

0
ΦT (s)Qc

xxΦ(s)ds, Qt
xu =

∫ t
0

ΦT (s)
(
Qc
xxΓ(s) +

Qc
xu

)
ds and Qt

uu =
∫ t

0

(
ΓT (s)Qc

xxΓ(s) + 2ΓT (s)Qc
xu +Qc

uu

)
ds.

The optimal control problem is then to compute the control sequence {uk}k≥0 that minimizes

the discrete-time loss function. Note that uk is not computed until time t = kh + τ , at which

time yk is available to the controller unless it has been dropped by the network. Hence, the

controller has access to the following information set when computing uk:

Ik ,
{
Yk , Uk−1 , Rk

}
.

Here, Yk =
(
yk, . . . , y1

)
, and Uk−1 =

(
uk−1, . . . , u1

)
, while Rk =

(
ρk, . . . , ρ1

)
is the realizations

of the Bernoulli random variable ρk that models successful packet transmissions. It is important

to note that the discrete-time loss has cross-terms even if the continuous-time loss function does

not. Schenato et al. [15] studied a similar problem without cross-terms in the loss function. In

what follows, we extend the framework of [15] to include the cross-coupling terms in the loss

function and derive the optimal controller and bound its performance.

1) Estimator Design: As in [15] the Kalman filter is the optimal estimator for our setting.

The minimum mean square error (MMSE) estimate ξ̂k|k of ξk given by ξ̂k|k = E{ξk| Ik} can be

computed recursively starting from the initial conditions ξ̂0|−1 = col{0n×1, 0m×1} and P0|−1 =

P0. The innovation step is

ξ̂k+1|k , E{ξk+1| Ik} = Φξ̂k|k + Γuk (10)

ek+1|k , ξk+1 − ξ̂k+1|k = Φek|k +Gvk (11)

Pk+1|k , E{ek+1|ke
ᵀ
k+1|k| Ik} = ΦPk|kΦ

ᵀ + R̃v (12)
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where R̃v , GRvG
ᵀ and vk is independent from Ik, while the correction step is

ξ̂k+1|k+1 = ξ̂k+1|k + ρk+1Kk+1(yk+1 − Cξ̂k+1|k) (13)

ek+1|k+1 = ξk+1 − ξ̂k+1|k+1 (14)

Pk+1|k+1 = Pk+1|k − ρk+1Kk+1CPk+1|k (15)

Kk+1 , Pk+1|kC
ᵀ(CPk+1|kC

ᵀ +Rw)−1 . (16)

The following result, similar to [15], characterizes the estimation error covariance matrix.

Proposition 3 The MMSE estimate ξ̂k|k of ξk is given by the time-varying Kalman filter (10)

– (16). The expected value of the covariance matrix can be bounded as

P k|k ≤ Eρ{Pk|k} ≤ P k|k

where the bounds can be computed iteratively as

P k+1|k = ΦP k|k−1Φᵀ + R̃v − ρΦP k|k−1C
ᵀ(CP k|k−1C

ᵀ +Rw)−1CP k|k−1Φᵀ

P k|k = P k|k−1 − ρP k|k−1C
ᵀ(CP k|k−1C

ᵀ +Rw)−1CP k|k−1

P k+1|k = (1− ρ)ΦP k|k−1Φᵀ + R̃v

P k|k = (1− ρ)P k|k−1

starting from the initial conditions P 0|−1 = P 0|−1 = P0. When k → ∞, the iterations converge

to the unique stationary solutions P∞ and P∞ of the modified algebraic Riccati equations

P∞ = ΦP∞Φᵀ + R̃v − ρΦP∞C
ᵀ(CP∞C

ᵀ +Rw)−1CP∞Φᵀ , (17)

P∞ = (1− ρ)ΦP∞Φᵀ + R̃v . (18)

2) Controller Design: Next, we develop the optimal state feedback control law.

Proposition 4 Consider the finite horizon LQG control problem. The optimal control law

uk = − (ΓᵀSk+1Γ + Ξuu)
−1(ΓᵀSk+1Φ + Ξᵀ

ξu)︸ ︷︷ ︸
,Lk

ξ̂k|k (19)
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is a linear function of the estimated state. The matrix Sk evolves according to the recursion

Sk = ΦᵀSk+1Φ + Ξξξ − (ΦᵀSk+1Γ + Ξξu)(Γ
ᵀSk+1Γ + Ξuu)

−1(ΓᵀSk+1Φ + Ξᵀ
ξu) , (20)

where ξ̂k|k is the MMSE estimate of the state ξk based on the information set Ik computed with

the Kalman filter (10)–(16). As k →∞, the recursion converges to a unique solution

S∞ = ΦᵀS∞Φ + Ξξξ − (ΦᵀS∞Γ + Ξξu)(Γ
ᵀS∞Γ + Ξuu)

−1(ΓᵀS∞Φ + Ξᵀ
ξu) ,

for which the associated stationary controller gain is

L∞ , lim
k→∞

Lk = −(ΓᵀS∞Γ + Ξuu)
−1(ΓᵀS∞Φ + Ξᵀ

ξu) .

Proof: To derive the optimal feedback control law and the corresponding value for the objective

function, we apply dynamic programming. We let the optimal value function Vk(ξk) be

Vk(ξk) , min
uk

E{ξᵀkΞξξξk + 2ξᵀkΞξuuk + uᵀkΞuuuk + Vk+1| Ik}, (21)

VN(ξN) , E{ξᵀNΞ0ξN | IN}, (22)

where k = {N−1, . . . , 1}. We show that J?N = V0(ξ0). The solution of the Bellman equation (21)

with the initial condition (22) is given by

Vk(ξk) = E{ξᵀkSkξk| Ik}+ ck , (23)

where the nonnegative matrix Sk and the scalar ck are independent of the information set Ik.

In contrast to [15], we allow for cross-coupling terms in the Bellman equation (21), which is

critical for comparing the control costs under different sampling intervals. Apart from this, the

proof is similar to the one in [9], [15]. �

3) Optimal control cost: The optimal loss function of the finite horizon LQG problem is

J?N(ρ) = ξᵀ0S0ξ0 + Tr
(
S0P0

)
+

N−1∑
k=0

Tr
(
Sk+1R̃v

)
+

N−1∑
k=0

Tr
(
(ΦᵀSk+1Φ + Ξξξ − Sk)Eρ{Pk|k}

)
, (24)
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where expectation is taken over a Bernoulli sequence {ρk}k≥0 with E{ρk} = ρ. Since no efficient

way of computing the expectation is known, one can use the upper and lower bounds on Eρ{Pk|k}
given in Proposition 3 to compute the upper and lower bounds on the finite-horizon control cost

Jmin
N (ρ) ≤ J?N(ρ) ≤ Jmax

N (ρ). For the infinite horizon case, the bounds become

Jmin
∞ , lim

N→∞

1

N
Jmin
N

= Tr(S∞R̃v) + (1− ρ)Tr
(
(ΦᵀS∞Φ + Ξξξ − S∞)P∞

)
, (25)

Jmax
∞ , lim

N→∞

1

N
Jmax
N

= Tr(S∞R̃v) + Tr
(
(ΦᵀS∞Φ + Ξξξ − S∞)(P∞ − ρP∞Cᵀ

× (CP∞C
ᵀ +Rw)−1CP∞)

)
, (26)

where the matrices P∞, P∞ and S∞, are given in Proposition 3 and Proposition 4, respectively.

In brief, the optimal estimator is a time-varying Kalman filter given by (12), (15) and (16),

while the control law is a static linear feedback (19). The combined performance, in the sense

of the continuous-time loss function (2), can be bounded as in (25) and (26). It is this controller

and these performance bounds that we use in our co-design.

C. Optimality of the co-design framework

Next, we provide a formal proof that the achievable loss for a fixed sampling interval and time

lag is increasing in the loss probability, which allows us to conclude that the combination of

linear-quadratic control under loss and deadline-constrained maximum reliability routing provides

the optimal co-design.

Lemma 5 Consider operators f(X) = ΦXΦᵀ + R̃v, hρ(X) = X − ρXCᵀ(CXCᵀ +Rw)−1CX

and gρ(X) = hρ(f(X)). If X ′ ≤ X and ρ′ ≥ ρ, then gρ′(X ′) ≤ gρ(X).

Proof: By Lemma 9 (a,c), gρ′(X ′) ≤ gρ(X
′) ≤ gρ(X). �

Theorem 6 For given sampling interval h and time lag τ , the optimal control loss J?N(ρ) is

monotone decreasing in end-to-end reliability ρ.

Proof: Our proof relies on a coupling argument [40] on the underlying end-to-end loss processes.

Specifically, for any two Bernoulli processes {ρk}k≥0 and {ρ′k}k≥0 with E{ρk} = ρ and E{ρ′k} =
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ρ′ such that ρ ≤ ρ′ we establish that J?N(ρ′) ≤ J?N(ρ).

The key idea of coupling is to define the two processes on a common probability space on

which the analysis is carried out. To this end, let {ωk}k≥0 be a sequence of independent random

variables with ωk ∼ Uni(0, 1) and define ρk = 1ωk≤ρ and ρ′k = 1ωk≤ρ′ . Then, {ρk}k≥0 and

{ρ′k}k≥0 are Bernoulli trial processes with probabilities ρ and ρ′, respectively. A crucial property

of our construction is that for every realization {ωk}k≥0, the associated sequences {ρk(ωk)}k≥0

and {ρ′k(ωk)}k≥0 satisfy ρ′k(ωk) ≥ ρk(ωk) for all k ∈ N. In particular, whenever the more reliable

sequence has a loss, the less reliable sequence also has a loss.

Our next step is to show that P ′N |N ≤ PN |N where P ′N |N is the estimation error covariance

matrix under packet delivery sequence {ρk}k≥0 and initial value P ′0|0 = P0 and PN |N is the

estimation error covariance matrix under packet delivery sequence {ρ′k}k≥0 and the same initial

value P0|0 = P0. We will establish this claim using induction. Clearly, P ′k|k ≤ Pk|k holds for

k = 0. Assume that it holds for an arbitrary k. Then, since Pk+1|k+1 = gρ(Pk|k) and P ′k+1|k+1 =

gρ′(P
′
k|k), Lemma 5 implies that P ′k+1|k+1 ≤ Pk+1|k+1. Hence, by induction, P ′N |N ≤ PN |N .

Finally, combining this observation with Lemma 10 (in Appendix):

J?N(ρ) = c+ E
ρ1,...,ρN

N−1∑
k=0

Tr ∆kPk|k(ρ)

= c+ E
ω1,...,ωN

N−1∑
k=0

Tr ∆kPk|k(ρ(ωk))

≤ c+ E
ω1,...,ωN

N−1∑
k=0

Tr ∆kPk|k(ρ
′(ωk))

= c+ E
ρ′1,...,ρ

′
N

N−1∑
k=0

Tr ∆kPk|k(ρ
′) = J?N(ρ′) .

This concludes the proof. �

Theorem 6 allows us to establish optimality of our co-design framework.

Theorem 7 For given sampling interval and time lag, the optimal closed loop performance,

in the sense of the linear-quadratic control loss (2), is obtained by scheduling the network to

maximize deadline-constrained reliability and computing the control action by the time-varying

LQG-controller (10)-(16), (19), (20).
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Theorem 7 establishes that the optimal co-design can be obtained as follows: we sweep over

both the sampling interval h and the time lag τ , schedule the network to maximize on-time

delivery probability, and estimate the associated closed-loop performance of the time-varying

LQG controller for the corresponding end-to-end reliability ρ. The optimal co-design is obtained

for the sampling interval and the time lag that attain the minimal closed-loop loss.

It is natural to ask if one could find the optimal h and τ in a more efficient way than by

exhaustive search. We will show in the numerical examples that the optimal loss as a function

of h might exhibit multiple local minima, which indicates that it would be challenging to find

a universal and efficient way of picking the optimal sampling interval. Another issue is that

there is no efficient way to compute the expectation of the covariance matrix with respect to the

loss process apart from e.g., Monte Carlo simulation [13]. To overcome this problem, one could

replace the true performance expression by the upper bound Jmax
N (ρ) and pick the sampling

interval that minimizes this upper bound. The next result establishes that Jmax
N has the same

monotonicity properties as J?N , and we will show in the numerical examples that Jmax
N provides

a good surrogate to the true loss function when it comes to picking the optimal sampling interval.

Lemma 8 The upper bound on the control loss Jmax
N (ρ) is monotone decreasing in end-to-end

reliability ρ.

Proof: Note Jmax
∞ (ρ) = c′ + Tr ∆∞hρ(P∞(ρ)) where P∞(ρ) is the stationary solution of the

modified algebraic Riccati equation (17) for reliability parameter ρ. Now, consider two reliability

parameters ρ and ρ′. By similar arguments in Theorem 6, ρ′ ≥ ρ implies that P∞(ρ′) ≤ P∞(ρ)

and by Lemma 9(b), hρ(P∞(ρ)) ≤ hρ′(P∞(ρ′)). By Lemma 10, Jmax
∞ (ρ′) ≤ Jmax

∞ (ρ). Our claim

is proved. �

V. NUMERICAL EXAMPLES

We now demonstrate our co-design procedure on numerical examples. We consider the fol-

lowing second-order linear system

dx =

 0 1

−ω2
0 −2αζω0

xdt+

 0

ω2
0

udt+ dvc ,

y(kh) =
[

1 0
]
x(kh) + w(kh),

(27)
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where vc has incremental covariance Rc
v = diag{0.5, 0.5}, and w(kh) has covariance Rw = 10−4.

Our co-design should minimize (2) for Qc
xx = diag{2, 1}, Qc

xu = 02×1, Qc
uu = 1, and Qc

0 = 02×2.

The multi-hop wireless network between sensor and controller is shown in Fig 4. A link between

two nodes exists if and only if the transmission loss probability between these two nodes is strictly

smaller than 1 (i.e., if communication between the two nodes is at all possible). The length of

one time slot is ts = 10ms. Furthermore, in all numerical examples, we assume that the time

lag τ is always set to equal the sampling period h.

S D

Fig. 4: Network topology with the source 6-hop from the destination.

A. No energy constraint

We here consider the case without energy constraints in which the optimal forwarding policy

and the maximum deadline-constrained reliability are derived by the dynamic programming

framework with δ = 0 in § IV-A3.

We firstly consider the system (27) to be unstable with the parameters α = −1, ζ = 1, and

ω0 = 1. Periodic samples of the output y(kh) are transmitted over the network in Fig. 4. For

every sampling period h, we compute the optimal forwarding policy and the associated deadline-

constrained reliability. The achievable latency-reliability pairs for three network scenarios in

which the network becomes increasingly unreliable (by increasing the loss probabilities on links)

are shown in Fig. 5 (top). We then discretize the control loss function (2), solve the corresponding

LQG optimal control problem, and evaluate its performance as described in § IV-B. Fig. 5

(bottom) shows the optimal closed-loop control losses for varying sampling intervals under the

three network scenarios. We note that there is no single optimal sampling interval or target end-

to-end reliability. The optimal sampling interval ranges from 90ms, for the most reliable network

scenario, to 250ms, for the least reliable case. This corresponds to a required end-to-end reliability
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Fig. 5: Comparison of the upper bounds Jmax
∞ for three different network scenarios. Note that

p` is the link loss probability.

of 65% and 82%, respectively. As the network becomes less reliable, more retransmissions (a

longer h?) are required to guarantee a sufficiently high reliability which causes the associated

control loss to increase. Specifically, the optimal control loss (marked with a dot in Fig. 5)

increases by approximately a factor of ten from the most to the least reliable network scenarios.

ζ ω0 h (rule-of-thumb) h? (Optimal sampling interval)

0.1
π√
1−ζ2

40 – 90 ms 130 ms
0.2 40 – 100 ms 120 ms
0.7 50 – 120 ms 60 ms

TABLE I: Selection of sampling interval h in the wireless control system that includes
communication links with link loss probability p` ∈ [0.75, 0.9].

We now consider the case when the system (27) is stable, and ζ ≥ 0, α = 1, and ω0 =

π/
√

1− ζ2. This parameterization is chosen roughly to yield the same optimal sampling interval

independent of ζ . Fig. 6 (center) shows how the trade-off curves change when we vary the

damping of the system poles. Similar to the unstable open-loop systems, distinct co-design optima
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also exist for the open-loop stable systems, but they become less relevant when the system poles

are close to being critically damped. Furthermore, we compare the optimal sampling interval

obtained by our co-design framework with the rule-of-thumb from [9, pp. 129-130]. As can

be seen in Table I, the optimal sampling interval is, more often than not, outside the range of

sampling intervals proposed by the rule-of-thumb.

It may appear discomforting that our co-design framework requires sweeping over the sampling

interval to find the jointly optimal design. However, as shown in Fig. 6 (bottom) with parameters

α = 1, ζ = 0.02 and ω0 = 5π, the optimal closed-loop control cost as a function of the sampling

interval might exhibit multiple local minima, which indicates that it will be hard to circumvent

this search in general.
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Fig. 6: Comparison of the upper bounds Jmax
∞ for the system (27) which is parameterized by

several damping ratios ζ and natural frequencies ω0.

In this section, we set the maximum transmission delay equal to the sampling interval to
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reduce the search space to a single parameter. One could imagine that a better performance

could be achieved by optimizing over both the sampling interval and the transmission delay,

which is indeed possible in our framework. While we cannot rule out this possibility in general,

our experience is that the additional complexity of a two-dimensional search does not drastically

improve the performance.

Lastly, since the true closed-loop performance can only be evaluated using Monte Carlo

simulations, it is useful to be able to rely on more easily computable upper and lower performance

bounds, introduced in this paper, in the search for the optimal sampling interval. Fig. 7 compares

the upper, lower, and true closed-loop performance for the co-design under the least reliable

network scenario shown in Fig. 6 (top), and the system (27) with parameters α = −1, ζ = 1, and

ω0 = 1. The upper bound Jmax
N becomes quite accurate for sampling intervals when h ≥ 250ms,

and the sampling interval that minimizes the upper bound on the performance is rather close

to the optimal sampling interval for the true cost. Hence, we believe that the upper bound is

a good surrogate for the true performance if we need to carry out the co-design with limited

computational resources.
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Fig. 7: The experimental J?N , upper bound Jmax
N and lower bound Jmin

N for the minimum control
cost with respect to sampling period. The curves are obtained by averaging 10,000 Monte Carlo
simulations for the horizon length T = 500s, with the arrival sequence {ρk}k≥0 generated
randomly.
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Fig. 8: The optimal control loss for different energy cost constraints and the corresponding
optimal sampling periods in seconds (shown in gray scale).

B. With energy constraints

We here include the energy constraint in the multi-hop wireless network, and consider the

unstable system (27) with the parameters α = −1, ζ = 1, and ω0 = 1. Fig. 8 illustrates

the optimal closed-loop control losses for a range of energy cost constraints. Moreover, in the

same plot, the optimal sampling intervals are shown in gray scale with shorter periods for

smaller control losses. The optimal control performance naturally decreases when the energy

cost constraint becomes increasingly stringent. An intriguing observation is that it is exceedingly

costly to achieve the minimum control loss. As revealed by Fig. 8, significant energy savings

can be ensured by accepting a relatively small deterioration in the control performance.

Fig. 9 shows the control loss versus sampling periods for a set of energy constraints. Initially,

with longer sampling periods, although fewer packets are injected into the network, these packets

have larger deadline and more energy can be allocated to each packet with a higher per-packet

delivery reliability. Hence, the control loss decreases. However, with even longer sampling

periods, the energy constraint is no longer the bottleneck of the control performance, and the

maximum reliability can be obtained without violating energy constraints. Thus, the control

performance deteriorates since fewer packets are injected. This also explains why the curves

overlap for large sampling periods. Finally, the phenomenon is more obvious with more stringent

energy constraint where the system is more sensitive to different sampling intervals.
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Fig. 9: Comparison of the control loss upper bounds Jmax
∞ with different sampling period for a

set of energy constraints.

VI. CONCLUSIONS, DISCUSSIONS AND FUTURE WORKS

We considered the joint design of forwarding policies and controllers for networked control

loops that use multi-hop wireless communication for transmitting sensor data from process to

controller. By parameterizing the design problem in terms of the sampling rate of the control

loop, the co-design problem separates into two well-defined networking and control design tasks,

both which admit optimal solutions: the network should be operated to maximize the deadline-

constrained reliability subject to a total energy budget, and the control design should optimize

closed-loop performance under packet loss. We develop optimal solutions to these problems, and

demonstrate how the jointly optimal design can be found by a one-dimensional search over the

sampling interval. To the best of our knowledge, this is the first co-design procedure that covers

such a breadth of design parameters, gives a clean and modular design, yet guarantees to find

the joint design with optimal closed-loop performance.

Admittedly, the framework has its limitations and several extensions are worthwhile to con-

sider. One important extension is the multi-loop problem where multiple sensors take measure-

ments and forward across the network. The corresponding networking task, however, becomes

a real-time deadline-constrained multi-flow scheduling problem, which was recently proved to

be NP-hard [26], so optimal designs will probably be hard to find. One interesting direction

of research would be to develop sub-optimal policies for multiple real-time streams using, for

example, approximate dynamic programming techniques. Another extension would be to consider
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more realistic physical models, such as nonlinear system dynamics and network models that allow

for correlated link losses. When link losses are correlated, it is not the networking sub-problem

that is major obstacle (see our paper [41] which develops real-time forwarding policies without

energy constraints). It is the controller sub-problem that becomes hard, mainly since the end-

to-end losses become correlated and the state of the Markov chain that describes end-to-end

loss process is not available at the controller node. A third class of extensions would be to

consider other control architectures. One interesting architecture is to stick to time-triggered

sensing but allow for event-triggered control and actuator updates in the spirit of Nilsson [6].

The challenge of such architecture is that the system-level performance depends on the complete

latency distribution of packets, which creates significant couplings between the controller and

network designs. Another interesting controller architecture is to use event-triggered sampling,

but the theory for event-triggered control is still in its infancy and many intermediate results

need to fall in place before one could develop a corresponding co-design framework. Finally, one

could also consider developing forwarding policies that require less network state information,

use better models for energy consumption, and directly address the expected network lifetime.

We hope to return to some of these extensions in our future work.
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VII. APPENDIX

Proof of Lemma 1: The number of actions in this MDP is limited by the number of neighboring

nodes. We have a finite number of policies that lead to a finite number of energy costs. Thus,

C is a finite set.

For any given δ1, δ2 ∈ ∆C , we have C?(δ1) = C?(δ2) with optimal polices π?(δ1) and π?(δ2),

and reliability ρ?(δ1) and ρ?(δ2). Without loss of generality, we let δ1 < δ2. We can easily show

that ρ?(δ) is a non-increasing function over δ ≥ 0, and hence ρ?(δ1) ≥ ρ?(δ2). If ρ?(δ1) = ρ?(δ2),

then the lemma is proved. Now, we consider ρ?(δ1) > ρ?(δ2). Note the optimal utility with δ2 is

ρ?(δ2)−δ2 ·C?(δ2). However if we apply policy π?(δ1), the utility with δ2 is ρ?(δ1)−δ2 ·C?(δ1) >

ρ?(δ2)− δ2 ·C?(δ2), which contradicts the optimality of π?(δ2). Hence, for any C ∈ C, ρ?(δ) is

unique for all δ ∈ ∆C . �
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Proof of Theorem 2: Let g(δ) , maxπ{ρπ−δ ·Cπ}+δ ·Creq and h(δ) , maxπ{ρπ−δ ·Cπ}. The

proposed dynamic programming framework computes h(δ) for a given value of δ and returns a

history-independent and deterministic policy. According to Markov decision process theory [38],

h(δ) can be formulated as a linear program whose objective function coefficients depend on δ,

and it can be shown that h(δ) is a continuous function over δ. Hence, g(δ) is also a continuous

function over δ.

It can be easily shown that C?(δ) is a non-increasing function over δ ≥ 0. Hence, we have

that ∆C(m) is an interval or a single point for a given C(m) ∈ C by the fact C is a finite set

from Lemma 1. Moreover, h(δ) = ρ?(δ)− δC?(δ) is a continuous function over δ and ρ?(δ) is

unique for δ ∈ ∆C(m) . Hence, this interval is closed; let us denote it ∆C(m) = [δm−, δm+]. Then,

the function g(δ) is

g(δ) = ρ(m) + δ(Creq − C(m)), δ ∈ [δm−, δm+] (28)

where ρ(m) is the unique ρ?(δ) for δ ∈ [δm−, δm+].

Now let C(1) = max{C ∈ C : C ≤ Creq} and C(2) = min{C ∈ C : C > Creq} with

associated reliability ρ(1) and ρ(2). Note that C(1) ≤ Creq < C(2). Their associated δ range is

∆C(1) = [δ1−, δ1+] and ∆C(2) = [δ2−, δ2+]. Furthermore, we have δ? , δ2+ = δ1− because h(δ)

is a continuous function. Since C?(δ) is a non-increasing function over δ, we have C?(δ) ≤
C(1) ≤ Creq for δ ≥ δ1+ and C?(δ) ≥ C(2) > Creq for δ ≤ δ2−. Thus, we have C?(δ) ≤ Creq for

δ ≥ δ1− and C?(δ) > Creq for δ ≤ δ2+. Furthermore, by Eq. (28), g(δ) is a decreasing function

for δ ≤ δ2+ since Creq < C?(δ) and a non-decreasing function for δ ≥ δ1− since Creq ≥ C?,

so the minimum value of g(δ) is obtained for δ = δ? = δ2+ = δ1−. The optimal δ? can be

found from ρ(2) + δ?(Creq−C(2)) = ρ(1) + δ?(Creq−C(1)), and the maximum reliability (i.e., the

minimum g(δ)) is

ρ? = ρ(1) +
Creq − C(1)

C(2) − C(1)
(ρ(2) − ρ(1)).

Suppose the optimal policies to obtain (ρ(1), C(1)) and (ρ(2), C(2)) are π(1) and π(2) respectively.

Note that these two optimal policies for weighted sum maximization are history-independent and
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deterministic by [38]. The policy π? that randomizes between π(1) and π(2) with probabilities

θ(1) =
C(2) − Creq

C(2) − C(1)
and θ(2) =

Creq − C(1)

C(2) − C(1)

achieves this maximum reliability. Thus, it is an optimal policy, which concludes the proof. �

Lemma 9 For operators gρ(X) and hρ(X), matrices X ∈ Sn>0 and Y ∈ Sn>0 and scalars ρ, ρ′ ∈
[0, 1], the following facts are true.

a) X ≤ Y =⇒ gρ(X) ≤ gρ(Y ) ,

b) X ≤ Y =⇒ hρ(X) ≤ hρ(Y ) ,

c) ρ ≤ ρ′ =⇒ gρ(X) ≥ gρ′(X) ,

d) ρ ≤ ρ′ =⇒ hρ(X) ≥ hρ′(X) .

Proof: a) gρ(X) ≤ gρ(Y ) holds as gρ(X) is affine in X . The proof can be found in [13,

Lemma 1(c)].

b) As hρ is a special form of gρ by setting Φ = I and Rw = 0, we immediately obtain the

condition hρ(X) ≤ hρ(Y ).

c) The detail proof is given in [13, Lemma 1(d)].

d) As hρ is a special form of gρ by setting Φ = I and Rw = 0, we easily conclude hρ(X) ≥
hρ′(X) from (c). �

Lemma 10 Suppose Y ∈ Sn>0 and Z ∈ Sn>0. If Y ≤ Z, then Tr(XY ) ≤ Tr(XZ), ∀X ∈ Sn>0.

Proof: Since Y ≤ Z, it follows that X
1
2Y X

1
2 ≤ X

1
2ZX

1
2 . Since trace is a monotone function

on the positive definite matrices, we get Tr(XY ) ≤ Tr(XZ). �
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