
1
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Control at Megahertz Rates
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Abstract

Faster, cheaper, and more power efficient optimization solvers than those currently offered by

general-purpose solutions are required for extending the use of model predictive control (MPC) to

resource-constrained embedded platforms. We propose several custom computational architectures for

different first-order optimization methods that can handle linear-quadratic MPC problems with input,

input-rate, and soft state constraints. We provide analysis ensuring the reliable operation of the resulting

controller under reduced precision fixed-point arithmetic. Implementation of the proposed architectures

in FPGAs shows that satisfactory control performance at a sample rate beyond 1 MHz is achievable even

on low-end devices, opening up new possibilities for the application of MPC on embedded systems.

I. INTRODUCTION

Model predictive control (MPC) provides a systematic approach for handling physical con-

straints for automatic control of cyber-physical systems [1], [2], often leading to improved control

performance and reduced tuning effort for new applications. However, the intense computational

demands imposed by MPC precludes its use in applications that could benefit considerably

from its advantages, especially in those that have fast required response times and in those that

must run on resource-constrained, embedded computing platforms with low cost or low power

requirements.
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For linearly constrained MPC problems of low dimensionality, one can partially avoid this

computational burden by precomputing the solution map offline using multi-parametric program-

ming [3]. In this case, the online controller implementation consists only of region search and

table look-up procedures. Further work integrating the design of the solution map and embedded

circuits has further increased the efficiency in performing these operations [4]. However, for

larger problems, this approach quickly becomes impractical, mainly due to substantial memory

requirements, forcing a return to online optimization methods.

Recently, there has been significant interest in using first-order methods, both in the primal [5]

and dual domains [6]–[9], for the online solution of linear-quadratic MPC problems. Compared

to other solution methods for quadratic programs (QPs) (e.g. active-set or interior-point schemes),

first-order methods do not require the solution of a linear system of equations at every iteration,

which is often a limiting factor for embedded platforms with modest computational capability.

This feature, coupled with the observation that medium-accuracy solutions are often sufficient

for good control performance [10], make first-order methods promising candidates for efficient,

low cost MPC. In addition, first-order methods have certain features that make them amenable

to fixed-point implementation, they can be efficiently parallelized, and their simplicity invites

analysis that can guide low-level implementation choices for further efficiency gains.

There have been several recent efforts to translate innovation in optimization algorithms into

practical solvers customized for MPC problems. In terms of software, [11], [12] and [13] describe

automatic state-of-the-art code generators for interior-point and first-order solvers, respectively,

whereas [14] describes a widely used active-set based solver. In all cases, embedded applications

were the primary target, although the solvers are implemented using double precision floating-

point arithmetic, which is generally not available or is very expensive in embedded computing

platforms. In terms of hardware, [15]–[17] describe different custom computing architectures

for both interior-point and active-set methods using reduced floating-point arithmetic in field

programmable gate arrays (FPGAs), reporting minor speed-ups or use of expensive devices to

provide significant acceleration. Although there has been some progress in accelerating the core

component of these algorithms – solvers for linear equations – using fixed-point arithmetic [18],

extending these results to the other aspects of interior-point or active-set algorithms remains

challenging.
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Summary of contribution

In this paper we focus on practical and theoretical issues for efficient implementation of

optimization-based control systems on low cost embedded platforms.

1) Architectures: We present a set of parameterized automatic generators of custom computing

architectures for solving different types of MPC problems. For input-constrained problems,

we describe architectures for Nesterov’s fast gradient method (first described in the pre-

liminary publication [19]), and for state-constrained problems we consider architectures

based on the alternating direction method of multipliers (ADMM). Even if these methods

are conceptually very different, they share the same computational patterns and similar

computing architectures can be used to implement them efficiently. These architectures are

extended to support warm starting procedures and the projection operations required in the

presence of soft constraints.

2) Analysis: Since for a reliable operation using fixed-point arithmetic it is crucial to prevent

overflow errors, we derive theoretical results that guarantee the absence of overflow in all

variables of the fast gradient method. Furthermore, we present an error analysis of both

the fast gradient method and ADMM under (inexact) fixed-point computations in a unified

framework. This analysis underpins the numerical stability of the methods for hardware

implementations and can be used to determine a priori the minimum number of bits required

to achieve a given solution accuracy specification, resulting in minimal resource usage.

3) Implementation: We derive a set of design rules for efficient implementation of the proposed

methods, such as a scaling procedure for accelerating the convergence of ADMM and

criteria for determining the size of the Lagrange multipliers. The proposed architectures

are characterized in terms of the achievable performance as a function of the amount of

resources available. As a proof of concept, generated solver instances are demonstrated

for several linear-quadratic MPC problems, reporting achievable controller sampling rates

in excess of 1 MHz, while the controller can be implemented on a low cost embeddable

device.

Outline

The paper is organized as follows: After a brief summary of the general MPC formulation and

the different first-order methods in Sections II and III, we focus on the fixed-point analysis in
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Section IV. We follow with the hardware architectures and performance evaluation in Sections V

and VI.

II. SOFT-CONSTRAINED MODEL PREDICTIVE CONTROL SETUP

Throughout, we address control of a discrete-time linear time-invariant (LTI) system in the

form

x+ = Ax+Bu, (1)

where x ∈ Rnx is the system state and u ∈ Rnu is the system input. The overall design goal is

to construct a time-invariant (possibly nonlinear) static state feedback controller µ : Rnx → Rnu

such that u = µ(x) stabilizes the system (1) while simultaneously satisfying a collection of state

and input constraints in the time domain.

In standard design methods for constructing linear controllers for systems in the form (1),

the bulk of the computational effort is spent offline in identifying a suitable controller, whose

online implementation has minimal computing requirements. The inclusion of state and input

constraints renders most such design methods unsuitable.

A now standard alternative is to use MPC [1], [2], which moves the bulk of the required

computationally effort online and which addresses directly the system constraints. At every

sampling instant, given an estimate or measurement of the current state of the plant x, an MPC

controller solves a constrained N -stage optimal control problem in the form

J∗(x) = min
1

2
xTNQNxN +

1

2

N−1∑
k=0

xTkQxk + uTkRuk + 2xTk Suk +
N∑
k=1

(
σ1 · 1T δk + σ2 · ‖δk‖2

2

)

(2)

subject to x0 = x,

xk+1 = Adxk +Bduk, k = 0, 1, . . . , N − 1,

uk ∈ U, k = 0, 1, . . . , N − 1,

(xk, δk) ∈ X∆, k = 1, 2, . . . , N.

If an optimal input sequence {u∗i (x)}N−1
i=0 and state trajectory {x∗i (x)}Ni=0 exists for this problem

given the initial state x, then an MPC controller can be implemented by applying the control

input u = u∗0(x).



5

We will assume throughout that the system input constraint set U is defined as a set of interval

constraints U := {u | umin ≤ u ≤ umax}. We assume that the system states have both free (index

set F), hard-constrained (index set B) and soft-constrained (index set S) components, i.e. the

set X∆ in (2) is defined as

X∆ =
{

(x, δ) ∈ Rnx × R|S|+ | xF free, xmin ≤ xB ≤ xmax, |xi − xc,i| ≤ ri + δi, i ∈ S
}
, (3)

with xc,i ∈ R being the center of the interval constraint of radius ri > 0 for a soft-constrained

state component. The index sets F ,B and S are assumed to be pairwise disjoint and to satisfy

F ∪ B ∪ S = {1, 2, . . . , nx}.

We assume throughout that the penalty matrices (Q,QN) ∈ Rnx×nx are positive semidefinite,

R ∈ Rnu×nu is positive definite, and S ∈ Rnx×nu is chosen such that the objective function in (2)

is jointly convex in the states and inputs. There is by now a considerable body of literature [2],

[20] describing conditions on the penalty matrices and/or horizon length N sufficient to ensure

that the resulting MPC controller is stabilizing (even when no terminal state constraints are

imposed), and we do not address this point further. For stability conditions for soft-constrained

problems, the reader is referred to [21] and [22] and the references therein.

If the soft-constrained index set S is nonempty, then a linear-quadratic penalty on the auxiliary

variables δk ∈ R|S|+ , weighted by positive scalars (σ1, σ2), can be added to the objective. In

practice, soft constraints are a common measure to avoid infeasibility of the MPC problem (2)

in the presence of disturbances. However, there also exist hard state constraints that can always

be enforced and cannot lead to infeasibility, such as state constraints arising from remodeling

of input-rate constraints. For the sake of generality we address both types of state constraints in

this paper.

If σ1 is chosen large enough, then the optimization problem (2) corresponds to an exact penalty

reformulation of the associated hard-constrained problem (i.e. one in which the optimal solution

of (2) maintains δk = 0 if it is possible to do so). An exact penalty formulation preserves the

optimal behavior of the MPC controller when all constraints can be enforced. We first characterize

conditions under which a soft constraint penalty function for a convex optimization problem is

exact.

Theorem 1 (Exact Penalty Function for Convex Programming [23, Prop. 5.4.5]): Consider the
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convex problem

f ∗ := min
z∈Q

f(z) (4)

subject to gj(z) ≤ 0 , j = 1, 2, . . . , r,

where f : Rn → R and gj : Rn → R, j = 1, . . . , r, are convex, real-valued functions and Q is a

closed convex subset of Rn. Assume that an optimal solution z∗ exists with f(z∗) = f ∗, strong

duality holds and an optimal Lagrange multiplier vector µ∗ ∈ Rr
+ for the inequality constraints

exists.

i) If σ1 ≥ ‖µ∗‖∞ and σ2 ≥ 0, then

f ∗ = min
z∈Q

f(z) +
r∑
j=1

(
σ1 · δj + σ2 · δ2

j

)
(5)

subject to gj(z) ≤ δj, δj ≥ 0, j = 1, 2, . . . , r.

ii) If σ1 > ‖µ∗‖∞ and σ2 ≥ 0, the set of minimizers of the penalty reformulation in (5)

coincides with the set of minimizers of the original problem in (4).

Remark 1: In the context of the MPC problem (2), the penalty reformulation is exact if the

penalty parameter σ1 is chosen to be greater than the largest Lagrange multiplier for any constraint

|xi − xc,i| ≤ ri, i ∈ S, over all feasible initial states x. In general, this bound is unknown a priori

and is treated as a tuning parameter in the control design. The quadratic penalty parameter σ2

need not be nonzero for such a penalty formulation to be exact, but the inclusion of a nonzero

quadratic term is necessary for our numerical stability results under fixed-point arithmetic in

Section IV.

For the sake of notational simplicity, the results of this paper are presented with reference

to the optimal control problem in regulator form in (2). However, all of our results generalize

easily to setpoint tracking problems.

III. FIRST-ORDER SOLUTION METHODS

We next describe two different first-order optimization methods for solving the optimal control

problem (2) efficiently. In particular, we apply the primal fast gradient method (FGM) in cases

where only input-constraints are present, and a dual method based on the alternating direction

method of multipliers (ADMM) for cases in which both state- and input-constraints are present.
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A. Input-Constrained MPC Using the Fast Gradient Method

The fast gradient method is an iterative solution method for smooth convex optimization

problems first published by Nesterov in the early 80s [24], which requires the objective function

to be strongly convex [25, §9.1.2]. The method can be applied to the solution of MPC problem (2)

if the future state variables xi are eliminated by expressing them as a function of the initial state,

x, and the future input sequence (so-called condensing [1]), resulting in the problem

f ∗(x) = min
z
f(z;x) :=

1

2
zTHF z + zTΦx (6)

subject to z ∈ K,

where z := (u0, . . . , uN−1) ∈ Rn, n = Nnu, the Hessian HF ∈ Rn×n is positive definite under

the assumptions in Section II, and the feasible set is given as K := U × . . . × U. The current

state only enters the gradient of the linear term of the objective through the matrix Φ ∈ Rn×nx .

We consider the constant step scheme II of the fast gradient method in [26, §2.2.3]. Its

algorithmic scheme for the solution of (6), optimized for parallel execution on parallel hardware,

is given in Algorithm 1. Note that the state-independent terms (I− 1
L
HF ), 1

L
Φ and (1+β) can all

be computed offline and that the product 1
L

Φx must only be evaluated once. The core operations

in Algorithm 1 are the evaluation of the gradient (implicit in line 2) and the projection operator

of the feasible set, πK, in line 3. Since for our application the set K is the direct product of the N

nu-dimensional sets U, it suffices to consider N independent projections that can be performed

in parallel. For the specific case of a box constraint on the control input, every such projection

corresponds to nu scalar projections on intervals, each computable analytically. In this case, the

fast gradient method requires only multiplication and addition, which are considerably faster and

use significantly less resources than division when implemented using digital circuits.

It can be inferred from [26, Theorem 2.2.3] that for every state x, Algorithm 1 generates a

sequence of iterates {zi}Imax
i=1 such that the residuals f(zi;x)− f ∗(x) are bounded by

min

{(
1−

√
1

κ

)i
,

4κ

(2
√
κ+ i)2

}
· 2
(
f(z0;x)− f ∗(x)

)
, (7)

for all i = 0, . . . , Imax, where κ denotes the condition number of f , or an upper bound of it, given

by κ=L/µ, where L and µ are a Lipschitz constant for the gradient of f and convexity parameter

of f , respectively. Note that the convexity parameter f for a strongly convex quadratic objective

function as in (6) corresponds to the minimum eigenvalue of HF . Based on this convergence



8

Algorithm 1 Fast gradient method for the solution of MPC problem (6) at state x (optimized

for parallel hardware)
Require: Initial iterate z0 ∈ K, y0 = z0, upper (lower) bound L (µ > 0) on maximum (minimum)

eigenvalue of Hessian HF , step size β =
(√

L−√µ
)
/
(√

L+
√
µ
)

1: for i = 0 to Imax − 1 do

2: ti := (I − 1
L
HF )yi − 1

L
Φx

3: zi+1 := πK(ti)

4: yi+1 := (1 + β)zi+1 − βzi
5: end for

result, which states that the bound exhibits the best of a linear and a sublinear rate, one can

derive a certifiable and practically relevant iteration bound Imax such that the final residual is

guaranteed to be within a specified level of suboptimality for all initial states arising from a

bounded set [5]. It can further be proved that there is no other variant of a gradient method with

better theoretical convergence [26], i.e. the fast gradient method is an optimal gradient method,

in theory.

The fast gradient method is particularly attractive for application to MPC in embedded control

system design due both to the relative ease of implementation and to the availability of strong

performance certification guarantees. However, its use is limited to cases in which the projection

operation πK is simple, e.g. in the case of box-constrained inputs. Unfortunately, the inclusion of

state constraints changes the geometry of the feasible set K such that the projection subproblem

is as difficult as the original problem, since the constraints are no longer separable in uk. In the

next section we therefore describe an alternative solution method in the dual domain that avoids

these complications, though at the expense of some of the strong certification advantages.

B. Input- and State-Constrained MPC Using ADMM

In the presence of state constraints, if one imposes (Q,QN) ∈ Rnx×nx to be positive definite,

the fast gradient method can be used again to solve the dual problem via Lagrange relaxation

of the equality constraints [6]. However, in this case the dual function is not strongly concave

and consequently the convergence speed is severely affected. A quadratic regularizing term can

be added to the Lagrangian to improve convergence, but this prevents the use of distributed



9

operations for computing the gradient of the dual function, adding a significant computational

overhead. We therefore seek an alternative approach in the dual domain.

For dual problems we do not work in the condensed format (6), but rather maintain the state

variables xk in the vector of decision variables z := (u0, . . . , uN−1, x0, δ0, . . . , xN , δN) ∈ Rn,

n = N(nu + nx + |S|) + nx + |S|, resulting in the problem

f ∗(x) = min
z
f(z;x) :=

1

2
zTHAz + zTh (8)

subject to z ∈ K, Fz = b(x).

The affine constraint Fz = b(x) models the dynamic coupling of the states xk and uk via the

state update equation (1), and is at the root of the difficulty in projecting the variables z onto

the constraints in the fast gradient method.

The alternating direction method of multipliers (ADMM) [27] partitions the optimization

variables into two (or more) groups to maintain the possibility of decoupled projection. In

applying ADMM to the specific problem (6), we maintain an additional copy y of the original

decision variables z and solve the problem

f ∗(x) = min
z,y

f(z, y;x) :=
1

2
yTHAy + yTh+ IA(y;x) + IK(z) +

ρ

2
‖y − z‖2 (9)

subject to z = y, (10)

where (z, y) ∈ R2n contain copies of all input, state and slack variables. The functions IA :

Rn × Rnx → {0,+∞} and IK : Rn → {0,+∞} are indicator functions for the sets described

by the equality and inequality constraints, respectively, e.g.

IA(y, x) :=

0 if Fy = b(x) ,

∞ otherwise ,
(11)

where K := U× . . .×U×X∆ × . . .×X∆. The current state x enters the optimization problem

through (11). The inclusion of the regularizing term (ρ/2)‖y−z‖2 has no impact on the solution

to (9) (equivalently (8)) due to the compatibility constraint y = z, but it does allow one to drop

the smoothness and strong convexity conditions on the objective function, so that one can solve

control problems with more general cost functions such as those with 1- or ∞-norm stage costs.

Note that there are many possible techniques for copying and partitioning of variables in

ADMM. In the context of optimal control, the choice given in (9) results in attractive compu-

tational structures [28].



10

The dual problem for (9) is given by

max
ν

g(ν) := inf
z,y
Lρ(z, y, ν) :=

1

2
yTHAy + yTh+ IA(y;x) + IK(z) + νT (y − z) +

ρ

2
‖y − z‖2 .

ADMM solves this dual problem using an approximate gradient method by repeatedly carrying

out the steps

yi+1 := arg min
y
Lρ(zi, y, νi) , (12a)

zi+1 := arg min
z
Lρ(z, yi+1, νi) , (12b)

νi+1 := νi + ρ(yi+1 − zi+1) . (12c)

The gradient of the dual function is approximated by the expression (yi+1 − zi+1) in (12c),

which employs a single Gauss-Seidel pass instead of a joint minimization to allow for decoupled

computations. Choosing the regularity parameter ρ also as the step-length arises from Lipschitz

continuity of the (augmented) dual function. There are at present no universally accepted rules

for selecting the value of the penalty parameter however, and it is typically treated as a tuning

parameter during implementation.

Our overall algorithmic scheme for ADMM for the solution of (9) based on the sequence of

operations (12a)–(12c), optimized for parallel execution on parallel hardware, is given in Algo-

rithm 2. The core computational tasks are the equality-constrained optimization problem (12a)

and the inequality-constrained, but separable, optimization problem (12b).

In the case of the equality-constrained minimization step (12a), a solution can be computed

from the KKT conditions by solving the linear systemHA + ρI F T

F 0

yi+1

λi+1

 =

−h− νi + ρzi

b(x)

 .
Note that only the vector yi+1, and not the multiplier λi+1, arising from the solution of this

linear system is required for our ADMM method. The most efficient method to solve for yi+1

is to invert the (fixed) KKT matrix offline, i.e. to computeM11 M12

MT
12 M22

 =

HA + ρI F T

F 0

−1

,

and then to obtain yi+1 online from yi+1 = M11 (−h− νi + ρzi) + M12b(x) as in Line 2 of

Algorithm 2. Observe that the product M12b(x) needs to be evaluated only once, and that this

matrix is always invertible when ρ > 0 since F has full row rank.
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Algorithm 2 ADMM for the solution of MPC problem (6) at state x (optimized for parallel

hardware)
Require: Initial iterate z0 = z∗−, ν0 = ν∗−, where z∗− and ν∗− are the shifted solutions at the

previous time instant (see Section V), and ρ is a constant power of 2.

1: for i = 0 to Imax − 1 do

2: yi+1 := M11(−h+ ρzi − νi) +M12b(x)

3: zi+1 := πK(yi+1 + 1
ρ
νi)

4: νi+1 := ρyi+1 + νi − ρzi+1

5: end for

The inequality-constrained minimization step (12b) results in the projection operation in Line 3

of Algorithm 2. In the presence of soft state constraints, this operation requires independent

projections onto a truncated two-dimensional cone, which can be efficiently parallelized and

require no divisions. We describe efficient implementations of this projection operation in parallel

hardware in Section V.

This variant of ADMM is known to converge; see [29, §3.4; Prop. 4.2] for general convergence

results. More recently, a bound on the convergence rate was established in [30], where it was

shown that the error in ADMM, for a different error function, decreases as 1/i, where i is

the number of iterations. This result still compares unfavorably relative to the known 1/i2

convergence rate for the fast gradient method in the dual domain. However, the observed

convergence behavior of ADMM in practice is often significantly faster than for the fast gradient

method [27].

C. ADMM, Lagrange multipliers and soft constraints

Despite its generally excellent empirical performance, ADMM can be observed to converge

very slowly in certain cases. In particular, for MPC problems in the form (6), convergence may

be very slow in those cases where there is a large mismatch between the magnitude of the

optimal Lagrange multipliers ν∗ for the equality constraint (10) and the magnitude of the primal

iterates (zi, yi). The reason is evident from the ADMM multiplier update step (12c); the existence

of very large optimal multipliers ν∗ necessitates a large number of ADMM iterations when the

difference (zi − yi) remains small at each iteration and ρ ≈ 1.
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This effect is of particular concern for MPC problem instances with soft constraints. If one

denotes by zδ those components of z associated with the slack variables {δ1, . . . , δN} (with

similar notation for yδ), then the objective function (9) features a term σ1 · 1Tyδ, with the exact

penalty term σ1 typically very large. The equality constraints (10) include the matching condition

zδ−yδ = 0, with associated Lagrange multiplier νδ. Recalling the usual sensitivity interpretation

of the optimal multiplier ν∗δ , one can conclude that ν∗δ ≈ σ1 ·1 in the absence of unusual problem

scaling1.

For soft constrained problems, we avoid this difficulty by rescaling those components of

the matching condition (10) to the equivalent condition (1/σ1)(zδ − yδ) = 0, which results in

a rescaling of the associated optimal multipliers to ν∗δ ≈ 1. The aforementioned convergence

difficulties due to excessively large optimal multipliers are then avoided.

IV. FIXED-POINT ASPECTS OF FIRST-ORDER SOLUTION METHODS

In this section we first motivate the use of fixed-point arithmetic from a hardware efficiency

perspective and then isolate potential error sources under this arithmetic. We concentrate on two

types of errors. For overflow errors we provide analysis to guarantee that they cannot occur

in the fast gradient method, whereas for arithmetic round-off errors we prove that there is a

converging upper bound on the total incurred error in either of the two methods. The results we

obtain hold under the assumptions in Section IV-B and guarantee reliable operation of first-order

methods on fixed-point platforms.

A. Fixed-Point Arithmetic and Error Sources

Modern computing platforms must allow for a wide range of applications that operate on

data with potentially large dynamic range, i.e. the ratio of the smallest to largest number to

be represented. For general purpose computing, floating-point arithmetic provides the necessary

flexibility. A floating-point number consists of a sign bit, a mantissa, and an exponent value

that moves the binary point with respect to the mantissa. The dynamic range grows doubly

exponentially with the number of exponent bits, making it possible to represent a wide range

1If one sets the regularization parameter ρ = 0 in (9) and σ2 = 0, then it can be shown that this approximation becomes

exact.
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of numbers with a relatively small number of bits. However, because two operands can have

different exponents, it is necessary to perform denormalization and normalization operations

before and after every addition or subtraction, leading to increased resource usage and long

arithmetic delays.

In contrast, hardware platforms employing fixed-point numbers use a fixed number of bits for

the integer and fraction fields, i.e. the exponent does not vary and does not have to be stored.

Fixed-point computations are the same as with integer arithmetic, hence the digital circuitry is

simple and fast, leading to greater power efficiency and significant potential for acceleration via

extra parallelization in a custom hardware implementation. For instance, in a typical modern

FPGA platform [31] fixed-point addition takes one clock cycle, whereas a single precision

floating-point adder would require 14 cycles while using one order of magnitude more resources

for the same number of bits.

The benefits of fixed-point arithmetic motivate its use in first-order methods to realize fast and

efficient implementations of Algorithms 1 and 2 on FPGAs or other low cost and low power

devices with no floating-point support, such as embedded microcontrollers, fixed-point digital

signal processors (DSPs) or programmable logic controllers (PLCs). However, reduced precision

representations and fixed-point computations incur several types of errors that must be accounted

for. These include:

Quantization Errors: Finite representation errors arise when converting the problem and

algorithm data from high precision to reduced precision data formats. Potential consequences

include loss of problem convexity, change of optimal solution and a lack of feasibility with

respect to the original problem.

Overflow Errors: Overflow errors occur whenever the number of bits for the integer part in the

fixed-point representation is too small, and can cause unpredictable behavior of the algorithm.

Arithmetic Errors: Unlike with floating-point arithmetic, fixed-point addition and subtraction

operations involve no round-off error provided there is no overflow and the result has the same

number of fraction bits as the operands [32]. For multiplication, the exact product of two numbers

with b fraction bits can be represented using 2b fraction bits, hence a b-bit truncation of a 2’s

complement number incurs a round-off error bounded from below by −2−b. Recall that in 2’s

complement arithmetic, truncation incurs a negative error both for positive and negative numbers.
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B. Notation and Assumptions

We will use (̂·) throughout in order to distinguish quantities in a fixed-point representation

from those in an exact representation and under exact arithmetic. Throughout, we assume for

simplicity that all variables and problem data are represented using the same number of fraction

bits b. We further assume that the feasible sets under finite precision satisfy K̂ ⊆ K, so that

solutions in fixed point arithmetic do not produce infeasibility in the original problem due to

quantization error.

We conduct separate analyses of both overflow and arithmetic errors for the fast gradient

method (Algorithm 1) and ADMM (Algorithm 2). In both cases, the central requirement is to

choose the number of fraction bits b large enough to ensure satisfactory numerical behavior.

We therefore employ two different sets of assumptions depending on the numerical method in

question:

Assumption 1 (Fast Gradient Method / Algorithm 1): The number of fractions bits b and a

constant c ≥ 1 are chosen large enough such that

i) The matrix

Hn =
1

c · λmax(ĤF )
· ĤF ,

has a fixed-point representation Ĥn with all of its eigenvalues in the interval (0, 1], where ĤF

is the fixed-point representation of the Hessian HF , with λmax(ĤF ) its maximum eigenvalue.

ii) The fixed-point step size β̂ satisfies

1 > β̂ ≥
(√

κ
(
Ĥn

)
− 1
)(√

κ
(
Ĥn

)
+ 1
)−1

≥ 0 ,

where κ(Ĥn) is the condition number of Ĥn.

Assumption 2 (ADMM / Algorithm 2): The number of fractions bits b is chosen large enough

such that

i) The matrix M̂11 M̂12

M̂T
12 M22

−1

−

ρI F̂ T

F̂ 0


is positive semidefinite, where ρ is chosen such that it is exactly representable in b bits.

ii) The quantization errors in the matrix F̂ are insignificant compared to the model uncertainty.
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Observe that it is always possible to select b sufficiently large to satisfy all of the preceding

assumptions, implying that the above conditions represent a lower bound on the number of

fraction bits required in a fixed-point implementation of our two algorithms to ensure that our

stability results are valid. Assumptions 1.(i) and 2.(i) ensure that the objective functions (6) (for

the fast gradient method) and (9) (for ADMM) remain strongly convex and convex, respectively,

despite any quantization error.

In the case of the fast gradient method, Assumption 1.(ii) guarantees that the true condition

number of Ĥn is not underestimated, in which case the convergence result of the fast gradient

method in (7) would be invalid. In fact, the assumption ensures that the effective condition

number for the convergence result is given by

κn =

(
1 + β̂

1− β̂

)2

≥ κ
(
Ĥn

)
. (13)

C. Overflow Errors

In order to avoid overflow errors in a fixed-point implementation, the largest absolute values of

the iterates’ and intermediate variables’ components must be known or upper-bounded a priori

in order to determine the number of bits required for their integer parts. For the static problem

data (I − Ĥn), Φ̂n, 1 + β̂, β̂, M̂11, or M̂12, the number of integer bits is easily determined by

the maximum absolute value in each expression.

1) Overflow Error Bounds in the Fast Gradient Method:

In the case of the fast gradient method, it is possible to bound analytically the largest absolute

values of all of the dynamic data, i.e. the variables that change with every iteration. We will

denote by Φ̂n the fixed-point representation of

Φn =
1

c · λmax(ĤF )
· Φ.

We summarize the upper bounds on variables appearing in the fast gradient method in the

following proposition.

Proposition 1: If problem (6) is solved by the fast gradient method using the appropriately

adapted Algorithm 1, then the largest absolute values of the iterates and intermediate variables
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are given by

‖ẑi+1‖∞ ≤ z̄ := max {‖ẑmin‖∞, ‖ẑmax‖∞} ,

‖ŷi+1‖∞ ≤ ȳ := z̄ + β̂‖ẑmax − ẑmin‖∞,

‖(I − Ĥn) ŷi‖∞ ≤ ȳinter := ‖I − Ĥn‖∞ · ȳ, (14)

‖x̂‖∞ ≤ x̄ := max
x∈X̂0

‖x‖∞,

‖Φ̂nx̂‖∞ ≤ h̄ := ‖Φ̂n‖∞ · x̄, and

‖ti‖∞ ≤ t̄ := ȳinter + h̄,

for all i = 0, 1, . . . , Imax − 1. The set X̂0 is chosen such that for every state in exact arithmetic

x ∈ X0 we have x̂ ∈ X̂0.

Proof: Follows from interval arithmetic and properties of the vector/matrix ‖ · ‖∞-norm.

Note that normalization of the objective as introduced in Section IV-B has no effect on the

maximum absolute values of the iterates. Furthermore, the bound in (14) also applies for the

intermediate elements/cumulative sums in the evaluation of the matrix-vector product. Observe

that most of the bounds stated in Proposition 1 are tight.

2) Overflow Error Bounds in ADMM:

If problem (9) is solved using ADMM via Algorithm 2, then we do not know of any general

method to upper bound the Lagrange multiplier iterates νi analytically, and consequently are

unable to establish analytic upper bounds on all expressions involving dynamic data. In this

case, one must instead estimate the undetermined upper bounds through simulation and add a

safety factor when allocating the number of integer bits. As a result, with ADMM, we trade

analytical guarantees on numerical behavior for the capability to solve more general problems.

D. Arithmetic Round-Off Errors

We next derive an upper bound on the deviation of an optimal solution ẑ∗ produced via a

fixed-point implementation of either Algorithm 1 or 2 from the optimal solutions produced from

the same algorithms implemented using exact arithmetic. In both cases, we denote by ẑi a fixed-

point iterate. We wish to relate these iterates to the iterates zi generated under exact arithmetic,

by establishing a bound in the form

‖ẑi − zi‖ = ‖ηi‖ ≤ ∆i



17

with limi→∞∆i finite, where ηi := ẑi − zi is the solution error attributable to arithmetic round-

off error up to the ith iteration. Consequently, we can show that inaccuracy in the computed

optimal solution induced by arithmetic errors in either algorithm are bounded, which is a crucial

prerequisite for reliable operation of first-order methods on fixed-point platforms.

In both cases, we use a control-theoretic approach based on standard Lyapunov methods

to derive bounds on the solution error arising specifically from fixed-point arithmetic error. For

simplicity of exposition, we consider only those errors arising from arithmetic errors and neglect

quantization errors in the analysis. This choice does not alter substantively the results presented

for either algorithm. Our approach is in contrast to (and more direct than) other approaches to

error accumulation analysis in the fast gradient method such as [33], [34], which consider inexact

gradient computations but do not address arithmetic round-off errors explicitly. In the case of

ADMM, we are not aware of any existing results relating to error accumulation in fixed-point

arithmetic.

1) Stability of Arithmetic Errors in the Fast Gradient Method:

We consider first the numerical stability of the fast gradient method, by examining in detail

the arithmetic error introduced at each step of a fixed-point implementation of Algorithm 1.

At iteration i, the error in line 2 of Algorithm 1 is given by

t̂i − ti = (I − Ĥn)(ŷi − yi) + εt,i ,

where εt,i is a vector of errors from the matrix-vector multiplication. Since there are n round-off

errors in the computation of every component, εt,i is componentwise in the interval [−n2−b, 0].

For the projection in line 3, and recalling that K̂ ⊆ K is a box, no arithmetic error is introduced.

Indeed, one can easily verify that the error t̂i − ti can only be reduced by multiplication with a

diagonal matrix diag(επ,i), with επ,i componentwise in the interval [0, 1].

Finally, in line 4, the error induced by fixed-point arithmetic is

ŷi+1 − yi+1 = (1 + β̂)ηi+1 − β̂ηi + εy,i ,

where two scalar-vector multiplications incur error εy,i with components in [−2−b, 2−b] (addition

and subtraction). Defining the initial error residual terms η−1 = η0 = ẑ0 − z0, and setting

ẑ0 − z0 = ŷ0 − y0, one can derive the two-step recurrence

ηi+1 = diag(επ,i)
(
I−Ĥn

)(
ηi+β̂(ηi−ηi−1)+εy,i−1

)
+ εt,i
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for the accumulated arithmetic error at each iteration. Note that the error ηi at each iteration is

inherently bounded by the box K̂. However, in the absence of the projection operation of line 3

and the associated error truncation, these errors remain bounded. To show this, we can express

the evolution of the arithmetic error using the two-step recurrenceηi+1

ηi


︸ ︷︷ ︸

=:ξi+1

=

(1 + β̂
)(
I − Ĥn

)
−β̂
(
I − Ĥn

)
I 0


︸ ︷︷ ︸

=:A

 ηi

ηi−1


︸ ︷︷ ︸

ξi

+

(I − Ĥn

)
I

0 0


︸ ︷︷ ︸

=:B

εy,i−1

εt,i


︸ ︷︷ ︸

=:υi

, (15)

and then show that this linear system is stable. Recalling Assumption 1, which bounds the

eigenvalues of Ĥn in the interval (0, 1] and β̂ in the interval [0, 1), we can use the following

result:

Lemma 1: Let C be any symmetric positive definite matrix with maximum eigenvalue less

than or equal to one. For every constant γ in the interval [0, 1] the matrix

M =

(1 + γ)(I − C) −γ(I − C)

I 0


is Schur stable, i.e. its spectral radius ρ(M) is less than one.

Proof: Assume the eigenvalue decomposition I−C = V TΛV , with Λ diagonal with entries

λi ∈ [0, 1). The eigenvalues of M are unchanged by left- and right-multiplication by [ V V ] and

its transpose. It is therefore sufficient to examine instead the spectral radius of

MD =

(1 + γ)Λ −γΛ

I 0

 .
Since this matrix has exclusively diagonal blocks, its eigenvalues coincide with those of the

two-by-two submatrices

MD,i =

(1 + γ)λi −γλi
1 0

 , for i = 1, . . . , n,

and it is sufficient to prove that every such submatrix has spectral radius less than one. Note

that the eigenvalues of MD,i are the roots of the characteristic equation

µ2 − (1 + γ)λiµ+ λiγ = 0. (16)
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It is easily verified that a sufficient condition for any quadratic equation in the form

x2 + 2bx+ c = 0

to have roots strictly inside the unit disk is for its coefficients to satisfy i) |b| < 1, ii) c < 1

and iii) 2|b| < c + 1. For the eigenvalue solutions to (16), this amounts to i) (1 + γ)λi/2< 1,

ii) λiγ < 1 and iii) (1 + γ)λi < γλi + 1. All three conditions are easily confirmed for the case

λi ∈ [0, 1), γ ∈ [0, 1].

2) Stability of Arithmetic Errors in ADMM:

As in the preceding section, for ADMM one can analyze in detail the arithmetic error

introduced at each step of a fixed-point implementation of Algorithm 2.

Defining ηi := ẑi−zi, γi := ν̂i−νi, a similar analysis to that of the preceding section produces

the two-step error recurrenceηi+1

γi+1


︸ ︷︷ ︸

=:ξi+1

=

 ρ diag(επ,i) M̂11 −diag(επ,i) (M̂11 − 1
ρ
I)

ρ2M̂11(I − diag(επ,i)) (I − ρM̂11)(I − diag(επ,i))


︸ ︷︷ ︸

=:A

ηi
γi


︸ ︷︷ ︸
ξi

+

 diag(επ,i) 0

ρ(I − diag(επ,i)) I


︸ ︷︷ ︸

=:B

εy,i
εν,i


︸ ︷︷ ︸

=:υi

, (17)

where: εy,i ∈ [−n2−b, 0]n is a vector of multiplication errors arising from Algorithm 2, line 2;

επ,i ∈ [0, 1]n is a vector of error reduction scalings arising from the projection operation in line 3;

and εν,i ∈ [−2−b, 2−b]n a vector multiplication errors arising from 4 with εν,−1 = 0. Note that

one can show that even when K̂ is not a box in the presence of soft state constraints, the error

can only be reduced by the projection operation. The initial iterates of the recurrence relation

are η−1 = η0, where η0 := ẑ0 − z0.

As in the case of the fast gradient method, these arithmetic errors are inherently bounded by

the constraint set K̂. In the absence of these bounding constraints (so that diag(επ,i) = I), one

can still establish that the arithmetic errors are bounded via examination of the eigenvalues of

the matrix

N :=

ρM̂11 −(M̂11 − 1
ρ
I)

0 0

 . (18)
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Recalling Assumption 2, we have the following result:

Lemma 2: The matrix N in (18) is Schur stable for any ρ > 0.

Proof: The eigenvalues of (18) are either 0 or ρλi(M̂11), so it is sufficient to show that the

symmetric matrix M̂11 satisfies ρ‖M̂11‖ < 1. Recalling thatM̂11 M̂12

M̂T
12 M̂22

 =

Ẑ F̂ T

F̂ 0

−1

where Ẑ := ĤA + ρI � 0, the matrix inversion lemma provides the identity

M̂11 = Ẑ−
1
2

[
I − Ẑ−

1
2 F̂ T (F̂ Ẑ−1F̂ T )−1F̂ Ẑ−

1
2

]
Ẑ−

1
2

=: Ẑ−
1
2 P̂ Ẑ−

1
2 , (19)

where P̂ is a projection onto the kernel of F̂ Ẑ−
1
2 , hence ‖M̂11‖ ≤ ‖Ẑ−

1
2‖‖P̂‖‖Ẑ− 1

2‖ = ‖Ẑ−1‖.

It follows that

ρ‖M̂11‖ ≤ ρ‖(ĤA + ρI)−1‖ ≤ ρ · 1

λmin(ĤA) + ρ
≤ 1,

where λmin(ĤA) is the smallest eigenvalue of the positive semidefinite matrix ĤA. If ĤA is

actually positive definite, then the preceding inequality is strict and the proof is complete.

Otherwise, to prove that the inequality is strict we must show that 1/ρ is not an eigenvalue

for M̂11 (which is positive semidefinite by virtue of (19)). Assume the contrary, so that there

exists some eigenvector v of M̂11 with eigenvalue 1/ρ, and some additional (arbitrary) vector q

that solves the linear system v
q

 =

Ẑ F̂ T

F̂ 0

−1 ρ · v
0

 .
Any solution must then satisfy both ĤAv ∈ Im(F̂ T ) and v ∈ Ker(F̂ ). Consequently vT ĤAv =

0, which requires v ∈ Ker(ĤA) since ĤA is positive semidefinite. Recall that any such v can be

decomposed into v = (u0, . . . , uN−1, x0, δ0, . . . , xN , δN). If the quadratic penalty for each δi is

positive definite, then v ∈ Ker(ĤA) requires each δi = 0.

Since F̂ v = 0, the remaining components of v must correspond to a sequence of state and

inputs compatible with the system dynamics in (2), starting from an initial state x0 = 0. Any

solution v 6= 0 would then require at least one component ui 6= 0. Then vT ĤAv ≥ uTi Rui > 0

since R is assumed positive definite, a contradiction.
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3) Arithmetic Errors Bounds for the Fast Gradient Method and ADMM:

Finally, for both the fast gradient method and ADMM we can use Lemmas 1 and 2 to establish

an upper bound on the magnitude of error ηi for any arithmetic round-off errors that might have

occurred up to iteration i.

Proposition 2: Let b be the number of fraction bits and n be the dimension of the decision

vector. Consider the error dynamics due to arithmetic round-off in (15) or in (17), assuming no

error reduction from projection. The magnitude of any accumulation of round-off errors up to

iteration i, ‖ηi‖ = ‖ẑi − zi‖, is upper-bounded by

η̄i=‖EAi‖
∥∥∥∥
η0

η0

∥∥∥∥+2−b
√
n(1+n2)

i−1∑
k=0

‖EAi−1−kB‖ (20)

for all i = 0, . . . , Imax − 1, where matrix E =
[
I 0

]
.

Proof: From the one-step recurrence (15) or (17) we find that

ξi = Ai ξ0 +
i−1∑
k=0

Ai−1−kBυk, i = 0, 1, . . . Imax − 1,

such that the result is obtained from applying the properties of the matrix norm. Observe that

2−b
√
n(1 + n2) is the maximum magnitude of υk for any k = 0, . . . , i− 1.

Since the matrix A is Schur stable, the bound in (20) converges. Indeed, the effect of the

initial error ξ0 decays according to

‖EAi‖ ∝ ρ(A)i, (21)

whereas the term driven by arithmetic round-off errors in every iteration behaves according to
i−1∑
k=0

‖EAi−1−kB‖ ∝ 1

1− ρ(A)
− ρ(A)i

1− ρ(A)
. (22)

This result can be used to choose the number of bits b a priori to meet accuracy specifications

on the minimizer.

V. EMBEDDED HARDWARE ARCHITECTURES FOR FIRST-ORDER SOLUTION METHODS

Amdahl’s law [35] states that the potential acceleration of an optimization algorithm through

parallelization is limited by the fraction of sequential dependencies in the algorithm. First-order

optimization methods such as the fast gradient method and ADMM have a smaller number of
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sequential dependencies than interior-point or active-set methods. In fact, a very large fraction of

the computation involves a single readily parallelizable matrix-vector multiplication, hence the

expected benefit from parallelization is substantial. Our implementations of both the fast gradient

method (Algorithm 1) and ADMM (Algorithm 2) differ somewhat from more conventional

implementations of these methods in order to minimize sequential dependencies. Observe that

in both of our algorithms, the computations of the individual vector components are independent

and the only communication occurs during matrix-vector multiplication. This allows for efficient

parallelization given the custom computing and communication architectures discussed next.

Specifically, we describe a tool that takes as inputs the data type, number of bits, level of

parallelism and the delays of an adder/subtracter (lA) and multiplier (lM ) and automatically

generates a digital architecture described in the VHDL hardware description language.

A. Hardware Architecture for the Fast Gradient Method

For a fixed-point data type, the parameterized architecture implementing Algorithm 1 for

problem (6) is depicted in Figure 1. The matrix-vector multiplication is computed in the block

labeled v̂T ŵ, which is shown in detail in Figure 2a. It consists of an array of Nnu parallel

multipliers followed by an adder reduction tree of depth dlog2Nnue. The architecture for

performing the projection operation on the set K̂ is shown in Figure 3a. It compares the incoming

value with the upper and lower bounds for that component. Based on the result, the component

is either saturated or left unchanged.

The amount of parallelism in the circuit is parameterized by the parameter P . In Figure 1,

P =1, meaning that there is parallelism within each dot-product but the that Nnu dot-products

required for matrix-vector multiplication are computed sequentially. If the level of parallelization

is increased to P = 2, there will be two copies of the shaded circuit in Figure 1 operating in

parallel, one computing the odd components of ŷi and ẑi, the other computing the even. The

different blocks communicate through a serial-to-parallel shift register that accepts P serial

streams and outputs Nnu parallel values for matrix-vector multiplication. These Nnu values are

the same for all blocks. It takes
⌈
Nnu

P

⌉
clock cycles to have enough data to start a new iteration,

hence the number of clock cycles needed to compute one iteration of the fast gradient method
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πK̂

Fig. 1: Fast gradient compute architecture. Boxes denote storage elements and dotted lines

represent Nnu parallel vector links. The dot-product block v̂T ŵ and the projection block πK̂

are depicted in Figures 2a and 3a in detail. FIFO stands for first-in first-out memory and is used

to hold the values of the current iterate for use in the next iteration. In the initial iteration, the

multiplexers allow x̂ and Φ̂n through and the result Φ̂nx̂ is stored in memory. In the subsequent

iterations, the multiplexers allow ŷi and I − Ĥn through and Φ̂nx̂ is read from memory.

+
+

+
+

+

(a) Dot-product block with parallel tree archi-

tecture.

(b) Hardware support for warm-starting, which adds one cycle

delay. The last entries of the vector are padded with wN , which

can be constant or depend on previous values.

Fig. 2: Architectures of dot-product and warm-starting.

for P ∈ {1, . . . , Nnu} is

LF :=

⌈
Nnu
P

⌉
+ lAdlog2Nnue+ 2lM + 3lA + 1 . (23)

Expression (23) suggests that there will be diminishing returns to parallelization – a conse-

quence of Amdahl’s law. However, (23) also suggests that if there are enough resources available,

the effect of the problem size on increased computational delay is only logarithmic in the worst
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(a) Box projection block. The total delay

from t̂i to ẑi+1 is lA + 1.

(b) Cone projection block. The total delay for each component is 2lA+1.

x and δ are assumed to arive and leave in sequence.

Fig. 3: Projection architectures. A delay of lA cycles is denoted by z−lA .

case. As Moore’s law continues to deliver devices with greater transistor densities, the possibility

of implementing algorithms in a fully parallel fashion for medium size optimization problems

is becoming a reality.

B. Hardware Architecture for ADMM

Algorithm 2 shares the same computational patterns with Algorithm 1. Matrices M̂11 and M̂12

have the same dense structure as matrices I − Ĥn and Φ̂n, hence the high-level architecture is

very similar and we do not include it here to avoid replication. The differences lie in the size

of the matrices, which affect the number of clock cycles to compute one iteration

LA :=
⌈nA
P

⌉
+ lAdlog2 (nA)e+ lM + 6lA + 2 , (24)

where nA := N(nu + nx + |S|) + nx + |S|, warm-starting support for variables z and ν

(shown in Figure 2b), and the projection block for supporting soft state constraints described

in Figure 3b. This block performs the projection of the pair (x, δ) onto the set satisfying

{|x− c| ≤ r + δ, δ ≥ 0} by using an explicit solution map for the projection operation and

computing the search procedure efficiently. In fact, only lA extra cycles are needed compared to

the standard hard-constrained projection. The block performs a set of comparisons that are used

to drive the select signal of a multiplexer.

Note that since multiplication and division by powers of two requires no resources in hardware

(just a reinterpretation of an array of signals), if ρ is restricted to be a power of two, no hardware

multipliers are required in ADMM outside of the matrix-vector multiplication block. Table I

compares the resources required to implement the two architectures. Again, with ADMM we
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TABLE I: Resources required for the fast gradient and ADMM computing architectures.

Fast gradient ADMM

multipliers P [Nnu + 2] PnA

adders/subtracters P [Nnu + 3] P [nA + 15]

memory blocks P [Nnu + nx + 4] P [nA + 8]

size of memory blocks
⌈
Nnu
P

⌉ ⌈
nA
P

⌉

trade higher resource requirements and longer delays for the capability to solve more general

problems.

Note that in a custom hardware implementation of either of our two methods, the number

of execution cycles per iteration is exact. We also employ a fixed number of iterations in our

implementations of both algorithms, rather than implementing a numerical convergence test,

since such convergence tests represent a somewhat self-defeating computational bottleneck in a

hard real-time context. Providing cycle accurate completion guarantees is critical for reliability

in high-speed real-time applications [36].

VI. NUMERICAL BENCHMARK STUDY

We reported an implementation of the fast gradient architecture in the preliminary publica-

tion [19] to implement an input-constrained MPC controller for a real-world, highly dynamic

positioning system inside an atomic force microscope requiring a sampling rate in excess of

1MHz. In this paper, for easier comparison with the existing literature, we use a widely studied

benchmark example consisting of a set of oscillating masses attached to walls [10], [37], as

illustrated by Figure 4. The system is sampled every 0.5 seconds assuming a zero-order hold

and the masses and the spring constants have a value of 1kg and 1Nm−1, respectively2. The

system has four control inputs and two states for each mass, its position and velocity, for a total

of eight states. The goal of the controller, with parameters N = 10, Q = I and R = I , is to

track a reference for the position of each mass while satisfying the system limits.

We consider first the case where the control inputs are constrained to the interval [−0.5, 0.5]

and the optimization problem (6) with 40 optimization variables is solved via the fast gradient

2Note that we choose this sampling time and parameter set for ease of comparison to other published results. Our implemented

methods require computation times on the order of 1µs, as we report later in this section.
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u4

Fig. 4: Oscillating masses example.

method. Secondly, we consider additional hard constraints on the rate of change in the inputs on

the interval [−0.1, 0.1] and soft constraints on the states corresponding to the mass positions on

the interval [−0.5, 0.5]. The remaining states are left unconstrained. The state is augmented to

enforce input-rate constraints, and the further inclusion of slack variables increases the dimension

of the state vector to nx = 12. Note that for problems of this size, MPC control designs based

on parametric programming [3], [4] are generally not tenable, necessitating online optimization

methods. The resulting problem with 216 optimization variables in the form (9) is solved via

ADMM. The closed-loop trajectories using an MPC controller based on a double precision

solver running to optimality are shown in Figure 5, where all the constraints become active for a

significant portion of the simulation. We do not include any disturbance model in our simulation,

although the presence of an exogenous disturbance signal would not lead to infeasibility since

the MPC implementation includes only soft-constrained states. Trajectories arising from closed-

loop simulation using a controller based on our fixed-point methods are indistinguishable from

those in Figure 5, so are excluded for brevity.

As a reference for later comparison, an input-constrained problem with two inputs and 10

states, formulated as an optimization problem of the form (6) with 40 variables, was solved

in [37] using the fast gradient method in approximately 50 µseconds. In terms of state-constrained

implementations, a problem with three inputs and 12 states, formulated as a sparse quadratic

program with hard state constraints and 300 variables, was solved in [10] using an interior-point

method reporting computing times in the region of 5 milliseconds, while the state constraints

remained inactive. In both cases, the solvers were implemented in software on high-performance

desktop machines.

Our goal is to choose the minimum number of bits and solver iterations such that the

closed-loop performance is satisfactory while minimizing the amount of resources needed to

achieve certain sampling frequencies. Figure 6 shows the convergence behavior of the fast
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(a) Trajectory with 21 samples hitting the input con-

straints.

10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

x
1
(t
)

10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

∆
u

1
(t
)

10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

u
1
(t
)
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the input, rate and output constraints, respectively.

Fig. 5: Closed-loop trajectories showing actuator limits, desirable output limits and a time-varying

reference. MPC allows for optimal operation on the constraints.
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Fig. 6: Theoretical error bounds given by (20) and practical convergence behavior of the fast

gradient method (left) and ADMM (right) under different number representations.

gradient method and ADMM for two samples in the simulation with an actively constrained

solution. The theoretical error bounds on the residual round-off error ηi, given by (20), allow

one to make practical predictions for the actual error for a given number of bits, which, as

predicted by Lemma 2 and (21) and (22), converges to a finite value. Table II shows the relative
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TABLE II: Percentage difference in average closed-loop cost with respect to a standard double

precision implementation. In each table, b is the number of fraction bits employed and Imax is

the (fixed) number of algorithm iterations. In certain cases, the error increases with the number

of iterations due to increasing accumulation of round-off errors.

Imax\b 10 12 14 16 18 20

5 5.30 2.76 2.87 3.03 3.05 3.06

10 14.53 0.14 0.06 0.18 0.20 0.02

15 17.04 0.35 0.25 0.04 0.00 0.01

20 16.08 0.15 0.19 0.06 0.01 0.00

25 17.27 0.15 0.19 0.05 0.01 0.00

30 16.90 0.31 0.21 0.03 0.02 0.00

35 18.44 0.19 0.22 0.05 0.01 0.00

(a) FGM

Imax\b 10 12 14 16 18 20

10 53.49 0.18 1.17 0.68 0.57 0.58

15 47.84 0.46 1.08 0.63 0.51 0.49

20 44.79 0.76 0.95 0.57 0.45 0.42

25 47.03 0.98 0.86 0.51 0.39 0.37

30 45.17 1.02 0.82 0.46 0.35 0.32

35 46.02 1.07 0.81 0.43 0.31 0.28

40 46.87 1.29 0.74 0.41 0.28 0.25

(b) ADMM

difference in closed-loop tracking performance for different fixed-point fast gradient and ADMM

controllers compared to the optimal controller. Assuming that a relative error smaller than 0.05%

is desirable, using 15 solver iterations and 16 fraction bits would be a suitable choice for the

fast gradient method. The problem (9) solved via ADMM appears more vulnerable to reduced

precision implementation, although satisfactory control performance can still be achieved using

a surprisingly small number of bits. In this case, employing more than 18 fraction bits or more

than 40 ADMM iterations results in insignificant improvements.

For the implementation of ADMM there are a number of tuning parameters left to the control

designer. Setting the regularization parameter to ρ = 2 simplifies the implementation and pro-

vided good convergence behavior. The maximum observed value for the Lagrange multipliers ν

was 7.8, so the penalty parameter σ1 was set to σ1 = 8 to obtain an exact penalty formulation as

described by Theorem 1. In Section III-C it was noted that the convergence of ADMM can be

very slow when there is large mismatch between the size of the primal and dual variables. This

problem can be largely avoided by scaling the matching condition (10) with a diagonal matrix,

where the entries associated with the soft-constrained states and the slack variables are assigned

σ and the rest are assigned 1. This scaling procedure correspond to variable transformations

y = Dỹ and z = Dz̃ that can be applied offline.
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In order to evaluate the potential computing performance the architectures described in Sec-

tion V were implemented in FPGAs. For a fixed number of iterations one can calculate the

execution time of the solver deterministically according to (23) or (24). The field programmable

gate array (FPGA) designs can be clocked at more than 400 MHz using chips from Xilinx’s

high-performance Virtex 6 family or at more than 230 MHz using devices from the low cost and

low power Spartan 6 family. Table III shows the achievable sampling times on the two families

for different levels of parallelization. The resource usage is stated in terms of the number of

embedded multiplier blocks since this is the limiting resource in these designs. For the input-

constrained problem solved via the fast gradient method, one can achieve sampling rates beyond

1 MHz with Virtex 6 devices using a modest amount of parallelization. One can also achieve

sampling rates in the region of 700 kHz with Spartan 6 devices consuming in the region of 1 W

of power. For the state-constrained problem solved via ADMM, since the number of variables

is significantly larger, larger devices are needed and longer computational times have to be

tolerated. In this case, achievable solution times range from 40kHz to 200kHz for different

Virtex 6 devices.

Note that the fastest performance numbers reported in the literature are in the millisecond

region, several orders of magnitude slower than what is achievable using the techniques presented

in this paper.
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