
A New Optimal Stepsize For Approximate Dynamic
Programming

Ilya O. Ryzhov∗ Peter I. Frazier† Warren B. Powell‡

September 14, 2018

Abstract

Approximate dynamic programming (ADP) has proven itself in a wide range of
applications spanning large-scale transportation problems, health care, revenue man-
agement, and energy systems. The design of effective ADP algorithms has many di-
mensions, but one crucial factor is the stepsize rule used to update a value function
approximation. Many operations research applications are computationally intensive,
and it is important to obtain good results quickly. Furthermore, the most popular
stepsize formulas use tunable parameters and can produce very poor results if tuned
improperly. We derive a new stepsize rule that optimizes the prediction error in order
to improve the short-term performance of an ADP algorithm. With only one, relatively
insensitive tunable parameter, the new rule adapts to the level of noise in the problem
and produces faster convergence in numerical experiments.

1 Introduction

Approximate dynamic programming (ADP) has emerged as a powerful tool for solving
stochastic optimization problems in inventory control [1], emergency response [2], health
care [3], energy storage [4, 5, 6], revenue management [7], and sensor management [8]. In
recent research, ADP has been used to solve a large-scale fleet management problem with
50,000 variables per time period and millions of dimensions in the state variable [9], and an
energy resource planning problem with 175,000 time periods [10]. Applications in operations
research are especially demanding, often requiring the sequential solution of linear, nonlin-
ear or integer programming problems. When an ADP algorithm is limited to a few hundred
iterations, it is important to find a good solution as quickly as possible, a process that hinges
on a stepsize (or learning rate) which controls how new information is merged with existing
estimates.
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We illustrate the learning process using the language of classical Markov decision pro-
cesses. Consider an infinite-horizon dynamic program where V (S) is the value of being in
state S ∈ S and C(S, x,W ) is a possibly random reward earned from being in state S, taking
action x ∈ X and then observing random information W . It is well-known [11, 12] that we
can find the optimal, infinite-horizon value of each state using value iteration, which requires
iteratively computing, for each state S ∈ S,

V n(S) = max
x∈X

IE
[
C(S, x,W ) + γV n−1(S ′(S, x,W ))|S, x

]
(1)

where γ < 1 is a discount factor and S ′ is a random variable describing the next state given
that we were in state S, took action x, and observed W ∈ W .

There are many problems where (1) is difficult to solve due to the curse of dimensionality.
For this reason, there is a tradition, dating back to Bellman’s earliest work [13], of solving
this equation approximately. This field has evolved under a variety of names including
approximate dynamic programming (ADP), neuro-dynamic programming, and reinforcement
learning [see 14, 15, 16, 17]. In one major class of ADP methods known as approximate value
iteration, an observation of the value V (S) is bootstrapped from an approximation of the
downstream value of S ′, and then used to update that approximation. A generic procedure
for computing the observation is given by

v̂n = max
xn

∑
w∈W

P
(
W n+1 = w |Sn, xn

) [
C (Sn, xn, w) + γV̄ n−1

(
Sn+1 (Sn, xn, w)

)]
, (2)

where V̄ n−1 is the value function approximation, and Sn ∈ S is our state during the nth
iteration of the ADP algorithm. We intend (2) only to illustrate the concept of constructing
v̂n from V̄ n−1; in practice, the summation in (2) is also approximated. The expectation
within the max operator can be avoided using the concept of the post-decision state [17, 18],
which enables us to compute a modified version of (2) exceptionally quickly. This makes
approximate value iteration particularly useful for online applications (that is, those run in
the field), since it is very easy to implement.

Regardless of the particular technique used, we update V̄ n−1 by smoothing it with the
new observation v̂n, obtaining

V̄ n (Sn) = (1− αn−1) V̄ n−1 (Sn) + αn−1v̂
n (3)

where 0 < αn−1 ≤ 1 is a stepsize (or learning rate). Note again that (3) uses statistical
bootstrapping, where the estimate of the value v̂n depends on a statistical approximation
V̄ n−1 (Sn). This is the defining characteristic of approximate value iteration, which has
proven to be very successful in broad classes of operations research applications. The re-
inforcement learning community uses a closely related algorithm known as Q-learning [19],
which uses a similar bootstrapping scheme to learn the value of a state-action pair. In both
approximate value iteration and Q-learning, the stepsize plays two roles. First, it smooths
out the effects of noise in our observations (the lower the stepsize, the smoother the ap-
proximation). Second, it determines how much weight is placed on new rewards (the higher
the stepsize, the more a new reward is worth). This dual role of the stepsize is specific to
bootstrapping-based methods, whose ease of use makes them a natural approach for large-
scale applications in operations research where rate of convergence is crucial. See e.g. [20]
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or ch. 14 of [17] for more examples of such applications. The method of using a stepsize to
update the value of a state-action pair is based on the field of stochastic approximation; see
[21] and [22] for thorough treatments of this field. [23] and [24] were the first to apply this
theory to show the convergence of an ADP algorithm when the stepsize rule satisfies certain
conditions.

In general, ADP practice shows a strong bias toward simple rules that are easy to code.
One example of such a stepsize rule is αn−1 = 1/n, which has the effect of averaging over
the observations v̂n. In fact, this rule satisfies the necessary theoretical conditions for con-
vergence, which has made it into a kind of default rule [see e.g. 25, for a recent example].
However, the literature has acknowledged [26, 27, 28] that the 1/n rule can produce very
slow convergence; one of our contributions in this paper is to derive new theoretical bounds
providing insights into the weakness of this rule. For this reason, many practitioners use a
simple constant stepsize such as αn−1 ≡ 0.1. Nonetheless, the constant stepsize can produce
slow initial convergence for some problems and volatile, non-convergent estimates in the
limit. It is also easy to construct problems where any single constant will work poorly. [29]
solves an inventory problem for spare parts, where a high-volume spare part may remain in
inventory for just a few days, while a low-volume part may remain in inventory for hundreds
of days. A small stepsize will work very poorly with a low-volume part, while large stepsizes
fail to dampen the noise, and are not appropriate for high-volume parts.

Such applications require the use of stochastic stepsize rules, where αn−1 is computed
adaptively from the error in the previous prediction or estimate. These methods include the
stochastic gradient rule of [30] (and other stochastic gradient algorithms, e.g. by [31] and
[32]), the Delta-Bar-Delta rule of [33] and its variants [34], and the Kalman filter [35, 36]. A
detailed survey of both deterministic and stochastic stepsizes is given in [37], with additional
references in [34]. The main challenge faced by these methods is that the prediction error is
difficult to estimate in a general MDP, often resulting in highly volatile stepsizes with large
numbers of tunable parameters. A recent work by [38] adopts a different approach based on
the relative frequency of visits to different states, but is heavily tied to on-policy learning,
whereas practical implementations often use off-policy learning to promote exploration [39].
In all of these cases, the literature largely ignores the dependence of the observation v̂n on the
previous value function approximation V̄ n−1, arguably the defining feature of approximate
value iteration. For instance, the OSA algorithm of [37], which can be viewed as a bias-
adjusted Kalman filter [or BAKF, the name used in 17], assumes independent observations.

We approach the problem of stepsize selection by studying an MDP with a single state
and action. This model radically streamlines the behaviour of a general DP, but retains key
features of DP problems that are crucial to stepsize performance, namely the bias-variance
tradeoff and the dependence of observations. We use this model to make the following
contributions: 1) We derive easily computable, convergent upper and lower bounds on the
time required for convergence under 1/n, demonstrating that the rate of convergence of
1/n can be so slow that this rule should almost never be used for ADP. 2) We derive a
closed-form, easily computable stepsize rule that is optimal for the single-state, single-action
problem. This is the first stepsize rule to account for the dependence of observations in ADP.
The formula requires no tuning, and is easy to apply to a general multi-state problem. 3)
We analyze the convergence properties of our stepsize rule. We show that it does not stall,
and declines to zero in the limit. This is the first optimal stepsize for ADP that provably has
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these properties. 4) We present numerical comparisons to other stepsizes in a general ADP
setting and demonstrate that, while popular competing strategies are sensitive to tunable
parameters, our new rule is robust and fairly insensitive to its single parameter. This last
property is of vital practical importance, allowing developers to focus on approximation
strategies without the concern that poor performance may be due to a poorly tuned stepsize
formula.

Section 2 defines the optimality of a stepsize, and illustrates the need for an optimal
stepsize rule by theoretically demonstrating the poor performance of αn−1 = 1/n on our
single-state, single-action problem. Section 3 derives the optimal stepsize rule for the ap-
proximate value iteration problem, and shows how it can be used in a more general ADP
setting. Section 4 presents a numerical sensitivity analysis of the new rule in the single-state
problem. Finally, Sections 5-6 present numerical results for more general ADP examples.

2 Setup and motivation

Section 2.1 lays out the stylized ADP model used for our analysis, and defines the optimality
of a stepsize in this setting. Section 2.2 motivates the need for an optimal stepsize by showing
that the commonly used stepsize αn−1 = 1/n produces unusably slow convergence in our
model.

2.1 Mathematical model

In the dynamic programming literature, the notion of an “optimal” stepsize most commonly
refers to the solution to the optimization problem

min
αn−1∈[0,1]

IE
[(
IEv̂n − V̄ n (Sn)

)2
]
. (4)

We refer to the quantity inside the expectation as the prediction error. Recall from (2) that
v̂n serves as an observation (albeit an approximate one) of the value of being in state Sn. The
prediction error is the squared difference between this observation and the current estimate
V̄ n−1 (Sn) of the value.

The prediction error is a standard objective for an optimal stepsize rule, and is used in
reinforcement learning (e.g. the IDBD algorithm of [33], used e.g. by [40] in RL), stochastic
gradient methods [30], Kalman filtering [36], and signal processing [37]. The main challenge
faced by researchers is that, for a general dynamic program, (4) cannot be solved in closed
form. For this reason, most error-minimizing stepsize algorithms [including very recent work
in this area; see 34, for an overview] adopt a gradient descent approach, in which the stepsize
is adjusted based on an estimate of the derivative of (4) with respect to αn−1. The resulting
stepsize algorithms are no longer optimal, and can exhibit volatile behaviour in the early
stages. Many of them require extensive tuning.

While we also seek to minimize prediction error, we adopt a different approach. Instead
of approximating (4) in the general case, we consider a stylized dynamic program with a
single state and a single action, where (4) has a closed-form solution. In this setting, (1)
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reduces to v∗ = c + γv∗ and has the solution v∗ = c
1−γ . The ADP equations (2) and (3)

reduce to

v̂n = ĉn + γv̄n−1, (5)

v̄n = (1− αn−1) v̄n−1 + αn−1v̂
n, (6)

where the random variables ĉn, n = 1, 2, ... are independent and identically distributed, with
c = IEĉn and σ2 = V ar (ĉn). The prediction error in this setting reduces to the formulation

min
αn−1∈[0,1]

IE
[
(IEv̂n − v̄n)2] .

Although the system described by (5) and (6) is much simpler than a general MDP, it
nonetheless retains two key features that are fundamental to all DPs:

1) A tradeoff between bias and variance in the approximation v̄n, governed by the stepsize
αn−1;

2) Dependence of the bootstrapped observation v̂n on the approximation v̄n−1.

In Section 3.4, we consider a finite-horizon extension that captures a third key feature:

3) Time-dependence of the bias-variance tradeoff.

Of course, in a general DP, these issues exhibit much more complex behaviour than in the
streamlined single-state, single-action model. However, the stylized model is still subject to
these issues, and can provide insight into how they can be resolved in the general case. The
main advantage offered by this model is that it allows us to address these issues using a
closed-form solution for the optimal stepsize, explicitly capturing the relationship between
the bias-variance tradeoff and the dependence of the observations. We will then be able to
adapt the solution of the single-state problem to general dynamic programs (in Section 3.3).

We briefly note that we allow the observation ĉn in (5) to be random. At a very high
level, this allows us to view the single-state, single-action problem as a stand-in for an
infinite-horizon MDP in steady state. Recall the well-known property of Markov decision
processes that a) the policy produced by the basic value iteration update in (1) converges to
an optimal policy and b) the probability that we are in some state s converges to a steady-
state distribution [see 12]. As a result, the unconditional expectation of the contribution
earned at each iteration approaches a constant that we can denote by c. Again, while the
single-state, single-action model cannot capture all of the complexity of a general DP, it
allows us to distill a large class of DPs into a simple and elegant archetype capturing key
behaviours common to that class.

2.2 Motivation: slow convergence of αn−1 = 1/n

The research on error-minimizing stepsizes is motivated by the poor practical performance
of simple stepsize rules. Among these, the most notable is αn−1 = 1/n, which produces
provably convergent estimates of the value function [23], and thus persists in the literature
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as a kind of default rule, as evidenced by its recent use in e.g. [25]. The theoretical worst-
case convergence rate of this stepsize is known to be slow [27]. We now derive new bounds
that are easier to compute and demonstrate that the 1/n rule is unusably slow even for the
stylized single-state, single-action model of Section 2.1.

Consider the ADP model of (5) and (6). For simplicity, we assume in this discussion that
ĉn = c for all n, that is, all the rewards are deterministic. If an algorithm performs badly
in this deterministic case, we generally expect it to perform even worse when ĉn is allowed
to be random, since increasing noise generally slows convergence. We briefly summarize
our results and give a numerical illustration; the full technical details can be found in the
Appendix.

Theorem 1. v̄n ≥ c
1−γ

(
1− (n+ 1)−(1−γ)

)
for n = 0, 1, 2, ....

Theorem 2. v̄n ≤ c
1−γ

[
1− bn−(1−γ) − 1−γ

γ
1
n

]
for all n = 1, 2, ... where b = γ2+γ−1

γ
.

In our numerical illustration, we fix c to 1, because it only enters as a multiplicative factor
in the bounds and in the true value function as well. Thus γ is our only free parameter. The
results are plotted on a log-scale in Figure 1. As n grows large the upper and lower bounds
both approach the limiting value v∗ = 1/(1− γ). Convergence slows as γ increases.

In Figure 2, we show the number of iterations before v̄n reaches 1% of optimal. The lower
bound on the value of v̄n gives an upper bound on the number of iterations needed, and the
upper bound on v̄n gives a lower bound on the iterations needed. For γ near .7, we already
require 10, 000 iterations, causing difficulty for applications requiring a significant amount of
time per iteration. Then, as γ grows larger than .8 we require at least 108 iterations, which
is impractical for almost any application. As γ grows above .9, the number of iterations
needed is at least 1019.

We see that, in this simple problem, approximate value iteration with stepsize 1/n con-
verges so slowly as to be impractical for most infinite horizon applications, particularly when
the discount factor is close to 1. This behaviour is likely to be seen in other more complex
infinite horizon problems, and also in undiscounted finite horizon problems. The remainder
of this paper studies a new stepsize rule that is optimal for the single-state, single-action
MDP used in the above analysis.

3 An optimal stepsize for approximate value iteration

In Section 3.1, we derive a new stepsize rule that is optimal for the approximate value
iteration problem given by (5) and (6). We then study its convergence properties in Section
3.2. However, while we use the special case in (5)-(6) for theoretical tractability, our ultimate
goal is to obtain an algorithm that can be applied in a general dynamic program. This
extension is explained in Section 3.3, and the general form of our stepsize is given in (21).
Finally, Section 3.4 considers an extension to finite-horizon problems.
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(a) γ = 0.7.
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(b) γ = 0.8.
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(c) γ = 0.9.
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(d) γ = 0.95.

Figure 1: v̄(n) and its upper and lower bounds for different discount factors.

3.1 Derivation

The approximate value iteration problem is given by (5) and (6). As before, let c = IEĉn and
σ2 = V ar (ĉn). Observe that v̄n can be written recursively as

v̄n = (1− αn−1) v̄n−1 + αn−1ĉ
n + αn−1γv̄

n−1 = (1− (1− γ)αn−1) v̄n−1 + αn−1ĉ
n. (7)

The particular structure of this problem allows us to derive recursive formulas for the mean
and variance of the approximation v̄n. We assume that v̄0 = 0.

Proposition 1. Define

δn =

{
α0 n = 1
αn−1 + (1− (1− γ)αn−1) δn−1 n > 1,

and

λn =

{
α2

0 n = 1

α2
n−1 + (1− (1− γ)αn−1)2 λn−1 n > 1.
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Figure 2: Upper and lower bounds on number of iterations needed to get within 1% of
optimal, plotted for different ranges of γ.

Then, IE (v̄n) = δnc and V ar (v̄n) = λnσ2.

Proof. Observe that IE (v̄1) = α0c = δ1c and V ar (v̄1) = α2
0σ

2 = λ1σ2. Now suppose that
IE (v̄n−1) = δn−1c and V ar (v̄n−1) = λn−1σ2. By (7), we have

IE (v̄n) = (1− (1− γ)αn−1) δn−1c+ αn−1c = δnc.

Furthermore, v̄n−1 depends only on ĉn
′

for n′ < n, therefore v̄n−1 and ĉn are independent.
Consequently,

V ar (v̄n) = (1− (1− γ)αn−1)2 λn−1σ2 + α2
n−1σ

2 = λnσ2

as required.

The next result shows that these quantities are uniformly bounded in n; the proof is
given in the Appendix.

Proposition 2. For all n, δn ≤ 1
1−γ and λn ≤ 1

γ(1−γ)
.

We define the optimal stepsize for time n to be the value that achieves

min
αn−1∈[0,1]

IE
[
(v̄n (αn−1)− IEv̂n)2] , (8)

which is the minimum squared deviation of the time-n estimate v̄n from the mean of the
time-n observation v̂n. The constraint αn−1 ∈ [0, 1] is standard in ADP, but turns out to be
redundant here; as we see below (Corollary 4), minimizing the unconstrained objective will
produce a solution that always satisfies the constraint.
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We can simplify the objective function in (8) in the following manner:

IE
[
(v̄n (αn−1)− IEv̂n)2] = IE

[(
(1− αn−1) v̄n−1 + αn−1v̂

n − IEv̂n
)2
]

= IE
[(

(1− αn−1)
(
v̄n−1 − IEv̂n

)
+ αn−1 (v̂n − IEv̂n)

)2
]

= (1− αn−1)2 IE
[(
v̄n−1 − IEv̂n

)2
]

+ α2
n−1IE

[
(v̂n − IEv̂n)2]

+2αn−1 (1− αn−1) IE
[(
v̄n−1 − IEv̂n

)
(v̂n − IEv̂n)

]
.

The first equality is obtained using the recursive formula for v̄n from (7). Observe that

IE
[(
v̄n−1 − IEv̂n

)
(v̂n − IEv̂n)

]
= IE

(
v̄n−1v̂n

)
− IEv̄n−1IEv̂n

= Cov
(
v̄n−1, v̂n

)
,

whence we obtain

IE
[
(v̄n (αn−1)− IEv̂n)2] = (1− αn−1)2 IE

[(
v̄n−1 − IEv̂n

)2
]

+ α2
n−1IE

[
(v̂n − IEv̂n)2]

+2αn−1 (1− αn−1)Cov
(
v̄n−1, v̂n

)
. (9)

The error-minimizing stepsize is unique, due to the convexity of the prediction error; the
proof of this property is given in the Appendix.

Proposition 3. The objective function in (8) is convex in αn−1.

Due to Proposition 3, we can solve (8) by setting the derivative of the prediction error
equal to zero and solving for αn−1. This yields an equation

(αn−1 − 1) IE
[(
v̄n−1 − IEv̂n

)2
]

+ αn−1IE
[
(v̂n − IEv̂n)2]+ (1− 2αn−1)Cov

(
v̄n−1, v̂n

)
= 0

whence we obtain

αn−1 =
IE
[
(v̄n−1 − IEv̂n)

2
]
− Cov (v̄n−1, v̂n)

IE
[
(v̄n−1 − IEv̂n)2]+ IE

[
(v̂n − IEv̂n)2]− 2Cov (v̄n−1, v̂n)

. (10)

We now present our main result, which gives an explicit formula for (10).

Theorem 3. Assuming that α0 is given, the optimal time-n stepsize can be computed using
the formula

αn−1 =
(1− γ)λn−1σ2 + (1− (1− γ) δn−1)

2
c2

(1− γ)2 λn−1σ2 + (1− (1− γ) δn−1)2 c2 + σ2
n = 2, 3, ... (11)

where δn−1 and λn−1 are as in Proposition 1.
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Proof. We compute each expectation in (10). First, observe that

IE
[
(v̂n − IEv̂n)2] = V ar (v̂n) = V ar

(
ĉn + γv̄n−1

)
=
(
1 + γ2λn−1

)
σ2

using the independence of ĉn and v̄n−1 together with Proposition 1. We now use a bias-
variance decomposition [see e.g. 41] to write

IE
[(
v̄n−1 − IEv̂n

)2
]

= IE
[(
v̄n−1 − IEv̄n−1 + IEv̄n−1 − IEv̂n

)2
]

= IE
[(
v̄n−1 − IEv̄n−1

)2
]

+
(
IEv̄n−1 − IEv̂n

)2

= V ar
(
v̄n−1

)
+
(
IEv̄n−1 − IEv̂n

)2
(12)

where the cross term vanishes because the quantity IEv̄n−1 − IEv̂n is deterministic, and thus

IE
[(
v̄n−1 − IEv̄n−1

) (
IEv̄n−1 − IEv̂n

)]
=
(
IEv̄n−1 − IEv̂n

)
IE
(
v̄n−1 − IEv̄n−1

)
= 0.

By Proposition 1 V ar (v̄n−1) = λn−1σ2, and

IEv̂n − IEv̄n−1 = c+ γδn−1c− δn−1c =
(
1− (1− γ) δn−1

)
c

represents the bias of v̄n−1 in predicting v̂n. Thus,

IE
[(
v̄n−1 − IEv̂n

)2
]

= λn−1σ2 +
(
1− (1− γ) δn−1

)2
c2.

Finally, we compute

Cov
(
v̄n−1, v̂n

)
= IE

(
v̄n−1v̂n

)
− IEv̄n−1IEv̂n

= IE
(
v̄n−1

(
ĉn + γv̄n−1

))
− IEv̄n−1IE

(
ĉn + γv̄n−1

)
= cIEv̄n−1 + γIE

(
v̄n−1

)2 − cIEv̄n−1 − γ
(
IEv̄n−1

)2

= γV ar
(
v̄n−1

)
, (13)

where we use the independence of v̄n−1 and ĉn to obtain the third line. Substituting all of
these expressions into (10) completes the proof.

Corollary 4. For all n, αn−1 ∈ [0, 1].

Proof. The positivity of αn−1 is obvious from (11), where both the numerator and denom-
inator are sums of positive terms (it can easily be seen that λn−1 ≥ 0 for all n). To show
that αn−1 ≤ 1, first observe that

γ (1− γ)λn−1σ2 ≤ σ2

by the result of Proposition 2. From this it can easily be shown that

(1− γ)λn−1σ2 ≤ (1− γ)2 λn−1σ2 + σ2,

completing the proof.
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We see that both the numerator and the denominator of the fraction in (11) include
covariance terms. To our knowledge, this is the first stepsize in the literature to explicitly
account for the dependence between observations. Furthermore, the formula includes a
closed-form expression for the bias IEv̄n−1 − IEv̂n, which is balanced against the variance of
v̄n−1.

We close this section by showing that our formula behaves correctly in special cases.
If the rewards we collect are deterministic, then our estimate v̄n is simply adding up the
discounted rewards, and should converge to v∗ under the optimal stepsize rule. If the process
v̂n is stationary, i.e. γ = 0, then v̄n is simply estimating c, and we should be using the known
optimal stepsize rule of αn−1 = 1

n
.

Corollary 5. If the underlying reward process has zero noise, then σ2 = 0 and αn−1 = 1
for all n. It follows that v̄n = v̂n for all n, and

lim
n→∞

v̄n =
∞∑
i=0

γic =
c

1− γ
.

Corollary 6. If the problem is stationary, that is, γ = 0, then the optimal stepsize is given
by αn−1 = 1

n
for all n as long as α0 = 1.

Proof. If α1 = 1 and γ = 0, then v̂n = ĉn. It can easily be shown by induction that IEv̄n = c
for all n, which means that δn = 1 for all n. Then, (11) reduces to

αn−1 =
λn−1σ2

(1 + λn−1)σ2
=

λn−1

1 + λn−1
.

We claim that λn−1 = 1
n−1

. It is clearly true that λ1 = 1, from which it follows that α1 = 1
2
.

Now suppose that αn−2 = 1
n−1

and λn−2 = 1
n−2

. Then,

λn−1 = α2
n−2 + (1− αn−2)2 λn−2 =

1

(n− 1)2 +
n− 2

(n− 1)2 =
n− 1

(n− 1)2 =
1

n− 1

and αn−1 = 1
n
, as required.

3.2 Convergence analysis

It is well-known [22, 23] that, with some regularity assumptions on the underlying stochastic
processes, a stochastic approximation algorithm is provably convergent as long as αn−1 ≥ 0
for all n and

∞∑
n=1

αn−1 =∞,
∞∑
n=1

α2
n−1 <∞.

We show the first condition by establishing a lower bound on αn−1. The proof is given in
the Appendix.

Proposition 4. For all n ≥ 1, αn−1 ≥ 1−γ
n

.

11



From Proposition 4, it follows that

∞∑
n=1

αn−1 ≥ (1− γ)
∞∑
n=1

1

n
= ∞,

satisfying one of the conditions for convergence. The second condition
∑∞

n=1 α
2
n−1 <∞ can

sometimes be relaxed to the requirement that αn−1 → 0. For instance, [22] discusses the suffi-
ciency of this requirement in stochastic approximation problems with bounded observations.
See also [42] for recent proofs of convergence with weaker conditions on the stepsizes. We do
not show almost sure convergence in this paper, but we do show that αn−1 → 0, a condition
that is common to the above convergence proofs. While this does not automatically imply
a.s. convergence, it does produce convergence in L2 for the single-state, single-action model.

We begin by showing that the bias term in the stepsize formula converges to zero; the
proof is given in the Appendix. We then prove that αn−1 → 0.

Proposition 5. limn→∞ δ
n = 1

1−γ .

Theorem 7. limn→∞ αn−1 = 0.

Proof. It is enough to show that λn → 0 and apply (11) together with Proposition 5. We show
that every convergent subsequence of λn must converge to zero using a proof by contradiction.

First, suppose that nk is a subsequence satisfying limk→∞ λ
nk = `. Combining this with

Proposition 5, we return to (11) and find

lim
k→∞

αnk
=

(1− γ) `

(1− γ)2 `+ 1
.

We then return to Proposition 1 and derive

lim
k→∞

λnk+1 =

[
(1− γ) `

(1− γ)2 `+ 1

]2

+

[
1− (1− γ)2 `

(1− γ)2 `+ 1

]2

`

=
`

(1− γ)2 `+ 1
. (14)

It follows from (14) that, if ` > 0, then

lim
k→∞

λnk+1 < lim
k→∞

λnk . (15)

By Proposition 2, we know that the sequence (λn)∞n=1 is bounded. Therefore, the set of
accumulation points for this sequence is closed and bounded. Suppose that

lim sup
n→∞

λn = λ∗

and that λ∗ > 0. Let nk be a subsequence with λnk → λ∗. The subsequence (λnk−1)
∞
k=1 is

bounded, and therefore must contain an additional convergent subsequence, which we denote
by mk. Suppose that limk→∞ λ

mk = `. It must be the case that

lim
k→∞

λmk+1 = lim
k→∞

λnk = λ∗.

12



This implies that ` > 0, because otherwise (14) would imply that λ∗ = 0. However, it then
follows from (15) that λ∗ < `. This is impossible, because we took λ∗ to be the largest
accumulation point of the sequence (λn)∞n=1. It must therefore be the case that

lim sup
n→∞

λn = 0,

whence λn → 0, as required.

It follows immediately from these results that v̄n → v∗ in L2 and in probability. Observe
that

IE
[
(v̄n − v∗)2] = IE

[
(v̄n − IEv̄n + IEv̄n − v∗)2]

= V ar (v̄n) + (IEv̄n − v∗)2

= λnσ2 +

(
δnc− c

1− γ

)2

. (16)

Together, Proposition 5 and Theorem 7 imply that (16) vanishes to zero as n→∞.
Proposition 4 along with Theorem 7 have important practical as well as theoretical

implications. The lower bound provided by Proposition 4 ensures that the stepsize will
not decline too quickly. While this bound is provided by many standard rules, including
1/n, we now have the benefit of a rule that is designed to minimize prediction error for
faster convergence, but is still guaranteed to avoid the risk of stalling. The guarantee in
Theorem 7 that the stepsize will asymptotically approach zero is particularly valuable in
applications where we are interested not just in the policy, but in the values themselves. For
example, in finance, the value function is used to estimate the price of an option. In the fleet
management application of [9], the value functions were used to estimate the marginal value
of truck drivers. In both applications, it is essential to have an algorithm that will produce
tight estimates of these values.

3.3 Algorithmic procedure for general dynamic programs

We now discuss how (11) can be adapted for a general dynamic program. The first step is
to consider an extension of the single-state model where c and σ2 are unknown. In this case,
we estimate the unknown quantities by smoothing on the observations ĉn and plugging these
estimates into the expression for the optimal stepsize [this is known as the plug-in principle;
see e.g. 43]. Let

c̄n = (1− νn−1) c̄n−1 + νn−1ĉ
n (17)

(σ̄n)2 = (1− νn−1)
(
σ̄n−1

)2
+ νn−1

(
ĉn − c̄n−1

)2
(18)

represent our estimates of the mean and variance of the rewards. The secondary stepsize
νn−1 is chosen according to some deterministic stepsize rule (e.g. set to a constant). Then,
(11) becomes

αn−1 =
(1− γ)λn−1 (σ̄n)2 + (1− (1− γ) δn−1)

2
(c̄n)2

(1− γ)2 λn−1 (σ̄n)2 + (1− (1− γ) δn−1)2 (c̄n)2 + (σ̄n)2 n = 2, 3, ... (19)
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where δn−1, λn−1 are computed the same way as before.
At first glance, it appears that we run into the problem of needing a secondary stepsize

to calculate an optimal one. However, it is important to note that the secondary stepsize
νn−1 is only required to estimate the parameters of the distribution of the one-period reward
ĉn. Unlike the sequence v̄n of value function approximations, the one-period reward in the
single-state problem is stationary, and can be straightforwardly estimated from the random
rewards collected in each time period.

The true significance of (19) is that it can be easily extended to a general MDP with
many states and actions. In this case, we replace the random reward ĉn in (17)-(18) by
the one-period reward C(Sn, xn) earned by taking action xn in state Sn. The sequence of
these rewards depends on the policy used to visit states; in approximate value iteration, this
policy will change over time, thus making the sequence of rewards non-stationary. However,
as discussed in Section 2.1, the basic value-iteration update of (2) eventually converges to an
optimal policy, meaning that the expected one-period reward earned in a state converges to
a single system-wide constant c̄. This suggests that, in a general DP, it is sufficient to keep
one single system-wide estimate c̄n (and similarly σ̄n) rather than to store state-dependent
estimates.

On the other hand, the quantities δn and λn are related to the bias and variance of
the value function approximation. This suggests that, in a general DP, they should be
state-dependent. For example, if we use the Q-learning algorithm, we will have a separate
approximation for each state-action pair, leading to a state-dependent stepsize. Figure 3
describes an example implementation of OSAVI in a classic finite-state, finite-action MDP
where a generic ADP algorithm is used with a lookup table approximation. In a more
complex problem, if we employ a state aggregation method such as that of [44], we would
store a different δn and λn for each block of the aggregation structure. The memory cost is
similar to the procedure in [32], where two recursively updated quantities are stored for each
estimated parameter.

In a general ADP setting, we suggest using a constant stepsize in (17), e.g. νn−1 = 0.2,
to avoid giving equal weight to early observations taken in the transient period before the
MDP has reached steady state, while the probability of being in a state is still changing with
the policy. Our numerical work suggests that performance is not very sensitive to the choice
of νn−1.

Finally, we briefly note that our convergence analysis in Section 3.2 mostly carries over
to the general case. First, the bound in Proposition 4 still holds almost surely, since the
proof holds for arbitrary values of c and σ, even if they change between iterations. The
bounds in Proposition 2 also hold, since the proofs only use the functional forms of the
recursive updates for δn and λn, and hold for any arbitrary stepsize sequence. Consequently,
Theorem 7 still holds a.s. as long as the sample-based approximations c̄n, σ̄n do not explode
to infinity on any subsequence. If these approximations have a type of convergence (e.g. in
probability), we will have αn−1 → 0 also in that sense.

3.4 Extension to finite horizon

While it is possible to solve finite horizons using the same algorithmic strategy, we observe
that optimal stepsizes vary systematically as a function of the number of time periods to
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1: Initialize V̄ 0(S, x) and α0(S, x) for all (S, x). Set δ1(S, x) = α0(S, x) and λ1(S, x) =
α0(S, x)2. Also initialize c̄0, σ̄0, S0, and x0.

2: Set n = 1, and generate S1 from the transition function.

3: Solve
v̂n = max

x∈X
C (Sn, x) + γV̄ n−1 (Sn, x)

and let xn be the value of x that achieves the maximum.

4: Update the system-wide parameters

c̄n = (1− νn−1) c̄n−1 + νn−1C (Sn, xn) ,

(σ̄n)2 = (1− νn−1)
(
σ̄n−1

)2
+ νn−1

(
C (Sn, xn)− c̄n−1

)2
.

5: If n > 1, calculate

αn−1

(
Sn−1, xn−1

)
(20)

=
(1− γ)λn−1 (Sn−1, xn−1) (σ̄n)2 + (1− (1− γ) δn−1 (Sn−1, xn−1))

2
(c̄n)2

(1− γ)2 λn (Sn−1, xn−1) (σ̄n)2 + (1− (1− γ) δn−1 (Sn−1, xn−1))2 (c̄n)2 + (σ̄n)2 .

6: Update the value function approximation using

V̄ n
(
Sn−1, xn−1

)
= (1− αn−1) V̄ n−1

(
Sn−1, xn−1

)
+ αn−1v̂

n.

7: Update the stepsize parameters using

δn
(
Sn−1, xn−1

)
= αn−1

(
Sn−1, xn−1

)
+
(
1− (1− γ)αn−1

(
Sn−1, xn−1

))
δn−1

(
Sn−1, xn−1

)
,

λn
(
Sn−1, xn−1

)
= α2

n−1

(
Sn−1, xn−1

)
+
(
1− (1− γ)αn−1

(
Sn−1, xn−1

))2
λn−1

(
Sn−1, xn−1

)
.

8: Generate Sn+1 from the transition function or by following a target policy.

9: Increment n and return to Step 3.

Figure 3: Example implementation of infinite-horizon OSAVI in a finite-state, finite-action
MDP with a generic ADP algorithm.

the end of horizon. The best stepsize for states at the end of the horizon is very close to
1/n, because we do not face the need to sum rewards over a horizon. Optimal stepsizes then
increase as we move closer to the first time period.

We can capture this behavior using a finite horizon version (with T time stages) of our
single-state, single-action problem. In this setting, approximate value iteration is replaced

15



with approximate dynamic programming. Equations (5) and (6) become

v̂nt = ĉnt + γv̄n−1
t+1 (21)

v̄nt = (1− αn−1,t) v̄
n−1
t + αn−1,tv̂

n
t . (22)

These equations are solved for t = 1, ..., T − 1 in each time step n. We assume that v̄nT = 0
for all n, and that the observations ĉnt are independent and identically distributed for all n
and t.

Our analysis can easily be extended to this setting. First, we can obtain expressions for
the expected value and variance of v̄nt that generalize our derivations of δn and λn in Section
3.1. The following proposition describes these expressions.

Proposition 6. For t = 1, ..., T − 1, define

δnt =

{
α0,t n = 1(
1 + γδn−1

t+1

)
αn−1,t + (1− αn−1,t) δ

n−1
t n > 1

Also, for t, t′ = 1, ..., T − 1, let

λnt,t′ =

{
α2

0,t1{t=t′} n = 1
α2
n−1,t1{t=t′} + Jn−1

t,t′ +Kn−1
t,t′ + Ln−1

t,t′ +Mn−1
t,t′ n > 1

where

Jn−1
t,t′ = (1− αn−1,t) (1− αn−1,t′)λ

n−1
t,t′ ,

Kn−1
t,t′ = γ (1− αn−1,t)αn−1,t′λ

n−1
t,t′+1,

Ln−1
t,t′ = γαn−1,t (1− αn−1,t′)λ

n−1
t+1,t′,

Mn−1
t,t′ = γ2αn−1,tαn−1,t′λ

n−1
t+1,t′+1.

Then, IE (v̄nt ) = δnt c and Cov (v̄nt , v̄
n
t′) = λnt,t′σ

2.

The proof uses the same logic as the proof of Proposition 1. We can think of λn as a
symmetric matrix that can be updated recursively using the elements of λn−1. The matrix
starts out diagonal, and as n increases, the covariances gradually expand from the main
diagonal outward. Next, we can repeat the analysis of Section 3.1 to solve

min
αn−1,t∈[0,1]

IE
[
(v̄nt (αn−1,t)− IEv̂nt )2] .

The next result gives the solution.

Theorem 8. If α0,t is given, the optimal stepsize for time t at iteration n is given by

αn−1,t =

(
λn−1
t,t − γλn−1

t,t+1

)
σ2 +

(
1− δn−1

t + γδn−1
t+1

)2
c2(

λn−1
t,t − 2γλn−1

t,t+1 + γ2λn−1
t+1,t+1

)
σ2 +

(
1− δn−1

t + γδn−1
t+1

)2
c2 + σ2

. (23)

In the infinite-horizon case, this reduces to our original formula in (11). The finite-
horizon formula requires us to store more parameters in the form of a matrix λn, which
has the potential to incur substantially greater computational cost. The benefit is that
we can now optimally vary the stepsize by t. If c and σ2 are unknown, we can adapt the
approximation procedure outlined in Section 3.3, and replace the unknown values in (23)
with c̄n and (σ̄n)2.
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4 Experimental study: one state, one action

We first study the performance of our stepsize rule on an instance of the single-state, single-
action problem. This allows us to obtain insights into the sensitivity of performance with
respect to different problem parameters. We considered normally distributed rewards with
mean c = 1 and standard deviation σ = 1, with γ = 0.9 as the discount factor. The optimal
value for this problem is V ∗ = 10. All policies used v̄0 = 0 as the initial approximation.
Furthermore, all sample-based parameters for these policies (e.g. c̄0 and σ̄0 for OSAVI) were
initialized to zero here and throughout all parts of our study. Five different stepsize rules
were implemented; we briefly describe them as follows.

Optimal stepsize for approximate value iteration (OSAVI). We use the approximate ver-
sion of the optimal stepsize, given by (21). The secondary stepsize νn−1 was set to 0.2.

Bias-adjusted Kalman filter (OSA/BAKF). We use the approximate version of the OSA/BAKF
algorithm in [37, Fig. 4]. Like OSAVI, this stepsize minimizes a form of the prediction er-
ror for a scalar signal processing problem, but assumes that observations are independent.
A secondary stepsize rule ν̄n−1 = 0.05 is used to estimate the bias of the value function
approximation (unlike OSAVI, which uses a closed-form expression for this quantity).

McClain’s rule. McClain’s stepsize formula is given by

αn =

{
1 if n = 1

αn−1

1+αn−1−ᾱ otherwise,

where ᾱ is a tunable parameter. This stepsize behaves like the 1/n rule in early iterations,
but quickly converges to the limit point ᾱ, and then behaves more like a constant stepsize
rule. This tends to happen within approximately 10 iterations. For our experiments, we
used ᾱ = 0.1; the issue of tuning ᾱ is discussed in Section 4.2. McClain’s rule should be
viewed as a slightly more sophisticated version of a constant stepsize.

Harmonic stepsize. This deterministic rule is given by αn−1 = a
a+n

, where a > 0 is a
tunable parameter. A value of a = 10 yielded good performance for our choice of problem
parameters. However, the harmonic stepsize is sensitive to the choice of the tunable param-
eter a, which is highly problem dependent. If we expect good convergence in a few hundred
iterations, a on the order of 5 or 10 may work quite well. On the other hand, if we antici-
pate running our algorithm millions of iterations (which is not uncommon in reinforcement
learning), we might choose a on the order of 10,000 or higher. This issue is discussed further
in Section 4.2.

Incremental Delta-Bar-Delta (IDBD). This rule, introduced by [33], is given by αn−1 =
min {1, exp (∆n−1)}, where ∆n = ∆n−1 + θ (v̂n − v̄n−1)hn−1 and hn = (1− αn−1)hn−1 +
αn−1 (v̂n − v̄n−1). This is an example of an exponentiated gradient method, where averaging
is performed on the logarithm of the stepsize. We used θ = 0.001 as the tunable parameter.

We also considered the polynomial stepsize αn−1 = 1/nβ, but it consistently underper-
formed the rules listed above, and is omitted from the subsequent analysis. The constant
rule αn−1 = ᾱ yielded results very similar to McClain’s rule, and is also omitted.
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Figure 4: Objective values achieved by each stepsize rule over 104 iterations.

4.1 Numerical evaluation of stepsize rules

Figure 4 shows the value of the objective function in (8) achieved by each stepsize rule over
104 iterations. The OSAVI rule consistently achieves the best performance (lowest objective
value). However, the harmonic stepsize, when properly tuned, performs comparably. The
BAKF and McClain rules level off around an objective value of 10−2. Each data point in
Figure 4 is an average over an “outer loop” of 104 simulations.

It should be noted that, while IDBD displays the slowest convergence early on, it even-
tually overtakes BAKF and McClain’s rule and continues to exhibit improvement in the
late iterations. In the single-state setting, we found that it was less sensitive to its tunable
parameter than the harmonic rule, and also produced less volatile stepsizes than BAKF. We
will examine the performance of this rule in multi-stage problems later on. By contrast, the
other benchmarks (harmonic, McClain, and BAKF) were fairly sensitive to their tunable
parameters. We discuss this below in the context of the single-state problem, which allows
us to examine tuning issues with a minimal number of other problem inputs.

4.2 Discussion of tunable parameters

We begin by considering the approximate BAKF rule, which uses a secondary stepsize ν̄n−1

to estimate the bias βn. Figure 5(a) shows the effect of varying ν̄n−1 on the objective value
achieved by BAKF (with the optimal stepsize shown for comparison). We see that, when we
use a constant value for the secondary stepsize (e.g. ν̄n−1 = 0.05), there is a clear tradeoff
between performance in the early and late iterations. Smaller values of ν̄n−1 result in better
performance in the long run (the objective value achieved by BAKF plateaus at a lower
level), but worse performance in the short run. In terms of the quality of our approximation
of V ∗, smaller constants cause slower convergence, but more stable estimates.

It is also necessary to note one special case, where ν̄n−1 = 1/n. If we use the 1/n rule
for the secondary stepsize, the objective value achieved by BAKF declines to zero in the
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(a) BAKF rule. (b) OSAVI rule.

Figure 5: Effect of the secondary parameter νn−1 on the objective values achieved by (a) the
approximate BAKF rule, and (b) the approximate optimal rule.

long run. This is not the case when we use a constant stepsize. Furthermore, the use of the
1/n rule produces very close performance to that of OSAVI. However, in a general MDP,
where there are many different rewards, a constant stepsize may be better able to handle
the transient phase of the MDP. For this reason, we focus primarily on constant values of
ν̄n−1 in this study.

Even with a declining secondary stepsize, the BAKF rule is outperformed by OSAVI with
a simple constant secondary stepsize of νn−1 = 0.2. The results for different values of ν̄n−1

indicate that BAKF is quite sensitive to the choice of ν̄n−1.
Figure 5(b) suggests that OSAVI is relatively insensitive to the choice of secondary step-

size. The lines in Figure 5(b) represent the performance of OSAVI for values of νn−1 ranging
from 0.05 to as high as 0.5. We see that these changes have a much smaller effect on the
performance of OSAVI than varying ν̄n−1 had on the BAKF rule. Very small values of νn−1,
such as 0.05, do yield slightly poorer performance, but there is little difference between 0.2
and 0.5. Furthermore, the objective value achieved by OSAVI declines to zero for each con-
stant value of νn−1, whereas BAKF always levels off under a constant secondary stepsize. We
conclude that OSAVI is more robust than BAKF, and requires less tuning of the secondary
stepsize.

Figure 6(a) shows the sensitivity of McClain’s rule to the choice of tunable parameter ᾱ.
The effect is very similar to the effect of using different constant values of ν̄n−1 in Figure 5(a).
Smaller values of ᾱ give better (more stable) late-horizon performance and worse (slower)
early-horizon performance.

The harmonic rule is analyzed in Figure 6(b). We see that a = 10 is a good choice for
this problem, with the particular parameter values (variance and discount factor) that we
have chosen. Larger values of a are consistently worse, and smaller values are only effective
in the very early iterations. However, a = 10 yields very good performance, the best out of
all the competing stepsize rules.

In fact, it is possible to tune the harmonic rule to perform competitively against OSAVI.
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(a) McClain’s rule. (b) Harmonic rule.

Figure 6: Sensitivity of (a) McClain’s rule and (b) the harmonic rule to their respective
tunable parameters.

However, the best value of a is highly problem-dependent. Figure 7(a) shows that a = 10
continues to perform well when σ2 is increased to 4, and even achieves a slightly lower
objective value than the approximate optimal rule in the later iterations, although OSAVI
performs noticeably better in the early iterations. However, Figure 7(b) shows that a = 100
becomes the best value when the discount factor γ is increased to 0.99. The optimal rule
has not been retuned in Figure 7; all results shown are for νn−1 = 0.2. Interestingly, it
appears that the optimal choice of a is more sensitive to the discount factor than to the
signal-to-noise ratio.

We conclude based on Figures 6(b) and 7 that the best choice of a in the harmonic
stepsize rule is very sensitive to the parameters of the problem, and that the best choice of a
for one problem setting can perform very poorly for a different problem. By contrast, Figure
5(b) shows that OSAVI is relatively insensitive to its tunable parameter. A simple value of
νn−1 = 0.2 yields good results in all of the settings considered. We claim that OSAVI is a
robust alternative to several leading stepsize rules.

5 Experimental study: general MDP

We also tested the general OSAVI rule from Section 3.3 on a synthetic MDP with 100 states
and 10 actions per state, generated in the following manner. For state S and action x, with
probability 0.8 the reward C (S, x) was generated uniformly on [0, 2], and with probability
0.2 it was generated uniformly on [18, 20]. For each (S, x), we randomly picked 10 states to be

reachable. For each such state S ′, we generated a number bS,S′,x ∼ U [0, 1] and let
bS,S′,x∑
S′′ bS,S′′,x

be the probability of making a transition to S ′ out of (S, x). The transition probability to
any state not reachable from (S, x) was zero. In this manner, we obtained a sparse MDP
with some high-value states, leading to some variety in the value function. We used value
iteration to compute the true optimal value for γ = 0.9 and γ = 0.99.
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(a) σ2 = 4. (b) γ = 0.99.

Figure 7: Sensitivity of the harmonic stepsize rule in different problem settings.

5.1 Infinite-horizon setting

Each stepsize was implemented together with the following off-policy approximate value
iteration algorithm. The value function approximation V̄ 0 (S, x) = 0 is defined for each
state-action pair (S, x), as in the Q-learning algorithm. Upon visiting state Sn, an action
xn is chosen uniformly at random. Then, a new state S ′ is simulated from the transition
probabilities of the MDP. We then compute

v̂n = max
x

C (S ′, x) + γV̄ n−1 (S ′, x) ,

V̄ n (Sn, xn) = (1− αn−1) V̄ n−1 (Sn, xn) + αn−1v̂
n,

where αn−1 is chosen according to some stepsize rule. The next state Sn+1 to be visited in
the next iteration is then chosen uniformly at random (not set equal to S ′).

We briefly discuss the reasoning behind this design. Any policy that uses the value
function approximation to make decisions will also implicitly depend on the stepsize used to
update that approximation. The stepsize affects the policy, which then affects the sequence
(and frequency) of visited states, which in turn affects the calculation of future stepsizes.
Ensuring that “good” states are visited sufficiently often is very important to the practical
performance of ADP algorithms, but this issue (known as the problem of exploration) is
quite separate from the problem of stepsize selection, and is outside the scope of our paper.
We have sought to decouple the stepsize from the ADP policy by randomly generating states
and actions.

We ran the above algorithm for 104 iterations with each of the five stepsize rules from
Section 4. Performance after N iterations can be evaluated as follows. We find the policy π
that takes the action arg maxxC (S, x) + γV̄ N (S, x) at state S, and then calculate the value
V π = (I − γP π)−1Cπ, where P π

S,S′ is the probability of transitioning from S to S ′ under the
policy π, and Cπ(S) is the reward obtained by following π in state S. Then, we calculate

1

|S|
∑
S

V ∗(S)− V π(S),
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(a) γ = 0.9. (b) γ = 0.99.

Figure 8: Suboptimality for each stepsize rule for γ = 0.9 and γ = 0.99 in the 100-state
MDP.

where V ∗ is the true value function obtained from value iteration. This gives us the sub-
optimality of policy π. We average this quantity over 104 simulations, each consisting of N
iterations of the learning algorithm. With 104 simulations, the standard errors of this perfor-
mance measure are negligible relative to its magnitude, and are omitted from the subsequent
figures and discussion.

We compared the following stepsize rules: McClain’s rule with ᾱ = 0.1, the harmonic rule
with a = 10 and a = 100 (these are the tuned values that were found in Section 4.2 to work
best for γ = 0.9 and γ = 0.99, respectively), the BAKF rule of [37] with a secondary stepsize
of 0.05, and OSAVI with a secondary stepsize of 0.2. For IDBD, we experimented with
several orders of magnitudes for θ, and found that θ = 0.001 produced good performance,
although the difference between magnitudes was relatively small. We also made the stepsizes
state-dependent in order to achieve quicker convergence. For example, the harmonic rule is
given by αn−1 (S) = a

a+Nn(S)
where Nn(S) is the number of times state S was visited in n

iterations. The parameters δn, λn and ζn used by OSAVI and BAKF were also chosen to be
state-dependent.

Figure 8 shows the average suboptimality achieved by each stepsize rule over time, up
to 104 iterations. We see that, for both discount factors, the harmonic rule with a = 10
achieves the best performance early on, but slows down considerably in later iterations.
OSAVI achieves the best performance in the second half of the time horizon, and the margin
of victory is more clearly pronounced for γ = 0.99.

We conclude that OSAVI yields generally competitive performance. The harmonic rule
can be tuned to perform well, but performance is quite sensitive to the value of a, which is
particularly visible in Figure 8(b). The secondary parameter for OSAVI was not tuned at
all, as we wish to observe that a single constant value is sufficient to produce competitive
performance.
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(a) Average suboptimality. (b) Values of αn−1,t.

Figure 9: Finite-horizon results: (a) Suboptimality for different stepsize rules. (b) Magni-
tudes of αn−1,t for finite-horizon OSAVI.

5.2 Finite-horizon setting

Finite-horizon problems introduce the dimension that the relative size of the learning bias
versus the noise in the contribution depends on the time period. As a result, the optimal
stepsize behaviour changes with time. In the finite-horizon case, we run the same off-policy
algorithm as before, with the update now calculated via the equations

v̂nt = max
x

C (S ′t, x) + γV̄ n−1
t+1 (S ′, x)

V̄ n
t (Snt , x

n
t ) = (1− αn−1,t) V̄

n−1
t (snt , x

n
t ) + αn−1v̂

n
t

for t = 1, ..., T − 1. The true value Vt (S) of being in state S at time t can be found using
backward dynamic programming; in the following, we use the values at t = 1 to evaluate
all policies. Our performance measure is again the suboptimality of the policy induced by
the value function approximation, averaged over all states. We used the same MDP as in
Section 5.1 with the horizon T = 20, and the discount factor γ = 0.99.

We compared the approximate version of the finite-horizon OSAVI rule from (23) to
McClain’s rule with ᾱ = 0.1 and the harmonic rule αn−1,t = a

a+n
with a = 10 and a = 100.

These rules achieved the best performance in the previous experiments, and can be easily
applied to a finite-horizon problem. As before, all stepsizes were made to be state-dependent.
Figure 9(a) shows the average suboptimality of each stepsize rule. We see that the harmonic
rule is competitive with OSAVI overall. However, the performance of a = 10 slows down in
later iterations, as in Figure 8. Furthermore, while a = 100 outperforms OSAVI in the mid-
to late iterations, OSAVI has largely closed the gap by the end and continues to improve,
while the harmonic rule again slows down.

Finally, Figure 9(b) shows the magnitude of the stepsize αn−1,t produced by the OSAVI
formula in a simple synthetic MDP where all 100 states are reachable from each (S, x)
and transition probabilities are normalized i.i.d. samples from a U [0, 1] distribution. Our
purpose here is to illustrate the behaviour of the optimal stepsize for different t. When
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t = 19, OSAVI is identical to the 1/n rule, as we would expect, since this is the last time
in the horizon. We assume V20 (S) = 0 for all S, so the observations v̂n19 are stationary, and
Corollary 6 applies. For values of t earlier in the time horizon, the optimal stepsize steadily
increases, with the largest values of αn−1,t being for t = 1. It takes a long time for our
observations to propagate backward across the time horizon, and so we need larger stepsizes
at time t = 1 to ensure that these observations have an effect. We note that, for earlier time
periods, OSAVI goes through a period of exploration before settling on a curve which can
be closely approximated by a

a+n
for a suitably calibrated choice of a. For the finite-horizon

problem, a should be different for each time period.

6 Experimental study: ADP for a continuous inven-

tory problem

The last part of our experimental study demonstrates how OSAVI can be used in conjunction
with ADP on a problem where the state space is continuous. We present a stylized inventory
problem where a generic resource can be bought and sold on the spot market, and held in
inventory in the interim. The basic structure of our problem appears in applications in
finance [45], energy [5], inventory control [29], and water reservoir management [46]. We
deliberately abstract ourselves from any particular setting, as we wish to keep the focus on
the stepsize rule and test it in a generic setting for which ADP is required.

The state variable of the generic inventory problem contains two dimensions. Let St =
(Rt, Pt), where Rt denotes the amount of resource currently held in inventory, and Pt de-
notes the current spot price of the resource. We assume that Rt can take values in the set
{0, 0.02, 0.04, ..., 1}, representing a percentage of the total inventory capacity R̄. The action
xt represents our decision to buy more inventory (positive values) or sell from our current
stock (negative values). We assume that we can buy or sell up to 50% of the total capacity
in one time step, again in increments of 2%. Thus, there are up to 50 actions in the problem.
The reward C (P, x) = −P · R̄ · x represents the revenue obtained (or cost incurred) after
making decision x given a price P .

While the resource variable Rt is discrete, we assume that the spot price Pt is continuous,
and follows a geometric Ornstein-Uhlenbeck (mean reverting) process, a standard price model
in finance and other areas. With minor modifications to the problem, Pt could also be
changed into an exogenous supply process, which we could draw from to satisfy a demand.
The important aspect is that Pt is continuous, which makes it impossible to solve (1) for every
state. Furthermore, even for a given state St, computing the expectation in (1) is difficult,
because the transition to the next state St+1 depends on a continuous random variable. For
these reasons, we approach the problem using approximate dynamic programming with a
discrete value function approximation. To address the issue of the continuous transition
to the next state, we use the post-decision state concept introduced in [18] and discussed
extensively by [17]. Given a state St and a decision xt, the post-decision state Sxt = (Rx

t , P
x
t )

is given by the equations

Rx
t = Rt + xt,

P x
t = Pt.
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The next pre-decision state St+1 is then obtained by setting Rt+1 = Rx
t and simulating

Pt+1 from the price process. Given a value function approximation V̄ n−1, the update v̂nt is
computed using

v̂nt = max
xt

C (P n
t , xt) + γV̄ n−1

t (Sx,nt ) .

This quantity is then used to update the previous post-decision state, that is,

V̄ n
t−1

(
Sx,nt−1

)
= (1− αn−1,t−1) V̄ n−1

t−1

(
Sx,nt−1

)
+ αn−1,t−1v̂

n
t .

Thus, we can adaptively improve our value function approximation without computing an
expectation.

For our value function approximation, we used a lookup table where the log-price logPt
was discretized into 34 intervals of width 0.125 between −2 and 2. Thus, the table contained
a total of 51 · 34 = 1734 entries, with each entry initialized to a large value of 104, in keeping
with the recommendation in Sec. 4.9.1 of [17] to use optimistic initial estimates. However,
while the approximation used a discretized state space, our experiments simulated Pt using
the continuous price process. The price was only discretized during calls to the lookup table.
This is an important detail: while we use a discrete value function approximation, we are
still solving the original continuous problem.

The price process was instantiated with P0 = 30, mean-reversion parameter 0.0633 and
volatility 0.2. Most prices are thus around $30, but sharp spikes are possible. As before, we
use a pure exploration policy where each action xt is chosen uniformly at random. Also as
before, we simulate a future state from the price process in order to compute v̂nt , but the
next state to actually be visited by the algorithm is generated randomly (the resource level
is generated uniformly at random, and the log-price is generated uniformly between −2.125
and 2.125). Recall that this is necessary in order to separate the performance of the stepsize
from the quality and architecture of the value function approximation.

We used the same policies as in Section 5: McClain’s rule with ᾱ = 0.1, the harmonic
rule with a = 10, the BAKF rule of [37] with a secondary stepsize of 0.05, IDBD with
θ = 0.001, and OSAVI with a secondary stepsize of 0.2. To evaluate the performance of each
stepsize rule after N iterations, we fixed the approximation V̄ N and then simulated the total
reward obtained by making decisions of the form xt = arg maxxC (Pt, x)+γV N

t (Sxt ) in both
finite- and infinite-horizon settings. This quantity was averaged over 2.5×104 sample paths.
Figure 10 reports the performance of the approximation obtained using different stepsize
rules. Since our objective is to maximize revenue, higher numbers on the y-axis represent
better quality.

Figure 10(a) shows the performance of OSAVI in the infinite-horizon setting. Because
of the larger size of the inventory problem, we require several thousand iterations in order
to obtain any improvement in the target policy specified by V̄ N . After 4000 iterations, we
find that OSAVI consistently yields the most improvement in the value of the target policy.
Analogously to Figure 9(a) in Section 5.2, we also compared OSAVI to the harmonic rule
in a finite-horizon setting; the results are shown in Figure 10(b). As in the infinite-horizon
setting, several thousand iterations are required before any improvement can be observed,
but OSAVI consistently outperforms the best version of harmonic.

Our experiments on the inventory problem offer additional evidence that our new stepsize
rule can be applicable to more complex dynamic programming problems, which cannot be
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(a) Infinite horizon. (b) Finite horizon.

Figure 10: Offline policy values for different stepsize rules in the inventory problem with (a)
infinite horizon and (b) finite horizon.

solved exactly, and where additional techniques such as the post-decision state variable
are necessary to deal with continuous state spaces and difficult expectations. Even in the
streamlined form considered here, the inventory problem features a continuous price variable,
and the value of being in a state depends on the behavior of a mean-reverting stochastic
differential equation. The fact that OSAVI retains its advantages over other stepsize rules
in this setting is an encouraging sign.

7 Conclusion

We have proposed a mathematical framework for analyzing stepsize selection in approximate
dynamic programming. Our analysis is based on a stylized model of a single-state, single-
action MDP. We used this model to derive new rate of convergence results for the popular 1/n
stepsize rule. Even in this stylized problem, approximate value iteration converges so slowly
under the 1/n rule as to be virtually unusable for most infinite-horizon applications. This
underscores the importance of stepsize selection in general dynamic programming problems.

We have derived a new optimal stepsize minimizing the prediction error of the value
function approximation in the single-state model. To our knowledge, this stepsize is the first
to take into account the covariance between the observation we make of the value of being in
a state, and our approximation of that value, a property that is inherent in approximate value
iteration. Furthermore, we are able to compute a closed-form expression for the prediction
bias in the single-state, single-action case, considerably simplifying the task of estimating
this quantity in the general case. The rule can be easily extended to a general MDP setting,
both finite- and infinite-horizon.

We have tested our stepsize rule against several leading deterministic and stochastic rules.
In the single-state, single-action case, we consistently outperform the other stepsize rules.
While some competing rules (particularly the harmonic rule) can be tuned to yield very
competitive performance, they are also very sensitive to the choice of tuning parameter. On
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the other hand, our stepsize rule is robust, displaying little sensitivity to the parameter used
to estimate the one-period reward. We also tested our stepsize rule on a general discrete-
state MDP, as well as on a more complex ADP problem. We found that OSAVI performs
competitively against the other rules in both finite- and infinite-horizon settings.

We conclude that our stepsize rule can be a good alternative to other leading stepsizes.
Our conclusion reflects the particular set of experiments that we chose to run. It is important
to remember that deterministic stepsizes such as the harmonic rule can be finely tuned to a
particular problem, resulting in better performance than the adaptive rule that we present.
The strength of our rule, however, is its ability to adjust to the evolution of the value function
approximation, as well as its relative lack of sensitivity to tuning.

A Slow convergence of αn−1 = 1/n

Setting the stepsize to αn = 1
n+1

, we know [e.g. from 22] that the approximation is guaranteed
to converge to the optimal value. Let v̄0 = 0 be the initial approximation. We rewrite (6)
for time n+ 1 using (5) as

v̄n+1 − v̄n = αn(v̂n+1 − v̄n) =
1

n+ 1
(c− (1− γ)v̄n), (24)

where the above equations hold for n ∈ N∗ = {0, 1, 2, . . .}. We characterize the slow conver-
gence of approximate value iteration smoothed with a 1/n stepsize by bounding v̄n above
and below by

1− (n+ 1)−(1−γ) ≤ v̄n

v∗
≤ 1− γ2 + γ − 1

γ
n−(1−γ) − 1− γ

γ

1

n
(25)

for n ≥ 1. This bound implies that v̄n converges particularly slowly for γ larger than .8. For
example, for γ ≥ .9, this bound tells us that approximate value iteration takes at least 1019

iterations to reach within 1% of optimal. This is too many iterations for even the fastest
implementation.

We approximate the discrete time update equation (24) with a continuous time differential
equation in which v̄n+1 − v̄n is approximated by the derivative of v̄n with respect to n. The
first step is to extend the definition of v̄n from the natural numbers onto the positive reals
through a piecewise linear interpolation. We define

v̄(n) = (1− (n− bnc))v̄bnc + (n− bnc)v̄dne (26)

= v̄bnc + (n− bnc)(v̄dne − v̄bnc) (27)

for all n ∈ R+, where v̄(n) is given for n ∈ N∗ by the recursion defined by (6). Here, bnc
is the greatest integer less than or equal to n, and dne is the least integer greater than or
equal to n. As can be seen in (26), we are simply writing v̄ (n) as a weighted average of its
rounded values. Observe that, for n integer, v̄(n) = v̄n.

First, we note some well-known properties of the sequence {v̄(n)} in Lemma 1. The proof
is straightforward, and we omit it.

Lemma 1. v̄(n) is increasing and concave in n, and bounded above by c
1−γ .
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The right derivative of the interpolation function v̄ is given by

d+

dn
v̄(n) =

1

bnc+ 1
(c− (1− γ)v̄(bnc)). (28)

Our strategy is to construct functions U : IR2 → IR and L : IR2 → IR such that L(v̄(n), n) ≤
d+

dn
v̄(n) ≤ U(v̄(n), n). Fix any n0 ∈ R+. Then a lower bound for v̄ on [n0,∞) is given by

any solution l to the differential equation

l′(n) = L(l(n), n)

with boundary condition l(n0) = v̄(n0). Similarly, an upper bound for v̄ on [n0,∞) is given
by any solution u to the differential equation

u′(n) = U(u(n), n)

with boundary condition u(n0) = v̄(n0).

Lemma 2. For n ∈ N∗, d+

dn
v̄(n) ≤ v̄(n+1)

n+1
.

Proof. We begin by noting, v̄(n+1) =
∑n

k=0 v̄(k+1)−v̄(k) =
∑n

k=0
d+

dn
v̄(k). By the concavity

of v̄ as shown in Lemma 1, d+

dn
v̄(k) ≤ d+

dn
v̄(n) for all k ≤ n, so v̄(n + 1) ≤

∑n
k=0

d+

dn
v̄(n) =

(n+ 1)d
+

dn
v̄(n). Dividing by n+ 1 completes the proof.

Theorem 9. For any n0 > 0, v̄ is bounded above by

v̄(n) ≤ c

1− γ

[
1− bn−(1−γ) − 1− γ

γ

1

n

]
where

b = n1−γ
0

[
1− 1− γ

n0γ
− 1− γ

c
v̄(n0)

]
. (29)

Proof. We begin by rewriting v̄(bnc) as

v̄(bnc) = v̄(bnc+ 1)− (v̄(bnc+ 1)− v̄(bnc))

= v̄(bnc+ 1)− d+

dn
v̄(bnc)

≥ v̄(bnc+ 1)− v̄(bnc+ 1)

bnc+ 1

≥ v̄(bnc+ 1)− c/(1− γ)

bnc+ 1

where the third step is by Lemma 2, and the fourth step is by Lemma 1. We combine this
with (28) to write

d+

dn
v̄(n) ≤ 1

bnc+ 1

(
c− (1− γ)v̄(bnc+ 1) +

c

bnc+ 1

)
.
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Then, the inequality n ≤ bnc+ 1 implies that

d+

dn
v̄(n) ≤ 1

n

(
c− (1− γ)v̄(bnc+ 1) +

c

n

)
.

The same inequality n ≤ bnc + 1 together with Lemma 1 imply that v̄(bnc + 1) ≥ v̄(n),
which implies

d+

dn
v̄(n) ≤ 1

n

(
c− (1− γ)v̄(n) +

c

n

)
.

Defining U : IR2 → IR by U(v, n) = 1
n

(
c− (1− γ)v + c

n

)
, d+

dn
v̄(n) ≤ U(v(n), n). We solve the

differential equation
u′(n) = U(u(n), n) (30)

with boundary condition
u(n0) = v̄(n0). (31)

The solution, u, is an upper bound for v̄ in the sense that u(n) ≥ v̄(n) for all n ≥ n0. We
solve for u using the general solution for first order linear differential equations [47]. The
integrating factor µ(n) is the integral of the term multiplying u(n),

µ(n) = exp

(∫
(1− γ)m−1 dm

)
= exp ((1− γ) log(n)) = n1−γ.

The integral of the right hand side multiplied by the integrating factor is∫
µ(m)c(m−1 +m−2) dm = c

∫
m−γ +m−1−γ dm =

c

1− γ

(
n1−γ − 1− γ

γ
n−γ − b

)
,

where b is any scalar. Thus, the solution of (30) is

u(n) =
1

µ(n)

∫
µ(m)c(m−1 +m−2) dm

=
c

1− γ
n1−γ − 1−γ

γ
n−γ − b

n1−γ

=
c

1− γ

(
1− 1− γ

γ

1

n
− bn−(1−γ)

)
,

where b is chosen to satisfy the boundary condition (31). Solving the relation

v̄(n0) = u(n0) =
c

1− γ

(
1− 1− γ

γ

1

n0

− bn−(1−γ)
0

)
for b gives (29).

In Theorem 2, the constant b is strictly positive only for γ > −1+
√

5
2

≈ .618 since

γb = γ2 + γ − 1 =
(
γ − −1+

√
5

2

)(
γ − −1−

√
5

2

)
. When b is strictly positive, Theorem 2

provides a useful bound on the asymptotic convergence of v̄. When b is negative, however,

as n becomes large the upper bound c
1−γ

[
1− bn−(1−γ) − 1−γ

γ
1
n

]
becomes larger than the

trivial upper bound c
1−γ shown in Lemma 1 and the bound is no longer useful. To obtain

useful bounds from Theorem 9 for a broader range of γ we may increase the n0 chosen.
Increasing n0 also increases b and tightens the bound across all γ.
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B Proofs

B.1 Proof of Theorem 1

We first generalize Theorem 1 to

v̄(n) ≥ c

1− γ
(
1− (n+ 1)−(1−γ)

)
for all n ≥ 0. (32)

We begin rewriting (28) using the inequality bnc ≤ n as

d+

dn
v̄(n) ≥ 1

n+ 1
(c− (1− γ)v̄(bnc)).

Then, the same inequality bnc ≤ n together with Lemma 1 imply that v̄(bnc) ≤ v̄(n), which
implies

d+

dn
v̄(n) ≥ 1

n+ 1
(c− (1− γ)v̄(n)).

Defining L : IR2 → IR by L(v, n) = 1
n+1

(c − (1 − γ)v), d+

dn
v̄(n) ≥ L(v(n), n). We solve the

differential equation

l′(n) = L(l(n), n) =
1

n+ 1
(c− (1− γ)l(n))

with boundary condition l(0) = v̄(0).
The solution to this differential equation satisfies l(n) ≤ v̄(n) for all n ≥ 0 and thus

bounds v̄ from below. We solve for l using the general solution for first order linear differential
equations [47]. The integrating factor is µ(n) = exp

[∫
(1− γ) dm

m+1

]
= exp [(1− γ) log(n+ 1)] =

(n+ 1)1−γ. The solution l is given by

l(n) =
1

µ(n)

∫
µ(m)

c

m+ 1
dm

= c(n+ 1)−(1−γ)

∫
(m+ 1)1−γ(m+ 1)−1 dm

= c(n+ 1)−(1−γ)

∫
(m+ 1)−γ dm

= c(n+ 1)−(1−γ)

(
1

1− γ
(n+ 1)1−γ − b

)
= c

(
1

1− γ
− b(n+ 1)−(1−γ)

)
,

where b is an integration constant chosen so that l(0) = v̄(0) = 0. We plug in n = 0 to this

equation to see 0 = c
(

1
1−γ − b

)
, implying that b = 1

1−γ . Thus,

l(n) = c

(
1

1− γ
− 1

1− γ
(n+ 1)−(1−γ)

)
=

c

1− γ
(
1− (n+ 1)−(1−γ)

)
,

which completes the proof.
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B.2 Proof of Theorem 2

Substituting n0 = 1 and v̄(1) = c into (29) gives

b = 1− 1− γ
γ
− 1− γ

c
c = −1− γ

γ
+ γ =

γ2 + γ − 1

γ

as required.

B.3 Proof of Proposition 2

The bound δn ≤ 1
1−γ is clearly true for n = 1, since α0 ≤ 1. Suppose now that δn−1 ≤ 1

1−γ
and λn−1 ≤ 1

γ(1−γ)
for n > 1. Then, using the definition of δn, we obtain

δn ≤ αn−1 + (1− (1− γ)αn−1)
1

1− γ
=

1

1− γ
.

Similarly, we can write

λn ≤ α2
n−1 + (1− (1− γ)αn−1)2 1

γ (1− γ)

=
1

γ (1− γ)
+

(
1 +

1− γ
γ

)
α2
n−1 −

2

γ
αn−1

=
1

γ (1− γ)
+

1

γ
α2
n−1 −

2

γ
αn−1

≤ 1

γ (1− γ)
,

as required.

B.4 Proof of Proposition 3

Let f (αn−1) be the right-hand side of (9). First, observe that

d2f

dα2
n−1

= 2IE
[(
v̄n−1 − IEv̂n

)2
]

+ 2IE
[
(v̂n − IEv̂n)2]− 4Cov

(
v̄n−1, v̂n

)
.

It is enough to show that

2Cov
(
v̄n−1, v̂n

)
≤ IE

[(
v̄n−1 − IEv̂n

)2
]

+ IE
[
(v̂n − IEv̂n)2] .

Recall from (12) and (13) that

IE
[(
v̄n−1 − IEv̂n

)2
]

= V ar
(
v̄n−1

)
+
(
IEv̄n−1 − IEv̂n

)2
,

Cov
(
v̄n−1, v̂n

)
= γV ar

(
v̄n−1

)
.

Observe that
IE
[
(v̂n − IEv̂n)2] = V ar (v̂n) = σ2 + γ2V ar

(
v̄n−1

)
and

2γV ar
(
v̄n−1

)
≤
(
1 + γ2

)
V ar

(
v̄n−1

)
since γ2 − 2γ + 1 = (γ − 1)2 ≥ 0 and V ar (v̄n−1) ≥ 0 also. This completes the proof.
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B.5 Proof of Proposition 4

We use an inductive argument to show that

λn−1 ≥ 1

n− 1
⇒ αn−1 ≥

1− γ
n

⇒ λn ≥ 1

n

for all n > 1. Assuming α0 = 1, we have λ1 = 1 by definition. Suppose now that λn−1 ≥ 1
n−1

for some n > 1. We rewrite (11) as

αn−1 =
1− γ
n
− 1− γ

n
+

(1− γ)λn−1σ2 + (1− (1− γ) δn−1)
2
c2

(1− γ)2 λn−1σ2 + (1− (1− γ) δn−1)2 c2 + σ2

=
1− γ
n

+ An−1,

where

An−1 =
n (1− γ)λn−1σ2 + (n− (1− γ)) (1− (1− γ) δn−1)

2
c2 − (1− γ)3 λn−1σ2 − (1− γ)σ2

n (1− γ)2 λn−1σ2 + n (1− (1− γ) δn−1)2 c2 + nσ2
.

The denominator of An−1 is clearly positive. To show that the numerator is positive as well,
it suffices to show that

n (1− γ)λn−1σ2 ≥ (1− γ)3 λn−1σ2 + (1− γ)σ2.

Because 1− γ ≥ (1− γ)3 for γ ∈ (0, 1), it remains to show that

(n− 1) (1− γ)λn−1σ2 ≥ (1− γ)σ2,

but this holds because λn−1 ≥ 1
n−1

by the inductive hypothesis. Thus, αn−1 ≥ 1−γ
n

.

Using the result that αn−1 ≥ 1−γ
n

, we show that λn ≥ 1
n
. Let us write

λn−1 =
1

n− 1
+ Ln−1,

αn−1 =
1− γ
n

+Mn−1,

where Ln−1,Mn−1 ≥ 0. Substituting these expressions into the definition of λn, we obtain

λn =

(
1− γ
n

+Mn−1

)2

+

(
1− (1− γ)

(
1− γ
n

+Mn−1

))2(
1

n− 1
+ Ln−1

)
.

This expression can be rewritten as

λn =
(1− γ)2

n2
+ 2

1− γ
n

Mn−1 +
(
Mn−1

)2

+

(
n− (1− γ)2

n
− (1− γ)Mn−1

)2
1

n− 1
+ Ln−1Gn−1,

where Gn−1 ≥ 0. Since n− 1 ≤ n− (1− γ)2, it follows that 1
n−1
≥ 1

n−(1−γ)2
and

λn ≥ 1

n
+

n

n− (1− γ)2

(
Mn−1

)2
+ Ln−1Gn−1,

whence λn ≥ 1
n
, as required.
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B.6 Proof of Proposition 5

We first show that the sequence (δn)∞n=1 is increasing. Recall from Proposition 2 that
(1− γ) δn−1 ≤ 1. It follows that (1− γ)αn−1δ

n−1 + δn−1 ≤ αn−1 + δn−1, whence

δn−1 ≤ αn−1 + (1− (1− γ)αn−1) δn−1 = δn,

which means that (δn) is increasing. Since this sequence is also bounded by Proposition 2,
it has a limit δ∗ ≤ 1

1−γ .

Suppose now that δ∗ < 1
1−γ . We rewrite the definition of δn as(

δn − δn−1
)

+ δn−1 = αn−1 + (1− (1− γ)αn−1) δn−1.

Subtracting δn−1 from both sides yields(
δn − δn−1

)
= αn−1

(
1− (1− γ) δn−1

)
.

The left-hand side converges to zero as n → ∞. On the right-hand side, if δ∗ < 1
1−γ , then

1 − (1− γ) δn−1 → 1 − (1− γ) δ∗ > 0. It then follows that αn−1 → 0. However, we can see
from (11) that this is impossible if δ∗ < 1

1−γ because, in the limit, both the numerator and

denominator will contain the strictly positive term (1− (1− γ) δ∗)2. All other terms in both
the numerator and denominator of (11) are positive. Therefore, it must be the case that
δ∗ = 1

1−γ .

C Discussion of OSAVI vs. BAKF

In this section, we provide additional background for our approach and discuss its relation to
the BAKF rule of [37]. This rule was originally presented under the name of OSA (Optimal
Stepsize Algorithm). However, because it is not optimal for dynamic programming, we will
refer to it by the alternate name of “bias-adjusted Kalman filter” given in [17]. The BAKF
rule is designed for a signal processing problem, in which there is a sequence of independent
observations X̂n with unknown means θn and common variance σ2. The unknown means
are estimated by the usual exponential smoothing technique

θ̄n (αn−1) = (1− αn−1) θ̄n−1 + αn−1X̂
n.

To compute θ̄n, the nth approximation, the BAKF rule chooses αn−1 to minimize

min
0≤αn−1≤1

IE
[(
θ̄n (αn−1)− θn

)2
]

.

The solution to this problem is given explicitly by the formula

αn−1 = 1− σ2

(1 + ζn−1)σ2 + (βn)2

where ζn−1 is given by the recursive formula

ζn =

{
α2

0 n = 1

α2
n−1 + (1− αn−1)2 ζn−1 n > 1
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and βn = θn − IEθ̄n−1 is the bias in the smoothed estimate from the previous iteration.
The BAKF rule is particularly relevant to our study because it also chooses the stepsize

to minimize the expected squared error of each prediction. For both BAKF and OSAVI, the
prediction error is the squared difference between the mean of the new observation and the
new estimate. In both cases, the resulting optimal stepsize contains one term representing
the bias of the approximation, and one term representing the variance.

The crucial difference is as follows. BAKF is designed for a general signal processing
problem in which the goal is to track a scalar moving signal. The work by [37] applies the
computational formula of BAKF to an application in ADP, but in fact the derivation of
BAKF uses a more general setting, whose main assumptions are violated in ADP. First,
BAKF assumes that the observations used in smoothing are independent, which is not the
case in approximate value iteration. Rather, the guiding principle of approximate value
iteration is to bootstrap new observations from old approximations (v̂n and v̄n−1 in the
single-state, single-action model), due to the impossibility of obtaining unbiased estimates
of the unknown value function.

By contrast, OSAVI makes the additional modeling assumption that observations are
constructed according to (5), and thus the prediction error in (8) is recast into a form that
reflects the specific structure of ADP. This can be viewed as a special case of the BAKF
derivation, but the additional structure imposed on the problem provides two important
improvements over BAKF. First, OSAVI explicitly incorporates the dependence between
the new observation and the old approximation. This dependence is crucial to the updating
structure of ADP, but is not handled by BAKF. Second, the bias term βn in BAKF is
unknown in practice (if we knew the bias, we would also know the true value). The work by
[37] advocates using sample-based approximations of this quantity, giving rise to a second
non-stationary estimation problem. On the other hand, the special structure assumed by
OSAVI allows us to derive a closed-form expression for the bias, given by (1− (1− γ) δn−1) c2.
In a general MDP, we also need to approximate c (see Section 3.3). However, if we interpret c
as the average one-period reward earned by following an optimal policy in steady-state, this
quantity is stationary, and thus is easier to estimate than the bias. We also see in Section 4
that the secondary estimation procedure is less sensitive to the secondary stepsize νn−1 for
OSAVI than for BAKF.

We conclude our discussion by noting that, on one hand, BAKF provides more generality,
and may be more appropriate in a general signal processing problem. On the other hand, in
the specific context of approximate value iteration, where observations are constructed via
bootstrapping and thus are inherently biased and dependent, OSAVI captures more of the
specific structure of ADP, leading to improved performance.
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[39] R. Sutton, C. Szepesvári, and H. Maei, “A convergent O(n) algorithm for off-policy
temporal-difference learning with linear function approximation,” in Advances in Neural
Information Processing Systems, D. Koller, Y. Bengio, D. Schuurmans, L. Bottou, and
R. Culotta, Eds., vol. 21, 2008, pp. 1609–1616.

[40] D. Silver, L. Newnham, D. Barker, S. Weller, and J. McFall, “Concurrent reinforcement
learning from customer interactions,” in Proceedings of the 30th International Confer-
ence on Machine Learning, 2013, pp. 924–932.

[41] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New
York, NY: Springer series in Statistics, 2001.

37



[42] M. Broadie, D. Cicek, and A. Zeevi, “General bounds and finite-time improvement for
the Kiefer-Wolfowitz stochastic approximation algorithm,” Operations Research, vol. 59,
no. 5, pp. 1211–1224, 2011.

[43] P. Bickel and K. Doksum, Mathematical Statistics - Basic Ideas and Selected Topics
Volume 1. Upper Saddle River, NJ: Prentice Hall, 2001.

[44] A. George, W. B. Powell, and S. R. Kulkarni, “Value Function Approximation using
Multiple Aggregation for Multiattribute Resource Management,” Journal of Machine
Learning Research, vol. 9, pp. 2079–2111, 2008.

[45] J. M. Nascimento and W. B. Powell, “Dynamic programming models and algorithms
for the mutual fund cash balance problem,” Management Science, vol. 56, no. 5, pp.
801–815, 2010.

[46] C. Cervellera, V. C. P. Chen, and A. Wen, “Optimization of a large-scale water reservoir
network by stochastic dynamic programming with efficient state space discretization,”
European Journal of Operational Research, vol. 171, no. 3, pp. 1139–1151, 2006.

[47] W. Boyce and R. DiPrima, Elementary Differential Equations, 6th ed. New York:
Wiley, 1997.

38


	1 Introduction
	2 Setup and motivation
	2.1 Mathematical model
	2.2 Motivation: slow convergence of n-1=1/n

	3 An optimal stepsize for approximate value iteration
	3.1 Derivation
	3.2 Convergence analysis
	3.3 Algorithmic procedure for general dynamic programs
	3.4 Extension to finite horizon

	4 Experimental study: one state, one action
	4.1 Numerical evaluation of stepsize rules
	4.2 Discussion of tunable parameters

	5 Experimental study: general MDP
	5.1 Infinite-horizon setting
	5.2 Finite-horizon setting

	6 Experimental study: ADP for a continuous inventory problem
	7 Conclusion
	A Slow convergence of n-1 = 1/n
	B Proofs
	B.1 Proof of Theorem  1
	B.2 Proof of Theorem  2
	B.3 Proof of Proposition 2
	B.4 Proof of Proposition 3
	B.5 Proof of Proposition 4
	B.6 Proof of Proposition 5

	C Discussion of OSAVI vs. BAKF

