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An Optimal Control Approach to the Multi-Agent Persistent

Monitoring Problem in Two-Dimensional Spaces
Xuchao Lin andChristos G. Cassandras

Abstract—We address the persistent monitoring problem in
two-dimensional mission spaces where the objective is to control
the trajectories of multiple cooperating agents to minimize an
uncertainty metric. In a one-dimensional mission space, wehave
shown that the optimal solution is for each agent to move at
maximal speed and switch direction at specific points, possibly
waiting some time at each such point before switching. In a two-
dimensional mission space, such simple solutions can no longer be
derived. An alternative is to optimally assign each agent a linear
trajectory, motivated by the one-dimensional analysis. Weprove,
however, that elliptical trajectories outperform linear ones. With
this motivation, we formulate a parametric optimization problem
in which we seek to determine such trajectories. We show thatthe
problem can be solved using Infinitesimal Perturbation Analysis
(IPA) to obtain performance gradients on line and obtain a
complete and scalable solution. Since the solutions obtained are
generally locally optimal, we incorporate a stochastic comparison
algorithm for deriving globally optimal elliptical trajec tories.
Numerical examples are included to illustrate the main result,
allow for uncertainties modeled as stochastic processes, and
compare our proposed scalable approach to trajectories obtained
through off-line computationally intensive solutions.

I. I NTRODUCTION

Autonomous cooperating agents may be used to perform
tasks such as coverage control [1], [2], surveillance [3] and
environmental sampling [4]–[6].Persistent monitoring(also
called “persistent surveillance” or “persistent search”)arises
in a large dynamically changing environment which cannot be
fully covered by a stationary team of available agents. Thus,
persistent monitoring differs from traditional coverage tasks
due to the perpetual need to cover a changing environment,
i.e., all areas of the mission space must be sensed infinitely
often. The main challenge in designing control strategies in
this case is in balancing the presence of agents in the changing
environment so that it is covered over time optimally (in some
well-defined sense) while still satisfying sensing and motion
constraints.

Control and motion planning for agents performing persis-
tent monitoring tasks have been studied in the literature, e.g.,
see [7]–[13]. In [14], we addressed the persistent monitoring
problem by proposing anoptimal controlframework to drive
multiple cooperating agents so as to minimize a metric of
uncertainty over the environment. This metric is a functionof
both space and time such that uncertainty at a point grows if it
is not covered by any agent sensors. To model sensor coverage,
we define a probability of detecting events at each point of the
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mission space by agent sensors. Thus, the uncertainty of the
environment decreases with a rate proportional to the event
detection probability, i.e., the higher the sensing effectiveness
is, the faster the uncertainty is reduced. It was shown in
[14] that the optimal control problem can be reduced to a
parametric optimization problem. In particular, the optimal
trajectory of each agent is to move at full speed until it
reaches some switching point, dwell on the switching point
for some time (possibly zero), and then switch directions.
Thus, each agent’s optimal trajectory is fully described bya
set of switching points{θ1, . . . ,θK} and associated waiting
times at these points,{w1, . . . ,wK}. This allows us to make
use of Infinitesimal Perturbation Analysis (IPA) [15] to de-
termine gradients of the objective function with respect to
these parameters and subsequently obtain optimal switching
locations and waiting times that fully characterize an optimal
solution. It also allows us to exploit robustness properties of
IPA to readily extend this solution approach to astochastic
uncertainty model.

In this paper, we address the same persistent monitoring
problem in a two-dimensional (2D) mission space. Using an
analysis similar to the one-dimensional (1D) case, we find
that we can no longer identify a parametric representation
of optimal agent trajectories. A complete solution requires
a computationally intensive process for solving a Two Point
Boundary Value Problem (TPBVP) making any on-line so-
lution to the problem infeasible. Motivated by the simple
structure of the 1D problem, it has been suggested to assign
each agent a linear trajectory for which the explicit 1D solution
can be used. One could then reduce the problem to optimally
carrying out this assignment. However, in a 2D space it is not
obvious that a linear trajectory is a desirable choice. Indeed,
a key contribution of this paper is to formally prove that an
elliptical agent trajectory outperforms a linear one in terms of
the uncertainty metric we are using. Motivated by this result,
we formulate a 2D persistent monitoring problem as one of
determining optimal elliptical trajectories for a given number
of agents, noting that this includes the possibility that one
or more agents share the same trajectory. We show that this
problem can be explicitly solved using similar IPA techniques
as in our 1D analysis. In particular, we use IPA to determine
on line the gradient of the objective function with respect
to the parameters that fully define each elliptical trajectory
(center, orientation and length of the minor and major axes).
This approach is scalable in the number of observed events,
not states, of the underlying hybrid system characterizingthe
persistent monitoring process, so that it is suitable for on-
line implementation. However, the standard gradient-based
optimization process we use is generally limited to local, rather
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than global optimal solutions. Thus, we adopt a stochastic
comparison algorithm from the literature [16] to overcome this
problem.

Section II formulates the optimal control problem for 2D
mission spaces and Section III presents the solution approach.
In Section IV we establish our key result that elliptical agent
trajectories outperform linear ones in terms of minimizingan
uncertainty metric per unit area. In Section V we formulate
and solve the problem of determining optimal elliptical agent
trajectories using an algorithm driven by gradients evaluated
through IPA. In Section VI we incorporate a stochastic com-
parison algorithm for obtaining globally optimal solutions and
in Section VII we provide numerical results to illustrate our
approach and compare it to computationally intensive solutions
based on a TPBVP solver. Section VIII concludes the paper.

II. PERSISTENTMONITORING PROBLEM FORMULATION

We considerN mobile agents in a 2D rectangular mission
spaceΩ ≡ [0,L1]× [0,L2]⊂R

2. Let the position of the agents
at timet besn(t) = [sx

n(t),s
y
n(t)] with sx

n(t)∈ [0,L1] andsy
n(t)∈

[0,L2], n= 1, . . . ,N, following the dynamics:

ṡx
n(t) = un(t)cosθn (t) , ṡy

n(t) = un (t)sinθn (t) (1)

whereun (t) is the scalar speed of thenth agent andθn (t) is the
angle relative to the positive direction that satisfies 0≤ θn (t)<
2π . Thus, we assume that each agent controls its orientation
and speed. Without loss of generality, after some rescaling
of the size of the mission space, we further assume that the
speed is constrained by 0≤ un(t)≤ 1, n= 1, . . . ,N. Each agent
is represented as a particle in the 2D space, thus we ignore
the case of two or more agents colliding with each other.

We associate with every point[x,y] ∈ Ω a function
pn(x,y,sn) that measures the probability that an event at
location [x,y] is detected by agentn. We also assume that
pn(x,y,sn) = 1 if [x,y] = sn, and thatpn(x,y,sn) is monoton-
ically nonincreasing in the Euclidean distanceD(x,y,sn) ≡
||[x,y]− sn|| between[x,y] andsn, thus capturing the reduced
effectiveness of a sensor over its range which we consider to
be finite and denoted byrn (this is the same as the concept
of “sensor footprint” commonly used in the robotics litera-
ture.) Therefore, we setpn(x,y,sn) = 0 whenD(x,y,sn) > rn.
Our analysis is not affected by the precise sensing model
pn(x,y,sn), but we mention here as an example the linear decay
model used in [14]:

pn(x,y,sn) =

{

1
C(1−

D(x,y,sn)
rn

), if D(x,y,sn) ≤ rn

0, if D(x,y,sn) > rn
(2)

whereC is a normalization constant. Next, consider a set of
points{[αi ,βi ], i = 1, . . . ,M}, [αi ,βi ]∈Ω, and associate a time-
varying measure of uncertainty with each point[αi ,βi ], which
we denote byRi(t). The set of points{[α1,β1], . . . , [αM,βM]}
may be selected to contain specific “points of interest” in
the environment, or simply to sample points in the mis-
sion space. Alternatively, we may consider a partition ofΩ
into M rectangles denoted byΩi whose center points are
[αi ,βi ]. We can then setpn(x,y,sn(t)) = pn(αi ,βi ,sn (t)) for
all {[x,y]|[x,y] ∈ Ωi , [αi ,βi ] ∈ Ωi}, i.e., for all [x,y] in the

rectangleΩi that [αi ,βi ] belongs to. In order to avoid the
uninteresting case where there is a large number of agents who
can adequately cover the mission space, we assume that for
anys(t), there exists some point[x,y]∈Ω with P(x,y,s(t)) =0.
This means that for any assignment ofN agents at timet,
there is always at least one point in the mission space that
cannot be sensed by any agent. Therefore, the joint probability
of detecting an event at location[αi ,βi ] by all the N agents
(assuming detection independence) is

Pi (s(t)) = 1−
N
∏

n=1
[1− pn(αi ,βi ,sn (t))]

where we sets(t) = [s1 (t) , . . . ,sN (t)]T. Similar to the 1D anal-
ysis in [14], we define uncertainty functionsRi(t) associated
with the rectanglesΩi , i = 1, . . . ,M, so that they have the
following properties:(i) Ri(t) increases with a prespecified
rate Ai if Pi (s(t)) = 0, (ii) Ri(t) decreases with a fixed rate
B−Ai if Pi (s(t)) = 1 and (iii ) Ri(t) ≥ 0 for all t. It is then
natural to model uncertainty so that its decrease is proportional
to the probability of detection. In particular, we model the
dynamics ofRi(t), i = 1, . . . ,M, as follows:

Ṙi(t) =

{

0 if Ri(t) = 0, Ai ≤ BPi (s(t))
Ai −BPi (s(t)) otherwise

(3)

where we assume that initial conditionsRi(0), i = 1, . . . ,M,
are given and thatB > Ai > 0 for all i = 1, . . . ,M; thus, the
uncertainty strictly decreases when there is perfect sensing
Pi (s(t)) = 1.

The goal of the optimal persistent monitoring problem we
consider is to control throughun (t), θn(t) in (1) the movement
of the N agents so that the cumulative uncertainty over all
sensing points{[α1,β1], . . . , [αM,βM]} is minimized over a
fixed time horizonT. Thus, settingu(t) = [u1 (t) , . . . ,uN (t)]
and θ (t) = [θ1 (t) , . . . ,θN (t)] we aim to solve the following
optimal control problemP1:

P1 : min
u(t),θ(t)

J =

∫ T

0

M

∑
i=1

Ri(t)dt (4)

subject to the agent dynamics (1), uncertainty dynamics (3),
control constraint 0≤ un(t)≤ 1, 0≤ θn(t)≤ 2π , t ∈ [0,T], and
state constraintssn(t) ∈ Ω for all t ∈ [0,T], n= 1, . . . ,N.

Remark 1. The modeling of the uncertainty valueRi(t)
in a 2D environment is a direct extension of [14] in the 1D
environment setting where it was described how persistent
monitoring can be viewed as a polling system, with each rect-
angleΩi associated with a “virtual queue” where uncertainty
accumulates with inflow rateAi . Each agent acts as a “server”
visiting these virtual queues with a time-varying service rate
given by BPi (s(t)), controllable through all agent positions
at time t. Metrics other than (4) are of course possible, e.g.,
maximizing the mutual information or minimizing the spectral
radius of the error covariance matrix [17] if specific “pointof
interest” are identified with known properties.

III. O PTIMAL CONTROL SOLUTION

We first characterize the optimal control solution
of problem P1. We define the state vector
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x(t) = [sx
1 (t) ,s

y
1 (t) , . . . ,s

x
N(t),s

y
N(t),R1 (t) , . . . ,RM (t)]T

and the associated costate vector λ (t) =
[µx

1(t),µ
y
1(t), . . . ,µ

x
N(t),µ

y
N(t),λ1 (t) , . . . ,λM (t)]T. In view

of the discontinuity in the dynamics ofRi(t) in (3), the
optimal state trajectory may contain a boundary arc when
Ri(t) = 0 for any i; otherwise, the state evolves in an interior
arc [18]. This follows from the fact, proved in [14] and [19]
that it is never optimal for agents to reach the mission space
boundary. We analyze the system operating in such an interior
arc and omit the state constraintsn(t) ∈ Ω, n = 1, . . . ,N,
t ∈ [0,T]. Using (1) and (3), the Hamiltonian is

H = ∑
i

Ri(t)+∑
i

λiṘi(t)

+∑
n

µx
n (t)un (t)cosθn (t)+∑

n
µy

n (t)un (t)sinθn (t) (5)

and the costate equationsλ̇ =− ∂H
∂x are

λ̇i(t) =− ∂H
∂Ri

=−1 (6)

µ̇x
n (t) =−∂H

∂sx
n
=−∑

i

∂
∂sx

n
λiṘi(t)

=− ∑
[αi ,βi ]∈R(sn)

Bλi (sx
n−αi)

rnD(αi ,βi ,sn(t))

N
∏

d6=n
[1− pd (ωi ,sd (t))]

(7)

µ̇y
n (t) =−∂H

∂sy
n
=−∑

i

∂
∂sy

n
λiṘi(t)

=− ∑
[αi ,βi ]∈R(sn)

Bλi
(

sy
n−βi

)

rnD(αi ,βi ,sn(t))

N
∏

d6=n
[1− pd (ωi ,sd (t))]

(8)

where R (sn) ≡ {[αi ,βi ] |D(αi ,βi ,sn)≤ rn, Ri > 0} identifies
all points [αi ,βi ] within the sensing range of the agent using
the model in (2). Since we impose no terminal state con-
straints, the boundary conditions areλi(T) = 0, i = 1, . . . ,M
and µx

n(T) = 0, µy
n(T) = 0, n = 1, . . . ,N. The implication of

(6) with λi (T) = 0 is that λi (t) = T − t for all t ∈ [0,T],
i = 1, . . . ,M and thatλi (t) is monotonically decreasing starting
with λi (0) = T. However, this is only true if the entire optimal
trajectory is an interior arc, i.e., allRi(t) ≥ 0 constraints
for all i = 1, . . . ,M remain inactive. We have shown in [14]
that λi (t) ≥ 0, i = 1, . . . ,M, t ∈ [0,T] with equality holding
only if t = T, or t = t−0 with Ri (t0) = 0, Ri (t ′) > 0, where
t ′ ∈ [t0 − δ , t0), δ > 0. Although this argument holds for the
1D problem formulation, the proof can be directly extended
to this 2D environment. However, the actual evaluation of
the full costate vector over the interval[0,T] requires solving
(7) and (8), which in turn involves the determination of all
points where the state variablesRi(t) reach their minimum
feasible valuesRi(t) = 0, i = 1, . . . ,M. This generally involves
the solution of a TPBVP.

From (5), after some algebraic operations, we get

H = ∑
i

Ri(t)+∑
i

λiṘi(t)

+∑
n

un(t) [µx
n (t)cosθn (t)+ µy

n (t)sinθn (t)]

= ∑
i

Ri(t)+∑
i

λiṘi(t)+∑
n

sgn(µy
n(t))

√

(µx
n (t))2+(µy

n (t))2

×un(t)

[

sgn(µy
n(t))µx

n (t)cosθn (t)
√

(µx
n (t))2+(µy

n (t))2
+

|µy
n (t) |sinθn (t)

√

(µx
n (t))2+(µy

n (t))2

]

(9)

where sgn(·) is the sign function. Combining the trigonometric
function terms, we obtain

H = ∑
i

Ri(t)+∑
i

λiṘi(t)

+∑
n

sgn(µy
n(t))un (t)

√

(µx
n (t))2+(µy

n (t))2sin(θn (t)+ψn(t))

(10)

andψn(t) is defined so that tanψn (t) =
µx

n(t)
µy

n(t)
for µy

n(t) 6= 0 and

ψn(t) =

{

− π
2 , if µx

n (t)< 0
π
2 , if µx

n (t)> 0

for µy
n(t) = 0. In what follows, we exclude the case where

µx
n(t) = 0 andµy

n(t) = 0 at the same time for any givenn over
any finite “singular interval.” Applying the Pontryagin mini-
mum principle to (10) withu∗n(t), θ ∗

n (t), t ∈ [0,T), denoting
optimal controls, we have

H (x∗,λ ∗,u∗,θ ∗) = min
u∈[0,1]N,θ∈[0,2π ]N

H (x,λ ,u,θ )

and it is immediately obvious that it is necessary for an optimal
control to satisfy:

u∗n (t) = 1 (11)

and
{

sin(θ ∗
n (t)+ψn(t)) = 1, if µy

n(t)< 0
sin(θ ∗

n (t)+ψn(t)) =−1, if µy
n(t)> 0

(12)

Noteun(t) = 0 is not an optimal solution, since we can always
set controlθn (t) to enforce sgn(µy

n(t))sin(θn (t)+ψn(t))< 0.
Thus, we have

{

θ ∗
n (t) =

π
2 −ψn(t) , if µy

n(t)< 0
θ ∗

n (t) =
3π
2 −ψn (t) , if µy

n(t)> 0
(13)

Clearly, whenµy
n(t)< 0, thenth agent heading isθ ∗

n (t)=
1
2π−

ψn (t)∈ (0,π) and the agent will move upward inΩ; similarly,
whenµy

n(t)> 0 the agent will move downward. Whenµy
n(t) =

0, we have

ψn(t)=

{

− π
2 , if µx

n (t)< 0
π
2 , if µx

n (t)> 0
and θ ∗

n (t)=

{

0, if µx
n (t)< 0

π , if µx
n (t)> 0

so that thenth agent will move horizontally. By symmetry, the
agent will move towards the right whenµx

n(t)< 0, towards the
left whenµx

n(t)> 0, and vertically whenµx
n(t) = 0. Note that

this is analogous to the 1D problem in [14] where the costate
λsn(t)< 0 impliesun(t) = 1 andλsn(t)> 0 impliesun(t) =−1.
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Returning to the Hamiltonian in (5), the optimal heading
θ ∗

n (t) can be obtained by requiring∂H∗
∂θ∗

n
= 0:

∂H
∂θn

=−µx
n(t)un (t)sinθn (t)+ µy

n(t)un (t)cosθn (t) = 0

which gives:

tanθ ∗
n (t) =

µy
n(t)

µx
n(t)

(14)

Applying the tangent operation to both sides of (13), we can
see that (13) and (14) are equivalent to each other.

Since we have shown thatu∗n(t) =1, n= 1, . . . ,N in (13), we
are only left with the task of determiningθ ∗

n (t), n= 1, . . . ,N.
This can be accomplished by solving a standard TPBVP
involving forward and backward integrations of the state and
costate equations to evaluate∂H

∂θn
after each such iteration

and using a gradient descent approach until the objective
function converges to a (local) minimum. Clearly, this is a
computationally intensive process which scales poorly with
the number of agents and the size of the mission space.
In addition, it requires discretizing the mission timeT and
calculating every control at each time step which adds to the
computational complexity.

IV. L INEAR VS ELLIPTICAL AGENT TRAJECTORIES

Given the complexity of the TPBVP required to obtain
an optimal solution of problemP1, we seek alternative ap-
proaches which may be suboptimal but are tractable and
scalable. The first such effort is motivated by the results
obtained in our 1D analysis, where we found that on a mission
space defined by a line segment[0,L] the optimal trajectory
for each agent is to move at full speed until it reaches some
switching point, dwell on the switching point for some time
(possibly zero), and then switch directions. Thus, each agent’s
optimal trajectory is fully described by a set of switching
points {θ1, . . . ,θK} and associated waiting times at these
points,{w1, . . . ,wK}. The values of these parameters can then
be efficiently determined using a gradient-based algorithm; in
particular, we used Infinitesimal Perturbation Analysis (IPA)
to evaluate the objective function gradient as shown in [14].

Thus, a reasonable approach that has been suggested is
to assign each agent a linear trajectory. The 2D persistent
monitoring problem would then be formulated as consisting of
the following tasks:(i) finding N linear trajectories in terms of
their length and exact location inΩ, noting that one or more
agents may share one of these trajectories, and(ii) controlling
the motion of each agent on its trajectory. Task(ii) is a direct
application of the 1D persistent monitoring problem solution,
leaving only task(i) to be addressed. However, there is no
reason to believe that a linear trajectory is a good choice
in a 2D setting. A broader choice is provided by the set of
elliptical trajectories which in fact encompass linear ones when
the minor axis of the ellipse becomes zero. Thus, we first
proceed with a comparison of these two types of trajectories.
The main result of this section is to formally show that an
elliptical trajectory outperforms a linear one using the average
uncertainty metric in (4) as the basis for such comparison.

To simplify notation, letω = [x,y] ∈ R
2 and, for a single

agent, define

Ξ =
{

ω ∈R
2|∃t ∈ [0,T] such thatBp(ω ,s(t))> A(ω)

}

(15)
Note thatΞ above defines theeffective coverage regionfor the
agent, i.e., the region where the uncertainty corresponding to
R(ω , t) with the dynamics in (3) can be strictly reduced given
the sensing capacity of the agent determined throughB and
p(ω ,s). Clearly, Ξ depends on the values ofs(t) which are
dependent on the agent trajectory. Let us define an elliptical
trajectory so that the agent positions(t) = [sx(t),sy(t)] follows
the general parametric form of an ellipse:

{

sx (t) = X+acosρ (t)cosϕ −bsinρ (t)sinϕ
sy (t) =Y+acosρ (t)sinϕ +bsinρ (t)cosϕ (16)

where[X,Y] is the center of the ellipse,a,b are its major and
minor axis respectively,ϕ ∈ [0,π) is the ellipse orientation (the
angle between thex axis and the major ellipse axis) andρ(t)∈
[0,2π) is the eccentric anomaly of the ellipse. Assuming the
agent moves with constant maximal speed 1 on this trajectory
(based on (11)), we have(ṡx)2+(ṡy)2 = 1, which gives

ρ̇ (t) =
[

(asinρ(t)cosϕ +bcosρ(t)sinϕ)2

+(asinρ(t)sinϕ −bcosρ(t)cosϕ)2]−1/2
(17)

In order to make a fair comparison between a linear and an
elliptical trajectory, we normalize the objective function in (4)
with respect to the coverage area in (15) and consider all points
in Ξ (rather than discretizing it or limiting ourselves to a finite
set of sampling points). Thus, we define:

J(b) =
1

ΨΞ

∫ T

0

∫

Ξ
R(ω , t)dωdt (18)

whereΨΞ =
∫

Ξ dω is the area of the effective coverage region.
Note that we view this normalized metric as a function ofb≥
0, so that whenb= 0 we obtain the uncertainty corresponding
to a linear trajectory. For simplicity, the trajectory is selected
so that[X,Y] coincides with the origin andϕ = 0, as illustrated
in Fig. 1 with the major axisa assumed fixed. Regarding the
range ofb, we will only be interested in values which are
limited to a neighborhood of zero that we will denote byB.
Givena, this set dictates the values thats(t) ∈ Ξ is allowed to
take. Finally, we make the following assumptions:

Assumption 1: p(ω ,s)≡ p(D(ω ,s)) is a continuous func-
tion of D(ω ,s)≡ ||ω − s||.

Assumption 2: Let ω ,ω ′ be symmetric points inΞ with
respect to the center point of the ellipse. Then,A(ω) = A(ω ′).

The first assumption simply requires that the sensing range
of an agent is continuous and the second that all points inΞ
are treated uniformly (as far as how uncertainty is measured)
with respect to an elliptical trajectory centered in this region.
The following result establishes the fact that an elliptical
trajectory with someb > 0 can achieve a lower cost than a
linear trajectory (i.e.,b= 0) in terms of a long-term average
uncertainty per unit area.

Proposition IV.1: Under Assumptions 1-2 andb∈ B,

lim
T→∞,b→0

∂J(b)
∂b

< 0
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Fig. 1. The red ellipse represents the agent trajectory. Thearea defined by the
black curve is the agent’s effective coverage area. ab√

b2cos2(ϑ)+a2sin2(ϑ)
+γ(ϑ )

is the distance between the ellipse center and the coverage area boundary for
a givenϑ .

i.e., switching from a linear to an elliptical trajectory reduces
the cost in (18).

Proof. Since a linear trajectory is the limit of an elliptical
one (with the major axis kept fixed) as the minor axis reaches
b= 0, our proof is based on perturbing the minor axisb away
from 0 and showing that we can then achieve a lower average
costJ in (18), as long as this is measured over a sufficiently
long time interval.

Obviously, the effective coverage areaΨΞ depends on the
agent’s trajectory and, in particular, on the minor axis lengthb.
From the definition ofΞ in (15), note thatΨΞ monotonically
increases inb∈ B, i.e., ∂ΨΞ

∂b > 0 and it immediately follows
that:

∂
∂b

(
1

ΨΞ
) =−∂ΨΞ

∂b
1

Ψ2
Ξ
< 0 (19)

We now rewrite the area integral in (18) in a polar coordinate
system withω = (ξ ,ϑ) ∈R

2, whereξ is the polar radius and
ϑ is the polar angle:

J(b) =
1

ΨΞ

∫ T

0

∫ 2π

0

∫ G(a,b,ϑ )+γ(ϑ )

0
R(ξ ,ϑ , t)ξ dξ dϑdt (20)

where

G(a,b,ϑ) =
ab

√

b2cos2(ϑ)+a2sin2(ϑ)
(21)

is the ellipse equation in the polar coordinate system andγ(ϑ)
is defined for any(ξ ,ϑ) ∈ R

2 as

γ(ϑ) = sup
ξ
{Bp(ξ ,ϑ ,s(t))> A(ξ ,ϑ)}−G(a,b,ϑ) (22)

where supξ {Bp(ξ ,ϑ ,s(t))> A(ξ ,ϑ)} is the distance between
the ellipse center and the furthest point(ξ ,ϑ), for any given
ϑ , that can be effectively covered by the agent on the ellipse.
Taking partial derivatives in (20) with respect tob, we get

∂J
∂b

=−∂ΨΞ
∂b

1

Ψ2
Ξ

∫ T

0

∫

Ξ
R(ω , t)dωdt

+
1

ΨΞ

∫ T

0

∫ 2π

0
[R(G(a,b,ϑ)+ γ(ϑ),ϑ , t)

·(G(a,b,ϑ)+ γ(ϑ)) · ∂G(a,b,ϑ)

∂b

+
∫ G(a,b,ϑ )+γ(ϑ )

0

∂R(ξ ,ϑ , t)
∂b

ξ dξ
]

dϑdt (23)

Recall that our objective is to show that when we perturb a
linear trajectory into an elliptical one, which is achievedby
increasingb from 0 to some smallbε > 0, we can achieve
a lower cost. Thus, we aim to show∂J

∂b|b→0 < 0. From (19),
the first term of (23) is negative, therefore, we only need to
show the second term is non-positive whenb → 0. By the
definition (21), observe that whenb→ 0, G(a,b,ϑ)→ 0, and
∂G(a,b,ϑ )

∂b |b→0 =
1

sinϑ , for ϑ 6= 0 andπ ; ∂G(a,b,ϑ )
∂b |b→0 = a for

ϑ = 0 or π . Thus, the double integral of the second term of
(23) becomes
∫ T

0

∫ 2π

0

[

γ(ϑ)

sinϑ
R(γ(ϑ),ϑ , t)+

∫ γ(ϑ )

0

∂R(ξ ,ϑ , t)
∂b

ξ dξ
]

dϑdt

(24)
By Assumption 2, A(ω) = A(ω ′), where ω and ω ′ are
symmetric with respect to the center point of the ellipse,
thus A(ξ ,ϑ) = A(ξ ,ϑ +π). Then, for any uncertainty value
R(γ(ϑ),ϑ , t) satisfying (3), we can findR(γ(ϑ +π),ϑ +π , t)
which is symmetric to it with respect to the center point of
the ellipse. Then, from (22) and Fig. 1, note thatγ(ϑ) =
γ(ϑ + π). From the perspective of the point(γ(ϑ),ϑ), the
agent movement observed with an initial positionρ(0) = η
(following the dynamics in (17)) is the same as the movement
observed from(γ(ϑ + π),ϑ + π) if the agent starts from
ρ(0) = η + π when T → ∞, since the cost in (18) is inde-
pendent of initial conditions asT → ∞. ThusR(γ(ϑ),ϑ , t) =
R(γ(ϑ +π),ϑ +π , t). Since, in addition, sinϑ =−sin(ϑ +π),
we have γ(ϑ)R(γ(ϑ ),ϑ ,t)

sinϑ = −γ(ϑ + π)R(γ(ϑ+π),ϑ+π ,t)
sin(ϑ+π) and it

follows that

lim
T→∞,b→0

∫ T

0

∫ 2π

0

γ(ϑ)

sinϑ
R(γ(ϑ),ϑ , t)dϑdt = 0 (25)

We now turn our attention to the last integral of (23). Two
cases need to be considered here in view of (3):
(i) If ∃t ′ such thatR(ξ ,ϑ , t ′) = 0 for t ′ ∈ (0, t), then let

τ f (t) = sup
τ≤t

{τ : R(ξ ,ϑ ,τ) = 0} (26)

If τ f (t)< t, thenR(ξ ,ϑ ,τ)> 0 for all τ ∈ [τ f (t), t) andτ f (t)
is the last time instant prior tot when R(ξ ,ϑ ,τ) leaves an
arc such thatR(ξ ,ϑ ,τ) = 0. We can then writeR(ξ ,ϑ , t) =
∫ t

τ f (t)
Ṙ(ξ ,ϑ ,δ )dδ . Therefore,

∂R(ξ ,ϑ , t)
∂b

=
∂ t
∂b

Ṙ(ξ ,ϑ , t)− ∂τ f (t)

∂b
Ṙ(ξ ,ϑ ,τ f (t))

+

∫ t

τ f (t)

∂ Ṙ(ξ ,ϑ ,δ )
∂b

dδ (27)

Clearly, ∂ t
∂b = 0 and sinceτ f (t) is a time instant whenR(ξ ,ϑ , t)

leavesR(ξ ,ϑ , t) = 0 then, by Assumption 1,̇R(ξ ,ϑ , t) is a
continuous function and we havėR(ξ ,ϑ ,τ f (t))= 0. Therefore,
(27) becomes

∂R(ξ ,ϑ , t)
∂b

=

∫ t

τ f

∂ Ṙ(ξ ,ϑ ,δ )
∂b

dδ (28)

where, from (3),Ṙ(ξ ,ϑ ,δ ) = A(ξ ,ϑ)−Bp(ξ ,ϑ ,s(δ )).
If, on the other hand,τ f (t) = t, then R(ξ ,ϑ , t) = 0 and

we defineσ f (t) = supσ≤t{σ : R(ξ ,ϑ ,σ)> 0}. Proceeding as
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above, we get

∂R(ξ ,ϑ , t)
∂b

=

∫ t

σ f

∂ Ṙ(ξ ,ϑ ,δ )
∂b

dδ

where nowṘ(ξ ,ϑ ,δ ) = 0 and we get

∂R(ξ ,ϑ , t)
∂b

= 0 (29)

(ii) R(ξ ,ϑ , t ′) > 0 for all t ′ ∈ (0, t). In
this case, we define τ f (t) = 0 and we have
R(ξ ,ϑ , t) = R(ξ ,ϑ ,0) +

∫ t
τ f (t)

Ṙ(ξ ,ϑ ,δ )dδ , where

Ṙ(ξ ,ϑ ,δ ) = A(ξ ,ϑ)−Bp(ξ ,ϑ ,s(t)). Thus,

∂R(ξ ,ϑ , t)
∂b

=
∂R(ξ ,ϑ ,0)

∂b
+

∂ t
∂b

Ṙ(ξ ,ϑ , t)+
∫ t

τ f (t)

∂ Ṙ(ξ ,ϑ ,δ )
∂b

dδ

(30)
Clearly, ∂ t

∂b = 0 and∂R(ξ ,ϑ ,0)
∂b = 0, sinceR(ξ ,ϑ ,0) is the initial

uncertainty value at(ξ ,ϑ) Then, (30) becomes

∂R(ξ ,ϑ , t)
∂b

=

∫ t

τ f

∂ Ṙ(ξ ,ϑ ,δ )
∂b

dδ (31)

which is the same result as (28).
Let us start by setting aside the much simpler case where

(29) applies and consider (28) and (31). Noting that∂A(ξ ,ϑ )
∂b =

0 we get
∂ Ṙ(ξ ,ϑ ,δ )

∂b
=−B

∂ p(ξ ,ϑ ,s(δ ))
∂b

(32)

Recall that[X,Y] has been selected to be the origin and that
ϕ = 0. In this case, (16) becomes

sx (t) = acosρ (t) , sy (t) = bsinρ (t) (33)

Observing thatsx(t) is independent ofb, (32) gives

∂ Ṙ(ξ ,ϑ ,δ )
∂b

=−B
∂ p(ξ ,ϑ ,s(δ ))

∂sy(δ )
∂sy(δ )

∂b

=−B
∂ p(ξ ,ϑ ,s(δ ))
∂D(ξ ,ϑ ,s(δ ))

∂D(ξ ,ϑ ,s(δ ))
∂sy(δ )

sinρ(δ )

(34)

where D(ξ ,ϑ ,s(δ )) = [(sx(δ ) − ξ cosϑ)2 + (sy(δ ) −
ξ sinϑ)2]1/2, hence

∂D(ξ ,ϑ ,s(δ ))
∂sy(δ )

=
sy(δ )− ξ sinϑ
D(ξ ,ϑ ,s(δ ))

(35)

Using (35), (34), (28) in the second integral of (24), this
integral becomes
∫ T

0

∫ 2π

0

∫ γ(ϑ )

0

∂R(ξ ,ϑ , t)
∂b

ξ dξ dϑdt

=−B
∫ T

0

∫ 2π

0

∫ γ(ϑ )

0
ξ
∫ t

τ f

∂ p(ξ ,ϑ ,s(δ ))
∂D(ξ ,ϑ ,s(δ ))

(sy (δ )− ξ sinϑ)

D(ξ ,ϑ ,s(δ ))
·sinρ(δ )dδdξ dϑdt (36)

Note that whenb → 0, we havesy(δ ) → 0. In addition,
p(ξ ,ϑ ,s(δ )) is a direct function ofD(ξ ,ϑ ,s(δ )), so that
∂ p(ξ ,ϑ ,s(δ ))
∂D(ξ ,ϑ ,s(δ )) is not an explicit function ofξ ,ϑ or δ . Moreover,
sinρ(δ ) is not a function ofϑ . Thus, switching the integration
order in (36) we get

B
∂ p(D)

∂D

∫ T

0

∫ t

τ f

sinρ (δ )
∫ 2π

0

∫ γ(ϑ )

0

ξ 2sinϑ
D(ξ ,ϑ ,s(δ ))

dξ dϑdδdt

Using Assumption 2, we make a symmetry argument similar
to the one regarding (25). For any pointω = (ξ ,ϑ) ∈ R

2,
we can find(ξ ,ϑ +π) which is symmetric to it with respect
to the center point of the ellipse and Assumption 2 implies
that A(ξ ,ϑ) = A(ξ ,ϑ +π). Then, from the perspective of the
point (ξ ,ϑ), the agent movement observed with an initial
position ρ(0) = η (following the dynamics in (17)) is the
same as the movement observed from(ξ ,ϑ +π) if the agent
starts fromρ(0) = η +π whenT → ∞, since the cost in (18)
is independent of initial conditions asT → ∞. In addition,
we again haveγ(ϑ) = γ(ϑ + π), so that

∫ γ(ϑ )
0

sinϑ
D(ξ ,ϑ ,s(δ )) =

−∫ γ(ϑ+π)
0

sin(ϑ+π)
D(ξ ,ϑ+π ,s(δ )) . Therefore,

lim
T→∞

∫ 2π

0

∫ γ(ϑ )

0

ξ 2sinϑ
D(ξ ,ϑ ,s(δ ))

dξ dϑ = 0 (37)

and the second term of (24) gives

lim
T→∞,b→0

∫ T

0

∫ 2π

0

∫ γ(ϑ )

0

∂R(ξ ,ϑ , t)
∂b

ξ dξ dϑdt = 0 (38)

In view of (25) and (38), we have shown that the second term
of (23) is 0 and we are left with the first negative term from
(19), giving the desired result:

lim
T→∞,b→0

∂J(b)
∂b

=−∂ΨΞ
∂b

1

Ψ2
Ξ

∫ T

0

∫

Ξ
R(ω , t)dωdt < 0 (39)

Finally, if (29) applies instead of (28), then (29) and (25) im-
mediately imply that the second term of (23) is 0, completing
the proof.�

Thus, we have proved that asT → ∞, whenb is perturbed
from 0 to somebε > 0, an elliptical trajectory achieves a lower
cost than a linear one. In other words, we have shown that
elliptical trajectories are more suitable for a 2D mission space
in terms of achieving near-optimal results in solving problem
P1.

In other words, Prop. IV.1 shows that elliptical trajectories
are more suitable for a 2D mission space in terms of achieving
near-optimal results in solving problemP1.

V. OPTIMAL ELLIPTICAL TRAJECTORIES

Based on our analysis thus far, we now tackle the problem
of determining optimal solutions within the class of elliptical
trajectories. Our approach is to associate with each agent an el-
liptical trajectory, parameterize each such trajectory byits cen-
ter, orientation and major and minor axes, and then solveP1
as a parametric optimization problem. Note that this includes
the possibility that two agents share the same trajectory ifthe
solution to this problem results in identical parameters for the
associated ellipses. Choosing elliptical trajectories, which are
most likely suboptimal relative to a trajectory obtained through
a TPBVP solution ofP1, offers several practical advantages
in addition to reduced computational complexity. Elliptical
trajectories induce a periodic structure to the agent movements
which provides predictability. As a result, it is also easier to
handle issues related to collision avoidance.

For an elliptical trajectory, thenth agent movement is
described as in (16) by
{

sx
n (t) = Xn+ancosρn (t)cosϕn−bnsinρn (t)sinϕn

sy
n (t) =Yn+ancosρn(t)sinϕn+bnsinρn (t)cosϕn

(40)



7

where [Xn,Yn] is the center of thenth ellipse, an,bn are
its major and minor axes respectively andϕn ∈ [0,π) is its
orientation, i.e., the angle between the horizontal axis and
the major axis of thenth ellipse. Note that the parameter
ρn(t) ∈ [0,2π) is the eccentric anomaly. Therefore, we replace
problemP1 by the determination of optimal parameter vec-
tors ϒn ≡ [Xn,Yn,an,bn,ϕn]

T,n = 1, . . . ,N, and formulate the
following problemP2:

P2 : min
ϒn,n=1,...,N

J =

∫ T

0

M

∑
i=1

Ri(ϒ1, . . . ,ϒN, t)dt (41)

Observe that the behavior of each agent under the optimal
ellipse control policy is that of ahybrid systemwhose dy-
namics undergo switches whenRi(t) reaches or leaves the
boundary valueRi = 0 (the “events” causing the switches). As
a result, we are faced with a parametric optimization problem
for a system with hybrid dynamics. We solve this hybrid
system problem using a gradient-based approach in which we
apply IPA to determine the gradients∇Ri(ϒ1, . . . ,ϒN, t) on line
(hence,∇J), i.e., directly using information from the agent
trajectories and iterate upon them.

A. Infinitesimal Perturbation Analysis (IPA)

We begin with a brief review of the IPA framework for
general stochastic hybrid systems as presented in [15]. The
purpose of IPA is to study the behavior of a hybrid system
state as a function of a parameter vectorθ ∈ Θ for a given
compact, convex setΘ⊂R

l . Let {τk(θ )}, k= 1, . . . ,K, denote
the occurrence times of all events in the state trajectory.
For convenience, we setτ0 = 0 and τK+1 = T. Over an
interval [τk(θ ),τk+1(θ )), the system is at some mode during
which the time-driven state satisfies ˙x = fk(x,θ , t). An
event at τk is classified as(i) Exogenousif it causes a
discrete state transition independent ofθ and satisfiesdτk

dθ = 0;
(ii) Endogenous, if there exists a continuously differentiable
function gk : Rn ×Θ → R such thatτk = min{t > τk−1 :
gk (x(θ , t) ,θ ) = 0}; and (iii ) Inducedif it is triggered by the
occurrence of another event at timeτm ≤ τk. IPA specifies
how changes inθ influence the statex(θ , t) and the event
times τk(θ ) and, ultimately, how they influence interesting
performance metrics which are generally expressed in terms
of these variables.

We define:

x′(t)≡ ∂x(θ , t)
∂θ

, τ ′k ≡
∂τk(θ )

∂θ
, k= 1, . . . ,K

for all state and event time derivatives. It is shown in [15] that
x′(t) satisfies:

d
dt

x′ (t) =
∂ fk (t)

∂x
x′ (t)+

∂ fk (t)
∂θ

(42)

for t ∈ [τk,τk+1) with boundary condition:

x′(τ+k ) = x′(τ−k )+
[

fk−1(τ−k )− fk(τ+k )
]

τ ′k (43)

for k= 0, . . . ,K, whereτ−k is the left limit of τk. In addition,
in (43), the gradient vector for eachτk is τ ′k = 0 if the event
at τk is exogenous and

τ ′k =−
[

∂gk

∂x
fk(τ−k )

]−1(∂gk

∂θ
+

∂gk

∂x
x′(τ−k )

)

(44)

if the event atτk is endogenous (i.e.,gk (x(θ ,τk) ,θ ) = 0) and
defined as long as∂gk

∂x fk(τ−k ) 6= 0.
In our case, the parameter vectors areϒn ≡

[Xn,Yn,an,bn,ϕn]
T as defined earlier, and we seek to

determine optimal vectorsϒ ∗
n , n= 1, . . . ,N. We will use IPA

to evaluate∇J(ϒ1, . . . ,ϒN) = [ ∂J
∂ϒ1

, . . . , ∂J
∂ϒN

]T. From (41), this

gradient clearly depends on∇Ri(t) =
[

∂Ri(t)
∂ϒ1

, . . . , ∂Ri(t)
∂ϒN

]

T

. In

turn, this gradient depends on whether the dynamics ofRi(t)
in (3) are given byṘi(t) = 0 or Ṙi(t) = Ai −BPi (s(t)). The
dynamics switch at event timesτk, k = 1, . . . ,K, when Ri(t)
reaches or escapes from 0 which are observed on a trajectory
over [0,T] based on a givenϒn, n= 1, . . . ,N.

IPA equations. We begin by recalling the dynamics ofRi (t)
in (3) which depend on the relative positions of all agents
with respect to[αi ,βi ] and change at time instantsτk such
that eitherRi(τk) = 0 with Ri(τ−k )> 0 or Ai > BPi (s(τk)) with
Ri(τ−k ) = 0. Moreover, the agent positionssn (t)= [sx

n(t),s
y
n(t)],

n = 1, . . . ,N, on an elliptical trajectory are expressed using
(40). Viewed as a hybrid system, we can now concentrate
on all events causing transitions in the dynamics ofRi (t),
i = 1, . . . ,M, since any other event has no effect on the values
of ∇Ri(ϒ1, . . . ,ϒN, t) at t = τk.

For notational simplicity, we defineωi = [αi ,βi ] ∈ Ω. First,
if Ri(t) = 0 and A(ωi)−BP(ωi ,s(t)) ≤ 0, applying (42) to
Ri (t) and using (3) gives

d
dt

∂Ri(t)
∂ϒn

= 0 (45)

WhenRi(t)> 0, we have

d
dt

∂Ri (t)
∂ϒn

=−B
∂ pn(ωi ,sn (t))

∂ϒn

N
∏

d6=n
[1− pd (ωi ,sd (t))] (46)

Noting that pn(ωi ,sn(t))≡ pn(D(ωi ,sn(t))), we have

∂ pn (ωi ,sn (t))
∂ϒn

=
∂ pn(D(ωi ,sn(t)))

∂D(ωi ,sn(t)))
∂D(ωi ,sn(t))

∂ϒn
(47)

whereD(ωi ,sn(t)) = [(sx
n(t)−αi)

2+(sy
n(t)−βi)

2]1/2. For sim-
plicity, we write D = D(ωi ,sn(t)) and we get

∂D
∂ϒn

=
1

2D

(

∂D
∂sx

n

∂sx
n

∂ϒn
+

∂D

∂sy
n

∂sy
n

∂ϒn

)

(48)

where ∂D
∂sx

n
= 2(sx

n−αi) and ∂D
∂sy

n
= 2(sy

n−βi). Note that ∂sx
n

∂ϒn
=

[
∂sx

n
∂Xn

,
∂sx

n
∂Yn

,
∂sx

n
∂an

,
∂sx

n
∂bn

,
∂sx

n
∂ϕn

]T and ∂sy
n

∂ϒn
= [ ∂sy

n
∂Xn

, ∂sy
n

∂Yn
, ∂sy

n
∂an

, ∂sy
n

∂bn
, ∂sy

n
∂ϕn

]T.

From (40), for ∂sx
n

∂ϒn
, we obtain

∂sx
n

∂Xn
= 1,

∂sx
n

∂Yn
= 0

∂sx
n

∂an
= cosρn(t)cosϕn,

∂sx
n

∂bn
=−sinρn(t)sinϕn

∂sx
n

∂ϕn
=−ancosρn(t)sinϕn−bsinρn (t)cosϕn

Similarly, for ∂sy
n

∂ϒn
, we get ∂sy

n
∂Xn

= 0, ∂sy
n

∂Yn
= 1, ∂sy

n
∂an

=

cosρn(t)sinϕn,
∂sy

n
∂bn

= sinρn(t)cosϕn and ∂sy
n

∂ϕn
=

ancosρn (t)cosϕn − bsinρn(t)sinϕn. Using ∂sx
n

∂ϒn
and ∂sy

n
∂ϒn
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in (48) and then (47) and back into (46), we can finally
obtain ∂Ri(t)

∂ϒn
for t ∈ [τk,τk+1) as

∂Ri (t)
∂ϒn

=
∂Ri

(

τ+k
)

∂ϒn
+







0 if Ri (t) = 0,
Ai ≤ BPi (s(t))

∫ t
τk

d
dt

∂Ri(t)
∂ϒn

dt otherwise
(49)

where the integral above is obtained from (45)-(47). Thus, it
remains to determine the components∇Ri(τ+k ) in (49) using
(43). This involves the event time gradient vectors∇τk =

∂τk
∂ϒn

for k= 1, . . . ,K, which will be determined through (44). There
are two possible cases regarding the events that cause switches
in the dynamics ofRi (t):

Case 1: At τk, Ṙi (t) switches fromṘi (t) = 0 to Ṙi (t) =
Ai −BPi (s(t)). In this case, it is easy to see that the dynamics
Ri(t) are continuous, so thatfk−1(τ−k ) = fk(τ+k ) in (43) applied
to Ri(t) and we get

∇Ri(τ+k ) = ∇Ri(τ−k ), i = 1, . . . ,M (50)

Case 2: At τk, Ṙi (t) switches fromṘi (t) = Ai −BPi (s(t))
to Ṙi (t) = 0, i.e., Ri(τk) becomes zero. In this case, we need
to first evaluate∇τk from (44) in order to determine∇Ri(τ+k )
through (43). Observing that this event is endogenous, (44)
applies withgk = Ri = 0 and we get

∇τk =− ∇Ri(τ−k )

A(ωi)−BP(ωi,s(τ−k ))
(51)

It follows from (43) that

∇Ri(τ+k ) = ∇Ri(τ−k )− [A(ωi)−BP(ωi,s(τ−k ))]∇Ri
(

τ−k
)

A(ωi)−BP(ωi,s(τ−k ))
= 0

(52)
Thus,∇Ri(τ+k ) is always reset to 0 regardless of∇Ri(τ−k ).

Objective Function Gradient Evaluation. Based on our
analysis, we first rewriteJ in (41) as

J(ϒ1, . . . ,ϒN) =
M

∑
i=1

K

∑
k=0

∫ τk+1(ϒ1,...,ϒN)

τk(ϒ1,...,ϒN)
Ri(ϒ1, . . . ,ϒN, t)dt

and (omitting some function arguments) we get

∇J =
M

∑
i=1

K

∑
k=0

(

∫ τk+1

τk

∇Ri (t)dt+Ri (τk+1)∇τk+1−Ri (τk)∇τk

)

Observing the cancelation of all terms of the formRi (τk)∇τk

for all k (with τ0 = 0, τK+1 = T fixed), we finally get

∇J(ϒ1, . . . ,ϒN) =
M

∑
i=1

K

∑
k=0

∫ τk+1

τk

∇Ri (t)dt (53)

This depends entirely on∇Ri (t), which is obtained from (49)
and the event timesτk, k = 1, . . . ,K, given initial conditions
sn (0) for n = 1, . . . ,N, and Ri (0) for i = 1, . . . ,M. In (49),
∂Ri(τ+k )

∂ϒn
is obtained through (50)-(52), whereasddt

∂Ri(t)
∂ϒn

is
obtained through (45)-(48).

Remark 2. Observe that the evaluation of∇Ri (t), hence
∇J, is independentof Ai , i = 1, . . . ,M, i.e., the values in
our uncertainty model. In fact, the dependence of∇Ri (t) on
Ai , i = 1, . . . ,M, manifests itself through the event timesτk,
k= 1, . . . ,K, that do affect this evaluation, but they, unlikeAi

which may be unknown, are directly observable during the
gradient evaluation process. Thus, the IPA approach possesses
an inherentrobustnessproperty: there is no need to explicitly
model how uncertainty affectsRi(t) in (3). Consequently,
we may treatAi as unknown without affecting the solution
approach (the values of∇Ri (t) are obviously affected). We
may also allow this uncertainty to be modeled through random
processes{Ai(t)}, i = 1, . . . ,M; in this case, however, the result
of Proposition IV.1 no longer applies without some conditions
on the statistical characteristics of{Ai(t)} and the resulting
∇J is anestimateof a stochastic gradient.

Remark 3. Note that the number of agents affects the
number of derivative components in (53), so the complexity of
∇J(ϒ1, . . . ,ϒN) in (53) grows linearly in the number of agents
N. In addition, the calculation of∇J(ϒ1, . . . ,ϒN) in (53) grows
linearly in T, as a longer operation time only implies more
events at whose occurrence timesτk the objective function
gradient is updated. In other words, solving the problem using
IPA is scalable with respect to the number of agents and the
operation time.

B. Objective Function Optimization

We now seek to obtain[ϒ ∗
1 , . . . ,ϒ ∗

N ] minimizingJ(ϒ1, . . . ,ϒN)
through a standard gradient-based optimization algorithmof
the form

[ϒ l+1
1 , . . . ,ϒ l+1

N ] = [ϒ l
1 , . . . ,ϒ

l
N]− [η l

1, . . . ,η
l
N]∇̃J(ϒ l

1 , . . . ,ϒ
l

N)
(54)

where {η l
n}, l = 1,2, . . . are appropriate step size se-

quences and̃∇J(ϒ l
1 , . . . ,ϒ

l
N) is the projection of the gradient

∇J(ϒ1, . . . ,ϒN) onto the feasible set, i.e.,sn(t) ∈ Ω for all
t ∈ [0,T], n= 1, . . . ,N. The optimization algorithm terminates
when |∇̃J(ϒ l

1 , . . . ,ϒ
l

N)| < ε (for a fixed thresholdε) for some
[ϒ ∗

1 , . . . ,ϒ ∗
N ]. When ε > 0 is small, [ϒ l

1 , . . . ,ϒ
l

N] is believed
to be in the neighborhood of the local optimum, then we
set [ϒ ∗

1 , . . . ,ϒ ∗
N ] = [ϒ l

1 , . . . ,ϒ
l

N]. However, in our problem the
function J(ϒ1, . . . ,ϒN) is non-convex and there are actually
many local optima depending on the initial controllable pa-
rameter vector[ϒ 0

1 , . . . ,ϒ
0

N ]. In the next section, we propose a
stochastic comparison algorithm which addresses this issue
by randomizing over the initial points[ϒ 0

1 , . . . ,ϒ
0

N ] . This
algorithm defines a process which converges to a global
optimum under certain well-defined conditions.

VI. STOCHASTIC COMPARISON ALGORITHM FOR GLOBAL

OPTIMALITY

Gradient-based optimization algorithms are generally effi-
cient and effective in finding the global optimum when one is
uniquely specified by the point where the gradient is zero.
When this is not the case, to seek a global optimum one
must resort to several alternatives which include a variety
of random search algorithms. In this section, we use the
Stochastic Comparison algorithm in [16] to find the global
optimum. As shown in [16], for a stochastic system, if(i),
the cost functionJ(ϒ ) is continuous inϒ and (ii), for each
estimate Ĵ(ϒ ) of J(ϒ ) the errorW(ϒ ) = Ĵ(ϒ )− J(ϒ ) has
a symmetric pdf, then the Markov process{ϒk} generated
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by the Stochastic Comparison algorithm will converge to
an ε−optimal interval of the global optimum for arbitrarily
small ε > 0. In short, limk→∞ P[ϒ k ∈ ϒ ∗

ε ] = 1, for any ε > 0,
whereϒ ∗

ε is defined asϒ ∗
ε = {ϒ |J(ϒ )≤ J(ϒ ∗)+ε}. Using the

Continuous Stochastic Comparison (CSC) Algorithm devel-
oped in [16] for a general continuous optimization problem,
considerϒ ∈ Φ to be a controllable vector, whereΦ is the
bounded feasible controllable parameter space. The Stochastic
Comparison Algorithm is presented inAlgorithm 1 . In the

Algorithm 1 : Continuous Stochastic Comparison (CSC)
Algorithm.

1: Initialize ϒ 0 = φ0,k= 0.
2: For a givenϒ k = φk, sample the next candidate pointZk

from Φ according to a uniform distribution overΦ.
3: For a givenZk = ζ k, set

ϒk+1 =

{

Zk, with probability pk,
ϒk, with probability 1− pk,

(55)

wherepk = {P[Ĵ(ζ k)< Ĵ(φk)]}Lk .
4: Replacek by k+1, and go to Step 2.

CSC algorithm, the probabilitypk is actually not calculable,
since we do not know the underlying probability functions.
However, it is realizable in the following way: botĥJ(ζ k)
andĴ(φk) are estimatedLk times for an appropriately selected
increasing sequence{Lk}. If Ĵ(ζ k)< Ĵ(φk) every time, we set
ϒ k+1 = Zk. Otherwise, we setϒ k+1 =ϒ k.

As discussed inRemark 3, the persistent monitoring
problem P2 becomes a stochastic optimization problem if
Ai(t), i = 1, . . . ,M, are stochastic processes. However, for the
deterministic setting in which allAi are constant, the observed
value Ĵ coincides with the actual valueJ and a one-time
comparisonĴ(ζ k)< Ĵ(φk) is sufficient to replaceφk with ζ k

for ϒ k+1. In this case, step 3 inAlgorithm 1 becomes, for a
given Zk = ζ k:

ϒ k+1 =

{

Zk if J(ζ k)< J(φk)
ϒ k otherwise

(56)

and the CSC algorithm in this deterministic setting reducesto a
comparison algorithm with multi-starts over the 6-dimensional
controllable vectorϒn ≡ [Xn,Yn,an,bn,ϕn,ρn]

T, for each ellipse
associated with agentn= 1, . . . ,N.

VII. N UMERICAL RESULTS

We begin with a two-agent example in which we solveP2
by assigning elliptical trajectories using the gradient-based
approach in Section V.B (without the CSCAlgorithm 1 ).
The environment setting parameters used are:r = 4 for the
sensing range of agents;L1 = 20, L2 = 10, for the mission
space dimensions; andT = 200. All sampling points[αi ,βi ]
are uniformly spaced withinL1 × L2, i = 1, . . . ,M where
M = (L1+1)(L2+1) = 231. Initial values for the uncertainty
functions areRi(0) = 2 andB= 6, Ai = 0.2 for all i = 1, . . . ,M
in (3). The results are shown in Fig. 2. Note that the initial
conditions were set so as to approximate linear trajectories
(red ellipses), thus illustrating Proposition IV.1: we cansee

Algorithm 2 : IPA-based Optimization Algorithm using CSC
to find ϒn, n= 1, . . . ,N.

1: Set ε > 0, k = 0. Initialize ϒ 0 = φ0, where φ0 =
[ϒ 0

1 , . . . ,ϒ
0

N ]. Initialize L0, where{Lk} is an appropriately
selected increasing sequence.

2: while k< K, do
3: For a givenϒ k = φk,
4: repeat
5: Computesn(t), t ∈ [0,T] using (40) andφk for n=

1, . . . ,N
6: ComputeĴ(φk), ∇̃J(φk) and updateφk through (54).
7: until |∇̃J(φk)|< ε
8: Sample the next candidate pointZk from Φ according

to a uniform distribution overΦ. For a givenZk = ζ k,
9: repeat

10: Computesn(t), t ∈ [0,T] using (40) andζ k for n=
1, . . . ,N

11: ComputeĴ(ζ k), ∇̃J(ζ k) and updateζ k through (54).
12: until |∇̃J(ζ k)|< ε
13: Set

ϒk+1 =

{

Zk, with probability pk,
ϒk, with probability 1− pk,

(57)

wherepk = {P[Ĵ(ζ k)< Ĵ(φk)]}Lk.
14: Replacek by k+1.
15: end while
16: Setϒ ∗ =ϒ K .

that larger ellipses achieve a lower total uncertainty value per
unit area. Moreover, observe that the initial cost is significantly
reduced, indicating the importance of optimally selectingthe
ellipse sizes, locations and orientations. The cost associated
with the final blue elliptical trajectories in this case isJe =
6.93×104.

Using the same initial trajectories as in Fig. 2(a), we
also used a TPBVP solution algorithm forP1. The results
are shown in Fig. 3. The TPBVP algorithm is computation-
ally expensive and time consuming (about 800,000 steps to
converge). Interestingly, the solution corresponds to a cost
JTPBVP= 7.15×104, which is higher than that of Fig. 2 where
solutions were restricted to the set of elliptical trajectories.
This is an indication of the presence of locally optimal
trajectories.

Next, we solve the same two-agent example with the same
environment setting using the CSCAlgorithm 1 . For simplic-
ity, we select the ellipse center location[Xn,Yn] as the only
two (out of six) multi-start components: for a given number of
comparisonsQ, we sample the ellipse center[Xn,Yn]∈ L1×L2,
n= 1, . . . ,N, using a uniform distribution whilean = 5,bn =
2,ϕn = π

4 ,ρn = 0, for n = 1,2 are randomly assigned but
initially fixed parameters during the number of comparisonsQ
(thus, it is still possible that there are local minima with respect
to the remaining four components[an,bn,ϕn,ρn], but, clearly,
all six components inϒn can be used at the expense of some
additional computational cost.) In Fig. 4, the red elliptical
trajectories on the left show the initial ellipses and the blue
trajectories represent the corresponding resulting ellipses the
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CSC Algorithm 1 converges to. Figure 4(b) shows the cost
vs. number of iterations of the CSC algorithm. The resulting
cost forQ= 300 isJDet

CSC= 6.57×104, where ”Det” stands for
a deterministic environment. It is clear from Fig. 4(b) thatthe
cost of the worst local minimum is much higher than that of
the best local minimum. Note also that the CSCAlgorithm
1 does improve the original pure gradient-based algorithm
performanceJe = 6.93×104.

In Fig. 5, the values ofAi are allowed to berandom, thus
dealing with a persistent monitoring problem in a stochastic
mission space, where we can test the robustness of the IPA
approach as discussed inRemark 2. In particular, eachAi is
treated as a piecewise constant random process{Ai(t)} such
that Ai(t) takes on a fixed value sampled from a uniform dis-
tribution over (0.195,0.205) for an exponentially distributed
time interval with mean 5 before switching to a new value.
The sequence{Mk} defining the number of cost comparisons
made at thekth iteration is set so as to grow sublinearly with
Mk = ⌈10logk⌉ ,k= 2, . . . ,Q. Note that the system in this case
is very similar to that of Fig. 4 whereAi = 0.2 for all i without
any change in the way in which∇J(ϒ1, . . . ,ϒN) is evaluated
in executing (54). As already pointed out, this exploits a
robustness property of IPA which makes the evaluation of
∇J(ϒ1, . . . ,ϒN) independent of the values ofAi . All other
parameter settings are the same as in Fig. 4. In Fig. 5(a),
the red elliptical trajectories show the initial ellipses and the
blue trajectories represent the corresponding resulting ellipses
the CSCAlgorithm 1 converges to. The resulting cost for
Q= 300 in Fig. 5(b) isJSto

CSC,= 6.60×104, where ”Sto” stands
for a stochastic environment. This cost is almost the same as
JDet

CSC= 6.57×104, showing that the IPA approach is indeed
robust to a stochastic environment setting.

Finally, Fig. 6 shows the TPBVP algorithm result when
using the optimal (blue) ellipses in Fig. 4(a) as the initial
trajectories. The trajectories the TPBVP solver convergesto
are shown in red and green respectively for each agent. The
corresponding cost in Fig. 6(b) isJTPBVP= 6.07×104, which
is an improvement compared toJDet

CSC= 6.57×104 obtained for
elliptical trajectories from the CSCAlgorithm 1 . Compared
to the computationally expensive TPBVP algorithm, the CSC
Algorithm 1 using IPA is inexpensive and scalable with re-
spect toT andN. Thus, a combination of the two provides the
benefit of offering the optimal elliptical trajectories obtained
through the CSCAlgorithm 1 (the first fast phase of a solution
approach) as initial trajectories for the TPBVP algorithm (the
second much slower phase.) This combination is faster than
the original TPBVP algorithm and can also achieve a lower
cost compared to CSCAlgorithm 1 .

VIII. C ONCLUSION

We have shown that an optimal control solution to the 1D
persistent monitoring problem does not easily extend to the2D
case. In particular, we have proved that elliptical trajectories
outperform linear ones in a 2D mission space. Therefore, we
have sought to solve a parametric optimization problem to
determine optimal elliptical trajectories. Numerical examples
indicate that this scalable approach (which can be used on line)
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(a) Red ellipses are the initial trajectories and blue ellipses are the
final trajectories.
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(b) Cost as a function of algorithm iterations.Je = 6.93×104.

Fig. 2. Optimal elliptical trajectories for two agents (without using the CSC
algorithm.)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10
Optimal Control trajectory

(a) Red and green trajectories obtained from TPBVP solution.
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Fig. 3. Optimal trajectories using TPBVP solver for two agents. Initial
trajectories are red curves in Fig. 2(a).
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(a) Red ellipses: initial trajectories. Blue ellipses: optimal elliptical
trajectories
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(b) Cost as a function of algorithm iterations.JDet
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Fig. 4. Two agent example for the deterministic environmentsetting using
the CSCAlgorithm 1 for Q= 300 trials.
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Fig. 5. Two-agent example for a stochastic environment setting using the CSC
Algorithm 1 for Q= 300 trials, whereAi (∆ti ) ˜U (0.195,0.205), ∆ti ˜0.2e−0.2t .
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(a) Blue ellipses: initial trajectories. Red and green trajectories:
TPBVP converged trajectories.
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(b) Cost vs. number of iterations.JTPBVP = 6.07×104.

Fig. 6. Left plot: elliptical trajectories (blue curve) obtained in Fig. 4(a)
used as initial trajectories for the TPBVP solver.

provides solutions that approximate those obtained through
a computationally intensive TPBVP solver. Moreover, since
the solutions obtained are generally locally optimal, we have
incorporated a stochastic comparison algorithm for deriving
globally optimal elliptical trajectories. Ongoing work aims
at alternative approaches for near-optimal solutions and at
distributed implementations.
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