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Distributed reactive power feedback control
for voltage regulation and loss minimization
Saverio Bolognani, Ruggero Carli, Guido Cavraro, and Sandro Zampieri

Abstract—We consider the problem of exploiting the micro-
generators dispersed in the power distribution network in order
to provide distributed reactive power compensation for power
losses minimization and voltage regulation. In the proposed
strategy, microgenerators are smart agents that can measure their
phasorial voltage, share these data with the other agents on a
cyber layer, and adjust the amount of reactive power injected into
the grid, according to a feedback control law that descends from
duality-based methods applied to the optimal reactive power flow
problem. Convergence to the configuration of minimum losses
and feasible voltages is proved analytically for both a synchronous
and an asynchronous version of the algorithm, where agents
update their state independently one from the other. Simulations
are provided in order to illustrate the performance and the
robustness of the algorithm, and the innovative feedback nature
of such strategy is discussed.

I. INTRODUCTION

Recent technological advances, together with environmental
and economic challenges, have been motivating the deploy-
ment of small power generators in the low voltage and medium
voltage power distribution grid. The availability of a large
number of these generators in the distribution grid can yield
relevant benefits to the network operation, which go beyond
the availability of clean, inexpensive electrical power. They
can be used to provide a number of ancillary services that are
of great interest for the management of the grid [1], [2].

We focus in particular on the problem of optimal reactive
power compensation for power losses minimization and volt-
age regulation. In order to properly command the operation
of these devices, the distribution network operator is required
to solve an optimal reactive power flow (ORPF) problem.
Powerful solvers have been designed for the ORPF problem,
and advanced optimization techniques have been recently
specialized for this task [3], [4], [5]. However, this approach
assumes that an accurate model of the grid is available, that
all the grid buses are monitored, that loads announce their
demand profiles in advance, and that generators and actuators
can be dispatched on a day-ahead, hour-ahead, and real-time
basis. For this reason, these solvers are in general offline
and centralized, and they collect all the necessary field data,
compute the optimal configuration, and dispatch the reactive
power production at the generators.

These tools cannot be applied directly to the ORPF problem
faced in low/medium voltage power distribution networks.
The main reasons are that not all the buses of the grid are
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monitored, individual loads are unlikely to announce they
demand profile in advance, the availability of small size
generators is hard to predict (being often correlated with
the availability of renewable energy sources). Moreover, the
grid parameters, and sometimes even the topology of the
grid, are only partially known, and generators are expected to
connect and disconnect, requiring an automatic reconfiguration
of the grid control infrastructure (the so called plug and play
approach).

Different strategies have been recently proposed in order
to address these issues. Purely local algorithms have been
proposed, in which each generator is operated according to its
own measurements [2], in order to compensate for the voltage
rise caused by its own active power injection [6], [7]. Because
of the absence of coordination between microgenerators, the
full potential of the microgenerators for voltage regulation is
not exploited in these strategies [8].

Different coordination strategies have been then proposed,
for example by casting the problem into the framework of
resource allocation [9] and by using hierarchical dispatch
schemes [10]. A two-stage approach has been proposed in
[11], where microgenerators first attempt to regulate their
voltage autonomously, and they involve their neighbors in this
task if their regulation capability is not sufficient.

Finally, some distributed approaches that do not require any
central controller, but still require measurements at all the
buses of the distribution grid, have been proposed. In order
to derive a distributed algorithm for this problem, different
convex relaxation methods [12], [13], [14], [15] have been
applied, and various distributed optimization algorithms have
been specialized for the resulting convex ORPF problem [16],
[17], [18], [19].

Only recently, algorithms that are truly scalable in the
number of generators and do not require the monitoring of
all the buses of the grid, have been proposed for the problem
of power loss minimization (with no voltage constraints) [20],
[21], [22]. While these algorithms have been designed by
specializing classical nonlinear optimization algorithms to the
ORPF problem, they can also be considered as feedback
control strategies. Indeed, the key feature of these algorithms is
that they require the alternation of measurement and actuation
based on the measured data, and therefore they are inherently
online algorithms. In particular, the reactive power injection
of the generators is adjusted by these algorithms based on the
phasorial voltage measurements that are performed at the buses
where the generators are connected. The resulting closed loop
system features a tight dynamic interconnection of the physical
layer (the grid, the generators, the loads) with the cyber layer
(where communication, computation, and decision happen). In
this paper, we design a distributed feedback algorithm for the
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ORPF problem with voltage constraints, in which the goal is to
minimize reactive power flows while ensuring that the voltage
magnitude across the network lies inside a given interval,
and that the microgenerators’ reactive power limits are not
violated. The analysis of the convergence of this strategy is
based on an assumption of homogeneity of the X/R ratio of the
power lines across the network. The robustness of the proposed
solution with respect to possible variability in these parameters
has been investigated via simulations.

In Section III, a cyber-physical model for a smart power
distribution grid is provided. In Section V, the ORPF problem
with voltage constraints is formulated. A feedback control
strategy for its solution is derived in Section VI, by us-
ing the tools of dual decomposition. A synchronous and
an asynchronous version of the algorithm are presented in
Section VI and Section VII, respectively. The convergence
of both the proposed algorithms is studied in Section VIII.
Some simulations are provided in Section IX, while Section X
concludes the paper discussing some relevant features of the
feedback nature of the proposed strategy.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, and σ, τ : E → V are two
functions such that edge e ∈ E goes from the source node
σ(e) to the terminal node τ(e).

Given two nodes h, k ∈ V , we define the path Phk as the
sequence of adjacent nodes, without repetitions, that connect
node h to node k.

Let A ∈ {0,±1}|E|×n be the incidence matrix of the graph
G, defined via its elements

[A]ev =




−1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

If the graph G is connected (i.e. for every pair of nodes there
is a path connecting them), then 1 is the only vector in the
null space kerA, 1 being the column vector of all ones. We
define by 1v the vector whose value is 1 in position v, and 0
everywhere else.

In the rest of the paper we will often introduce complex-
valued functions defined on nodes and on edges. These func-
tions will also be intended as vectors in Cn (where n = |V|)
and C|E|. Given a vector u, we denote by ū its (element-wise)
complex conjugate, and by uT its transpose. We denote by
<(u) and =(u) the real and imaginary part of u, respectively.

III. CYBER-PHYSICAL MODEL OF A SMART POWER
DISTRIBUTION GRID

In this work, we envision a smart power distribution net-
work as a cyber-physical system, in which
• the physical layer consists of the power distribution

infrastructure, including power lines, loads, microgenera-
tors, and the point of connection to the transmission grid;

• the cyber layer consists of intelligent agents, dispersed
in the grid, and provided with actuation, sensing, com-
munication, and computational capabilities.
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Figure 1. Schematic representation of the power distribution grid model. In
the lower panel the physical layer is represented via a circuit representation,
where black diamonds are microgenerators, white diamonds are loads, and
the left-most element of the circuit represents the PCC. The middle panel
illustrates the adopted graph representation for the same grid. Circled nodes
represent both microgenerators and the PCC. The upper panel represents the
cyber layer, where agents (i.e. microgenerator nodes and the PCC) are also
connected via some communication infrastructure.

A. Physical layer

For the purpose of this paper, we model the physical layer of
a smart power distribution network as a directed graph G, in
which edges represent the power lines, and nodes represent
buses (see Figure 1, middle panel). Buses correspond to
loads, microgenerators, and also the point of connection to
the transmission grid (called point of common coupling, or
PCC, and indexed as node 0).

We limit our study to the steady state behavior of the system,
when all voltages and currents are sinusoidal signals at the
same frequency. Each signal can therefore be represented via
a complex number y = |y|ej∠y whose absolute value |y|
corresponds to the signal root-mean-square value, and whose
phase ∠y corresponds to the phase of the signal with respect to
an arbitrary global reference. In this notation, the steady state
of the grid is described by the following system variables (see
Figure 1, lower panel):
• u ∈ Cn, where uv is the grid voltage at node v;
• i ∈ Cn, where iv is the current injected at node v.
We model the grid power lines as series impedances,

neglecting their shunt admittance. For every edge e of the
graph, we define by ze the impedance of the corresponding
power line. We assume the following.
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Assumption 1. All the power lines in the grid have the
same inductance/resistance (X/R) ratio, but possibly different
impedance magnitude, i.e.

ze = ejθ|ze|
for any e in E and for a fixed θ.

This assumption is satisfied when the X/R ratio of the
power lines of the grid is relatively homogeneous, which is
reasonable in many practical cases (see for example the IEEE
standard testbeds [23]). In Section IX we investigate what is
the effect of a possible variability of the X/R ratio, and we
show how the proposed strategy is very robust against this
possible uncertainty.

Under this assumption, we have a linear relation between
bus voltages and currents in the form

i = e−jθLu (1)

where L := ATZ−1A is the weighted Laplacian of the
graph, in which A is the incidence matrix of G, and Z =
diag(|ze|, e ∈ E) is the diagonal matrix of the magnitudes of
line impedances.

Each node v of the grid is then characterized by a law
relating its injected current iv with its voltage uv . We model
the PCC as an ideal sinusoidal voltage generator at the
microgrid nominal voltage UN with arbitrary fixed angle ψ

u0 = UNe
jψ. (2)

In the power system analysis terminology, node 0 is then a
slack bus with fixed voltage magnitude and angle.

We model loads and microgenerators (that is, every node v
of the microgrid except the PCC) via the following law relating
the voltage uv and the current iv

uv īv = sv, ∀v ∈ V\{0}, (3)

where sv is the injected complex power. The quantities

pv := <(sv) and qv := =(sv)

are denoted as active and reactive power, respectively. The
complex powers sv corresponding to grid loads are such that
{pv < 0}, meaning that positive active power is supplied to
the devices. The complex powers corresponding to microgen-
erators, on the other hand, are such that {pv ≥ 0}, as positive
active power is injected into the grid. In the power system
analysis terminology, all nodes but the PCC are being modeled
as constant power or P-Q buses. Microgenerators fit in this
model, as they generally are commanded via a complex power
reference and they can inject it independently from the voltage
at their point of connection [24], [25].

B. Cyber layer

We assume that every microgenerator, and also the PCC,
correspond to an agent in the cyber layer (upper panel of
Figure 1). We denote by C (with |C| = m) this subset of the
nodes of G. Each agent is provided with some computational
capability, and with some sensing capability, in the form of
a phasor measurement unit (i.e. a sensor that can measure

voltage
measurement

voltage
measurement

reactive power
command

communicationcommunication

PCC (node 0)

microgenerator

voltage
measurement

voltage
measurement

reactive power
command

communicationcommunication

PCC (node 0)

microgenerator

Figure 2. A schematic representation of the agents’ capabilities and of
the way in which agents of the cyber layer interface with the physical
layers. The first panel represent the agent at the PCC (node 0), which is
provided with voltage measurement capabilities. The second panel represents
all the other agents, at the microgenerators, which are provided with both
measurement and actuation capabilities. All the agent can communicate via
some communication channel.

h

k ∈ N (h)

k′ /∈ N (h)

Figure 3. An example of neighbor agents in the cyber layer. Circled nodes
(both gray and black) are agents (nodes in C). Nodes circled in black belong
to the set N (h) ⊂ C. Node circled in gray are agents which do not belong to
the set of neighbors of h. For each agent k ∈ N (h), the path that connects
h to k does not include any other agent besides h and k themselves.

voltage amplitude and angle [26]). Agents that corresponds to
a microgenerator can also actuate the system, by commanding
a set point for the amount of reactive power injected by that
microgenerator (see Figure 2).

Finally, agents can communicate, via some communication
channel that could possibly be the same power lines (via power
line communication). Motivated by this possibility, we define
the neighbors in the cyber layer in the following way.

Definition 1 (Neighbors in the cyber layer). Let h ∈ C be an
agent of the cyber layer. The set of agents that are neighbors
of h, denoted as N (h), is the subset of C defined as

N (h) = {k ∈ C | ∀Phk,Phk ∩ C = {h, k}} .

Figure 3 gives an example of such set. We assume that
every agent h ∈ C knows its set of neighbors N (h), and can
communicate with them. Notice that this architecture can be
constructed by each agent in a distributed way, for example
by exploiting the PLC channel (as suggested for example in
[27]). This allows also a plug-and-play reconfiguration of such
architecture when new agents are connected to the grid.
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IV. APPROXIMATED MODEL AND ITS PROPERTIES

In this section we review an approximate explicit solution
of the nonlinear equations (1), (2), and (3) which has been
proposed in [21]. This approximation will play a crucial role
in deriving our distributed control strategy to solve the optimal
reactive power flow problem that we will introduce in next
section. In order to present the approximated solution, we need
the following technical lemma.

Lemma 1 (Lemma 1 in [21]). Let L be the weighted Laplacian
of G. There exists a unique symmetric, positive semidefinite
matrix X ∈ Rn×n such that

{
XL = I − 11T0
X10 = 0.

(4)

The matrix X depends only on the topology of the grid
power lines and on their impedance. The matrix X has some
notable properties, including the fact that

Xhh ≥ Xhk ≥ 0 h, k ∈ V, (5)

and the fact that

(1h − 1k)TX(1h − 1k) =
∣∣Zeff
hk

∣∣ , h, k ∈ V, (6)

where Zeff
hk represents the effective impedance of the power

lines between node h and k. Notice that, if the grid is radial
(i.e. G is a tree) then Zeff

hk is simply the impedance of the
only path from node h to node k. Now let us introduce the
following block decomposition of the vector of voltages u

u =



u0

uG
uL


 ,

where u0 is the voltage at the PCC, uG ∈ Cm−1 are the
voltages at the microgenerators, and uL ∈ Cn−m are the
voltages at the loads. Similarly, we also define sG = pG+jqG
and sL = pL + jqL.

By adopting this block decomposition as before, we have

X =




0 0 0
0 M N
0 NT Q


 , (7)

with M ∈ R(m−1)×(m−1), N ∈ R(m−1)×(m−n), and Q ∈
R(n−m)×(n−m). The following proposition provides the ap-
proximate relation between the grid voltages and the power
injections at the nodes.

Proposition 1. Consider the physical model described by the
set of nonlinear equations (1), (2), and (3). Node voltages then
satisfy


u0

uG
uL


= ejψ


UN1 +

ejθ

UN




0 0 0
0 M N
0 NT Q






0
s̄G
s̄L




+ o

(
1

UN

)

(8)
where the little-o notation means that limUN→∞

o(f(UN ))
f(UN ) = 0.

Proof: It descends directly from Proposition 1 in [21].

The quality of this approximation relies on having large
nominal voltage UN and relatively small currents injected by
the inverters (or supplied to the loads). This assumption is
verified in practice, and corresponds to correct design and
operation of power distribution networks, where indeed the
nominal voltage is chosen sufficiently large (subject to other
functional constraints) in order to deliver electric power to the
loads with relatively small power losses on the power lines.
The model proposed in Proposition 1 extends the DC power
flow model [28, Chapter 3] to the case in which lines are not
purely inductive. This way, the model is able to describe the
voltage drop on the lines, and therefore also the corresponding
power losses, in a form that is conveniently linear in the
complex power injections and demands. We conclude this
section by introducing the following matrix G.

Lemma 2. There exists a unique symmetric matrix G ∈
Rm×m such that





[
0 0

0 M

]
G = I − 11T0

G1 = 0.

Proof: The following matrix G satisfies the conditions.

G =

[
1TM−11 −1TM−1

−M−11 M−1

]
. (9)

The proof of uniqueness, that we omit here, follows exactly
the same steps as in the proof of Lemma 1.

The matrix G has also a remarkable sparsity pattern, as the
following lemma states.

Lemma 3. The matrix G has the sparsity pattern induced by
the Definition 1 of neighbor agents in the cyber layer, i.e.

Ghk 6= 0 ⇔ k ∈ N (h).

The proof is provided in the Appendix A, where we also
discuss how the elements of G can be estimated by the agents,
given a local knowledge of the power grid parameters.

V. OPTIMAL REACTIVE POWER FLOW PROBLEM

We consider the problem of commanding the reactive power
injection of the microgenerators in order to minimize power
distribution losses on the power lines and to guarantee that the
voltage magnitude and the reactive power injection stay within
pre-assigned intervals. The decision variables (or, equivalently,
the inputs of the system) are therefore the reactive power
setpoints qh, h ∈ C\{0}, compactly written as qG.

Power distribution losses can be expressed as a function
of the voltage drop on the lines and therefore, in a matricial
quadratic form, as

Jlosses := ūTLu. (10)

Given a lower bound Umin and an upper bound Umax for the
voltage magnitudes, and a lower bound qmin and an upper
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bound qmax for the reactive power injected by each microgen-
erator, we can therefore formulate the following optimization
problem,

min
qG

ūTLu (11a)

subject to

|uh| ≥ Umin
|uh| ≤ Umax
qh ≥ qmin
qh ≤ qmax

∀h ∈ C\{0} (11b)

where voltages u are a function of the decision variables qG,
via the implicit relation defined by the system of nonlinear
equations (1), (2), and (3). From a control design prospective,
the system-wide problem that we are considering is therefore
characterized by
• the input variables qG,

• the measured output variables
[
u0

uG

]
,

• the unmeasured disturbances pL, qL, pG.
The goal of this paper is to design a control algorithm to

tackle the ORPF problem in a distributed fashion, where each
microgenerator h is allowed to communicate only with its
neighbors in the cyber layer, i.e., the agents in N (h).

Remark 1. While the decision variables of the ORPF problem
(i.e. the input variables qG) do not include the reactive power
supplied by the PCC (i.e. q0 = u0ī0), this quantity will
also change every time the reactive power setpoints of the
generators are updated by the algorithm, because the inherent
physical behavior of the slack bus (the PCC) ensures that
equations (1), (2) and (3) are satisfied at every time.

Remark 2. In the above formulation we have assumed that all
the microgenerators have to satisfy the same reactive power
injection constraint. This scenario can be seamlessly extended
to the case of heterogeneous microgenerators, where qh,min ≤
qh ≤ qh,max being the values qh,min, qh,max, h ∈ C, in general
different for different microgenerators.

VI. A SYNCHRONOUS ALGORITHM BASED ON DUAL
DECOMPOSITION

In this section, in order to design a distributed feedback
control strategy to solve the ORPF problem, we apply the
tool of dual decomposition to (11). Specifically, we use the
approximate explicit solution of the nonlinear equations (1),
(2), and (3) introduced in Proposition 1, to derive update steps
for a dual ascent algorithm [29] that can be implemented
distributively by the agents and that can be used as a feedback
control update law.

It is convenient to reformulate the problem (11) via a change
of coordinates, obtaining

min
qG

ūTLu (12a)

subject to

vh ≥ vmin
vh ≤ vmax
wh ≥ wmin
wh ≤ wmax

∀h ∈ C\{0} (12b)

where

vh = |uh|2/U2
N wh = 2qh/U

2
N

vmin = U2
min/U

2
N wmin = 2qmin/U

2
N

vmax = U2
max/U

2
N wmax = 2qmax/U

2
N .

Basically, in (12b) with the respect to (11b), we have squared
and normalized the constraints on the voltage magnitude and
we have normalized the constraints on the power injection.
While these modifications does not have any effect on the
optimization problem, they will allow us to simplify the
derivation of the algorithm we are going to present. The
Lagrangian of the problem (12) is

L(qG, λmin, λmax, µmin, µmax)

= ūTLu+ λTmin (vmin1− vG) + λTmax (vG − vmax1)

+ µTmin (wmin1− wG) + µTmax (wG − wmax1) (13)

where λmin, λmax, µmin, µmax are the Lagrangian multipliers
(i.e. the dual variables of the problem) and u, vG, wG are
functions of the decision variables qG, even if the dependence
has been omitted. To have a more compact notation let

ν =
[
λTmin λTmax µTmin µTmax

]T
.

A dual ascent algorithm consists in the iterative execution
of the following alternated steps

1) dual gradient ascent step on the dual variables

λmin(t+ 1) =

[
λmin(t) + γ

∂L(qG(t), ν(t))

∂λmin

]

+

λmax(t+ 1) =

[
λmax(t) + γ

∂L(qG(t), ν(t))

∂λmax

]

+

µmin(t+ 1) =

[
µmin(t) + γ

∂L(qG(t), ν(t))

∂µmin

]

+

µmax(t+ 1) =

[
µmax(t) + γ

∂L(qG(t), ν(t))

∂µmax

]

+

,

where the [·]+ operator corresponds to the projection on
the positive orthant, and where γ is a suitable positive
constant;

2) minimization of the Lagrangian with respect to the
primal variables qG

qG(t+ 1) = arg min
qG
L(qG, ν(t+ 1)). (14)

Observe that the updates of the Lagrange multipliers can be
performed naturally in a distributed way by the agents, based
on their local measurement of the violation of the voltage and
power constraints. Indeed let λmin,h, λmax,h, µmin,h and µmax,h
be the components of the the Lagrange multipliers λmin, λmax,
µmin and µmax, respectively, related to the compensator h. Then
it easily follows that the dual step can be implemented as

λmin,h(t+ 1) = [λmin,h(t) + γ(vmin − vh)]+
λmax,h(t+ 1) = [λmax,h(t) + γ(vh − vmax)]+
µmin,h(t+ 1) = [µmin,h(t) + γ(wmin − wh)]+
µmax,h(t+ 1) = [µmax,h(t) + γ(wh − wmax)]+ .
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The crucial point is to derive an expression for the minimizer
qG(t + 1) in (14) that can be computed distributively by
the compensators. To do so, we exploit the approximation
introduced in Proposition 1 obtaining a value of qG(t + 1)
which is equivalent to the one in (14) up to a term which
vanishes to zero for large nominal voltage UN .

The resulting update corresponds to the algorithm that we
now present. We assume here that the agents are coordinated,
i.e., they can update their state variables qh, λmin,h, λmax,h,
µmin,h and µmax,h, synchronously.

Synchronous algorithm
Let all agents (except the PCC) store the auxiliary scalar

variables λmin,h, λmax,h, µmin,h and µmax,h. Let γ be a positive
scalar parameter, and let θ be the impedance angle defined in
Assumption 1. Let Ghk be the elements of the sparse matrix
G defined in Lemma 2. At every synchronous iteration of
the algorithm, each agent h ∈ C\{0} executes the following
operations in order:

• it measures its voltage uh and it gathers the voltage
measurements

{uk = |uk| exp(j∠uk), k ∈ N (h)}

from its neighbors;
• it updates the auxiliary variables λmin,h, λmax,h, µmin,h,
µmax,h, as

λmin,h ←
[
λmin,h + γ

(
U2

min

U2
N

− |uh|
2

U2
N

)]

+

λmax,h ←
[
λmax,h + γ

( |uh|2
U2
N

− U2
max

U2
N

)]

+

µmin,h ←
[
µmin,h + γ

(
qmin

U2
N

− qh
U2
N

)]

+

µmax,h ←
[
µmax,h + γ

(
qh
U2
N

− qmax

U2
N

)]

+

;

• it gathers from its neighbors the updated values of the
Lagrange multipliers µmin,k, µmax,k, k ∈ N (h);

• based on the new values of λmax,h, λmin,h and of µmin,k,
µmax,k, k ∈ N (h), it updates the injected reactive power
qh as

qh ← qh − sin θ(λmax,h − λmin,h)

+
∑

k∈N (h)

Ghk|uh||uk| sin(∠uk − ∠uh − θ)

−
∑

k∈N (h)\{0}
Ghk(µmax,k − µmin,k).

(15)

Observe that the above algorithm can be implemented in a
completely distributed fashion. Indeed each agent is required
to exchange information only with its neighbors in the cyber
layer.

The following Proposition shows how the update (15)
approximates the primal step (14).

Proposition 2. Consider the synchronous algorithm above
described. Then

∂L(qG(t+ 1), ν(t+ 1))

∂qG
= o

(
1

U2
N

)
,

namely, the update (15), minimizes the Lagrangian with re-
spect to the primal variables, up to a term that vanishes for
large UN .

The details of the proof of Proposition 2 are postponed to
Appendix B. It is based on the following technical lemma,
which will be useful again later.

Lemma 4. Consider the Lagrangian L(qG, λ) defined in (13).
The partial derivative with respect to the primal variables qG
is

∂L(qG, ν)

∂qG
=

2

U2
N

(
MqG +NqL + sin θM(λmax − λmin)

+ µmax − µmin
)

+ o

(
1

U2
N

)
.

Also the proof of Lemma 4 is in Appendix B.
Via these steps, we therefore specialized the dual ascent

steps to the ORPF problem that we are considering, and we
obtained a distributed feedback control law for the system.
We study the convergence of the closed loop system in
Section VIII.

Remark 3. It is important to notice that the proposed syn-
chronous algorithm requires that the agents actuate the system
at every iteration, by updating the set point for the amount
of reactive power injected by the microgenerators. Only by
doing so, the subsequent measurement of the voltages will be
informative of the new state of the system. The resulting control
strategy is thus a feedback strategy that necessarily requires
the real-time interaction of the controller (the cyber layer)
with the plant (the physical layer), as depicted in Figure 4.
This tight interaction between the cyber layer and the physical
layer is the fundamental feature of the proposed approach, and
allows to drive the system towards the optimal configuration,
which in principle depends on the reactive power demands of
the loads, without collecting this information from them. In a
sense, the algorithm is inferring this hidden information from
the measurement performed on the system during its execution.

VII. ASYNCHRONOUS ALGORITHM

In order to avoid the burden of system-wide coordination
among the agents, we also propose an asynchronous version of
the algorithm, in which the agents corresponding to the micro-
generators update their state (qh, λmax,h, λmin,h, µmax,h, µmin,h)
independently one from the other, based on the information
that they can gather from their neighbors.

We assume that each agent (except for the agent located at
the PCC) is provided with an individual timer, by which it is
triggered, and that no coordination is present between these
timers: they tick randomly, with exponentially, identically
distributed waiting times.
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GridqG

[
u0
uG

]

sin θ (λmax,h − λmin,h)+

pG, pL, qL

1

z

∑

k∈N (h)

Ghk|uh||uk| sin( 6 uk − 6 uh − θ)

+

∑

k∈N (h)\{0}
Ghk (µmax,k − µmin,k)




λmin

λmax

µmin

µmax




(1)-(3)

+

constraint
violation

1

z
+[ · ]+

γ

Figure 4. A block diagram representation of the synchronous control
algorithm proposed in Section VI, where the tight interconnection of the cyber
and the physical layer (i.e. the feedback strategy) is evident.

Asynchronous algorithm
Let all agents (except the PCC) store four auxiliary scalar

variables λmax,h, λmin,h, µmax,h, µmin,h. Let γ be a positive
scalar parameter, and let θ be the impedance angle defined
in Assumption 1. Let Ghk be the elements of the matrix G
defined in Lemma 2.

When agent h ∈ C\{0} is triggered by its own timer, it
performs the following actions in order:

• it measures its voltage uh and it gathers from its neigh-
bors the voltage measurements

{uk = |uk| exp(j∠uk), k ∈ N (h)}

and the values of the Lagrange multipliers

{µmin,k, µmax,k, k ∈ N (h)};

• it updates the auxiliary variables λmin,h, λmax,h, µmin,h,
µmax,h, as

λmin,h ←
[
λmin,h + γ

(
U2

min

U2
N

− |uh|
2

U2
N

)]

+

λmax,h ←
[
λmax,h + γ

( |uh|2
U2
N

− U2
max

U2
N

)]

+

µmin,h ←
[
µmin,h + γ

(
qmin

U2
N

− qh
U2
N

)]

+

µmax,h ←
[
λmax,h + γ

(
qh
U2
N

− qmax

U2
N

)]

+

;

• based on the new value of λmin,h, λmax,h, it updates the

injected reactive power qh as

qh ← qh − sin θ(λmax,h − λmin,h)+

+
∑

k∈N (h)

Ghk|uh||uk| sin(∠uk − ∠uh − θ)+

−
∑

k∈N (h)\{0}
Ghk(µmax,k − µmin,k).

(16)

The update equations for the asynchronous algorithm are
exactly the same of the synchronous case. Here, however, we
update both the primal and the dual variable of the agents
independently and asynchronously. Also the analysis of the
convergence of this algorithm is postponed to the next section.

VIII. CONVERGENCE ANALYSIS

In this section, we investigate the convergence of both the
synchronous algorithm proposed in Section VI and of the
asynchronous algorithm proposed in Section VII.

In order to do so, we rewrite the terms that appeared in the
dual ascent update step, namely

∂L(qG, ν)

∂λmin
,

∂L(qG, ν)

∂λmax
,

∂L(qG, ν)

∂µmin
,

∂L(qG, ν)

∂µmax
,

using the expression introduced in Proposition 1 for the
voltages. We start from

∂L(qG, ν)

∂λmin
= vmin1− vG.

By plugging in the approximate solution (8), via some alge-
braic manipulations, we can express vG as

vG = 1 +
2

U2
N

<
(
ejθMs̄G + ejθNs̄L

)
+ o

(
1

U2
N

)

= 1 +
2

U2
N

(sin θMqG + cos θMpG)

+
2

U2
N

(cos θNpL + sin θNqL) + o

(
1

U2
N

)
(17)

and, in turn, we have that
∂L(qG, ν)

∂λmin
=

2

U2
N

(bmin − sin θMqG) + o

(
1

U2
N

)
(18)

where

bmin =
U2
N

2
(vmin−1)1−(MpG cos θ+N(pL cos θ+qL sin θ)).

Similar calculations lead to

∂L(qG, ν)

∂λmax
=

2

U2
N

(sin θMqG − bmax) + o

(
1

U2
N

)
,

where

bmax =
U2
N

2
(vmax−1)1−(MpG cos θ+N(pL cos θ+qL sin θ)).

Additionally observe that

∂L(qG, ν)

∂µmin
= wmin1− wG =

2

U2
N

(1qmin − qG) ,

∂L(qG, ν)

∂µmax
= wG − wmax1 =

2

U2
N

(qG − 1qmax) .
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The proposed dual ascent step can therefore be rewritten in
compact form as

ν(t+ 1) =

[
ν(t) + γ

2

U2
N

(ΦqG(t) + b) + o

(
1

U2
N

)]

+

, (19)

where

Φ =




− sin θM
sin θM
−I
I


 , b =




bmin
−bmax
1qmin
−1qmax


 . (20)

The update step for the primal variables can be rewritten
based on Proposition 2 and Lemma 4, obtaining

qG(t+ 1) = −M−1NqL −M−1Φν(t+ 1) + o

(
1

UN

)
.

(21)

In the analysis that follows, we study the approximated
description of the closed loop system in which we neglect the
infinitesimal terms. Notice that, by doing so, both the voltages
u and the squared voltage magnitudes vG become affine
functions of the decision variables qG. By plugging those
expressions in the formulation of the ORPF problem (12), one
obtains the following strictly convex quadratic problem with
linear inequality constraints

min
qG

qTG
M

2
qG + qTGNqL (22a)

subject to ΦqG + b ≤ 0, (22b)

for which strong duality holds. The rest of the section is
split into two subsections: in the first one we consider the
synchronous version of the algorithm, in the second one the
asynchronous version.

A. Syncronous case

For the synchronous version of the algorithm, we consider
the update equations

ν(t+ 1) =

[
ν(t) + γ

2

U2
N

(ΦqG(t) + b)

]

+

, (23)

for the dual variables, and

qG(t+ 1) = −M−1NqL −M−1ΦT ν(t+ 1). (24)

for the primal variables. Observe that (23) and (24) differ
from (19) and from (21) only by infinitesimal terms, and
they correspond to the standard equation for the dual ascent
steps for (22). Indeed, the equilibrium (q∗G, ν

∗) of (23)-(24) is
characterized by

Φq∗G + b ≤ 0 and q∗G +M−1NqL +M−1ΦT ν∗ = 0,

which correspond to the necessary conditions for the optimal-
ity according to Uzawa’s saddle point theorem [30].

It will be useful in the following to define σmin and σmax as
the minimum and the maximum eigenvalue of M , respectively.
The following result characterizes the convergence of the
algorithm described by (23) and (24).

Theorem 1. Consider the optimization problem (22) and the
dynamic system described by the update equations (23) and
(24). Then the trajectory t → q(t) converges to the optimal
primal solution q∗G if

γ ≤ U2
N

ρ(ΦM−1ΦT )
,

where

ρ(ΦM−1ΦT ) = 2 max{σ−1
min + sin2 θσmin, σ

−1
max + sin2 θσmax}.

The proof is presented in Appendix C.
We conclude this subsection by specializing the above result

to the case where either only voltage constraints or only power
constraints are considered. Observe that if we take into account
only voltage constraints then the matrix Φ and the vector b
become

Φ =

[
− sin θM
sin θM

]
, b =

[
bmin
−bmax

]
(25)

and only the multipliers λmin and λmax are employed in the
algorithm, while if we consider only power constraints then

Φ =

[
−I
I

]
, b =

[
1qmin
−1qmax

]
(26)

and only the multipliers µmin and µmax are needed. The
following results follow from Theorem 1.

Corollary 1. Consider the optimization problem (22), where Φ
and b are given as in (25), and the dynamic system described
by the update equations (23) and (24). Then the trajectory
t→ q(t) converges to the optimal primal solution q∗G if

γ ≤ U2
N

2 sin2 θ σmax
,

Corollary 2. Consider the optimization problem (22), where Φ
and b are given as in (26), and the dynamic system described
by the update equations (23) and (24). Then the trajectory
t→ q(t) converges to the optimal primal solution q∗G if

γ ≤ σmin U
2
N

2
.

B. Asynchronous case

We introduce the following assumption.

Assumption 2. Let {T (h)
i }, i ∈ N, be the time instants in

which the agent h is triggered by its own timer. We assume that
the timer ticks with exponentially distributed waiting times,
identically distributed for all the agents in C\{0}.

Let us define the random sequence h(t) ∈ C\{0} which
tells which agent has been triggered at iteration t of the
algorithm. Because of Assumption 2, the random process h(t)
is an i.i.d. uniform process on the alphabet C\{0}. If we
repeat the same analysis, neglecting the infinitesimal terms,
we obtain the following update equations for the primal and
dual variables, instead of (23) and (24). In these equations,
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only the component h(t) of the vectors λmin, λmax, µmin, µmax
and qG is updated at time t, namely,

λmin,h(t)(t+ 1) =
[
λmin,h(t)(t)+

+ γ
2

U2
N

1Th(t)(bmin − sin θMqG(t))
]
+

λmax,h(t)(t+ 1) =
[
λmax,h(t)(t)+

+ γ
2

U2
N

1Th(t)(sin θMqG(t)− bmax)
]
+

µmin,h(t)(t+ 1) =
[
µmin,h(t)(t) + γ

2

U2
N

(qmin − qh(t))
]
+

µmax,h(t)(t+ 1) =
[
µmax,h(t)(t) + γ

2

U2
N

(qh(t)− qmax)
]
+

(27)

while

λmin,k(t+ 1) = λmin,k(t)

λmax,k(t+ 1) = λmax,k(t)

µmin,k(t+ 1) = µmin,k(t)

µmax,k(t+ 1) = µmax,k(t)

∀k 6= h(t), (28)

and

qh(t)(t+ 1) = −1Th(t)(M
−1NqL +M−1ΦT ν(t+ 1))

qk(t+ 1) = qk(t) ∀k 6= h(t).
(29)

Notice that, also in the asynchronous case, Uzawa’s necessary
conditions for optimality are satisfied at the equilibrium of
(27), (28) and (29). For the asynchronous version of the
algorithm we can provide theoretical results only when Φ
and b assume the form in (25) or in (26), namely, when
we consider either only voltage constraints or only power
constraints. However in the numerical section we show the
effectiveness of the asynchronous algorithm when Φ and b
assume the general form in (20).

The following convergence results hold.

Proposition 3. Consider the optimization problem (22), where
Φ and b are given as in (25), and the dynamic system described
by the update equations (27) and (28) (for the multipliers
λmin and λmax) and (29). Let Assumption 2 hold. Then the
evolution t → q(t) converges almost surely to the optimal
primal solution q∗G if

γ ≤ U2
N

2 sin2 θ σmax
.

Proposition 4. Consider the optimization problem (22), where
Φ and b are given as in (26), and the dynamic system described
by the update equations (27) and (28) (for the multipliers
µmin and µmax) and (29). Let Assumption 2 hold. Then the
evolution t → q(t) converges almost surely to the optimal
primal solution q∗G if

γ ≤ σmin U
2
N

2
.

The proof is presented in Appendix C.

PCC

G

G

G

G

G

Figure 5. Schematic representation of the IEEE 37 test feeder [23], where
5 microgenerators have been deployed.

IX. SIMULATIONS

The algorithm has been tested on the testbed IEEE 37 [23],
which is an actual portion of 4.8kV power distribution network
located in California. The load buses are a blend of constant-
power, constant-current, and constant-impedance loads, with
a total power demand of almost 2 MW of active power and
1 MVAR of reactive power (see [23] for the testbed data).
The length of the power lines range from a minimum of 25
meters to a maximum of almost 600 meters. The impedance
of the power lines differs from edge to edge (for example,
resistance ranges from 0.182 Ω/km to 1.305 Ω/km). However,
the inductance/resistance ratio exhibits a smaller variation,
ranging from X/R = 0.5 to 0.67. This justifies Assumption
1, in which we claimed that ∠ze can be considered constant
across the network. We considered the scenario in which 5
microgenerators have been deployed in this portion of the
power distribution grid (see Figure 5).

The lower bound for voltage magnitudes has been set to
4700 V. Both the synchronous and the asynchronous algorithm
presented in Section VI and VII have been simulated on
a nonlinear exact solver of the grid [31]. The approximate
model presented in Proposition 1 has not been used in these
simulations, being only a tool for the design of the algorithm
and for the study of the algorithm’s convergence.

A time-varying profile for the loads has been generated,
in order to simulate the effect of slowly varying loads (e.g.
the aggregate demand of a residential neighborhood), fast
changing / intermittent demands (e.g. some industrial loads).

The results of the simulation have been plotted in Figure
6 for the asynchronous case, while the synchronous case has
not been reported, being very similar. In order to tune the
parameter γ, based on the similarity between the conditions
in Propositions 3 and 4, and those in Corollaries 1 and 2, we
conjecture that the bound derived in Theorem 1 is also valid
in the asynchronous case. We have therefore chosen γ to be
one half of such bound. The power distribution losses, the
lowest voltage magnitude measured by the microgenerators,
and the reactive power injection of one of the microgenerators,
are reported. The dashed line represents the case in which no
reactive power compensation is performed. The thick black
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line represents the best possible strategy that solves the ORPF
problem (11) (computed via a numerical centralized solver
that have real time access to all the grid parameters and load
data). The thin red line represents the behavior of the proposed
algorithm.

It can be seen that the proposed algorithm achieves prac-
tically the same performance of the centralized solver, in
terms of power distribution losses. Notice however that the
proposed algorithm does not have access to the demands of the
loads, which are unmonitored. The agents, located only at the
microgenerators, can only access their voltage measurements
and share them with their neighbors. Notice moreover that, as
expected for duality based methods, the voltage constraints can
be momentarily violated. Therefore, in the time varying case
simulated in this example, the voltage sometimes falls slightly
below the prescribed threshold, when the power demand of the
loads present abrupt changes. It should be remarked, however,
that the extent of this constraint violation depends on the rate
at which the algorithm is executed, compared with the rate of
variation of loads, and on the fact that an exact (and thus
aggressive) primal update step has been implemented. The
same behavior cannot be observed for the power constraints,
as the reactive power set-point has been saturated in order
to simulate the typical implementation of power inverters,
which cannot accept set-point references that exceed their
rated power. Notice that the reactive power reference is al-
most constant when voltage constraints are not active (as the
primal step is exact, and therefore the algorithm reaches the
optimal point immediately). When the constraints are active,
the evolution depends instead on the update of the Lagrange
multipliers.

Finally, in Figure 7, we investigated the robustness of the
algorithm with respect to possible larger variations of the X/R
ratio of the power lines. The same testbed has been modified
in order to have X/R ratios ranging from 0.36 to 2.6. Despite
the fact that Assumption 1 is needed for the technical results
of the paper, simulations show how the effect on the closed
loop behavior of the controlled systems is minimal. Intuitively,
this is due to the feedback nature of the control strategy: as
the violation of the constraints is integrated in the feedback
loop (see Figure 4), this violation is guaranteed to go to zero,
as long as the closed loop system is stable.

X. CONCLUSIONS

In this paper we proposed a distributed control law for
optimal reactive power flow in a smart power distribution grid,
based on a feedback strategy. Such a strategy requires the
interleaving of actuation and sensing, and therefore the control
action (the reactive power injections qh, h ∈ C\{0}) is a func-
tion of the real time measurements (the voltages uh, h ∈ C).
According to this interpretation, the active power injections in
the grid (ph, h ∈ V) and the reactive power injection of the
loads (qh, h ∈ V\C) can be considered as disturbances for the
control system. As explained in Remark 3, these quantities do
not need to be known to the controller, and the agents are
implicitly inferring them from the measurements. It is also
well known that the presence of feedback in the control action

makes the closed loop behavior of the system less sensitive
to model uncertainties, as shown in the simulations. These
features differentiate the proposed algorithm from most of
the ORPF algorithms available in the power system literature,
with the exception of some works, like [32], where however
the feedback is only local, with no communication between
the agents, and of [20] and [21]. Moreover, in the proposed
feedback strategy, the controller does not need to solve any
model of the grid in order to find the optimal solution. The
computational effort required for the execution of the proposed
algorithm is therefore minimal. These features are extremely
interesting for the scenario of power distribution networks,
where real time measurement of the loads is usually not
available, and the grid parameters are partially unknown.

While a feedback approach to the ORPF problem is a
recent approach, similar methodologies have been used to
solve other tasks in the operation of power grids (see Figure
8). In particular, in order to achieve realtime power balance
of demand and supply, synchronous generators are generally
provided with a local feedback control that adjusts the input
mechanical power according to frequency deviation measure-
ments (the primary frequency control in [33], see also [34],
[35]). By adding a communication channel (a cyber layer)
that enables coordination among the agents, it is possible to
drive the system to the configuration of minimum generation
costs [36]. Notice that, in this scenario, generators do not have
access to the aggregate active power demand of the loads, but
infer it from the purely local frequency measurements. In this
sense, this example share some qualitative similarities with the
original approach presented in this paper.

As suggested in [37], a control-theoretic approach to op-
timization problems (including ORPF) enables a number of
analyses on the performance of the closed loop system that
are generally overlooked. Examples are L2-like metrics for
the resulting losses in a time-varying scenario (e.g. the pre-
liminary results in [38]), robustness to measurement noise and
parametric uncertainty, stability margin against communication
delays. These analyses, still not investigated, are also of
interest for the design of the cyber architecture, because they
can provide specifications for the communication channels,
communication protocols, and computational resources that
need to be deployed in a smart distribution grid.

APPENDIX A
G-PARAMETERS

Let us define the following parameters ghk, h, k ∈ C.

Definition 2 (g-parameters). For each pair h, k ∈ C, let us
define the parameter

ghk = |ih|∣∣∣∣∣∣∣∣
uk = 1
u` = 0, ` ∈ C\{k}
i` = 0, ` /∈ C

. (30)

i.e. the current that would be injected at node h if
• node k was replaced with a unitary voltage generator;
• all other nodes in C (the other agents) were replaced by

short circuits;
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Figure 6. Power distribution losses, the lowest measured voltages, and the reactive power setpoint of generator 3, have been plotted for the following cases:
when no reactive power compensation is performed (dashed line), when an ideal centralized numerical controller commands the microgenerators (thick black
line), and for the proposed algorithm, where microgenerators are commanded via a feedback law from the voltage measurements (thin red line).
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Figure 7. The same simulation of Figure 6 has been repeated for a larger variation of the inductance/resistance ratio of the lines, from X/R = 0.36 to 2.6.



12

communication

Frequency control and
minimum generation cost

Power grid

unmeasured
active power demands

communication

Voltage support and
minimum power losses

Power grid

unmeasured
reactive power demands

voltages
uk

reactive
power

qk

frequency
fk

active
power

qk

communication

Frequency control and
minimum generation cost

Power grid

unmeasured
active power demands

communication

Voltage support and
minimum power losses

Power grid

unmeasured
reactive power demands

voltages
uk

reactive
power

qk

frequency
fk

active
power

qk

Figure 8. Qualitative comparison between primary frequency control in
power grids (first panel) and the proposed feedback strategy for optimal
reactive power flow (second panel).

hk ∈ N (h)

uh=1

u`=0
∀` ∈ C\{h}

i`=0
∀` /∈ C

h

k ∈ N (h) uh=1

u`=0
∀` ∈ C\{h}

i`=0
∀` /∈ C

Figure 9. A representation of how the elements Gkh are defined. Notice
that in the configuration of the left panel, as the paths from h to its neighbors
k ∈ N (h) do not share any edge, the gains Gkh corresponds to the absolute
value of the path admittances 1/|Zkh|.

• all nodes not in C (load buses) were replaced by open
circuits.

Notice that the parameters ghk depend only on the grid
electric topology, and that

ghk 6= 0 if and only if k ∈ N (h).

Figure 9 gives a representation of this definition. Notice
that, in the special case in which the paths from h to its
neighbors are all disjoint and unique paths, then Ghk =
(
∑
e∈Phk

|ze|)−1, i.e. the inverse of the impedance of the path
connecting h to k.

As suggested in [27], these parameters can be estimated in
an initialization phase via some ranging technologies over the
PLC channel. Alternatively, this limited amount of knowledge
of the grid topology can be stored in the agents at the
deployment time. Finally, the same kind of information can
be also inferred by specializing the procedures that use the
extended capabilities of the generator power inverters for
online grid sensing and impedance estimation [39], [40].

The following Lemma shows that the elements ghk in
Definition 2 correspond to the elements Ghk of the matrix
G in Lemma 2.

Lemma 5. Let G be the matrix defined in Lemma 2. Then,
for all h, k, Ghk = ghk as defined in Definition 2.

Proof: Let Ĝ be the matrix whose elements are the

parameters ghk. From Definition 2, we have that when iL = 0,
[
i0
iG

]
= exp(−jθ)Ĝ

[
u0

uG

]
. (31)

From circuit theory considerations, this implies that Ĝ1 = 0.
From (1) and by using the matrix X defined in Lemma 1, if
iL = 0, we have

(
I − 11T0

) [u0

uG

]
= ejθ

[
0 0
0 M

] [
i0
iG

]
. (32)

By plugging (31) into (32), we obtain
(
I − 11T0

)
= [ 0 0

0 M ] Ĝ.

APPENDIX B
PROOF OF LEMMA 4 AND PROPOSITION 2

Proof of Lemma 4: From (13) we have that

∂L(qG, ν)

∂qG
=
∂ūTLu

∂qG
+

(
∂vG
∂qG

)T
(λmax − λmin)+

+

(
∂wG
∂qG

)T
(µmax − µmin) (33)

In order to derive ∂ūTLu
∂qG

, we introduce the orthogonal decom-
position u = (u′ + ju′′)ej(ψ+θ), with u′, u′′ ∈ Rn. We then
have that, via Proposition 1,

u′ = <
(
ue−j(ψ+θ)

)

= cos θUN1 +
1

UN




0 0 0
0 M N
0 NT Q






0
pG
pL


+ o

(
1

UN

)
,

and similarly

u′′ = =
(
ue−j(ψ+θ)

)

= − sin θUN1− 1

UN




0 0 0
0 M N
0 NT Q






0
qG
qL


+ o

(
1

UN

)
.

By using the fact that ūTLu = u′TLu′ + u′′TLu′′, we have

∂ūTLu

∂qG
= 2

(
∂u′′

∂qG

)T
Lu′′ + 2

(
∂u′

∂qG

)T
Lu′

= −2

[
1

UN

[
0 M N

]
+ o

(
1

UN

)]
Lu′′ + o

(
1

U2
N

)

=
2

U2
N

[
0 M N

]
L




0 0 0
0 M N
0 NT Q






0
qG
qL


+ o

(
1

U2
N

)

=
2

U2
N

(MqG +NqL) + o

(
1

U2
N

)
,

(34)

where we used the fact that L1 = 0 and that, by Lemma 1,
LX = I − 101

T .
The same approximate solution (8), via some algebraic

manipulations, allows us to express vG as

vG = 1 +
2

U2
N

<
(
ejθMs̄G + ejθNs̄L

)
+ o

(
1

U2
N

)
. (35)
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We therefore have that
∂vG
∂qG

=
2

U2
N

sin θM + o

(
1

U2
N

)
, (36)

while, trivially
∂wG
∂qG

=
2

U2
N

I, (37)

and finally, from (33), (34), (36) and (37),

∂L(qG, ν)

∂qG
=

2

U2
N

(
MqG +NqL + sin θM(λmax − λmin)+

+ µmax − µmin
)

+ o

(
1

U2
N

)
.

Proof of Proposition 2: It can be shown, by using
Lemma 2 and via some algebraic manipulation, that the update
(15) can be also rewritten as

qG ← qG(t)− sin θ(λmax(t+ 1)− λmin(t+ 1))+

−M−1(µmax(t+ 1)− µmin(t+ 1))+

+ =
(
e−jθ diag(ūG)

[
M−11 M−1

] [u0

uG

])

which, by using the expression for u provided by Proposition
1, is equal to

qG ← qG(t)− sin θ(λmax(t+ 1)− λmin(t+ 1))+

−M−1(µmax(t+ 1)− µmin(t+ 1))+

− (qG(t) +M−1NqL) + o

(
1

UN

)
.

(38)

Then, after the update, by plugging the former into the
expression for the partial derivative of the Lagrangian with
the respect to qG, provided in Lemma 4, we obtain

∂L(qG(t+ 1), ν(t+ 1))

∂qG
=

2

U2
N

(
MqG(t+ 1) +NqL+

+ sin θM(λmax(t+ 1)− λmin(t+ 1))+

+ µmax(t+ 1)− µmin(t+ 1)
)

+ o

(
1

U2
N

)

= o

(
1

U2
N

)
.

and therefore the update minimized the Lagrangian with
respect to the primal variables, up to a term that vanishes
for large UN .

APPENDIX C
PROOF OF THEOREM 1, COROLLARIES 1 AND 2, AND

PROPOSITIONS 3 AND 4

Proof of Theorem 1:
It is straightforward to see that the dual of (22) is

max
ν≥0

g(ν) (39)

where

g(ν) = −νT ΦM−1ΦT

2
ν − νT (ΦM−1NqL − b)

− qTL
NTM−1N

2
qL.

(40)

Since (22) is quadratic optimization problem that we have
assumed feasible and the constraint is expressed by a linear
affine inequality, the Slater’s condition [41, p. 226] holds and
then there is zero duality gap between (22) and (39). Observe
that, by plugging (24) into (23) we obtain

ν(t+ 1) =

=

[
(I − γ 2

U2
N

ΦM−1ΦT )ν(t)− γ 2

U2
N

(ΦM−1NqL − b)
]

+

=

[
ν(t) + γ

2

U2
N

∂g(ν)

∂λ

]

+

(41)

that is the update of ν is a projected gradient ascent algorithm
for the dual function g(λ). Then any optimal solution ν∗ of
(39) is a fixed point for (41) and satisfies

ν∗ =

[
(I − γ 2

U2
N

ΦM−1ΦT )ν∗ − γ 2

U2
N

(ΦM−1NqL − b)
]

+
(42)

while the primal optimal solution, from (24), has the form

q∗G = −M−1NqL −M−1ΦT ν∗. (43)

It is worth to notice that (40) has not necessarily a unique
solution: given a particular solution ν∗1 , if there exists v ∈
ker(ΦT ) such that ν∗2 = ν∗1 + v = [ν∗2 ]+, then also ν∗2 is an
optimal solution. Despite that, q∗G is unique. In fact we have

q∗G = −M−1NqL −M−1ΦT ν∗1
= −M−1NqL −M−1ΦT (ν∗1 + v)

= −M−1NqL −M−1ΦT ν∗2 .

Notice that we have, ∀ν1, ν2 ≥ 0, that

‖∇g(ν1)−∇g(ν2)‖ = ‖(ΦM−1ΦT )(ν1 − ν2)‖
≤ ‖ΦM−1ΦT ‖‖ν1 − ν2‖

and then the gradient ∇g(ν) is Lipschitz continuous with
Lipschitz constant equals to ‖ΦM−1ΦT ‖. Then, from Prop.
2.3.2 in [29], if

γ ≤ U2
N

ρ(ΦM−1ΦT )
(44)

the algorithm (41) converges to a maximizer of g(ν) and then
we reach the optimal solution q∗G of the primal optimization
problem. We have

ΦM−1ΦT =

=




sin2 θM − sin2 θM sin θI − sin θI
− sin2 θM sin2 θM − sin θI sin θI

sin θI − sin θI M−1 −M−1

− sin θI sin θI −M−1 M−1


 .

Being ΦM−1ΦT a positive semi-definite symmetric matrix,
its norm is equal to its spectral radius. It can be shown that
the spectrum of ΦM−1ΦT is given by Λ(ΦM−1ΦT ) = {0}∪
Λ(2Ξ) where

Ξ =

[
sin2 θM − sin θI
− sin θI M−1

]
.
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The characteristic polynomial of Ξ is

P (z) =

n∏

j=1

z(z − σ−1
j − sin2 θσj) (45)

where σj is the j-th eigenvalues of M and where, without loss
of generality we assume that 0 < σ1 ≤ σ2 ≤ . . . ≤ σm−1.
Thus we can see that

Λ(ΦM−1ΦT ) = {0, 2(σ−1
1 + sin2 θσ1), . . . ,

2(σ−1
m−1 + sin2 θσm−1)}

and the spectral radius is

ρ(ΦM−1ΦT ) = 2 max{σ−1
1 + sin2 θσ1, σ

−1
m−1 + sin2 θσm−1}

Proof of Corollories 1 and 2: Consider the case where
only voltage constraints are considered. Then we have that

ΦM−1ΦT = sin2 θ

[
M −M
−M M

]

from which it follows that ρ
(
ΦM−1ΦT

)
= 2 sin2 θσmax.

Instead when only power constraints are taken into account
we have that

ΦM−1ΦT =

[
M−1 −M−1

−M−1 M−1

]

from which we get that ρ
(
ΦM−1ΦT

)
= 2σ−1

min.
Proof of Propositions 3 and 4: Consider the update

equations (27), (28) and (29) for the dual variables ν and
for the primal variables qG. Let (q∗G, ν

∗) be a solution of
the optimization problem, which satisfies (42) and the KKT
conditions

q∗G +M−1NqL +M−1ΦT ν∗ = 0 (46a)
Φq∗ + b ≤ 0 ∀h ∈ C (46b)
Φq∗ + b < 0 ⇔ ν∗h = 0. (46c)

We introduce the following two quantities

x(t) = qG(t)− q∗G and y(t) = ν(t)− ν∗.
Without loss of generality let us assume that node h is the
node performing the update at the t-th iteration. The update
for the variable x is given by

xh(t+ 1) = qh(t+ 1)− q∗h
= −1ThM−1NqL − 1ThM

−1Φν(t+ 1)− q∗h
= −1ThM−1NqL − 1ThM

−1Φν(t+ 1)

+ 1ThM
−1NqL + 1ThM

−1ΦT ν∗

= −1ThM−1ΦT (ν(t+ 1)− ν∗)
= −1ThM−1ΦT y(t+ 1), (47)

where we used (29) and (46a). Now, let us consider first the
case where only voltage constraints are taken into account. Via
some algebraic manipulations we can write from (27) that

λmin,h(t+ 1)− λ∗min,h =

=

[
λmin,h(t)− λ∗min,h − γ

2

U2
N

sin θ1ThMx(t) + αmin,h

]

+

− [αmin,h]+

where

αmin,h = λ∗min,h + γ
2

U2
N

1Th (bmin,h − sin θMq∗G(t)).

and

λmax,h(t+ 1)− λ∗max,h

=

[
λmax,h(t)− λ∗max,h + γ

2

U2
N

sin θ1ThMx(t) + αmax,h

]

+

− [αmax,h]+

where

αmax,h = λ∗max,h + γ
2

U2
N

1Th (sin θMq∗G(t)− bmax,h).

Thanks to the fact that |a+ − b+| ≤ |a− b| we can write that

|λmin,h(t+ 1)− λ∗min,h|

≤ |λmin,h(t)− λ∗min,h − γ
2

U2
N

sin θ1ThMx(t)|

and, in turn,

‖λmin(t+ 1)− λ∗min‖2

≤
∥∥∥∥λmin(t)− λ∗min + γ

2

U2
N

1h1
T
h (− sin θM)x(t)

∥∥∥∥
2

Similarly we have

‖λmax(t+ 1)− λ∗max‖2

≤
∥∥∥∥λmax(t)− λ∗max + γ

2

U2
N

1h1
T
h sin θMx(t)

∥∥∥∥
2

Now observe that Assumption 2 implies there exists almost
surely a positive integer T such that any node has performed
an update within the window [0, T ]. Moreover observe from
(47) that xh(t+1) = −1Th [− sin θI sin θI]T y(t+1). It follows
that, for t ≥ T , x(t) = −M−1ΦT y(t). Hence we can write

‖y(t+ 1)‖2 ≤
∥∥∥∥
(
I − γ 2

U2
N

DhΦM−1ΦT
)
y(t)

∥∥∥∥
2

(48)

where
Dh =

[
1h1

T
h 0

0 1h1
T
h

]
.

Let Ph = I − γ 2
U2

N
DhΦM−1ΦT . Consider the evolution of

the quantity E
[
‖y(t)‖2

]
. We have

E
[
‖y(t+ 1)‖2

]
≤ E

[
y(t)TPTh Phy(t)

]

= traceE
[
y(t)TPTh Phy(t)

]

= trace
{
E
[
PTh Phy(t)y(t)T

]}

Let χ = E
[
PTh Ph

]
. Observe that

χ = I − 4γ

(m− 1)U2
N

ΦM−1ΦT +
4γ2

(m− 1)U4
N

(ΦM−1ΦT )2

Let us adopt the decomposition y = y⊥ + y‖ where y⊥ ⊥
ker ΦT and y‖ ∈ ker ΦT . It follows

E
[
‖y(t+ 1)‖2

]
≤ trace

{
E
[
χy(t)y(t)T

]}

= E
[
yT (t)χy(t)

]

≤ ω2E
[
‖y⊥(t)‖2

]
+ E

[
‖y‖(t)‖2

] (49)
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where
ω = max

v⊥ker ΦT ,‖v‖=1

∥∥vTχv
∥∥ .

It can be checked that ω < 1 if

γ ≤ U2
N

ρ(ΦM−1ΦT )
. (50)

The condition ω < 1 implies that E[‖y(t+ 1)‖] < E[‖y(t)‖].
Hence E[‖y(t)‖] is a decreasing sequence that lives in the
compact set [0,E[‖y(0)‖], which, then, admits a limit, i.e.,

lim
t→∞

E[‖y(t)‖] = c.

If c = 0, then y goes to 0 which implies that also x goes
to zero and then qG tends to the optimal primal solution q∗G.
Otherwise if c 6= 0, we have from (49) that

lim
t→∞

E[‖y(t)‖] = E[‖y∞‖] = E[‖y∞‖ ‖] = c.

This implies that the trajectory ν(t) tends to the set

S = {ν∗ + v, v ∈ ker ΦT , ‖ν∗ + v‖ = c}
This implies the boundedness of the sequence ν(t) and the
convergence of qG(t) to q∗G, being from (29)

lim
t→∞

qG(t) = lim
t→∞

−M−1NqL −M−1ΦT ν(t)

= −M−1NqL −M−1ΦT ν∗.

We now briefly repeat similar steps for the case where only
power constraints are taken into account. In this case we have
from (27) that

µmin,h(t+ 1)− µ∗min,h =

=

[
µmin,h(t)− µ∗min,h − γ

2

U2
N

(qh(t)− q∗h) + µ∗min,h

]

+

−
[
µ∗min,h

]
+

=

[
µmin,h(t)− µ∗min,h − γ

2

U2
N

xh(t) + µ∗min,h

]

+

−
[
µ∗min,h

]
+

From the expression for xh in (47), it follows that

‖µmin(t+ 1)− µ∗min‖2

≤
∥∥∥∥µmin(t)− µ∗min − γ

2

U2
N

1h1
T
hM

−1ΦT y(t)

∥∥∥∥
2

Reasoning similarly we obtain that

‖µmax(t+ 1)− µ∗max‖2

≤
∥∥∥∥µmax(t)− µ∗max − γ

2

U2
N

1h1
T
hM

−1ΦT y(t)

∥∥∥∥
2

Recalling that, in this case, Φ = [−I I]T , from the above
inequalities we get that, as in (48), that

‖y(t+ 1)‖2 ≤
∥∥∥∥(I − γ 2

U2
N

DhΦM−1ΦT )y(t)

∥∥∥∥
2

.

Again the convergence of qG(t) to the optimal solution q∗G is
guaranteed if condition (50) is satisfied.
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[25] T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,”
Electr. Pow. Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul. 2007.

[26] A. G. Phadke, “Synchronized phasor measurements in power systems,”
IEEE Comput. Appl. Power, vol. 6, no. 2, pp. 10–15, Apr. 1993.

[27] A. Costabeber, T. Erseghe, P. Tenti, S. Tomasin, and P. Mattavelli,
“Optimization of micro-grid operation by dynamic grid mapping and
token ring control,” in Proc. 14th European Conf. on Power Electronics
and Applications (EPE), Birmingham, UK, 2011.
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