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Distributed Optimization With Local Domains:
Applications in MPC and Network Flows

João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, and Markus Püschel

Abstract—In this paper we consider a network with P nodes,
where each node has exclusive access to a local cost function. Our
contribution is a communication-efficient distributed algorithm
that finds a vector x⋆ minimizing the sum of all the functions.
We make the additional assumption that the functions have
intersecting local domains, i.e., each function depends only on
some components of the variable. Consequently, each node is
interested in knowing only some components ofx⋆, not the entire
vector. This allows for improvement in communication-efficiency.
We apply our algorithm to model predictive control (MPC)
and to network flow problems and show, through experiments
on large networks, that our proposed algorithm requires less
communications to converge than prior algorithms.

Index Terms—Distributed algorithms, alternating direction
method of multipliers (ADMM), Model Predictive Control, ne t-
work flow, multicommodity flow, sensor networks.

I. I NTRODUCTION

Distributed algorithms have become popular for solving
optimization problems formulated on networks. Consider, for
example, a network withP nodes and the following problem:

minimize
x∈Rn

f1(x) + f2(x) + · · ·+ fP (x) , (1)

where fp is a function known only at nodep. Fig. 1(a)
illustrates this problem for a variablex of sizen = 3. Several
algorithms have been proposed to solve (1) in a distributed
way, that is, each node communicates only with its neighbors
and there is no central node. In a typical distributed algorithm
for (1), each node holds an estimate of a solutionx⋆, and
iteratively updates and exchanges it with its neighbors. It
is usually assumed that all nodes are interested in knowing
the entire solutionx⋆. While such an assumption holds for
problems like consensus [1] or distributed SVMs [2], there are
important problems where it does not hold, especially in the
context of large networks. Two examples we will explore here
are distributed Model Predictive Control (MPC) and network
flows. The goal in distributed MPC is to control a network
of interacting subsystems with coupled dynamics [3]. That
control should be performed using the least amount of energy.
Network flow problems have many applications [4]; here, we
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(a) Global variable
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(b) Partial variable

Figure 1. Example of a (a) global and a (b) partial variable. While each func-
tion in (a) depends on all the components of the variablex = (x1, x2, x3),
each function in (b) depends only on a subset of the components of x.

will solve a network flow problem to minimize delays in a
multicommodity routing problem. Both distributed MPC and
network flow problems can be written naturally as (1) with
functions that depend only on a subset of the components
of x.

We solve (1) in the case that each functionfp may depend
only on a subset of the components of the variablex ∈ R

n.
This situation is illustrated in Fig. 1(b), where, for example,
f1 only depends onx1 andx2. To capture these dependencies,
we writexS , S ⊆ {1, . . . , n}, to denote a subset of the com-
ponents ofx. For example, ifS = {2, 4}, thenxS = (x2, x4).
With this notation, our goal is solving

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · ·+ fP (xSP
) , (2)

whereSp is the set of components the functionfp depends
on. Accordingly, every nodep is only interested in a part of
the solution:x⋆

Sp
. We make the following

Assumption 1. No components are global, i.e.,
⋂P

p=1 Sp = ∅.

Whenever this assumption holds, we say that the variablex
is partial. Fig. 1(b) shows an example of a partial variable.
Note that, although no component appears in all nodes, node2
depends on all components, i.e., it has a global domain. In
fact, Assumption 1 allows only a strict subset of nodes to
have global domains. This contrasts with Fig. 1(a), where all
nodes have global domains and hence Assumption 1 does
not hold. We say that the variablex in Fig. 1(a) isglobal.
Clearly, problem (2) is a particular case of problem (1)
and hence it can be solved with any algorithm designed
for (1). This approach, however, may introduce unnecessary
communications, since nodes exchange full estimates ofx⋆,
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and not just of the components they are interested in, thus
potentially wasting useful communication resources. In many
networks, communication is the operation that consumes the
most energy and/or time.

Contributions. We first formalize problem (2) by making a
clear distinction between variable dependencies and communi-
cation network. Before, both were usually assumed the same.
Then, we propose a distributed algorithm for problem (2)
that takes advantage of its special structure to reduce com-
munications. We will distinguish two cases for the variable
of (2): connected and non-connected, and design algorithms
for both. To our knowledge, this is the first time an algorithm
has been proposed for a non-connected variable. We apply our
algorithms to distributed MPC and to network flow problems.
A surprising result is that, despite their generality, the proposed
algorithms outperform prior algorithms even though they are
application-specific.

Related work. Many algorithms have been proposed for the
global problem (1), for example, gradient-based methods [1],
[5], [6], or methods based on theAlternating Direction Method
of Multipliers (ADMM) [7], [8], [9]. As mentioned before,
solving (2) with an algorithm designed for (1) introduces
unnecessary communications. We will observe this when we
compare the algorithm proposed here with D-ADMM [9], the
state-of-the-art for (1) in terms of communication-efficiency.

To our knowledge, this is the first time problem (2) has
been explicitly stated in a distributed context. For example,
[10, §7.2] proposes an algorithm for (2), but is not distributed
in our sense. Namely, it either requires a platform that supports
all-to-all communications (in other words, a central node),
or requires running consensus algorithms on each induced
subgraph, at each iteration [10, §10.1]. Thus, that algorithm
is only distributed when every component induces subgraphs
that are stars. Actually, we found only one algorithm in
the literature that is distributed (or that can easily be made
distributed) for all the scenarios considered in this paper. That
algorithm was proposed in [11] in the context of power system
state estimation (the algorithm we propose can also be applied
to this problem, although we will not consider it here). Our
simulations show that the algorithm in [11] requires always
more communications than the algorithm we propose.

Although we found just one (communication-efficient) dis-
tributed algorithm solving (2), there are many other algorithms
solving particular instances of it. For example, in networkflow
problems, each component of the variable is associated to
an edge of the network. We will see such problems can be
written as (2) with a connected variable, in the special case
where each induced subgraph is a star. In this case, [10, §7.2]
becomes distributed, and also gradient/subgradient methods
can be applied directly either to the primal problem [12] or
to the dual problem [13], and yield distributed algorithms.
Network flow problems have also been tackled with Newton-
like methods [14], [13]. A related problem is Network Utility
Maximization (NUM), which is used to model traffic control
on the Internet [15], [16]. For example, the TCP/IP protocol
has been interpreted as a gradient algorithm solving a NUM.
In [17], we compared a particular instance of the proposed
algorithm with prior algorithms solving NUM, and showed

that it requires less end-to-end communications. However,due
to its structure, it does not offer interpretations of end-to-end
protocols as realistic as gradient-based algorithms.

Distributed Model Predictive Control (MPC) [3] is another
problem that has been addressed with algorithms solving (2),
again in the special case of a variable whose components in-
duce star subgraphs only. Such algorithms include subgradient
methods [18], interior-point methods [19], fast gradient [20],
and ADMM-based methods [20], [21] (which apply [10,
§7.2]). All these methods were designed for the special case
of star-shaped induced subgraphs and, similarly to [10, §7.2],
they become inefficient if applied to more generic cases. In
spite of its generality, the algorithm we propose requires less
communications than previous algorithms that were specifi-
cally designed for distributed MPC or network flow problems.

Additionally, we apply our algorithm to two scenarios
in distributed MPC that have not been considered before:
problems where the variable is connected but the induced
subgraphs are not stars, and problems with a non-connected
variable. Both cases can model scenarios where subsystems
that are coupled through their dynamics cannot communicate
directly.

Lastly, this paper extends considerably our preliminary
work [17]. In particular, the algorithm in [17] was designedfor
bipartite networks and was based on the2-block ADMM. In
contrast, the algorithms proposed here work on any connected
network and are based on the Extended ADMM; thus, they
have different convergence guarantees. Also, the MPC model
proposed here is significantly more general than the one
in [17].

II. T ERMINOLOGY AND PROBLEM STATEMENT

We start by introducing the concepts ofcommunication
networkandvariable connectivity.

Communication network. A communication network is
represented as an undirected graphG = (V , E), whereV =
{1, . . . , P} is the set of nodes andE ⊆ V × V is the set of
edges. Two nodes communicate directly if there is an edge
connecting them inG. We assume:

Assumption 2. G is connected and its topology does not
change over time; also, a coloring schemeC of G is available
beforehand.

A coloring schemeC is a set of numbers, called colors,
assigned to the nodes such that two neighbors never have
the same color, as shown in Fig. 2. Given its importance in
TDMA, a widespread protocol for avoiding packet collisions,
there is a large literature on coloring networks, as briefly
overviewed in [22]. Our algorithm integrates naturally with
TDMA, since both use coloring as a synchronization scheme:
nodes work sequentially according to their colors, and nodes
with the same color work in parallel. The difference is that
TDMA uses a more restrictive coloring, as nodes within two
hops cannot have the same color. Note that packet collision
is often ignored in the design of distributed algorithms, as
confirmed by the ubiquitous assumption that all nodes can
communicate simultaneously.
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Figure 2. Example of a coloring scheme of the communication network
using3 colors:C1 = {1, 3, 5}, C2 = {4, 6}, andC3 = {2}.

We associate with each nodep in the communication
network a functionfp : R

np −→ R ∪ {+∞}, where n =
n1 + · · ·+ nP , and make the

Assumption 3. Each functionfp is known only at nodep and
it is closed, proper, and convex overRnp .

Since we allowfp to take infinite values, each node can
impose constraints on the variable using indicator functions,
i.e., functions that evaluate to+∞ when the constraints are
not satisfied, and to0 otherwise.

Variable connectivity. Although each functionfp is avail-
able only at nodep, each component of the variablex may be
associated with several nodes. Letxl be a given component.
Thesubgraph induced byxl is represented byGl = (Vl, El) ⊆
G, whereVl is the set of nodes whose functions depend onxl,
and an edge(i, j) ∈ E belongs toEl if both i andj are inVl.
For example, the subgraph induced byx1 in Fig. 1(b) consists
of V1 = {1, 2, 4, 6} and E1 = {(1, 2), (1, 6), (2, 6)}. We say
thatxl is connectedif its induced subgraph is connected, and
non-connectedotherwise. Likewise, avariable is connectedif
all its components are connected, andnon-connectedif it has
at least one non-connected component.

Problem statement.Given a network satisfying Assump-
tion 2 and a set of functions satisfying Assumptions 1
and 3, we solve the following problem:design a distributed,
communication-efficient algorithm that solves(2), either with
a connected or with a non-connected variable.

By distributed algorithm we mean a procedure that makes
no use of a central node and where each node communicates
only with its neighbors. Unfortunately there is no known
lower bound on how many communications are needed to
solve (2). Because of this, communication-efficiency can only
be assessed relative to existing algorithms that solve the same
problem. As mentioned before, our strategy for this problem
is to design an algorithm for the connected case and then
generalize it to the non-connected case.

III. C ONNECTEDCASE

In this section we derive an algorithm for (2) assuming its
variable is connected. Our derivation uses the same princi-
ples as the state-of-the-art algorithm [9], [22] for the global
problem (1). The main idea is to manipulate (2) to make
the Extended ADMM [23] applicable. We will see that the
algorithm derived here generalizes the one in [9], [22].

Problem manipulation. Let xl be a given component
and Gl = (Vl, El) the respective induced subgraph. In this
section we assume eachGl is connected. Since all nodes inVl

are interested inxl, we will create a copy ofxl in each of those
nodes:x(p)

l will be the copy at nodep andx(p)
Sp

:= {x
(p)
l }l∈Sp

will be the set of all copies at nodep. We rewrite (2) as

minimize
{x̄l}n

l=1

f1(x
(1)
S1

) + f2(x
(2)
S2

) + · · ·+ fP (x
(P )
SP

)

subject to x
(i)
l = x

(j)
l , (i, j) ∈ El , l = 1, . . . , n ,

(3)

where{x̄l}Ll=1 is the optimization variable and represents the
set of all copies. We used̄xl to denote all copies of the
componentxl, which are located only in the nodes ofGl:
x̄l := {x

(p)
l }p∈Vl

. The reason for introducing constraints
in (3) is to enforce equality among the copies of the same
component: if two neighboring nodesi and j depend onxl,
thenx(i)

l = x
(j)
l appears in the constraints of (3). We assume

that any edge in the communication network is represented as
the ordered pair(i, j) ∈ E , with i < j. As such, there are no
repeated equations in (3). Problems (2) and (3) are equivalent
because each induced subgraph is connected.

A useful observation is thatx(i)
l = x

(j)
l , (i, j) ∈ El, can

be written asAlx̄l = 0, whereAl is the transposed node-arc
incidence matrix of the subgraphGl. The node-arc incidence
matrix represents a given graph with a matrix where each
column corresponds to an edge(i, j) ∈ E and has1 in the
ith entry,−1 in the jth entry, and zeros elsewhere. We now
partition the optimization variable according to the coloring
scheme: for eachl = 1, . . . , n, x̄l = (x̄1

l , . . . , x̄
C
l ), where

x̄c
l =

{

{x
(p)
l }p∈Vl∩Cc

, if Vl ∩ Cc 6= ∅
∅ , if Vl ∩ Cc = ∅

,

andCc is the set of nodes that have colorc. Thus, x̄c
l is the

set of copies ofxl held by the nodes that have colorc. If no
node with colorc depends onxl, thenx̄c

l is empty. A similar
notation for the columns of the matrixAl enables us to write
Alx̄l as Ā1

l x̄
1
l + · · ·+ ĀC

l x̄
C
l , and thus (3) equivalently as

minimize
x̄1,...,x̄C

∑

p∈C1
fp(x

(p)
Sp

) + · · ·+
∑

p∈CC
fp(x

(p)
Sp

)

subject to Ā1x̄1 + · · ·+ ĀC x̄C = 0 ,
(4)

wherex̄c = {x̄c
l }

n
l=1, andĀc is the diagonal concatenation of

the matrices̄Ac
1, Āc

2, . . . ,Āc
n, i.e.,Āc = diag(Āc

1, Ā
c
2, . . . , Ā

c
n).

To better visualize the constraint in (4), we wrote

Ācx̄c =











Āc
1

Āc
2

. . .
Āc

n





















x̄c
1

x̄c
2
...
x̄c
n











(5)

for eachc = 1, . . . , C. The format of (4) is exactly the one to
which the Extended ADMM applies, as explained next.

Extended ADMM. The Extended ADMM is a natural gen-
eralization of theAlternating Direction Method of Multipliers
(ADMM). Given a set of closed, convex functionsg1, . . ., gC ,
and a set of full column rank matricesE1, . . . , EC , all with
the same number of rows, the Extended ADMM solves

minimize
x1,...,xC

g1(x1) + · · ·+ gC(xC)

subject to E1x1 + · · ·+ ECxC = 0 .
(6)
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It consists of iterating onk the following equations:

xk+1
1 = argmin

x1

Lρ(x1, x
k
2 , . . . , x

k
P ;λ

k) (7)

xk+1
2 = argmin

x2

Lρ(x
k+1
1 , x2, x

k
3 , . . . , x

k
C ;λ

k) (8)

...

xk+1
C = argmin

xC

Lρ(x
k+1
1 , xk+1

2 , . . . , xk+1
C−1, xC ;λ

k) (9)

λk+1 = λk + ρ

C
∑

c=1

Ecx
k+1
c , (10)

whereλ is the dual variable,ρ is a positive parameter, and

Lρ(x;λ) =

C
∑

c=1

(

gc(xc) + λ⊤Ecxc

)

+
ρ

2

∥

∥

C
∑

c=1

Ecxc

∥

∥

2

is the augmented Lagrangian of (6). The original ADMM is
recovered wheneverC = 2, i.e., when there are only two
terms in the sums of (6). The following theorem gathers some
known convergence results for (7)-(10).

Theorem 1 ([23], [24]). For each c = 1, . . . , C, let gc :
R

nc −→ R ∪ {+∞} be closed and convex overRnc and
domgc 6= ∅. Let eachEc be anm × nc matrix. Assume(6)
is solvable and that either1) C = 2 and eachEc has full
column rank, or2) C ≥ 2 and eachgc is strongly convex.
Then, the sequence{(xk

1 , . . . , x
k
C , λ

k)} generated by(7)-(10)
converges to a primal-dual solution of(6).

It is believed that (7)-(10) converges even whenC > 2, each
gc is closed and convex (not necessarily strongly convex), and
each matrixEc has full column rank. Such belief is supported
by empirical evidence [22], [23] and its proof remains an
open problem. So far, there are only proofs for modifications
of (7)-(10) that resulted either in a slower algorithm [25],or
in algorithms not applicable to distributed scenarios [26].

Applying the Extended ADMM. The clear correspondence
between (4) and (6) makes (7)-(10) directly applicable to (4).
Associate a dual variableλij

l to each constraintx(i)
l = x

(j)
l

in (3). Translating (10) component-wise,λij
l is updated as

λij,k+1
l = λij,k

l + ρ
(

x
(i),k+1
l − x

(j),k+1
l

)

, (11)

wherex(p),k+1
l is the estimate ofxl at nodep after iterationk.

This estimate is obtained from (7)-(9), where we will focus
our attention now. This sequence will yield the synchronization
mentioned in Section II: nodes work sequentially accordingto
their colors, with the same colored nodes working in parallel.
In fact, each problem in (7)-(30) corresponds to a given
color. Moreover, each of these problems decomposes into|Cc|
problems that can be solved in parallel, each by a node with
color c. For example, the copies of the nodes with color1 are

updated according to (7):

x̄1,k+1 = argmin
x̄1

∑

p∈C1

fp(x
(p)
Sp

) + λk⊤Ā1x̄1

+
ρ

2

∥

∥

∥

∥

Ā1x̄1 +

C
∑

c=2

Ācx̄c,k

∥

∥

∥

∥

2

(12)

= argmin
x̄1

∑

p∈C1

(

fp(x
(p)
Sp

)

+
∑

l∈Sp

∑

j∈Np∩Vl

(

sign(j − p)λpj,k
l − ρ x

(j),k
l

)⊤

x
(p)
l

+
ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2
)

, (13)

whose equivalence is established in Lemma 1 below. In (13),
the sign function is defined as1 for nonnegative arguments
and as−1 for negative arguments. Also,Dp,l is the degree of
nodep in the subgraphGl, i.e., the number of neighbors of
nodep that also depend onxl. Of course,Dp,l is only defined
whenl ∈ Sp. Before establishing the equivalence between (12)
and (13), note that (13) decomposes into|C1| problems that
can be solved in parallel. This is becausex̄1 consists of the
copies held by the nodes with color1; and, since nodes with
the same color are never neighbors, none of the copies inx̄1

appears asx(j),k
l in the second term of (13). Therefore, all

nodesp in C1 can solve in parallel the following problem:

x
(p),k+1
Sp

= argmin
x
(p)
Sp

={x
(p)
l

}l∈Sp

fp(x
(p)
Sp

)

+
∑

l∈Sp

∑

j∈Np∩Vl

(

sign(j − p)λpj,k
l − ρ x

(j),k
l

)⊤

x
(p)
l

+
ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2

. (14)

However, nodep can solve (14) only if it knowsx(j),k
l

andλpj,k
l , for j ∈ Np ∩ Vl and l ∈ Sp. This is possible if, in

the previous iteration, it received the respective copies of xl

from its neighbors. This is also enough for knowingλpj,k
l ,

although we will see later that no node needs to know
eachλpj,k

l individually. The proof of the following lemma,
in Appendix A, shows how we obtained (13) from (12).

Lemma 1. (12) and (13) are equivalent.

We just saw how (7) yields|C1| problems with the format
of (14) that can be solved in parallel by all the nodes with
color 1. For the other colors, the analysis is the same with one
minor difference: in the second term of (14) we havex

(j),k+1
l

from the neighbors with a smaller color andx(j),k
l from the

nodes with a larger color.
The resulting algorithm is shown in Algorithm 1. There is

a clear correspondence between the structure of Algorithm 1
and equations (7)-(10): steps 2-9 correspond to (7)-(9), and
the loop in step 10 corresponds to (10). In steps 2-9, nodes
work according to their colors, with the same colored nodes
working in parallel. Each node computes the vectorv in step 4,
solves the optimization problem in step 6, and then sends the
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Algorithm 1 Algorithm for a connected variable

Initialization: for all p ∈ V, l ∈ Sp, setγ(p),1
l = x

(p),1
l = 0; k = 1

1: repeat
2: for c = 1, . . . , C do
3: for all p ∈ Cc [in parallel] do
4: for all l ∈ Sp do

v
(p),k
l = γ

(p),k
l − ρ

∑

j∈Np∩Vl

C(j)<c

x
(j),k+1
l − ρ

∑

j∈Np∩Vl

C(j)>c

x
(j),k
l

5: end for

6: Setx(p),k+1
Sp

as the solution of

argmin
x
(p)
Sp

={x
(p)
l

}l∈Sp

fp(x
(p)
Sp

)+
∑

l∈Sp

v
(p),k
l

⊤
x
(p)
l +

ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2

7: For each componentl ∈ Sp, sendx(p),k+1
l toNp∩Vl

8: end for
9: end for

10: for all p ∈ V and l ∈ Sp [in parallel] do

γ
(p),k+1
l = γ

(p),k
l + ρ

∑

j∈Np∩Vl
(x

(p),k+1
l − x

(j),k+1
l )

11: end for
12: k ← k + 1
13: until some stopping criterion is met

new estimates ofxl to the neighbors that also depend onxl,
for l ∈ Sp. Note the introduction of extra notation in step 4:
C(p) is the color of nodep. The computation ofv(p),kl in
that step requiresx(j),k

l from the neighbors with larger colors
and x

(j),k+1
l from the neighbors with smaller colors. While

the former is obtained from the previous iteration, the latter
is obtained at the current iteration, after the respective nodes
execute step 7. Regarding the problem in step 6, it involves the
private function of nodep, fp, to which is added a linear and a
quadratic term. This fulfills our requirement that all operations
involving fp be performed at nodep.

Note that the update of the dual variables in step 10 is
different from (11). In particular, all theλ’s at nodep were
condensed into a single dual variableγ(p). This was done
because the optimization problem (14) does not depend on
the individualλpj

l ’s, but only onγ(p),k
l :=

∑

j∈Np∩Vl
sign(j−

p)λpj,k
l . If we replace

λij,k+1
l = λij,k

l + ρ sign(j − i)
(

x
(i),k+1
l − x

(j),k+1
l

)

(15)

in the definition ofγ(p),k
l , we obtain the update of step 10.

The extra “sign” in (15) (w.r.t. (11)) was necessary to take into
account the extension of the definition of the dual variableλij

l

for i > j (see Appendix A).
Convergence.Apart from manipulations, Algorithm 1 re-

sults from the application of the Extended ADMM to prob-
lem (4). Consequently, the conclusions of Theorem 1 apply if
we prove that (4) satisfies the conditions of that theorem.

Lemma 2. Each matrixĀc in (4) has full column rank.

Proof: Let c be any color in{1, 2, . . . , C}. By definition,
Āc = diag(Āc

1, Ā
c
2, . . . , Ā

c
n); therefore, we have to prove that

eachĀc
l has full column rank, forl = 1, 2, . . . , n. Let thenc

andl be fixed. We are going to prove that(Āc
l )

⊤Āc
l , a square

matrix, has full rank, and thereforēAc
l has full column rank.

Since Āl =
[

Āc
1 Āc

2 · · · Āc
n

]

, (Āc
l )

⊤Āc
l corresponds to

thelth block in the diagonal of the matrixA⊤
l Al, the Laplacian

matrix of the induced subgraphGl. By assumption, in this
section all induced subgraphs are connected. This means each
node inGl has at least one neighbor also inGl and hence each
entry in the diagonal ofA⊤

l Al is greater than zero.1 The same
happens to the entries in the diagonal of(Āc

l )
⊤Āc

l . In fact,
these are the only nonzero entries of(Āc

l )
⊤Āc

l , as this is a
diagonal matrix. This is because(Āc

l )
⊤Āc

l corresponds to the
Laplacian entries of nodes that have the same color, which are
never neighbors. Therefore,(Āc

l )
⊤Āc

l has full rank.
The following corollary, whose proof is omitted, is a

straightforward consequence of Theorem 1 and Lemma 2.

Corollary 1. Let Assumptions 1-3 hold and let the variable
be connected. Let also one of the following conditions hold:

1) the network is bipartite, i.e.,C = 2, or
2) each

∑

p∈Cc
fp(xSp

) is strongly convex,c = 1, . . . , C.

Then, the sequence{x(p),k
Sp

}∞k=1 at node p, produced by
Algorithm 1, converges tox⋆

Sp
, wherex⋆ solves(2).

As stated before, it is believed that the Extended ADMM
converges forC > 2 even when none of thegc’s is strongly
convex (just closed and convex). However, it is required that
eachEc has full column rank. This translates into the belief
that Algorithm 1 converges for any network, provided eachfp
is closed and convex and each matrixĀc in (4) has full column
rank. The last condition is the content of Lemma 2.

Comparison with other algorithms. Algorithm 1 is a
generalization of D-ADMM [22]: by violating Assumption 1
and makingSp = {1, . . . , n} for all p, the variable becomes
global and Algorithm 1 becomes exactly D-ADMM. This is
a generalization indeed, for Algorithm 1 cannot be obtained
from D-ADMM. The above fact is not surprising since Algo-
rithm 1 was derived using the same set of ideas as D-ADMM,
but adapted to a partial variable. Each iteration of Algorithm 1
(resp. D-ADMM) involves communicating

∑P

p=1 |Sp| (resp.

nP ) numbers. Under Assumption 1,
∑P

p=1 |Sp| < nP , and
thus there is a clear per-iteration gain in solving (2) with
Algorithm 1. Although Assumption 1 can be ignored in the
sense that Algorithm 1 still works without it, we considered
that assumption to make clear the type of problems addressed
in this paper.

We mentioned before that the algorithm in [11] is the only
one we found in the literature that efficiently solves (2) in
the same scenarios as Algorithm 1. For comparison purposes,
we show it as Algorithm 2. Algorithms 1 and 2 are very
similar in format, although their derivations are considerably
different. In particular, Algorithm 2 is derived from the2-
block ADMM and thus it has stronger convergence guarantees.
Namely, it does not require the network to be bipartite nor

1We are implicitly excluding the pathological case where a componentxl

appears in only one node, say nodep; this would lead to a Laplacian
matrix A⊤

l
Al equal to0. This case is easily addressed by redefiningfp,

the function at nodep, to f̃p(·) = infxl
fp(. . . , xl, . . .).
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Algorithm 2 [11]

Initialization: for all p ∈ V, l ∈ Sp, setγ(p),1
l = x

(p),1
l = 0; k = 1

1: repeat
2: for all p ∈ V [in parallel] do
3: for all l ∈ Sp do

v
(p),k
l = γ

(p),k
l −

ρ

2

(

Dp,lx
(p),k
l +

∑

j∈Np∩Vl

x
(j),k
l

)

4: end for

5: Setx(p),k+1
Sp

as the solution of

argmin
x
(p)
Sp

={x
(p)
l

}l∈Sp

fp(x
(p)
Sp

)+
∑

l∈Sp

v
(p),k
l

⊤
x
(p)
l +

ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2

6: For each componentl ∈ Sp, sendx(p),k+1
l to Np ∩ Vl

7: end for
8: for all p ∈ V and l ∈ Sp [in parallel] do

γ
(p),k+1
l = γ

(p),k
l + ρ

2

∑

j∈Np∩Vl
(x

(p),k+1
l − x

(j),k+1
l )

9: end for
10: k ← k + 1
11: until some stopping criterion is met

any function to be strongly convex (cf. Corollary 1). Also, it
does not require any coloring scheme and, instead, all nodes
perform the same tasks in parallel. Note also that the updates
of v(p)l andγ(p)

l are different in both algorithms. In the same
way that Algorithm 1 was derived using the techniques of
D-ADMM, Algorithm 2 was derived using the techniques
of [7]. And, as in the experimental results of [22], [9], we
will observe in Section VI that Algorithm 1 always requires
less communications than Algorithm 2. Next, we propose a
modification to Algorithms 1 and 2 that makes them applicable
to a non-connected variable.

IV. N ON-CONNECTEDCASE

So far, we have assumed a connected variable in (2). In this
section, the variable will be non-connected, i.e., it will have at
least one component that induces a non-connected subgraph.
In this case, problems (2) and (3) are no longer equivalent
and, therefore, the derivations that follow do not apply. We
propose a small trick to make these problems equivalent.

Let xl be a component whose induced subgraphGl =

(Vl, El) is non-connected. Then, the constraintx
(i)
l = x

(j)
l ,

(i, j) ∈ El, in (3) fails to enforce equality on all the copies
of xl. To overcome this, we propose creating a “virtual” path to
connect the disconnected components ofGl. This will allow the
nodes inGl to reach an agreement on an optimal value forxl.
Since our goal is to minimize communications, we would
like to find the “shortest path” between these disconnected
components, that is, to find an optimalSteiner tree.

Steiner tree problem. Let G = (V , E) be an undirected
graph and letR ⊆ V be a set ofrequired nodes. A Steiner
tree is any tree inG that contains the required nodes, i.e., it is
an acyclic connected graph(T ,F) ⊆ G such thatR ⊆ T . The
set of nodes in the tree that are not required are calledSteiner
nodes, and will be denoted withS := T \R. In theSteiner tree

Figure 3. Example of an optimal Steiner tree: black nodes arerequired and
striped nodes are Steiner.

problem, each edge(i, j) ∈ E has a costcij associated, and the
goal is to find a Steiner tree whose edges have a minimal cost.
This is exactly our problem if we makecij = 1 for all edges
andR = Vl. The Steiner tree problem is illustrated in Fig. 3,
where the required nodes are black and the Steiner nodes
are striped. Unfortunately, computing optimal Steiner trees is
NP-hard [27]. There are, however, many heuristic algorithms,
some even with approximation guarantees. The Steiner tree
problem can be formulated as [28]

minimize
{zij}(i,j)∈E

∑

(i,j)∈E

cijzij

subject to
∑

i∈U
j 6∈U

zij ≥ 1 , ∀U : 0 < |U ∩ R| < |R|

zij ∈ {0, 1} , (i, j) ∈ E ,

(16)

whereU in the first constraint is any subset of nodes that sep-
arates at least two required nodes. The optimization variable
is constrained to be binary, and an optimal valuez⋆ij = 1
means that edge(i, j) was selected for the Steiner tree.
Let h(z) :=

∑

(i,j)∈E cijzij denote the objective of (16). We
say that an algorithm for (16) has an approximation ratio ofα
if it produces a feasible point̄z suchh(z̄) ≤ αh(z⋆), for any
problem instance. For example, the primal-dual algorithm for
combinatorial problems [28], [29] has an approximation ratio
of 2. This number has been decreased in a series of works,
the smallest one being1 + ln 3/2 ≃ 1.55, provided by [30].

Algorithm generalization. To make Algorithms 1 and 2
applicable to a non-connected variable, we propose the follow-
ing preprocessing step. For every componentxl that induces
a disconnected subgraphGl = (Vl, El), compute a Steiner tree
(Tl,Fl) ⊆ G using Vl as required nodes. LetSl := Tl\Vl

denote the Steiner nodes in that tree. The functions of these
Steiner nodes do not depend onxl, i.e.,xl 6∈ Sp for all p ∈ Sl.
Define a new induced graph asG′

l = (V ′
l , E

′
l), with V ′

l := Tl
and E ′

l := El ∪ Fl. Then, we can create copies ofxl in all
nodes inV ′

l , and write (2) equivalently as

minimize
{x̄l}n

l=1

f1(x
(1)
S1

) + f2(x
(2)
S2

) + · · ·+ fP (x
(P )
SP

)

subject to x
(i)
l = x

(j)
l , (i, j) ∈ E ′

l , l = 1, . . . , n ,
(17)

where x̄l := {x
(p)
l }p∈V′

l
denotes the set of all copies ofxl,

and{x̄l}
L
l=1, the optimization variable, represents the set of all

copies. Note that the function at nodep remains unchanged:
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Algorithm 3 Algorithm for a non-connected variable
Preprocessing (centralized):

1: SetS′
p = ∅ for all p ∈ V, andV ′

l = Vl for all l = {1, . . . , n}
2: for all l ∈ {1, . . . , n} such thatxl is non-connecteddo
3: Compute a Steiner tree(Tl,Fl), whereVl are required nodes
4: SetV ′

l = Tl andSl := Tl\Vl (Steiner nodes)
5: For all p ∈ Sl, S′

p = S′
p ∪ {xl}

6: end for

Main algorithm (distributed):
Initialization: Setγ(p),1

l = x
(p),1
l = 0, for l ∈ Sp∪S

′
p, p ∈ V; k = 1

7: repeat
8: for c = 1, . . . , C do
9: for all p ∈ Cc [in parallel] do

10: for all l ∈ Sp ∪ S′
p do

v
(p),k
l = γ

(p),k
l − ρ

∑

j∈Np∩V′
l

C(j)<c

x
(j),k+1
l − ρ

∑

j∈Np∩V′
l

C(j)>c

x
(j),k
l

11: end for

12: Setx(p),k+1
Sp∪S′

p
as the solution of

argmin
x
(p)

Sp∪S′
p

fp(x
(p)
Sp

) +
∑

l∈Sp∪S′
p

(

v
(p),k
l

⊤
x
(p)
l +

ρ

2
Dp,l

(

x
(p)
l

)2
)

13: For eachl ∈ Sp ∪ S′
p, sendx(p),k+1

l to Np ∩ V
′
l

14: end for
15: end for
16: for all p ∈ V and l ∈ Sp ∪ S′

p [in parallel] do

γ
(p),k+1
l = γ

(p),k
l + ρ

∑

j∈Np∩V′
l
(x

(p),k+1
l − x

(j),k+1
l )

17: end for
18: k ← k + 1
19: until some stopping criterion is met

it only depends onx(p)
Sp

:= {x
(p)
l }l∈Sp

, although nodep can

now have more copies, namely,x(p)
Sp∪S′

p
, whereS′

p is the set
of components of which nodep is a Steiner node. Of course,
when a componentxl is connected, we setG′

l = Gl; also, if a
nodep is not Steiner for any component,S′

p = ∅. If we repeat
the analysis of the previous section replacing problem (3)
by (17), we get Algorithm 3.

Algorithm 3 has two parts: a preprocessing step, which is
new, and the main algorithm, which it essentially Algorithm1
with some small adaptations. We assume the preprocessing
step can be done in a centralized way, before the execution
of the main algorithm. In fact, the preprocessing only requires
knowing the communication networkG and the nodes’ depen-
dencies, but not the specific the functionsfp. Regarding the
main algorithm, it is similar to Algorithm 1 except that each
node, in addition to estimating the components its function
depends on, it also estimates the components for which it is a
Steiner node. The additional computations are, however, very
simple: if nodep is a Steiner node for componentxl, it updates
it asx(p),k+1

l = −(1/(ρDp,l))v
(p),k
l in step 12; sincefp does

not depend onxl, the problem corresponding to the update
of xl becomes a quadratic problem for which there is a closed-
form solution. Note thatDp,l is now defined as the degree of
nodep in the subgraphG′

l . The steps we took to generalize

Algorithm 1 to a non-connected variable can be easily applied
the same way to Algorithm 2.

V. A PPLICATIONS

In this section we describe how the proposed algorithms can
be used to solve distributed MPC and network flow problems.

Distributed MPC. MPC is a popular control strategy for
discrete-time systems [31]. It assumes a state-space modelfor
the system, where the state at timet, here denoted withx[t] ∈
R

n, evolves according tox[t+1] = Θt(x[t], u[t]), whereu[t] ∈
R

m is the input at timet and Θt : R
n × R

m −→ R
n is a

map that gives the system dynamics at each time instantt.
Given a time-horizonT , an MPC implementation consists of
measuring the state at timet = 0, computing the desired states
and inputs for the nextT time steps, applyingu[0] to the
system, settingt = 0, and repeating the process. The second
step, i.e., computing the desired states and inputs for a given
time horizonT , is typically addressed by solving

minimize
x̄,ū

Φ(x[T ]) +
∑T−1

t=0 Ψt(x[t], u[t])

subject to x[t+ 1] = Θt(x[t], u[t]) , t = 0, . . . , T − 1
x[0] = x0 ,

(18)
where the variable is(x̄, ū) := ({x[t]}Tt=0, {u[t]}

T−1
t=0 ).

While Φ penalizes deviations of the final statex[T ] from
our goal,Ψt usually measures, for eacht = 0, . . . , T − 1,
some type of energy consumption that we want to minimize.
Regarding the constraints of (18), the first one enforces the
state to follow the system dynamics, and the second one
encodes the initial measurementx0.

We solve (18) in the following distributed scenario. There is
a set ofP systems that communicate through a communication
network G = (V , E). Each system has a statexp[t] ∈ R

np

and a local inputup[t] ∈ R
mp , wheren1 + · · · + nP = n

andm1 + · · · + mP = m. The state of systemp evolves as
xp[t+ 1] = Θt

p

(

{xj[t], uj [t]}j∈Ωp

)

, whereΩp ⊆ V is the set
of nodes whose state and/or input influencesxp (we assume
{p} ⊆ Ωp for all p). Note that, in contrast with what is usually
assumed,Ωp is not necessarily a subset of the neighbors of
nodep. In other words, two systems that influence each other
may be unable to communicate directly. This is illustrated
in Fig. 4(b) where, for example, the state/input of node3
influences the state evolution of node1 (dotted arrow), but
there is no communication link (solid line) between them.
Finally, we assume functionsΦ andΨt in (18) can be decom-
posed, respectively, asΦ(x[T ]) =

∑P

p=1 Φp({xj [T ]}j∈Ωp
)

andΨt(x[t], u[t]) =
∑P

p=1 Ψ
t
p({xj [t], uj[t]}j∈Ωp

), whereΦp

andΨt
p are both associated to nodep. In sum, we solve

min
x̄,ū

∑P
p=1

[

Φp({xj [T ]}j∈Ωp
)

+
∑T−1

t=0 Ψt
p({xj [t], uj [t]}j∈Ωp

)
]

s.t. xp[t+ 1] = Θt
p

(

{xj [t], uj [t]}j∈Ωp

)

, t = 0, . . . , T − 1
xp[0] = x0

p

p = 1, . . . , P ,
(19)

wherex0
p is the initial measurement at nodep. The variable

in (19) is (x̄, ū) :=
(

{x̄p}Pp=1, {ūp}Pp=1

)

, where x̄p :=
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1

2

3
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6

(a) Connected star-shaped variable

1

2

3
4

5

6

(b) Non-connected variable

Figure 4. Two MPC scenarios. Solid lines represent links in the communi-
cation network and dotted arrows represent system interactions. (a) Connected
variable where each induced subgraph is a star. (b) Non-connected variable
because node5 is influenced by(x̄2, ū2), but not none of its neighbors are.

{xp[t]}Tt=0 andūp := {up[t]}
T−1
t=0 . Problem (19) can be written

as (2) by making

fp({x̄j , ūj}j∈Ωp
) = Φp({xj [T ]}j∈Ωp

) + ixp[0]=x0
p
(x̄p)

+
T−1
∑

t=0

(

Ψt
p({xj [t], uj [t]}j∈Ωp

) + iΓt
p
({x̄j , ūj}j∈Ωp

)
)

,

where iS(·) is the indicator function of the setS, i.e.,
iS(x) = +∞ if x 6∈ S and iS(x) = 0 if x ∈ S, and
Γt
p := {{x̄j, ūj}j∈Ωp

: xp[t+ 1] = Θt
p

(

{xj [t], uj[t]}j∈Ωp

)

}.
We illustrate in Fig. 4(a) the case whereΩp ⊆ Np ∪ {p},

i.e., the state of nodep is influenced by its own state/input
and by the states/inputs of the systems with which it can
communicate. Using our terminology, this corresponds to a
connected variable, where each induced subgraph is a star:
the center of the star is nodep, whose state isxp. Particular
cases of this model have been considered, for example, in [3],
[32], [33], whose solutions are heuristics, and in [18], [19],
[20], [21], whose solutions are optimization-based. The model
we propose here is significantly more general, since it can
handle scenarios where interacting nodes do not necessarily
need to communicate, or even scenarios with a non-connected
variable. Both cases are shown in Fig. 4(b). For example, the
subgraph induced by(x̄3, ū3) consists of the nodes{1, 2, 3, 4}
and is connected. (The reference for connectivity is always
the communication network which, in the plots, is represented
by solid lines.) Nodes1 and3, however, cannot communicate
directly. This is an example of an induced subgraph that is not
a star. On the other hand, the subgraph induced by(x̄2, ū2)
consists of the nodes{1, 2, 3, 5}. This subgraph is not con-
nected, which implies that the optimization variable is non-
connected. Situations like the above can be useful in scenarios
where communications links are expensive or hard to establish.
For instance, MPC can be used for temperature regulation
of buildings [33], where making wired connections between
rooms, here viewed as systems, can be expensive. In that case,
two adjacent rooms whose temperatures influence each other
may not be able to communicate directly. The proposed MPC
model can handle this scenario easily.

MPC model for the experiments.We now present a simple
linear MPC model, which will be used in our experiments in

Section VI. Although simple, this model will illustrate allthe
cases considered above. We assume that systems are coupled
though their inputs, i.e.,xp[t+1] = Apxp[t]+

∑

j∈Ωp
Bpjuj[t],

whereAp ∈ R
np×np and eachBpj ∈ R

np×mj are arbitrary
matrices, known only at nodep. Also, we assumeΦp andΨt

p

in (19) are, respectively,Φp({xj [T ]}j∈Ωp
) = xp[T ]

⊤Q̄f
pxp[T ]

andΨt
p({xj [t]}j∈Ωp

) = xp[t]
⊤Q̄pxp[t]+up[t]

⊤R̄p, whereQ̄p

andQ̄f
p are positive semidefinite matrices, andR̄p is positive

definite. Problem (19) then becomes

minimize
x1,...,xP
u1,...,uP

∑P

p=1 u
⊤
p Rpup + x⊤

p Qpxp

subject to xp = Cp{uj}j∈Sp
+D0

p , p = 1, . . . , P ,
(20)

where,xp = (xp[0], . . . , xp[T ]), up = (up[0], . . . , up[T − 1]),
for eachp, and

Qp =

[

IT ⊗ Q̄p 0
0 Q̄f

p

]

, Rp = IT ⊗ R̄p ,

Cp =















0 0 · · · 0
Bp 0 · · · 0

AppBp Bp · · · 0
...

...
. . .

...
AT−1

pp Bp AT−2
pp Bp · · · Bp















, D0
p =















I
App

A2
pp

...
AT

pp















x0
p .

In the entries of matrixCp, Bp is the horizontal concatenation
of the matricesBpj , for all j ∈ Ωp. One of the advantages
of the model we are using is that all the variablesxp can be
eliminated from (20), yielding

minimize
u1,...,uP

P
∑

p=1

{uj}
⊤
j∈Sp

Ep{uj}j∈Sp
+ w⊤

p {uj}j∈Sp
, (21)

where eachEp is obtained by summingRp with C⊤
p QpCp in

the correct entries, andwp = 2C⊤
p QpD

0
p. Our model thus

leads to a very simple problem. In a centralized scenario,
where all matricesEp and all vectorswp are known in the
same location, the solution of (21) can be computed by solving
a linear system. Likewise, the problem in step 6 of Algorithm1
(and steps 5 and 12 of Algorithms 2 and 3, respectively) boils
down to solving a linear system.

1

2

3

4
5

6

7

φ12(x12)

φ23(x23)

φ24(x24)

φ45(x45)

φ46(x46)

φ57(x57)

φ43(x43)

φ16(x16)

φ67(x67)

Figure 5. A network flow problem: each edge has a variablexij representing
the flow from nodei to nodej and also has a cost functionφij(xij).

Network flow. A network flow problem is typically formu-
lated on a network with arcs (or directed edges), where an
arc from nodei to nodej indicates a flow in that direction.
In the example given in Fig. 5, there can be a flow from
node1 to node6, but not the opposite. Every arc(i, j) ∈ A
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has associated a non-negative variablexij representing the
amount of flow in that arc (from nodei to nodej), and a
cost functionφij(xij) that depends only onxij . The goal
is to minimize the sum of all the costs, while satisfying the
laws of conservation of flow. External flow can be injected
or extracted from a node, making that node a source or a
sink, respectively. For example, in Fig. 5, node1 can only
be a source, since it has only outward edges; in contrast,
nodes3 and7 can only be sinks, since they have only inward
edges. The remaining nodes may or may not be sources or
sinks. We represent the network of flows with the node-arc
incidence matrixB, where the column associated to an arc
from nodei to nodej has a−1 in the ith entry, a1 in the jth
entry, and zeros elsewhere. We assume the components of the
variablex and the columns ofB are in lexicographic order.
For example,x = (x12, x16, x23, x24, x43, x45, x46, x57, x67)
would be the variable in Fig. 5. The laws of conservation of
flow are expressed asBx = d, whered ∈ R

P is the vector
of external inputs/outputs. The entries ofd sum up to zero
anddp < 0 (resp.dp > 0) if node p is a source (resp. sink).
When nodep is neither a source nor a sink,dp = 0. The
problem we solve is

minimize
x

∑

(i,j)∈A φij(xij)

subject to Bx = d
x ≥ 0 ,

(22)

which can be written as (2) by setting

fp

(

{xpj}(p,j)∈A, {xjp}(j,p)∈A

)

=
1

2

∑

(p,j)∈A

φpj(xpj)

+
1

2

∑

(j,p)∈A

φjp(xjp)+ib⊤p x=dp
({xpj}(p,j)∈A, {xjp}(j,p)∈A) ,

whereb⊤p is thepth row ofB. In words,fp consists of the sum
of the functions associated to all arcs involving nodep, plus the
indicator function of the set{x : b⊤p x = dp}. This indicator
function enforces the conservation of flow at nodep and it
only involves the variables{xpj}(p,j)∈A and{xjp}(j,p)∈A.

Regarding the communication networkG = (V , E), we
assume it consists of the underlying undirected network. This
means that nodesi andj can exchange messages directly, i.e.,
(i, j) ∈ E for i < j, if there is an arc between these nodes, i.e.,
(i, j) ∈ A or (j, i) ∈ A. Therefore, in contrast with the flows,
messages do not necessarily need to be exchanged satisfying
the direction of the arcs. In fact, messages and flows might
represent different physical quantities: think, for example, in
a network of water pipes controlled by actuators at each pipe
junction; while the pipes might enforce a direction in the flow
of water (by using, for example, special valves), there is no
reason to impose the same constraint on the electrical signals
exchanged by the actuators. In problem (22), the subgraph
induced byxij , (i, j) ∈ A, consists only of nodesi and j
and an edge connecting them. This makes the variable in (22)
connected and star-shaped. Next we discuss the functionsφij

used in our simulations.
Models for the experiments.We considered two instances

of (22): a simple instance and a complex instance. While

the simple instance makes all the algorithms we consider
applicable, the (more) complex instance can be solved only
by a subset of algorithms, but it provides a more realistic
application. The simple instance usesφij = 1

2 (xij − aij)
2,

whereaij > 0, as the cost function for each arc(i, j) and
no constraints besides the conservation of flow, i.e., we drop
the nonnegativity constraintx ≥ 0 in (22). The reason for
dropping this constraint was to make the algorithm in [13]
applicable. The other instance we consider is [4, Ch.17]:

minimize
x={xij}(i,j)∈A

∑

(i,j)∈A
xij

cij−xij

subject to Bx = d
0 ≤ xij ≤ cij , (i, j) ∈ A ,

(23)

where cij represents the capacity of the arc(i, j) ∈ A.
Problem (23) has the same format of (22) except for the
additional capacity constraintsxij ≤ cij , and it models overall
system delays on multicommodity flow problems [4, Ch.17].
If we apply Algorithm 1 to problem (23), nodep has to solve
at each step

minimize
y=(y1,...,yDp )

∑Dp

i=1(
yi

ci−yi
+ viyi + aiy

2
i )

subject to b⊤p y = dp
0 ≤ y ≤ c ,

(24)

where eachyi corresponds toxpj if (p, j) ∈ A, or to xjp

if (j, p) ∈ A. Since projecting a point onto the set of
constraints of (24) is simple (see [34]), (24) can be solved
efficiently with a projected gradient method. In fact, we will
use the algorithm in [35], which is based on the Barzilai-
Borwein method.

In sum, we will solve two instances of (22): a simple one,
whereφij(xij) = (1/2)(xij − aij)

2 and with no constraints
besidesBx = d, and (23), a more complex but realistic one.

VI. EXPERIMENTAL RESULTS

In this section we show experimental results of the proposed
algorithms solving MPC and network flow problems. We start
with network flow because it is simpler and more algorithms
are applicable. Also, it will illustrate the inefficiency ofsolv-
ing (2) with an algorithm designed for the global problem (1).

Network flows: experimental setup. As mentioned in
the previous section, we solved two instances of (22). In
both instances, we used a network with2000 nodes and
3996 edges, generated randomly according to the Barabasi-
Albert model [37] with parameter2, using the Network X
Python package [38]. We made the simplifying assumption
that between any two pairs of nodes there can be at most arc,
as shown in Fig. 5. Hence, the size of the variablex in (22)
is equal to the number of edges|E|, in this case,3996. The
generated network had a diameter of8, an average node degree
of 3.996, and it was colored with3 colors in Sage [39]. This
gives us the underlying (undirected) communication network.
Then, we assigned randomly a direction to each edge, with
equal probabilities for both directions, creating a directed
network like in Fig. 5. We also assigned to each edge a
number drawn randomly from the set{10, 20, 30, 40, 50, 100}.
The probabilities were0.2 for the first four elements and0.1
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Figure 6. Results for the network flow problems on a network with 2000 nodes and3996 edges. The results in (a) are for the simple instance of (22),
whereφij(xij) = (1/2)(xij − aij )2 and there are no nonnegativity constraints; and the resultsin (b) are for (23).

for 50 and100. These numbers played the role of theaij ’s in
the simple instance of (22) and the role of the capacitiescij
in (23). To generate the vectord or, in other words, to
determine which nodes are sources or sinks, we proceeded
as follows. For eachk = 1, . . . , 100, we picked a sourcesk
randomly (uniformly) out of the set of2000 nodes and then
picked a sinkrk randomly (uniformly) out of the set of
reachable nodes ofsk. For example, if we were considering
the network of Fig. 5 and pickedsk = 4 as a source
node, the set of its reachable nodes would be{3, 5, 6, 7}.
Next, we added to the entriessk and rk of d the values
−fk/100 and fk/100, respectively, wherefk is a number
drawn randomly exactly ascij (or aij ). This corresponds to
injecting a flow of quantityfk/100 at nodesk and extracting
the same quantity at noderk. After repeating this process100
times, fork = 1, . . . ,K, we obtained vectord.

To assess the error given by each algorithm, we computed
the solutionsx⋆ of the instances of (22) in a centralized way.
The simple instance of (22) considersφij(xij) = (1/2)(xij −
aij)

2 and ignores the constraintx ≥ 0. Thus, it is a simple
quadratic program and has a closed-form solution: solving
a linear system. Similarly, the problem Algorithm 1 (resp.
Algorithm 2) has to solve in step 6 (resp. step 5) boils down
to solving a linear system. To compute the solution of (23),
the complex instance of (22), we used CVXOPT [40].

The plots we will show depict the relative error on the
primal variable‖xk − x⋆‖∞/‖x⋆‖∞, wherexk is the con-
catenation of the estimates at all nodes, versus the number
of communication steps. Acommunication step(CS) consists
of all nodes communicating their current estimates to their
neighbors. That is, in each CS, information flows on each
edge in both directions and, hence, the total number of CSs
is proportional to the total number of communications. All
the algorithms we compared, discussed next, had a tuning pa-
rameter:ρ for the ADMM-based algorithms (cf. Algorithms 1
and 2), a Lipschitz constantL for a gradient-based algorithm,
and a stepsizeα for a Newton-based algorithm. Suppose we
selectedρ̄ for an ADMM-based algorithm. We say thatρ̄ has
precisionγ, if both ρ̄− γ and ρ̄+ γ lead to worse results for

that algorithm. A similar definition is used forL andα. We
compared Algorithm 1, henceforth denoted as Alg. 1, against
the ADMM-based algorithms in [10, §7.2] and [11] (recall
that Algorithm 2 describes [11]), Nesterov’s method [36],
the distributed Newton method proposed in [13], and D-
ADMM [9]. For network flow problems, the algorithms in [10,
§7.2] and [11] coincide, i.e., they become exactly the same
algorithm. This is not surprising since both are based on the
same algorithm: the2-block ADMM. All the ADMM-based
algorithms, including Alg. 1, take1 CS per iteration. The work
in [13], besides proposing a distributed Newton method, also
describes the application of the gradient method to the dual
of (22). Here, instead of applying the simple gradient method,
we apply Nesterov’s method [36], which can be applied in the
same conditions, has a better bound on the convergence rate,
and is known to converge faster in practice. However, gradient
methods, including Nesterov’s method, require an objective
that has a Lipschitz-continuous gradient. While this is thecase
of the objective of the dual of the simple instance of (22), the
same does not happen for the objective of the dual of (23).
Therefore, in the latter case, we had to estimate a Lipschitz
constantL. Similarly to the ADMM-based algorithms, each
iteration of a gradient algorithm takes1 CS per iteration.
Regarding the distributed Newton algorithm in [13], we imple-
mented it with a parameterN = 2, which is the order of the
approximation in the computation of the Newton direction, and
fixed the stepsizeα. With this implementation, each iteration
takes 3 CSs. Finally, D-ADMM [9] is currently the most
communication-efficient algorithm for the global problem (1).
As such, it makes all the nodes compute the full solutionx⋆,
which has dimensions3996 in this case. Thus, each message
exchanged in one CS of D-ADMM is3996 times larger than
the messages exchanged by the other algorithms.

Network flows: results. The results for the simple instance
of (22) are shown in Fig. 6(a). Of all the algorithms, Alg. 1
required the least amount of CSs to achieve any relative
error between1 and 10−4. The second best were the al-
gorithms [10] and [11], whose lines coincide because they
become the same algorithm when applied to network flows.
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Table I
STATISTICS FOR THE NETWORKS USED INMPC.

Name Source # Nodes # Edges Diam. # Colors Av. Deg.

A [37] 100 196 6 3 3.92

B [41] 4941 6594 46 6 2.67

Nesterov’s method [36] and the Newton-based method [13]
had a performance very similar to each other, but worse
than the ADMM-based algorithms. However, D-ADMM [9],
which is also ADMM-based but solves the global problem (1)
instead, was the algorithm with the worst performance. Note
that, in addition to requiring much more CSs than any other
algorithm, each message exchanged by [9] is3996 times
larger than a message exchanged by any other algorithm.
This clearly shows that if we want to derive communication-
efficient algorithms, we have to explore the structure of (1).
Finally, we mention that the value ofρ in these experiments
was 2 for all ADMM-based algorithms (precision1), the
Lipschitz constantL was 70 (precision5), and the stepsize
α was0.4 (precision0.1).

Fig. 6(b) shows the results for (23). In this case, we were
not able to make the algorithm in [13] converge (actually, it
is not guaranteed to converge for this problem). It is visible
in Fig. 6(b) that this problem is harder to solve, since all
algorithms required more CSs solve it. Again, Alg. 1 was the
algorithm with the best performance. This time we did not
find any choice forL that made Nesterov’s algorithm [36]
achieve an error of10−4 in less than1000 CSs. The best
result we obtained was forL = 15000. The parameterρ
was 0.08 for Alg. 1 and0.12 for [11], [10], both computed
with precision0.02.

MPC: experimental setup. For the MPC experiments we
used two networks with very different sizes. One network,
which we call A, has100 nodes,196 edges, and was generated
the same way as the network for the network flow experiments:
with a Barabasi-Albert model [37] with parameter2. The other
network, named B, has4941 nodes and6594 edges and it
represents the topology of the Western States Power Grid [41]
(obtained in [42]). The diameter, the number of used colors,
and the average degree for these networks is shown in Table I.
For coloring the networks, we used Sage [39].

We solved the MPC problem (21) and, to illustrate all the
particular cases of a variable for (2), we created several types
of data. For all the data types, the size of the state (resp.
input) at each node was alwaysnp = 3 (resp.mp = 1), and
the time-horizon wasT = 5. Since (21) has a variable of
size mpTP , network A implied a variable of size500 and
network B implied a variable of size24705. With network A,
we generated the matricesAp so that each subsystem could be
unstable; namely, we drew each of its entries from a normal
distribution. With network B, we proceeded the same way,
but then “shrunk” the eigenvalues of eachAp to the interval
[−1, 1], hence making each subsystem stable. All matricesBpj

were always generated as eachAp in the unstable case. The
way we generated system couplings, i.e., the setΩp for each
nodep (see also the dotted arrows in the networks of Fig. 4),

will be explained as we present the experimental results. Note
that for the MPC problem (21) the Lipschitz constant of the
gradient of its objective can be computed in closed-form and,
therefore, does not need to be estimated. The relative errorwill
be computed as in the network flows:‖xk − x⋆‖∞/‖x⋆‖∞,
wherexk is the concatenation of all the nodes’ input estimates.

MPC results: connected case.The results for all the
experiments on a connected variable are shown in Fig. 7.
There, Alg. 1 is compared against [11] (see also Algorithm 2),
and [10], and [36]. We mention that algorithms [10], [36]
were already applied to (21), e.g., in [20], in the special case
of a variable with star-shaped induced subgraphs. This is in
fact the only case where [10] and [36] are distributed, and it
explains why they are not in Figs. 7(c) and 7(d): the induced
subgraphs in those figures are not stars. Only Alg. 1 and [11]
are applicable in this case.

In Fig. 7(a) the network is A and each subsystem was
generated (possibly) unstable, and in Fig. 7(b) the network
is B and each subsystem was generated stable. In both cases,
Alg. 1 required the least number of CSs to achieve any relative
error between1 and 10−4, followed by [10], then by [11],
and finally by [36]. It can be seen from these plots that the
difficulty of the problem is determined, not so much by the
size of network, but by the stability of the subsystems. In
fact, all algorithms required uniformly more communications
to solve a problem on network A, which has only100 nodes,
than on network B, which has approximately5000 nodes.
This difficulty can be measured by the Lipschitz constantL:
1.63× 106 for network A (Fig. 7(a)) and3395 for network B
(Fig. 7(b)). Regarding the parameterρ, in Fig. 7(a) it was
120 for [10] and135 for the other algorithms (computed with
precision5); in Fig. 7(b), it was25 for Alg. 1 and [10], and30
for Alg. [11] (also computed with precision5).

In Figs. 7(c) and 7(d) we considered a generic connected
variable, where each induced subgraphs is not necessarily a
star. In this case, the system couplings were generated as
follows. Given a nodep, we assigned itup and we initialized
a fringe with its neighborsNp. Then, we selected a node
randomly (with equal probability) from the fringe and made
it depend onup; we also added its neighbors to the fringe.
The described process was done3 times for each variableup

(i.e., nodep). When each induced subgraph is not a star, only
Alg. 1 and [11] are applicable. Figs. 7(c) and 7(d) show their
performance for network A with unstable subsystems and for
network B with stable subsystems, respectively. It can be seen
that Alg. 1 required uniformly less CSs than [11] to achieve
the same relative error.

MPC results: non-connected case.A non-connected vari-
able has at least one component whose induced subgraphGl =
(Vl, El) is not connected. In this case, Algorithm 1 is no
longer applicable and it requires a generalization, shown in
Algorithm 3. Part of the generalization consists of computing
Steiner trees, using the nodes inVl as required nodes. The
same generalization can be made to the algorithm in [11].

To create a problem instance with a non-connected variable,
we generated system couplings in a way very similar to the
couplings for Figs. 7(c) and 7(d). The difference was that any
node in the network could be chosen to depend on a givenup.
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(b) Network B with star-shaped induced subgraphs
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Figure 7. Results for MPC. The variable is connected in all cases, i.e., the subgraphs induced by all the components are connected. While in (a) and (b)
each induced subgraph is a star, i.e., the interactions occur only between neighboring subsystems, in (c) and (d) each induced subgraph is generic. Only
Algorithms 1 and 2 ([11]) are applicable in the latter case. Alg. 1 was always the algorithm requiring the least number of communication steps to converge.
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Figure 8. Results for MPC when the variable is non-connected. The
communication network is A and all the subsytems were designed stable.

However, any node in the fringe had twice the probability of
being chosen than any other node. This process was run on
network A for each one of its500 components (recall that the
variable size for network A is500), and obtained400 non-
connected components, i.e.,400 components whose induced
subgraphs were not connected. Then, as described in the
preprocessing part of Algorithm 3, we computed Steiner trees

for each non-connected component:44% of the nodes were
Steiner for at least one component. To compute Steiner trees,
we used a built-in Sage function [39]. In this case, we
generated all the subsystems stable. Then, we ran Algorithms 3
and [11] (with a similar generalization) withρ = 35 (computed
with precision5 for both algorithms). The results of these ex-
periments are in Fig. 8. Again, Algorithm 3 required uniformly
less CSs to converge than our generalization of [11].

VII. C ONCLUSIONS

We solved a class of optimization problems with the fol-
lowing structure: no component of the optimization variable
appears in the functions of all nodes. Our approach considers
two different cases, a connected and a non-connected variable,
and proposes an algorithm for each. Our algorithms require
a coloring scheme of the network and their convergence is
guaranteed only for the special case of a bipartite network
or for problems with strongly convex objectives. However,
in the practical examples that we considered, the algorithm
converges even when none of these conditions is met. More-
over, experimental results show that our algorithms require
less communications to solve a given network flow or MPC
problem to an arbitrary level of accuracy than prior algorithms.
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APPENDIX A
PROOF OFLEMMA 1

To go from (12) to (13), we first develop the last two terms
of (12), respectively,

λk⊤Ā1x̄1 (25)

and

ρ

2

∥

∥

∥
Ā1x̄1 +

C
∑

c=2

Ācx̄c,k
∥

∥

∥

2

. (26)

We first address (25). Given the structure ofĀ1, as seen in (5),
we can write (25) as

∑n

l=1((Ā
1
l )

⊤λk
l )

⊤x̄1
l . Recall that(Ā1

l )
⊤,

if it exists (i.e., if there is a node with color1 that depends on
componentxl), consists of the block of rows of the node-arc
incidence matrix ofGl corresponding to the nodes with color1.
Therefore, if there existsp ∈ C1∩Vl, the vector(Ā1

l )
⊤λk

l will
have an entry

∑

j∈Np∩Vl
sign(j − p)λpj,k

l . The sign function
appears here because the column of the node-arc incidence
matrix corresponding tox(i)

l −x
(j)
l = 0, for a pair(i, j) ∈ El,

contains1 in the ith entry and−1 in the jth entry, wherei <
j. In the previous expression, we used an extension of the
definition ofλij

l , which was only defined fori < j (due to our
convention that for any edge(i, j) ∈ E we have alwaysi < j).
Assumeλij

l is initialized with zero; switchingi andj in (11),
we obtainλji,k

l = −λij,k
l , which holds for all iterationsk.

To be consistent with the previous equation, we defineλij
l as

http://arxiv.org/abs/1112.2972
http://arxiv.org/abs/1104.1157
http://arxiv.org/abs/1112.2295
http://arxiv.org/abs/1208.3922
http://networkx.lanl.gov/index.html
http://abel.ee.ucla.edu/cvxopt/index.html
http://www-personal.umich.edu/~Emejn/netdata/
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λij
l := −λji

l wheneveri > j. Therefore, (25) develops as

λk⊤Ā1x̄1 =

n
∑

l=1

((Ā1
l )

⊤λk
l )

⊤x̄1
l

=
n
∑

l=1

∑

p∈C1

∑

j∈Np∩Vl

sign(j − p)
(

λpj,k
l

)⊤

x
(p)
l

=
∑

p∈C1

n
∑

l=1

∑

j∈Np∩Vl

sign(j − p)
(

λpj,k
l

)⊤

x
(p)
l . (27)

Regarding (26), it can be written as

ρ

2

∥

∥

∥
Ā1x̄1 +

C
∑

c=2

Ācx̄c,k
∥

∥

∥

2

=
ρ

2

∥

∥

∥
Ā1x̄1

∥

∥

∥

2

+ ρ(Ā1x̄1)⊤
C
∑

c=2

Ācx̄c,k +
ρ

2

∥

∥

∥

C
∑

c=2

Ācx̄c,k
∥

∥

∥

2

.

(28)

Since the last term does not depend onx̄1, it can be dropped
from the optimization problem. We now use the structure ofĀ1

to rewrite the first term of (28):

ρ

2

∥

∥

∥
Ā1x̄1

∥

∥

∥

2

=
ρ

2

n
∑

l=1

(x̄1
l )

⊤(Ā1
l )

⊤Ā1
l x̄

1
l (29)

=
ρ

2

n
∑

l=1

∑

p∈C1

Dp,l

(

x
(p)
l

)2

(30)

=
ρ

2

∑

p∈C1

∑

l∈Sp

Dp,l

(

x
(p)
l

)2

. (31)

From (29) to (30) we just used the structure ofĀ1
l . Namely, if

it exists,(Ā1
l )

⊤Ā1
l is a diagonal matrix, where each diagonal

entry is extracted from the diagonal ofA⊤
l Al, the Laplacian

matrix for Gl. Since each entry in the diagonal of a Laplacian
matrix contains the degrees of the respective nodes, the
diagonal of(Ā1

l )
⊤Ā1

l containsDp,l for all p ∈ C1. The reason
why (Ā1

l )
⊤Ā1

l is diagonal is because nodes with the same
color are never neighbors. As in (28), we exchanged the order
of the summations from (30) to (31).

Finally, we develop the second term of (28):

ρ(Ā1x̄1)⊤
C
∑

c=2

Ācx̄c,k

= ρ

C
∑

c=2

n
∑

l=1

(x̄1
l )

⊤(Ā1
l )

⊤(Āc
l ) x̄

c,k
l (32)

= −ρ

C
∑

c=2

n
∑

l=1

∑

p∈C1

∑

j∈Np∩Cc∩Vl

x
(p)
l

⊤
x
(j),k
l (33)

= −ρ
∑

p∈C1

∑

l∈Sp

x
(p)
l

⊤
C
∑

c=2

∑

j∈Np∩Cc∩Vl

x
(j),k
l (34)

= −ρ
∑

p∈C1

∑

l∈Sp

∑

j∈Np∩Vl

x
(p)
l

⊤
x
(j),k
l . (35)

In (32) we just used the structure of̄A1 andĀc, as visualized
in (5). From (32) to (33) we used the fact that(Ā1

l )
⊤Āc

l is a

submatrix ofA⊤
l Al, the Laplacian ofGl, containing some of

its off-diagonal elements. More concretely,(Ā1
l )

⊤Āc
l contains

the entries ofA⊤
l Al corresponding to all the nodesi ∈ C1∩Vl

andj ∈ Cc∩Vl. And, for such nodes, the corresponding entry
in A⊤

l Al is −1 if i and j are neighbors, and0 otherwise.
From (34) to (35) we just used the fact that the set{Cc}

C
c=2 is

nothing but a partition of the set of neighbors of any node with
color 1. Using (27), (28), (31), and (35) in (12), we get (13).
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