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Distributed Optimization With Local Domains:
Applications in MPC and Network Flows

Jodo F. C. Mota, Jodo M. F. Xavier, Pedro M. Q. Aguiar, and MarRlschel

Abstract—In this paper we consider a network with P nodes,  fi(z1,z2,3) fi(z1, 22)
where each node has exclusive access to a local cost functiGur ° ) °
contribution is a communication-efficient distributed algorithm \1‘6(9017962@3) \fﬁ(Ihl?)
that finds a vector * minimizing the sum of all the functions. \ ° o \ ° o
We make the additional assumption that the functions have - W1,127x3) e \f5(‘L2”;3)
intersecting local domains, i.e., each function depends gnon a a e
some components of the variable. Consequently, each node is fa(z1, 22, 73) fa(z1, 22, 23)
interested in knowing only some components at*, not the entire / / / /
vector. This allows for improvement in communication-effigency.

o—9

We apply our algorithm to model predictive control (MPC) ° e
fa(za, z3) fa(x1, x3)

and to network flow problems and show, through experiments ) fa(xy, w2, x3)
on large networks, that our proposed algorithm requires les
communications to converge than prior algorithms.

fS(Ilvl’vaS

(a) Global variable (b) Partial variable

Index Terms—Distributed algorithms, alternating direction
method of multipliers (ADMM), Model Predictive Control, ne t-
work flow, multicommodity flow, sensor networks.

Figure 1. Example of a (a) global and a (b) partial variablédilé/each func-
tion in (a) depends on all the components of the variable (z1,z2,z3),
each function in (b) depends only on a subset of the compsranit.

I. INTRODUCTION

Distributed algorithms have become popular for solvinﬁIII solve a network flow problem to minimize delays in a

optimization problems formulated on networks. Consider, f ulticommodity routing problem. Both distributed MPC and

example, a network witl? nodes and the following problem:netwqu flow problems can be written naturally @$ (1) with
functions that depend only on a subset of the components

minimize fi(z) + fa(z) + -+ fp(z), (1) of .

) veR ) ) We solve [(1) in the case that each functifnmay depend
where f, is a function known only at node. Fig. [1(&) only on a subset of the components of the variable R™.
illustrates this problem for a variableof sizen = 3. Several This situation is illustrated in Fidg. 1(b), where, for examp
algorithms have been proposed to solvk (1) in a distribut%j only depends om; andz». To capture these dependencies,
way, that is, each node communicates only with its neighbgfg \rite 25, S C {1,...,n}, to denote a subset of the com-

and there is no central node. In a typical distributed atbaori ponents ofc. For example, if5 = {2,4}, thenzg = (2, 4)
for (1), each node holds an estimate of a solution and \jith this notation, our goal is solving

iteratively updates and exchanges it with its neighbors. It

is usually assumed that all nodes are interested in knowing  minimize fi(zs,) + fo(zs,) + -+ fr(zs,),  (2)

the entire solutionz*. While such an assumption holds for veRr

problems like consensus [1] or distributed SVM5 [2], thexe awhere S, is the set of components the functigh depends

important problems where it does not hold, especially in tf#. Accordingly, every node is only interested in a part of

context of large networks. Two examples we will explore hefée solution:z; . We make the following

are distributed Model Predictive Control (MPC) and network

flows. The goal in distributed MPC is to control a networkA

of interacting subsystems with coupled dynamics [3]. That Whenever this assumption holds, we say that the variable

control should be performed using the least amount of energy partial. Fig.[I(b) shows an example of a partial variable.

Network flow problems have many application$ [4]; here, wRote that, although no component appears in all nodes, hode
. . _ _ _depends on all components, i.e., it has a global domain. In
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and not just of the components they are interested in, thilt it requires less end-to-end communications. Howeiltes,
potentially wasting useful communication resources. Imynato its structure, it does not offer interpretations of eneehd
networks, communication is the operation that consumes ttocols as realistic as gradient-based algorithms.
most energy and/or time. Distributed Model Predictive Control (MPC)![3] is another
Contributions. We first formalize probleni{2) by making aproblem that has been addressed with algorithms sol¢ing (2)
clear distinction between variable dependencies and cariamuagain in the special case of a variable whose components in-
cation network. Before, both were usually assumed the sardaece star subgraphs only. Such algorithms include subgmadi
Then, we propose a distributed algorithm for probldmh (2pethods[[1B], interior-point methods ]19], fast gradie?@][
that takes advantage of its special structure to reduce coamd ADMM-based methodd [20]/ [21] (which apply |10,
munications. We will distinguish two cases for the variablg7.2]). All these methods were designed for the special case
of @): connected and non-connected, and design algorithofsstar-shaped induced subgraphs and, similarly to [1®]87.
for both. To our knowledge, this is the first time an algorithnthey become inefficient if applied to more generic cases. In
has been proposed for a non-connected variable. We apply spite of its generality, the algorithm we propose requiess |
algorithms to distributed MPC and to network flow problem&ommunications than previous algorithms that were specifi-
A surprising result is that, despite their generality, thepmsed cally designed for distributed MPC or network flow problems.
algorithms outperform prior algorithms even though they ar Additionally, we apply our algorithm to two scenarios
application-specific. in distributed MPC that have not been considered before:
Related work. Many algorithms have been proposed for theroblems where the variable is connected but the induced
global problem((]L), for example, gradient-based methdlis [subgraphs are not stars, and problems with a non-connected
[5], [6], or methods based on tidternating Direction Method variable. Both cases can model scenarios where subsystems
of Multipliers (ADMM) [7], [8], [9]. As mentioned before, that are coupled through their dynamics cannot communicate
solving (2) with an algorithm designed fokl(1) introduceslirectly.
unnecessary communications. We will observe this when welastly, this paper extends considerably our preliminary
compare the algorithm proposed here with D-ADMM [9], thevork [17]. In particular, the algorithm i [17] was desigrfed
state-of-the-art for({1) in terms of communication-effiwg.  bipartite networks and was based on thelock ADMM. In
To our knowledge, this is the first time probleid (2) hagontrast, the algorithms proposed here work on any condecte
been explicitly stated in a distributed context. For examplnetwork and are based on the Extended ADMM; thus, they
[10, §7.2] proposes an algorithm férd (2), but is not disttéisli  have different convergence guarantees. Also, the MPC model
in our sense. Namely, it either requires a platform that edgp proposed here is significantly more general than the one
all-to-all communications (in other words, a central nodej [17].
or requires running consensus algorithms on each induced
subgraph, at each iteration [10, 810.1]. Thus, that allyarit
is only distributed when every component induces subgraphs
that are stars. Actually, we found only one algorithm in We start by introducing the concepts obmmunication
the literature that is distributed (or that can easily be enathetworkandvariable connectivity
distributed) for all the scenarios considered in this papkat Communication network. A communication network is
algorithm was proposed in [1L1] in the context of power systerepresented as an undirected graph= (V,€), whereV =
state estimation (the algorithm we propose can also beeaxppli1, ..., P} is the set of nodes anfl C V x V is the set of
to this problem, although we will not consider it here). Ouedges. Two nodes communicate directly if there is an edge
simulations show that the algorithm in_[11] requires alwaygonnecting them irfj. We assume:
more communlcatlons_ than the a'go“th”.‘ We propose. - Assumption 2. G is connected and its topology does not
Although we found just one (communication-efficient) dis- 7 . . .
. . . . change over time; also, a coloring schemef G is available
tributed algorithm solvind(2), there are many other algwnis b
. ) . : . eforehand.
solving particular instances of it. For example, in netwiboky
problems, each component of the variable is associated tcA coloring schemeC is a set of numbers, called colors,
an edge of the network. We will see such problems can hssigned to the nodes such that two neighbors never have
written as [[2) with a connected variable, in the special catiee same color, as shown in Fig. 2. Given its importance in
where each induced subgraph is a star. In this case, [10, §TPMA, a widespread protocol for avoiding packet collisipns
becomes distributed, and also gradient/subgradient rdsththere is a large literature on coloring networks, as briefly
can be applied directly either to the primal problem|[12] ooverviewed in [[22]. Our algorithm integrates naturally hwit
to the dual problem[13], and vyield distributed algorithmsIDMA, since both use coloring as a synchronization scheme:
Network flow problems have also been tackled with Newtomodes work sequentially according to their colors, and sode
like methods([14],[[13]. A related problem is Network Uit with the same color work in parallel. The difference is that
Maximization (NUM), which is used to model traffic controlTDMA uses a more restrictive coloring, as nodes within two
on the Internet[[15],[[16]. For example, the TCP/IP protocdlops cannot have the same color. Note that packet collision
has been interpreted as a gradient algorithm solving a NUM. often ignored in the design of distributed algorithms, as
In [17], we compared a particular instance of the proposednfirmed by the ubiquitous assumption that all nodes can
algorithm with prior algorithms solving NUM, and showedcommunicate simultaneously.

II. TERMINOLOGY AND PROBLEM STATEMENT



! Problem manipulation. Let x; be a given component
°\ 9 and G, = (W, &) the respective induced subgraph. In this
\ 6 section we assume eaéhis connected. Since all nodesli

e \ L are interested in;, we will create a copy of; in each of those
®3 o nodesz” will be the copy at node and:c(S’;) = {27 }ies,
will be the set of all copies at node We rewrite [2) as

i ) (2 (P)
minimize T + fa2(@ +---+ T
0— 42 i fl}( s)) ‘ fa(zg,) fr(zg,)
1 subject to :cl(’):a:l(”, (i,5) €&, l=1,...,n,
where{z,}£ , is the optimization variable and represents the
set of all copies. We used; to denote all copies of the
componentz;, which are located only in the nodes 6f:

®3)

Figure 2. Example of a coloring scheme of the communicatietwark
using 3 colors:C; = {1, 3,5}, C2 = {4, 6}, andC3 = {2}.

T = {xl(p)}pevl. The reason for introducing constraints
We associate with each node in the communication in (@) is to enforce equality among the copies of the same
network a functionf, : R"» — R U {+oco}, wheren = component: if two neighboring nodésand j depend onz;,
ny + --- 4+ np, and make the then :vl” = :cl(” appears in the constraints éf (3). We assume

that any edge in the communication network is represented as
the ordered paifi, j) € £, with ¢ < j. As such, there are no
repeated equations inl(3). Problernk (2) ddd (3) are equivale
Since we allowf, to take infinite values, each node camecause each induced subgraph is connected.
impose constraints on the variable using indicator fumstjio A useful observation is thatl(z) = xl(J), (i,7) € &, can
i.e., functions that evaluate t¢co when the constraints arebe written asA4;z; = 0, where 4, is the transposed node-arc
not satisfied, and té otherwise. incidence matrix of the subgragh. The node-arc incidence
Variable connectivity. Although each functiory, is avail- matrix represents a given graph with a matrix where each
able only at node, each component of the variablemay be column corresponds to an edgej) € £ and hasl in the
associated with several nodes. Lgtbe a given component. jth entry, —1 in the jth entry, and zeros elsewhere. We now
Thesubgraph induced by; is represented by, = (V;,&) C partition the optimization variable according to the coigr

Assumption 3. Each functionf,, is known only at nodg and
it is closed, proper, and convex ovRf'»,

G, whereV), is the set of nodes whose functions depend:gn scheme: for each=1,...,n, 7, = (7},...,z{), where
and an edgéi, j) € £ belongs tog; if both i andj are in). (») i
For example, the subgraph inducedayin Fig.[I(b) consists Ty = { (}{Jxl Ypewinc. » :f :jl ggc # 8 ,

) l c =

of V1 = {1,2,4,6} and& = {(1,2),(1,6),(2,6)}. We say
thatz; is connectedf its induced subgraph is connected, an@ndC. is the set of nodes that have colarThus,zj is the
non-connectedtherwise. Likewise, aariable is connected set of copies ofr; held by the nodes that have colarlf no
all its components are connected, ammh-connectedf it has node with colorc depends orx;, thenzj is empty. A similar
at least one non-connected component. notation for the columns of the matri; enables us to write

Problem statement.Given a network satisfying Assump-A;z; as Az} + - + APz¢, and thus[(B) equivalently as
tion [ and a set of functions satisfying Assumptidos 1 (»)

inimi e (»)
and[3, we solve the following problerdesign a distributed, ' aec %:Pecl folzg, )_+ + 2pece fr(@s) @
communication-efficient algorithm that solv@), either with subjectto Al'z' 4.+ A°z¢ =0,

a conn_ectgd or with a non-connected variable. wherez¢ = {z¢}7" |, and A¢ is the diagonal concatenation of
By distributed algorithm we mean a procedure that makﬁ.?

¢ tral node and wh h nod "t matricesA§, AS, ..., AS,i.e., A° = diag A, AS, ..., AS).
no use of a central node and where each node ComMUNICH§S, ey yisyalize the constraint inl (4), we wrote
only with its neighbors. Unfortunately there is no known

lower bound on how many communications are needed to Af - 1:75
solve [2). Because of this, communication-efficiency caly on Aeqe — A3 T 5)
be assessed relative to existing algorithms that solveghees :
problem. As mentioned before, our strategy for this problem Ac | |z
n n

is to design an algorithm for the connected case and thfen he — 1 C The f FTHY | v th
generalize it to the non-connected case. or eachc =1,..., C. The format of () is exactly the one to

which the Extended ADMM applies, as explained next.
lIl. CONNECTED CASE E?(ter?ded ADMM. Thg Exte_ndepl ADMM is a naturf'zll gen-
_eralization of theAlternating Direction Method of Multipliers

In this section we derive an algorithm fdr (2) assuming 'tFADMM). Given a set of closed, convex functiops, .. ., g,
variable is connected. Our derivation uses the same pringjy4 5 set of full column rank matricés,, ..., Ec, all with
ples as the state-of-the-art algorithm [9]./[22] for thel#b 4 & <ame number of rows, the Extended ADMM solves
problem [1). The main idea is to manipulaid (2) to make

the Extended ADMM [[2B] applicable. We will see that the minimize  g1(x1) + -+ + gc(wc) ©6)

T1,.0sTC

algorithm derived here generalizes the onelin [9]] [22]. subjectto Fyx1+ -+ Ecxze =0.



It consists of iterating ot the following equations: updated according t@1(7):

Fhk+l _ argmln Z fol (p) )+ /\ka—lli,l

a:lf+1 = arg min Lp(xl,:cg, LIS ! (7 peEC)

T c 2
ab T = argmin L,(2¥ ™ xo, 28, ... 2l; AF) (8) + gHAlxl I Zchc,k (12)

T2

c=2
= argmln Z (fp

a:lé+1 = arg min Lp(:clerl I§+1, xlgrll,a:c,)\k) 9) peCi

o] ) T

c 4 Z Z (S,gn(j — p) AP pxl(-’)”“) 2
k+1 _ yk k+1 0

A A —i—pZEc:vc , (20) leS, JEN,NV;

c=1

L2y D)) @)

. . . . les
where )\ is the dual variablep is a positive parameter, and o

whose equivalence is established in Lenitha 1 below_Th (13),
the sign function is defined ak for nonnegative arguments
< T p < 2 and as—1 for negative arguments. Alsd),,; is the degree of
Lol A) = Z(gc(xc) + A Beze) + _HZEC"TCH nodep in the subgraptg;, i.e., the number of neighbors of
nodep that also depend op;. Of course,D,, ; is only defined
when! € S,. Before establishing the equivalence betwéen (12)
is the augmented Lagrangian ¢f (6). The original ADMM isind [I3), note tha{{13) decomposes iffg| problems that
recovered whenevet’ = 2, i.e., when there are only two can be solved in parallel. This is because consists of the
terms in the sums of{6). The following theorem gathers songgpies held by the nodes with color and, since nodes with
known convergence results far (7)-{10). the same color are never neighbors, none of the copie$ in

Theorem 1 ([23], [24]). For eachc = 1,....C, let g : appears ag;, in the second term of_(13). Therefore, all

R — R U {+o0} be closed and convex ové@" and nodesp in C; can solve in parallel the following problem:

_domgc # (. Let eachE_C be anm x n. matrix. Assumeg)) Igp),kﬂ —  argmin fp(fc(sp))
is solvable and that eithet) C' = 2 and eachFE, has full ? P =2},
column rank, or2) C' > 2 and eachgc is strongly convex. S g

c=1

. . T
Then, the sequen_c,{e{x’f, .., x% \F)} generated by(7)-(L10) + Z Z (sign(j — p)AbE le(J)JC) 2P
converges to a prlmal-dual solution df). I€S, jEN, NV,
2
It is believed that{[7)E(10) converges even wiigén- 2, each +P Z Dy (a:l(p)) . (14
gc is closed and convex (not necessarily strongly convex), and 2 €S,

each matrixE, has full column rank. Such belief is supported G).k
by empirical evidence[[22],]23] and its proof remains ahiowever nodep can solve [(TH) only if it knows,
open problem. So far, there are only proofs for modificatio®d X", for j € Aj, NV, andl € S),. This is possnble if, in
of (7)-(10) that resulted either in a slower algoritim][26t, the prewous iteration, it received the respective copi‘eslo
in algorithms not applicable to distributed scenarlog [26] ~from its neighbors. This is also enough for knowing’*,

although we will see later that no node needs to know
beﬁvlaep:ayr:%;haen%tse)ni?kfgg[1-(|J-)h z:;ec%;cggﬁig%?giieach APk individually. The proof of the following lemma,
Associate a dual variabla,’ to each constram:tcl( D= " Appendlx[E shows how we obtained{13) from{12)

in @). Translating[(Z0) component-wisk;’ is updated as ~ Lemma 1. (12) and (13) are equivalent.

We just saw how([{7) yield&;| problems with the format
igk+1 _ yijk (0),k+1 _ (4),k+1 of (I4) that can be solved in parallel by all the nodes with
A = A (o K ), (1) color 1. For the other colors, the analysis is the same with one
minor difference: in the second term &f {14) we ha\ﬂe““+1
wherexl(”)’k+1 is the estimate of; at nodep after iterationk. from the neighbors with a smaller color araxfl’)”C from the
This estimate is obtained fror] (1)}(9), where we will focusodes with a larger color.
our attention now. This sequence will yield the synchrotiima ~ The resulting algorithm is shown in Algorithid 1. There is
mentioned in Sectionlll: nodes work sequentially according a clear correspondence between the structure of Algofithm 1
their colors, with the same colored nodes working in pakalleand equations{7]-(10): step{ P-9 correspondto[{[7)-(%), an
In fact, each problem in[{7)-(80) corresponds to a givehe loop in sted 10 corresponds {0 ](10). In steld$ 2-9, nodes
color. Moreover, each of these problems decomposeg@pto work according to their colors, with the same colored nodes
problems that can be solved in parallel, each by a node wittorking in parallel. Each node computes the vector stef 4,
color c. For example, the copies of the nodes with cdl@are solves the optimization problem in step 6, and then sends the



Algorithm 1 Algorithm for a connected variable

eachA¢ has full column rank, foi = 1,2,...,n. Let thenc

Initialization: for all p € V, I € S, sety"! = 2™ =0; k=1 andl be fixed. We are going to prove that¢) " A¢, a square
1: repeat matrix, has full rank, and thereforej has full column rank.
22 fore=1,...,Cdo Since 4; = [A] A Ac], (A5)T As corresponds to
3: for all p € C. [in parallel] do : . 4T :

: thelth block in the diagonal of the matrig, A;, the Laplacian
4 for all [ € S, do . . . . .
v ‘ matrix of the induced subgrapi;. By assumption, in this
O A I SO Ll B SO section all induced subgraphs are connected. This meahs eac
jngﬁvz jgf\(pﬁvl node ingG; has at least one neighbor alsognand hence each
()<e ()=e entry in the diagonal ofl;” 4; is greater than zethThe same
5: end for happens to the entries in the diagonal(ef) " A¢. In fact,

Setz " as the solution of

arg min

o ={2{" hies, l€S €Sy

T 2
B Y P 4L S D, (o)

these are the only nonzero entries (off) " A¢, as this is a
diagonal matrix. This is becaugelf) " A¢ corresponds to the
Laplacian entries of nodes that have the same color, whigh ar
never neighbors. ThereforeA¢) " A¢ has full rank. ]
The following corollary, whose proof is omitted, is a
straightforward consequence of Theorgm 1 and Lefnma 2.

7 For each componeiite Sy, sendxl<p)”“+1 to NNV,

Corollary 1. Let Assumptiongldl3 hold and let the variable
8: end for - " ]
9 end for be connected. Let also one of the following conditions hold:
10  for all p € V andi € S, [in parallel] do 1) the network is bipartite, i.e¢' =2, or

Jk+1 k Jk+1 i), k41
’Y;p) — ’71(p) + pzje/\fpmvl (l"z(p) _ ml(J) )
11: end for
12: k< k+1
13: until some stopping criterion is met

2) each)’ .. fp(zs,) is strongly convexp =1,...,C.

Then, the sequenceéac(s”p)’k}g‘;1 at node p, produced by

Algorithm[1, converges to , wherez* solves(2).

As stated before, it is believed that the Extended ADMM
converges foilC > 2 even when none of the.'s is strongly
convex (just closed and convex). However, it is required tha
eachE. has full column rank. This translates into the belief
that Algorithm[1 converges for any network, provided edgh

new estimates of; to the neighbors that also depend on
for [ € S,. Note the introduction of extra notation in step 4

. . ).k -
C(p) is the color of nodep. The computation o, "N is closed and convex and each matfiin (@) has full column

from the neighbors with larger colors . The |ast condition is the content of Lemia 2.

that step requires,
and :cl(”"k“ from the neighbors with smaller colors. While  comparison with other algorithms. Algorithm [ is a

the former is obtained from the previous iteration, theelatt yeneralization of D-ADMM [22]: by violating Assumptidd 1
is obtained at the current iteration, after the respectv®@es ang makingS, = {1,...,n} for all p, the variable becomes
execute stepl 7. Regarding the problem in Elep 6, it involves ty51a] and AlgorithnIL becomes exactly D-ADMM. This is
private function of node, f,, to which is added a linear and a3 generalization indeed, for Algorithfid 1 cannot be obtained
quadratic term. This fulfills our requirement that all od@mas  from p-ADMM. The above fact is not surprising since Algo-
involving f,, be performed at nodg. _ _ rithm I was derived using the same set of ideas as D-ADMM,
Note that the update of the dual variables in step 10 gt adapted to a partial variable. Each iteration of Algonil

different from [I1). In particular, all the''s at nodep were (resp. D-ADMM) involves communicatinip,l |S,| (resp.
condensed into a single dual variabjé”). This was done =

S nP) numbers. Under Assumptidd 3.°_ |S,| < nP, and
becgusfe. the c;?’tlmlzatlon pr°b§§>'§iﬂ14) does not_ depe”d {Als there is a clear per-iteration ggin in solvilg (2) with
the individual\}”’s, but only onvy, = Zje/\/pmzl sign(j —

. Algorithm [1. Although Assumptiofi]1 can be ignored in the
p)A;”". If we replace sense that Algorithrill1 still works without it, we considered
)\;'j,k+1 _ )\;'j,k + p sign(j — Z.)(xl(i),kﬂ . xl(j),kJrl) (15)

that assumption to make clear the type of problems addressed
in this paper.

in the definition ofy""*, we obtain the update of stép]10. We mentioned before that the algorithm in][11] is the only

The extra “sign” in[(Ib) (w.r.t[{11)) was necessary to tak@i Oone we found in the literature that efficiently solvé$ (2) in

account the extension of the definition of the dual variale the same scenarios as Algoritfiin 1. For comparison purposes,

for i > j (see AppendiXA). we show it as Algorithni12. AlgorithmEl1 arid 2 are very
Convergence.Apart from manipulations, Algorithril1 re- similar in format, although their derivations are consatgy

sults from the application of the Extended ADMM to probdifferent. In particular, Algorithnil2 is derived from the-

lem (@). Consequently, the conclusions of Theokém 1 applylifock ADMM and thus it has stronger convergence guarantees.

we prove that[{4) satisfies the conditions of that theorem. Namely, it does not require the network to be bipartite nor
Lemma 2. Each matrixA© in (@) has full column rank. 1we are implicitly excluding the pathological case where mponentz;
appears in only one node, say noge this would lead to a Laplacian

/ ., C}. By definition, matrix Al A; equal to0. This case is easily addressed by redefinifig
AS); therefore, we have to prove thatthe function at node, to f,(-) = infe, fp(. ..,z . .).

~ Proof: Let c be any color in{1,2,..
A¢ = diag(A§, A4S, ...,



Algorithm 2 [11]

Initialization: for all p € V, 1 € Sp, sety! = 2P =0, k=1
1: repeat
2: for all p € V [in parallel] do
3: for all [ € S, do
k k k j)k
N T S
JENLNV,
4 end for
5: Setz """ as the solution of

: (p) ®)kT () P ®)\? Figure 3. Example of an optimal Steiner tree: black nodeseqaired and
arg min f”(:csp )+Z Y Ty +2 Z D1 (wl ) striped nodes are Steiner.

w(S?:{wl(p)}Lesp €Sy €Sy
6: For each componerite S, sendz(""*™ to AV, NV, . ,
7 end for P P ! ? "' problem each edg¢i, j) € £ has a cost;; associated, and the

®

for all p € V andi € S, [in parallel] do goal is to find a Steiner tree whose edges have a minimal cost.
N NS o (@)1 _ g @ty This is exactly our problem if we makg; = 1 for all edges
! ! 2 SgENNVAT ! andR = V. The Steiner tree problem is illustrated in Fig. 3,
9:  end for where the required nodes are black and the Steiner nodes
10: k<—k+1 . . . . .
11: until some stopping criterion is met are striped. Unfortunately, computing optimal Steineesrés
NP-hard [27]. There are, however, many heuristic algorithm
some even with approximation guarantees. The Steiner tree

. _problem can be formulated &s [28]
any function to be strongly convex (cf. Corolldry 1). Alsb, i

does not require any coloring scheme and, instead, all nodesm‘i‘qimize 2 Cijzig
perform the same tasks in parallel. Note also that the update *~’9<¢  (2.)€€
of v and~" are different in both algorithms. In the same Subjectto > z; > 1, Vy : 0<UNR|[<|R| (16)

way that Algorithm[l was derived using the technigues of ;%%{1
D-ADMM, Algorithm P] was derived using the techniques zi; € {0,1}, (i,j) €€,

of [7]. And, as in the experimental results of [22]./ [9], W&herel/ in the first constraint is any subset of nodes that sep-

will observe in SectiofiLV| that Algorithrll1 always reOluireSarates at least two required nodes. The optimization vieriab

less communications than Algorithid 2. Next, we propose;a : : :
o . . constrained to be binary, and an optimal valfe = 1
modification to Algorithm§1l and 2 that makes them apphcab)geanS that edgdi, j) wasy selected f(?r the Stlgiaer tree.

to a non-connected variable. Let h(z) := Z(meg ¢ijzi; denote the objective of (16). We
say that an algorithm fof (16) has an approximation ratie of
IV. NON-CONNECTEDCASE if it produces a feasible poirit suchh(z) < ah(z*), for any

So far, we have assumed a connected variablgin (2). In tRi®blem instance. For example, the primal-dual algoritiom f
section, the variable will be non-connected, i.e., it wdke at combinatorial problems [28]. [29] has an approximationorat
least one component that induces a non-connected subgr&r- This number has been decreased in a series of works,
In this case, problem$](2) anfl (3) are no longer equivaldhe smallest one being+In3/2 ~ 1.55, provided by [[30].
and, therefore, the derivations that follow do not apply. We Algorithm generalization. To make Algorithmd 11 and]2
propose a small trick to make these problems equivalent. applicable to a non-connected variable, we propose thewell

Let 2; be a component whose induced subgraph— iNg preprocessing step. For every componenthat induces
(V,,&) is non-connected. Then, the constraitﬁ’t) _ Iz(j)* a disconnected _subgraglﬂz (Vl_,El), compute a Steiner tree
(i,§) € &, in @) fails to enforce equality on all the copies7t>F1) C G usingV; as required nodes. Lef; := 7:\V;
of 2. To overcome this, we propose creating a “virtual” path tgen_ote the Steiner nodes in tha.t tree. The functions of these
connect the disconnected component§;ofThis will allow the Stéiner nodes do not depend.eni.e.,z; ¢ 5, forall p € S;.
nodes inG; to reach an agreement on an optimal valueafor Define a new induced graph & = (V. &), V‘{'th Vi = Ti
Since our goal is to minimize communications, we woul@"d &} := & U F;. Then, we can create copies of in all
like to find the “shortest path” between these disconnectB@des inV;, and write [2) equivalently as
components, that is, to find an optinaleiner tree . (1) (2) (P)

Steiner tree problem.Let G = (V,&) be an undirected ”}'2'{?:'126 N@s)) + folws,) +---+ feles,)
graph and letR C V be a set ofrequired nodesA Steiner  subject to ffz(i) — xl(ﬁ, (i,j)e€&, l=1,....n,
tree is any tree irgj that contains the required nodes, i.e., it is
an acyclic connected graghf, 7) C G such thatk C 7. The wherez; := {xl(p)}pevl/ denotes the set of all copies of,
set of nodes in the tree that are not required are c8tether and{z;}/,, the optimization variable, represents the set of all
nodes and will be denoted witks := 7\R. In theSteiner tree copies. Note that the function at nogeremains unchanged:

(17)



Algorithm 3 Algorithm for a non-connected variable Algorithm[d to a non-connected variable can be easily agplie

Preprocessing (centralized): the same way to Algorithria] 2.
1: SetS, =0 forall pe Vv, andV, =V, foralll = {1,...,n}
2: for all 1 € {1,...,n} such thatz; is non-connectedo
3 Compute a Steiner trgd;, F;), where), are required nodes V. APPLICATIONS
4. SetV/ =T and Si:= Ti\V (Steiner nodes) In this section we describe how the proposed algorithms can
g_ ende%rr allp € 81, 5, = S, U{a} be used to solve distributed MPC and network flow problems.
: Distributed MPC. MPC is a popular control strategy for
Main algorithm (distributed): discrete-time systems [B1]. It assumes a state-space rfaydel
Initialization: Set™'= z{P"'= 0, forl € S,US,, pe V; k=1 the system, where the state at timéere denoted with[t]
7: repeat R", evolves according to[t+1] = ©'(z[t], u[t]), whereu[t] €
8 forc=1,...,Cdo R™ is the input at timet and ©f : R® x R™ — R" is a
1gf for %Hr g”elcé gn Baé?"gg do map that gives the system dynamics at each time instant
' PR Given a time-horizori’, an MPC implementation consists of
o =P g N g N g measuring the state at time= 0, computing the desired states
FENHNV] FENHNV) and inputs for the nexf" time steps, applying:[0] to the
Cl<e CU)>e system, setting = 0, and repeating the process. The second
11: end for step, i.e., computing the desired states and inputs for engiv
— time horizonT, is typically addressed by solving
. p),Kk H
12 Setmspus; as the solution of minimize  (x[T7) + ZtT;ol W (], ul])
T, U
argmin f,(z0)) + > (vl@%“zgm + gpp,l(ng)Q) subject to z[t + 1] = O (z[t], u[t]), t=0,...,T -1
2P 15,08, z[0] = 20,
T (18)
13: For eachi € S, U 5, senda®"**! to A7, 0V where the variable is(z,a) = ({z[t]}{ o, {ult]}iH)-
14: end for While ® penalizes deviations of the final staié7] from
15: end for our goal, U* usually measures, for each= 0,...,7 — 1,

16: for all p eV andi € S, U S, [in parallel] do

k41 N Jk+1 7),k+1
kP DIV C: Ll

some type of energy consumption that we want to minimize.
Regarding the constraints df_{18), the first one enforces the

17 end for state to follow the system dynamics, and the second one
188 k< k41 encodes the initial measuremertt
19: until some stopping criterion is met We solve[(IB) in the following distributed scenario. These i

a set of P systems that communicate through a communication

network G = (V,€). Each system has a staig[t] € R"»

and a local inputu,[t] € R™», wheren; +---+np = n

> ) ] andm; + --- + mp = m. The state of system evolves as

now have more copies, nametyépusz,), where S} is the set zplt + 1] = 08 ({x;[t], u;[t]}jeq, ), WhereQ, C V is the set

of components of which nodeis a Steiner node. Of course,of nodes whose state andior ipnput influen@és(we assume

when a component; is connected, we s&; = G;; also, if a ;1 ¢ o for all p). Note that, in contrast with what is usually

nodep is not Steiner for any componertf, = 0. If we repeat 3ssumeds), is not necessarily a subset of the neighbors of

the analysis of the previous section replacing problem (Rhdep. In other words, two systems that influence each other

by (I7), we get Algorithnii3. may be unable to communicate directly. This is illustrated
Algorithm[3 has two parts: a preprocessing step, which i Fig. [4(b) where, for example, the statefinput of ndle

new, and the main algorithm, which it essentially Algoritm influences the state evolution of node(dotted arrow), but

with some small adaptations. We assume the preprocessiigre is no communication link (solid line) between them.

step can be done in a centralized way, before the executigfally, we assume functions and ¥ in (I8) can be decom-

(sz the_ maihn algorithm._ In _fact, the pgprzcissingdonlydrmi posed, respectively, a®(z[T]) = 25:1 @, ({z;[T}jen,)
nowing the communication network and the nodes’ depen- ¢ P gt Y

dencies, but not the specific the functiofis Regarding the 223 éjt(gﬂ’ggﬁ ;Sszozggt::j”Ec{)xg([)tég#tlijri%aéV;gﬁlr:q)p

main algorithm, it is similar to Algorithni]1 except that each P '

node, in addition to estimating the components its functiony;, ZP—l {q)p({xj [T} e0,)

depends on, it also estimates the components for which it is &% P !

it only depends onc(s”p) .= {2{"}1cs,, although node can

Steiner node. The additional computations are, howevey, ve + 30 W ([t g [t]}jenp)}
simple: if nodep is a Steiner node for component it updates  s.t. zp[t+1] = @;({Ij [t], u; [t]}jeﬂp) ,t=0,...,T—1
itasz”" = —(1/(p D,.))o!""* in steplT2; sincef, does 2,[0] = 20

not depend onz;, the problem corresponding to the update p=1,...,P,

of z; becomes a quadratic problem for which there is a closed- (19)

form solution. Note thaD,,; is now defined as the degree owherexg is the initial measurement at noge The variable
nodep in the subgrapty;. The steps we took to generalizen (139) is (z,u) = ({Z,})_,.{u,}}-,), wherez, :=



SectiorV]. Although simple, this model will illustrate ahe

cases considered above. We assume that systems are coupled
though their inputs, i.eq,[t+1] = Apap[t]+37 e Bpju;lt],
where 4, € R"»*"» and eachB,; € R"»*™ are arbitrary
matrices, known only at node Also, we assume,, and \IJ;

in (T9) are, respectivelyp, ({z;[T1}jcq,) = ,[T]7 Q) (7]

and W, ({z;[t]}jc0,) = 2,[t]T Qpay[t] +up[t]T Ry, whereq,

and Q{; are positive semidefinite matrices, aRy is positive
definite. Problem[{19) then becomes

(a) Connected star-shaped variable  (b) Non-connected variable rgllnlﬁlﬁlge 2521 u; Ryu, + x; QpTp
Ul,...,up
Figure 4.  Two MPC scenarios. Solid lines represent linkshén¢ommuni- i — . 0 _
cation network and dotted arrows represent system interact(a) Connected subject to z, = Cp{u;}; es, t Dy, p=1.... P, (20)
variable where each induced subgraph is a star. (b) Noneobeah variable
because nods is influenced by(z, u2), but not none of its neighbors are. where,z,, = (z,[0], ..., 2p[T]), up = (up[0], ..., up[T — 1),
for eachp, and
. [Ir ® Q 0 =
{z, [t} andi,, = {u,[t]} ;. Problem[(ID) can be written @, = 0 s ofl Ry, =Ir® Ry,
as [2) by making S P 0 0 I
= i = B 0 0 A
fo{Z;, 05} je0,) = 2p({z;[T1}en,) + s, 0)=20 (Zp) A B 0 o
—_— Cp = ppOPp p , Dg = PP xg.
¢ . o . . .
+y (‘I’p({fﬂj[t],ua‘[t]}jesz?) + 'r;({ﬂfj,uj}jenp)) , ; ; SR ;
— T-1 T-2 T
t=0 |AT-1B, AT-2B, ... B, AT

where k() is the indicator function of the seb, i.e., In the entries of matrix,, B, is the horizontal concatenation
is(z) = +ooif z ¢ S and is(x) = 0 if z € S, and of the matricesB,;, for all j € ©,. One of the advantages
Tt = {{z,u;}jeq, : zplt +1] = OL ({z;[t],u;lt]}jen,)}.  of the model we are using is that all the variabigscan be

We illustrate in Fig[4(3) the case whef®, C N, U {p}, eliminated from[(2D), yielding
i.e., the state of node is influenced by its own state/input P
and by the states/inputs of the systems with which it can . AT . Ti, .
communicate. Using our terminology, this corresponds to argmmge Z{UJ}JGSpEp{uJ}JGSp +w, {u;}jes,, (21)
connected variable, where each induced subgraph is a star: ] ) . ) ]
the center of the star is noge whose state is;,. Particular Where eactf, is obtained by summing, with C;’ Q,C;, in
cases of this model have been considered, for examplel ,in qﬁﬂe correct entries, and;, = 2C, Q,Dp. Our model thus
[32], [33], whose solutions are heuristics, and [in][18].][19/€ads to a very simple problem. In a centralized scenario,
[20], [21]], whose solutions are optimization-based. Theleio Where all matricest, and all vectorsw, are known in the
we propose here is significantly more general, since it c§ame location, the solution 6f(21) can be computed by sglvin
handle scenarios where interacting nodes do not necessatilinear system. Likewise, the problem in sfép 6 of Algoritim
need to communicate, or even scenarios with a non-connedi@@d stepsl5 arld 112 of Algorithrs 2 &rid 3, respectively) boils
variable. Both cases are shown in Hig. #(b). For example, td@wn to solving a linear system.
subgraph induced b{zs, @3) consists of the nodefdl, 2,3, 4}
and is connected. (The reference for connectivity is always ° b16(216)
the communication network which, in the plots, is represdnt \e -

(/)12(1-12)/ de7(w67)

p=1

by solid lines.) Nodeg and3, however, cannot communicate

directly. This is an example of an induced subgraph that is no . /

a star. On the other hand, the subgraph inducediby.) e{(m‘) Pas (o) 0

consists of the node$§l,2,3,5}. This subgraph is not con- s (w23) \,6 os7(57)

nected, which implies that the optimization variable is nion / a5 (245)

connected. Situations like the above can be useful in sEnar e $a3(Za3)

where communications links are expensive or hard to establi

For instance, MPC can be used for temperature regmatiﬂgure 5. Anetwork flow problem: each edge has a variablerepresenting

of buildings [33], where making wired connections betweefe flow from nodei to node;j and also has a cost functiasy ; (z;;)-

rooms, here viewed as systems, can be expensive. In that case

two adjacent rooms whose temperatures influence each otheXetwork flow. A network flow problem is typically formu-

may not be able to communicate directly. The proposed MR&ed on a network with arcs (or directed edges), where an

model can handle this scenario easily. arc from nodei to nodej indicates a flow in that direction.
MPC model for the experiments.We now present a simple In the example given in Fid.5, there can be a flow from

linear MPC model, which will be used in our experiments imode1l to node6, but not the opposite. Every af¢, j) € A



has associated a non-negative variable representing the the simple instance makes all the algorithms we consider
amount of flow in that arc (from nodé to nodej), and a applicable, the (more) complex instance can be solved only
cost functiong;;(z;;) that depends only om;;. The goal by a subset of algorithms, but it provides a more realistic
is to minimize the sum of all the costs, while satisfying thapplication. The simple instance uses = %(xij — a;j)?,
laws of conservation of flow. External flow can be injectedherea;; > 0, as the cost function for each af¢ j) and

or extracted from a node, making that node a source oma constraints besides the conservation of flow, i.e., we dro
sink, respectively. For example, in Figl 5, notlecan only the nonnegativity constraint > 0 in (22). The reason for
be a source, since it has only outward edges; in contradtopping this constraint was to make the algorithm/[inl [13]
nodes3 and7 can only be sinks, since they have only inwardpplicable. The other instance we considefis [4, Ch.17]:
edges. The remaining nodes may or may not be sources or minimize 3" Ti;

sinks. We represent the network of flows with the node-arc — z={u;;} . yea —BDEA cii—oi

incidence matrix3, where the column associated to an arc subjectto Bz =d (23)
from nodei to nodej has a—1 in the ith entry, al in the jth 0<mzyj<cy, (i,5)€A,

entry, and zeros elsewhere. We assume the components of the . o

variablez and the columns of3 are in lexicographic order. where c;; represents the capacity of the aftj) € A.

For examples — (212, 16, T23, T4, T43, T45, Ta6, Ts7, T67) Prok_JI_em [(2B) hgs the same format @](_22) except for the
would be the variable in Fid.]5. The laws of conservation Gdditional capacity constraints; < ci;, and it models overall
flow are expressed aBz — d, whered € R is the vector system delays on multicommodity flow problems [4, Ch.17].
of external inputs/outputs. The entries &fsum up to zero If we apply Algorithm( to problemi{23), nogehas to solve

andd, < 0 (resp.d, > 0) if node p is a source (resp. sink). at each step

When nodep is neither a source nor a sink, = 0. The minimize Zp—ﬂ(# + vy + aiy?)
problem we solve is Y=(y1, YD) i=1\ci—y; : i
o subjectto by y =d, (24)
minimize Z(i,j)eA bij(wij) 0<y<e,
subject to Bz =d (22)

where eachy; corresponds tac,; if (p,j) € A, or to z;,

>
220, if (j,p) € A. Since projecting a point onto the set of
which can be written ag{2) by setting constraints of [(24) is simple (see _[34])._{24) can be solved
) efficiently with a projected gradient method. In fact, welwil
f ({x Yooireds {2} A) _ bps () use the algorithm in[[35], which is based on the Barzilai-
P\t e ttar i upe 2 (p%;A e Borwein method.
1 _ In sum, we will solve two instances df (22): a simple one,
+o Y bip@ip)Fivroma, (Tt oiea Tt Gmea) s wheregy;(wi) = (1/2)(zi; — ai;)? and with no constraints
(4ip)eA besidesBz = d, and [28), a more complex but realistic one.

Whereb; is thepth row of B. In words, f,, consists of the sum
of the functions associated to all arcs involving nggdplus the VI. EXPERIMENTAL RESULTS
indicator function of the sefz : b;x = d,}. This indicator In this section we show experimental results of the proposed
function enforces the conservation of flow at nad@nd it algorithms solving MPC and network flow problems. We start
only involves the variable$z,;} (, jyc.a and{z;,};peca- with network flow because it is simpler and more algorithms
Regarding the communication netwotk = (V,£), we are applicable. Also, it will illustrate the inefficiency eblv-
assume it consists of the underlying undirected networks Thng (2) with an algorithm designed for the global problém (1)
means that nodesand;j can exchange messages directly, i.e., Network flows: experimental setup. As mentioned in
(1,7) € Efori < j, if there is an arc between these nodes, i.¢he previous section, we solved two instances [ofl (22). In
(i,5) € Aor (j,1) € A. Therefore, in contrast with the flows,both instances, we used a network w000 nodes and
messages do not necessarily need to be exchanged satisfgi$ edges, generated randomly according to the Barabasi-
the direction of the arcs. In fact, messages and flows mighibert model [37] with paramete®, using the Network X
represent different physical quantities: think, for exdéengn Python package [38]. We made the simplifying assumption
a network of water pipes controlled by actuators at each pigleat between any two pairs of nodes there can be at most arc,
junction; while the pipes might enforce a direction in thevflo as shown in Figl]5. Hence, the size of the variabl| (22)
of water (by using, for example, special valves), there is rie equal to the number of edgé$|, in this case3996. The
reason to impose the same constraint on the electricallsigngenerated network had a diameteBpfin average node degree
exchanged by the actuators. In probldml (22), the subgraph3.996, and it was colored witl$ colors in Sage [39]. This
induced byz;;, (i,7) € A, consists only of nodes andj gives us the underlying (undirected) communication nelkwor
and an edge connecting them. This makes the variablen (Z2)en, we assigned randomly a direction to each edge, with
connected and star-shaped. Next we discuss the funatigns equal probabilities for both directions, creating a dieglct
used in our simulations. network like in Fig.[5. We also assigned to each edge a
Models for the experiments.We considered two instancesnumber drawn randomly from the sgt0, 20, 30, 40, 50, 100}.
of 22): a simple instance and a complex instance. Whilhe probabilities wer@.2 for the first four elements an@ 1
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Figure 6. Results for the network flow problems on a networth 28000 nodes and3996 edges. The results in (a) are for the simple instancé_df (22),
where¢;; (zi;) = (1/2)(ws5 — ai]')Q and there are no nonnegativity constraints; and the resulis) are for [28).

for 50 and100. These numbers played the role of #hg's in  that algorithm. A similar definition is used fat and o.. We

the simple instance of (22) and the role of the capacities compared Algorithni]1, henceforth denoted as Alg. 1, against
in 23). To generate the vectat or, in other words, to the ADMM-based algorithms in_[10, §7.2] and [11] (recall
determine which nodes are sources or sinks, we proceedeat Algorithm[2 describes [11]), Nesterov’'s methad[36],
as follows. For eaclk = 1,...,100, we picked a source;, the distributed Newton method proposed inl[13], and D-
randomly (uniformly) out of the set d000 nodes and then ADMM [9]. For network flow problems, the algorithms in [10,
picked a sinkr, randomly (uniformly) out of the set of §7.2] and [[11] coincide, i.e., they become exactly the same
reachable nodes of;,. For example, if we were consideringalgorithm. This is not surprising since both are based on the
the network of Fig.[b and picked, = 4 as a source same algorithm: th&-block ADMM. All the ADMM-based
node, the set of its reachable nodes would {8e5,6,7}. algorithms, including Alg 1L, také CS per iteration. The work
Next, we added to the entrieg, and r; of d the values in [13], besides proposing a distributed Newton method als
—/f1/100 and fi /100, respectively, wheref;, is a number describes the application of the gradient method to the dual
drawn randomly exactly as;; (or a;;). This corresponds to of (22). Here, instead of applying the simple gradient metho
injecting a flow of quantityfi, /100 at nodes;, and extracting we apply Nesterov’'s method [36], which can be applied in the
the same quantity at node. After repeating this proced$0 same conditions, has a better bound on the convergence rate,
times, fork =1,..., K, we obtained vectod. and is known to converge faster in practice. However, gradie

gthods, including Nesterov’s method, require an objectiv

To assess the error given by each algorithm, we comput'%: . ) . : ) i
the solutionsz* of the instances of (22) in a centralized Way[. at has a Lipschitz-continuous gradient. While this isdhse

: : : f the objective of the dual of the simple instance[ofl (22 th
The simple instance of (22) considefs (zi;) = (1/2)(zs; — ° oo
a;;)? and ignores the constraint > 0. Thus, it is a simple same does not happen for the objective of the dual_of (23).

quadratic program and has a closed-form solution: solvindrerefore, in the latter case, we had to estimate a Lipschitz

a linear system. Similarly, the problem Algorithimh 1 (resp‘? nstantl. Similarly to the ADMM-based algorithms, each

: - ; tion of a gradient algorithm takes CS per iteration.
Algorithm[2) has to solve in stdd 6 (resp. stép 5) boils dow){ra . o . i X
i Vi l tem. T te th Ut 23 egardlr_lg the distributed Newton alg.onthm in[13], we i\l
0 solving a linear system. To compute the solution[ofl ( nented it with a parameteé¥ = 2, which is the order of the

i D

the complex instance of (P2), we used CVXORTI[40]. approximation in the computation of the Newton directiamd a

The plots we will show depict the relative error on théixed the stepsizer. With this implementation, each iteration
primal variable ||z* — z*||o/[|2*||co, Wherez* is the con- takes3 CSs. Finally, D-ADMM [9] is currently the most
catenation of the estimates at all nodes, versus the numbgmmunication-efficient algorithm for the global problé).(
of communication steps. Bommunication stefCS) consists As such, it makes all the nodes compute the full solutitn
of all nodes communicating their current estimates to thejfhich has dimension8996 in this case. Thus, each message
neighbors. That is, in each CS, information flows on eadxchanged in one CS of D-ADMM 8996 times larger than
edge in both directions and, hence, the total number of CHg messages exchanged by the other algorithms.
is proportional to the total number of communications. All
the algorithms we compared, discussed next, had a tuning paNetwork flows: results. The results for the simple instance
rameter:p for the ADMM-based algorithms (cf. Algorithnis 1 of (22) are shown in Fid. 6(a). Of all the algorithms, Alg. 1
and[2), a Lipschitz constart for a gradient-based algorithm,required the least amount of CSs to achieve any relative
and a stepsize: for a Newton-based algorithm. Suppose werror betweenl and 10~*. The second best were the al-
selecteds for an ADMM-based algorithm. We say thathas gorithms [10] and [[111], whose lines coincide because they
precision~, if both p —+ andp + v lead to worse results for become the same algorithm when applied to network flows.



11

Table | . . .
STATISTICS FOR THE NETWORKS USED INPC. will be explained as we present the experimental result$e No

that for the MPC problen{{21) the Lipschitz constant of the
gradient of its objective can be computed in closed-form and
%therefore, does not need to be estimated. The relative witior
A [B7] 100 196 6 3 3.92 be computed as in the network flowlst* — z* || oo /||7* || so»
B (41 4941 6594 46 6 2.67 wherez” is the concatenation of all the nodes’ input estimates.
MPC results: connected case.The results for all the
experiments on a connected variable are shown in [Hig. 7.
Nesterov’'s method [36] and the Newton-based method [1Bhere, Alg[d is compared against[11] (see also Algorithm 2)
had a performance very similar to each other, but worsed [10], and [[36]. We mention that algorithiis [10], [[36]
than the ADMM-based algorithms. However, D-ADMM] [9],were already applied td_(21), e.g., [n][20], in the specialeca
which is also ADMM-based but solves the global probléin (I)f a variable with star-shaped induced subgraphs. This is in
instead, was the algorithm with the worst performance. Nofact the only case wheré& [10] and [36] are distributed, and it
that, in addition to requiring much more CSs than any othekplains why they are not in Figs. 7(c) and T(d): the induced
algorithm, each message exchanged by [9]3996 times subgraphs in those figures are not stars. Only @lg. 1 and [11]
larger than a message exchanged by any other algorithare applicable in this case.
This clearly shows that if we want to derive communication- In Fig. [7(@) the network is A and each subsystem was
efficient algorithms, we have to explore the structure[df (1yenerated (possibly) unstable, and in Hig. ]7(b) the network
Finally, we mention that the value @f in these experimentsis B and each subsystem was generated stable. In both cases,
was 2 for all ADMM-based algorithms (precision), the Alg.drequired the least number of CSs to achieve any relativ
Lipschitz constantl, was 70 (precision5), and the stepsize error betweenl and 104, followed by [10], then by[[11],
«a was 0.4 (precision0.1). and finally by [36]. It can be seen from these plots that the

Fig.[6(b) shows the results fdr_(23). In this case, we wersfficulty of the problem is determined, not so much by the
not able to make the algorithm in_[13] converge (actually, &ize of network, but by the stability of the subsystems. In
is not guaranteed to converge for this problem). It is visibffact, all algorithms required uniformly more communicato
in Fig. [6(b) that this problem is harder to solve, since atb solve a problem on network A, which has orl§0 nodes,
algorithms required more CSs solve it. Again, AlY). 1 was ththan on network B, which has approximatel900 nodes.
algorithm with the best performance. This time we did nofhis difficulty can be measured by the Lipschitz constant
find any choice forL that made Nesterov's algorithm [36]1.63 x 106 for network A (Fig[7(d)) and395 for network B
achieve an error ofl0=* in less than1000 CSs. The best (Fig. [7(B)). Regarding the parametey in Fig.[7(@) it was
result we obtained was fol. = 15000. The parametep 120 for [10] and135 for the other algorithms (computed with
was 0.08 for Alg. [l and 0.12 for [11], [10], both computed precision5); in Fig.[7(b), it was25 for Alg. [ and [10], and30
with precision0.02. for Alg. [11] (also computed with precisioB).

MPC: experimental setup. For the MPC experiments we In Figs.[7(c) and_7(dl) we considered a generic connected
used two networks with very different sizes. One networkariable, where each induced subgraphs is not necessarily a
which we call A, has 00 nodes,196 edges, and was generatedtar. In this case, the system couplings were generated as
the same way as the network for the network flow experimenfsilows. Given a node, we assigned it,, and we initialized
with a Barabasi-Albert model[37] with parameteiThe other a fringe with its neighborsV,. Then, we selected a node
network, named B, had941 nodes ands594 edges and it randomly (with equal probability) from the fringe and made
represents the topology of the Western States Power Grid [4ldepend onu,; we also added its neighbors to the fringe.
(obtained in[[42]). The diameter, the number of used colorshe described process was ddhémes for each variabla,,
and the average degree for these networks is shown in [Mablé.k., nodep). When each induced subgraph is not a star, only
For coloring the networks, we used Sagel[39]. Alg. M and [11] are applicable. Figs. 7(c) and T(d) show their

We solved the MPC probleni (1) and, to illustrate all thperformance for network A with unstable subsystems and for
particular cases of a variable fdd (2), we created sevepdy network B with stable subsystems, respectively. It can lea se
of data. For all the data types, the size of the state (respat Alg.[d required uniformly less CSs thean [11] to achieve
input) at each node was always = 3 (resp.m, = 1), and the same relative error.
the time-horizon wasl’ = 5. Since [21) has a variable of MPC results: non-connected caseA non-connected vari-
size m, TP, network A implied a variable of siz600 and able has at least one component whose induced subgjaph
network B implied a variable of siz24705. With network A, (V;,&;) is not connected. In this case, Algorithih 1 is no
we generated the matricels, so that each subsystem could béonger applicable and it requires a generalization, shawn i
unstable; namely, we drew each of its entries from a normalgorithm[3. Part of the generalization consists of compgiti
distribution. With network B, we proceeded the same wateiner trees, using the nodes W as required nodes. The
but then “shrunk” the eigenvalues of eadh to the interval same generalization can be made to the algorithr_ih [11].
[—1, 1], hence making each subsystem stable. All matriggs To create a problem instance with a non-connected variable,
were always generated as eadh in the unstable case. Thewe generated system couplings in a way very similar to the
way we generated system couplings, i.e., the(gefor each couplings for Figs,_7(¢) and 7(d). The difference was that an
nodep (see also the dotted arrows in the networks of Eig. 4)ode in the network could be chosen to depend on a giyen

Name Source # Nodes # Edges Diam. # Colors Av. De
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Results for MPC. The variable is connected in adlesai.e., the subgraphs induced by all the components arec&d. While in (a) and (b)

each induced subgraph is a star, i.e., the interactionsr aomdy between neighboring subsystems, in (c) and (d) eadhced subgraph is generic. Only
Algorithms[d1 andR [[1i1]) are applicable in the latter casty. Bl was always the algorithm requiring the least numberamhmunication steps to converge.
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Figure 8. Results for MPC when the variable is non-connectiue

communication network is A and all the subsytems were desigstable.

for each non-connected compone#fty% of the nodes were
Steiner for at least one component. To compute Steiner,trees
we used a built-in Sage function_[39]. In this case, we
generated all the subsystems stable. Then, we ran Algasighm
and [11] (with a similar generalization) with= 35 (computed
with precision5 for both algorithms). The results of these ex-
periments are in FigL]8. Again, Algorithinh 3 required unifdym
less CSs to converge than our generalizatiori_ of [11].

VII. CONCLUSIONS

We solved a class of optimization problems with the fol-
lowing structure: no component of the optimization varéabl
appears in the functions of all nodes. Our approach corssider
two different cases, a connected and a non-connected igriab
and proposes an algorithm for each. Our algorithms require
a coloring scheme of the network and their convergence is

However, any node in the fringe had twice the probability afuaranteed only for the special case of a bipartite network
being chosen than any other node. This process was runasnfor problems with strongly convex objectives. However,
network A for each one of it§00 components (recall that thein the practical examples that we considered, the algorithm

variable size for network A i$00), and obtainedt00 non-

converges even when none of these conditions is met. More-

connected components, i.d00 components whose inducedover, experimental results show that our algorithms requir
subgraphs were not connected. Then, as described in l#®s communications to solve a given network flow or MPC
preprocessing part of Algorithid 3, we computed Steinerstreproblem to an arbitrary level of accuracy than prior aldoris.
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APPENDIXA
PrRoOOF oFLEMMA 1]

To go from [12) to[(IB), we first develop the last two terms
of (A2), respectively,

AT AL (25)
and
P\l 4 oy 2
iuAlxl—i-;ACxc’kH . (26)

We first addres$(25). Given the structureddf, as seen ir({5),
we can write[(2b) a$",-, ((A}) " AF) " z}. Recall that(A]) T,

if it exists (i.e., if there is a node with coldrthat depends on
componentz;), consists of the block of rows of the node-arc
incidence matrix ofj; corresponding to the nodes with colior
Therefore, if there exists € C; NV, the vector( A}) T AF will
have an entrEljeNpmvl sign(j — p))\f’j’k. The sign function
appears here because the column of the node-arc incidence
matrix corresponding t@l(l) - :zrl(J) 0, for a pair(s, j) € &,
containsl in the ith entry and—1 in the jth entry, wherg <

j. In the previous expression, we used an extension of the
definition of \;”, which was only defined for < 5 (due to our
convention that for any edge, j) € £ we have always < j).
Assume);’ is initialized with zero; switching and; in (1),

we obtain\/"* = —X\*, which holds for all iterations:.

To be consistent with the previous equation, we defifieas
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http://www-personal.umich.edu/~Emejn/netdata/

A7 := — X' wheneveri > j. Therefore,[[25) develops as
XA =3 (Al T T
=1

=SS siong - p) (W)

I=1 peCy JeN,NV;

=YY Y sign - (W) @ @)

pECy I=1 jEN,NV,

Regarding[(Z6), it can be written as
‘2

2 _ . .
— gHAlfle +p(A11_71)TZACZEC"k + gHZ chc,k
c=2 c=2

C
/_) HAl =1 Ac—c,k
5 x —i—; x

‘ 2

(28)

Since the last term does not dependadn it can be dropped
from the optimization problem. We now use the structurg bf
to rewrite the first term of((28):

£l - s ahrapas e
=0 D) (30)

=1 peCy
=S S o) e

peC1 leS),

From [29) to [[3D) we just used the structureAjf. Namely, if
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submatrix ofAlTAl, the Laplacian ofG;, containing some of
its off-diagonal elements. More concretelyl!) " A¢ contains
the entries ofAlTAl corresponding to all the nodeés C; NV,
andj € C.NV,;. And, for such nodes, the corresponding entry
in A A; is —1 if i and j are neighbors, and otherwise.
From [3%) to [(35) we just used the fact that the &&t} <, is
nothing but a partition of the set of neighbors of any nodéwit

color 1. Using [2T), [28),[(31), and (B5) ih_(112), we gEt}(13).
O

it exists, (A})" A} is a diagonal matrix, where each diagonal

entry is extracted from the diagonal dff A;, the Laplacian

matrix for G;. Since each entry in the diagonal of a Laplacian
matrix contains the degrees of the respective nodes, the

diagonal of(A}) T A} containsD,,, for all p € C;. The reason

why (A})T A} is diagonal is because nodes with the same
color are never neighbors. As in {28), we exchanged the order

of the summations froni_(30) t@_(131).
Finally, we develop the second term &f28):

C
=p> > @) (AHT (A zt (32)

C
S0 30 3 DEED RN CAF L)

c=2 1=1 peCy jEN,NC.NV,

C
S S’ S ek (34

p€eCy lES, c=2 jeN,NC.NV;

=—p Z Z Z xl(p)Txl(j)’k . (35)

p€ECy IES, JENNV,

In (32) we just used the structure df and A°, as visualized
in (B). From [32) to[(3B) we used the fact that}) " A¢ is a
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