
From Global, Finite-Time, Linear Computations to Local, Edge-Based
Interaction Rules

Zak Costello and Magnus Egerstedt
School of Electrical and Computer Engineering

Georgia Institute of Technology
{zak.costello,magnus}@gatech.edu

Abstract— A network of locally interacting agents can be
thought of as performing a distributed computation. But not
all computations can be faithfully distributed. This paper inves-
tigates which global, linear transformations can be computed
in finite time using local rules with time varying weights, i.e.,
rules which rely solely on information from adjacent nodes in
a network. The main result states that a linear transformation
is computable in finite time using local rules if and only if the
transformation has positive determinant. An optimal control
problem is solved for finding the local interaction rules, and
simulations are performed to elucidate how optimal solutions
can be obtained.

I. INTRODUCTION

One common theme when designing control and coordina-
tion mechanisms for distributed, multi-agent systems is that
the information, on which decisions are based, is restricted
to be shared among agents that are adjacent in the underlying
information-exchange network, e.g., [1], [2], [3], [4]. As a
result, local rules are needed for processing the information
and coordinating the agents in the network in such a way
that some global objective is achieved. Problems that fit
this description can be found in a variety of applications,
including power systems [5], [6], [7], formation control [8],
[9], [10], [11], [12], distributed sensor networks [13], [14],
smart textiles [15], and distributed optimization [16], [17]. In
this paper we take initial steps towards developing a general
theory of local implementability/computability of such global
behaviors.

As such, one key aspect of algorithm design is the defi-
nition of local interaction rules that produce desired global
behaviors. An example of this are consensus algorithms for
computing averages in a distributed manner. In fact, consen-
sus plays a role in many different applications, including
multi-agent robotics, distributed sensor fusion, and power
network control, e.g., [3], [6], [18]. To this end, let the scalar
state of each node in a network be xi ∈ R, with initial
condition xi(t0) = ξi, i = 1, . . . , n, where n is the number
of nodes in the network. By stacking the states together in
x ∈ Rn,average consensus is achieved if

lim
t→∞

x(t) =
1

n

1 . . . 1
...

. . .
...

1 . . . 1

 ξ, (1)

where ξ is the vector containing all the initial node values. As
such, the network is asymptotically computing the average,

which is a global property since it relies on the state of every
node.

In this work, we are interested in problems where networks
are tasked with computing arbitrary linear transformations
of the initial node states. In particular, we answer two
fundamental questions: What global, linear transformations
can be computed in finite time using edge-based interaction
rules? How do we find the local rules that would compute a
given linear transformation?

Some work has been done in the general area of obtaining
global information with local interactions. In [19], a fixed
weighting scheme was used to compute linear transforma-
tions on networks. That work has a similar aim and takes
a different discrete time approach. In a certain sense, the
investigation in [20] follows this line of inquiry as well.
There, quadratic invariance was used to establish whether
or not a convex optimization problem exists whose solution
is a decentralized implementation of a centralized feedback
controller. [21] further expounds on this idea and provides a
practical, graph theoretic method for finding this distributed
controller. Additionally, in [22] a method is presented under
which consensus is computed in finite time. Our work distin-
guishes itself from this body of work by using a time varying
weighting method, which admits the computation of global,
linear transformations in finite time. Specifically, we focus
on a continuous time scheme for distributed computation,
over finite intervals using time-varying exogenous weight
functions.

In fact, in this paper, we consider computations that
are to be performed using local rules over a static and
undirected information-exchange network. The local rules,
once obtained, admits a decentralized implementation, where
“decentralized” in this context means that each node in
the network only needs to communicate state information
among adjacent nodes in the network. In particular, we
ask if it is possible to define local interaction laws such
that x(tf ) = Tξ, given the linear transformation T and
the initial conditions x(t0) = ξ. Necessary and sufficient
conditions are given for this to be possible, and they state
that local interaction rules exist if and only if T has positive
determinant.



II. PROBLEM DEFINITION

To formalize what is meant by local interactions, we
first need to discuss the information-exchange network over
which the interactions are defined. To this end, let V be a
vertex set with cardinality n, and E ⊂ V ×V be an edge set
with cardinality m, where we insist on (i, i) ∈ E, ∀i ∈ V ,
as well as (i, j) ∈ E ⇔ (j, i) ∈ E. Let G be the graph
G = (V,E), where the assumptions on E imply that G
is undirected and contains self-loops. We moreover assume
that G is connected. As the main purpose with G is to
encode adjacency information in the information-exchange
network, we introduce the operator sparse(G) to capture
these adjacencies, and we say that an n × n matrix M ∈
sparse(G) if (i, j) 6∈ E ⇒Mij = 0.

There are a number of different ways in which local
interactions can be defined. In this paper, we assume that they
are given by exogenous time-varying, weights associated
with the edges in the network. These weights denoted wij(t)
are in L∞([t0, tf ]) where i and j indicate the originating
and terminal node of the edge respectively. If xi ∈ R is the
scalar state associated with node i ∈ V , we define a local
interaction as a continuous-time process

ẋi(t) =
∑

j|(i,j)∈E

wij(t)xj(t). (2)

Note that we do not insist on wij = wji even though G is
undirected.

If we stack the states together in x = [x1, . . . , xn]T ∈ Rn,
what we mean by local interactions is thus

ẋ(t) = W (t)x(t), W (t) ∈ sparse(G), (3)

with solution
x(t) = Φ(t, t0)x(t0), (4)

where Φ is the state transition matrix associated with the
system in (3), e.g., [23].

The purpose of the local interactions is to perform a global,
linear computation. In other words, given the n × n matrix
T and the initial condition x(t0) = ξ, what we would like
to do is find W (t) ∈ sparse(G), t ∈ [t0, tf ], such that

x(tf ) = Tξ. (5)

But, comparing this expression to (4), this simply means that
what we would like is

Φ(tf , t0) = T. (6)

If this was indeed the case, then the local interactions, as
defined through W (t), would indeed compute Tξ over the
interval [t0, tf ] for all possible values of ξ, i.e., one can think
of the network as a black box that takes ξ as the input at
time t0 and, at time tf , returns Tξ as the output.

As a final observation before we can formulate the general
problem of performing global, linear computations using
local interactions, we note that state transition matrix satisfies
the same dynamics as (3), i.e.,

dΦ(t, t0)

dt
= W (t)Φ(t, t0), (7)

with initial condition Φ(t0, t0) = I , where I is the n × n
identity matrix.

Problem 1 [Local Computation]
Given a linear transformation T and a connected graph G,
find W (t) ∈ sparse(G), t ∈ [t0, tf ], such that

Ẋ(t) = W (t)X(t), (8)

with boundary conditions X(t0) = I, X(tf ) = T .

III. ON THE EXISTENCE OF SOLUTIONS

The main point with this paper is an exploration of what
linear transformations T admit a local implementation, i.e.,
for what T Problem 1 has a solution. In this section, we
develop necessary and sufficient conditions for this to be the
case.

We start by observing that since X(t) is really the state
transition matrix Φ(t, t0), it is always invertible,

X(t)−1 = Φ(t, t0)−1 = Φ(t0, t). (9)

As a direct consequence of this, T has to be invertible for a
solution to Problem 1 to exist, i.e., we need that det(T ) 6=
0. But, as X(0) = I , we have that det(X(0)) = 1 > 0.
Moreover, the determinant of a matrix depends continuously
on its entries, and therefore the only way for det(X(τ)) <
0 for some τ ∈ (t0, tf ], there has to exist a τ ′ ∈ (t0, τ)
such that det(X(τ ′)) = 0. But this can not happen since
X is always invertible. From this it directly follows that for
Problem 1 to have a solution, T has to satisfy det(T ) > 0.

To state this fact more compactly, let GLn
+(R) denote the

set of all n×n, real matrices with positive determinant. We
have thus established the following necessary condition for
the existence of a solution:

Lemma 1. A solution to Problem 1 exists only if T ∈
GLn

+(R).

One consequence of Lemma 1 is that it is impossible to use
local rules, as understood in this paper, to achieve consensus
in finite time. This follows directly from the fact that the
consensus computation is given by the linear map

Tcons =
1

n
1T1, (10)

where 1 is a vector of length n, with all entries equal to one.
And,

rank(Tcons) = 1,

i.e., det(Tcons) = 0. Note, of course, that asymptotic con-
sensus is possible, e.g. [2], [3], [4], [10].

Now that we have established necessary conditions for
Problem 1 to have a solution, we turn our attention to suf-
ficient conditions. And, surprisingly enough, T ∈ GLn

+(R)
turns out to be both necessary and sufficient for a solution
to exist, which constitutes the main result in this paper:

Theorem 1. A solution to Problem 1 exists if and only
if T ∈ GLn

+(R).



As we have already established sufficiency, what must be
shown is that whenever det(T ) > 0, there is a W (t) ∈
sparse(G) that drives X from I to T . The remainder of this
section is devoted to the establishment of this fact. However,
before we can give the proof to Theorem 1, a number of
supporting results are needed, involving the controllability
of nonlinear, drift-free systems, i.e., systems of the form

ẋ =

p∑
i=1

gi(x)ui, (11)

where x ∈ Rn is the state of the system, and u1, . . . , up ∈ R
are the control inputs. For the sake of easy reference, we start
by recalling Chow’s Theorem, as formulated in [24], for such
drift-free systems:

Theorem 2 (Chow’s Theorem, e.g. [24]). The system in (11)
is locally controllable about a point x0 if and only if

dim(∆(x0)) = n, (12)

where ∆ is the involutive closure of the distribution
span{g1, . . . , gp}.

The system is moreover controllable if it is locally con-
trollable everywhere. And, the proof that T ∈ GLn

+(R) is
sufficient for Problem 1 to have a solution will hinge on
showing that the dynamics, as defined through the local
interaction rules in (3), is indeed controllable everywhere
on GLn

+(R). To this end, we first must rewrite the dynamics
in Problem 1 on the appropriate form. For this, we need
the index matrix Iij ∈ Rn×n, which has a one at the ith
row and jth column, and zeros everywhere else. The index
matrix allows us to rewrite

Ẋ = WX

as

Ẋ =

 n∑
i=1

n∑
j=1

W � Iij

X, (13)

where the � symbol represents element-wise matrix product,
i.e.,

Ẋ =


w11 . . . 0

...
. . .

...
0 . . . 0

+ . . .+

0 . . . 0
...

. . .
...

0 . . . wnn


X,

(14)
where we have surpressed the explicit dependence on t for
the sake of notational ease.

Rearranging the terms and letting

gij(X) = IijX, (15)

we get the drift-free matrix formulation

Ẋ =

n∑
i=1

∑
j|(i,j)∈E

gij(X)wij . (16)

To clarify, gij(X) is a matrix whose ith row contains the
jth row of X, with the rest of the elements in the matrix
equal to 0,

gij(X) =

1
...

i− 1
i

i+ 1
...
n



0 . . . 0
...

. . .
...

0 . . . 0
Xj1 . . . Xjn

0 . . . 0
...

. . .
...

0 . . . 0


. (17)

As a final step towards a formulation that is amenable to
Chow’s Theorem, let the vectorized version of gij be given
by ~gij = vec(gij), resulting in the vectorized version of (16),

vec(Ẋ) =

n∑
i=1

∑
j|(i,j)∈E

~gij(X)wij . (18)

The first order of business towards establishing controlla-
bility of this system is the derivation of the Lie brackets for
the system in Equation 18.

Lemma 2.

[~gij(X), ~gkl(X)] =


−~gil(X) if j = k, i 6= l

~gkj(X) if i = l, j 6= k

0 otherwise
(19)

The proof to this can be found in [25], which we omit here
for brevity. Now that Lie brackets can be computed in general
for this problem, we must determine if the involutive closure
of the distribution associated with the system in (18) contains
enough independent vector fields for local controllability.
To help with this determination, we provide the following
lemma.

Lemma 3. If node i is path-connected to node j, then ~gij(X)
is in the distribution ∆(X).

Proof. That node i is path-connected to node j means that
there is a path through adjacent nodes in the graph G that
starts at node i and ends at node j. Assume that the path
goes through the nodes N1, . . . , Nq , i.e., N1 is adjacent to
N2, N2 is adjacent to N3, and so forth, while N1 = i and
Nq = j. Since these nodes are adjacent, we, by definition,
have that ~gN1N2 , ~gN2N3 , . . . , ~gNq−1Nq ∈ ∆(X).

The involutive closure contains every possible Lie bracket
that can be recursively created from elements ∆(X), which
implies that the problem is to create ~gij from some com-
bination of Lie brackets from elements in ∆(X). And,
from Lemma 2, we know that [~gN1N2

, ~gN2N3
] is equal to

−~gN1N3 . Applying Lemma 2 again gives [−~gN1N3 , ~gN3N4 ] =
~gN1N4 . This procedure can be repeated until we arrive
at one of two possible cases. If q is even, the result
is [−~gN1Nq−1

, ~gNq−1Nq
] = ~gN1Nq

. If q is odd we get
[~gN1Nq−1

, ~gNq−1Nq
] = −~gN1Nq

. In either case, we are able
to construct ~gN1Nq from previous Lie brackets, as shown
in Figure 1. And, as N1 = i and Nq = j, we have
~gij ∈ ∆(X).



!g12

[!g12, !g23] = −!g13

!g23 !g34v1 v2 v3 v4

[−!g13, !g34] = !g14

Fig. 1. An example of the construction in the proof of Lemma 3 with
node i and j being represented by v1 and v4, respectively.

Additionally the linear independence of vector fields is
needed in order to establish controllability. To this end the
following lemma is presented.

Lemma 4. {~guv(X)∀u, v ∈ V } is a set of linearly indepen-
dent vectors.

Proof. By definition, ~guv(X) = vec(IuvX). This definition
can be expanded to vec(IuvX) = (XT ⊗ In)vec(Iuv). Con-
catenating all possible vectors resulting from combinations
of vertices,

(XT ⊗ In)
[
vec(I11) vec(I21) . . . vec(Inn)

]
(20)

which can be further simplified to

(XT ⊗ In)In2 (21)

Taking the determinant of this expression yields

det(XT ⊗ In) = det(XT )n (22)

Because X ∈ GL+
n (R) the determinant of X is always

positive and therefore we can write

det(XT )n 6= 0 (23)

This implies that the set of vectors {~guv(X)∀u, v ∈ V } is
linearly independent.

To establish that the system is controllable on GLn
+(R),

∆(X) must have rank n2 everywhere on this set, which is
the topic of the next lemma.

Lemma 5. If G is connected then ∆(X) has dimension n2

if and only if rank(X) = n.

Proof. To prove this lemma, we need to show that the
implication goes both ways. Assume first that dim(∆(X)) =
n2. If G is connected then, by Lemma 3 and Lemma 4 the set
{gij(X)|i, j ∈ V } is in ∆̄(X) and is linearly independent.
Therefore,

∆(X) = span{~gij , ∀(i, j) ∈ V × V }. (24)

For the purpose of the proof, it is convenient to go back to
the matrix formulation, and we recall that ~gij = vec(gij). As
such, we will use the matrix form gij to construct X. And,
since the goal is to form a matrix with rank n, only n linearly
independent matrices are needed. So, we arbitrarily choose to
form X from the “diagonal” set {g11, g22, . . . , gnn}. Using
the fact that gij = IijX, we can write,

n∑
i=1

gii =

n∑
i=1

IiiX,

which simplifies to
n∑

i=1

gii = X. (25)

gii is a matrix with one nonzero row at row i. The nonzero
rows of each gii are linearly independent. And, since X is
composed of n linearly independent rows, rank(X) = n, and
the first implication follows. Next, we must show that

rank(X) = n⇒ dim(∆(X)) = n2, (26)

which we do by contradiction. Using the expression gij =
IijX, n2 matrices can be formed from X. Let us assume
that they are not linearly independent. This implies that there
exists a set of coefficients αij such that, for some (k, l),∑

(i,j)6=(k,l)

gijαij = gkl. (27)

Since X has full rank, X can be removed from (27) based
on the fact that gij = IijX, yielding∑

(i,j) 6=(k,l)

Iijαij = Ikl. (28)

By definition of the index matrix, (28) cannot be true,
since every matrix in the sum on the left has a value of
zero where Ikl has value of 1. Therefore, we have reached
a contradiction and can conclude that dim(∆(X)) = n2.

Since X is really a state transition matrix, i.e., it is
indeed invertible (with rank(X) = n), the system in (16)
is locally controllable everywhere on GLn

+(R) as long as the
underlying graph G is connected:

Theorem 3. The system

Ẋ = WX, W ∈ sparse(G)

is locally controllable everywhere on GLn
+(R) if G is con-

nected.

Theorem 3 and Lemma 1 give us all the ammunition
needed to prove the main result in this paper, namely
Theorem 1:

Proof of Theorem 1. Lemma 1 tells us that a solution only
exists if T ∈ GLn

+(R), so what remains is to establish that
this is indeed sufficient. Hence, assume that T ∈ GLn

+(R).
Since I ∈ GLn

+(R), and GLn
+(R) is connected [26], there

is a continuous curve of matrices in GLn
+(R) that connects

I and T . And, by Theorem 3, every point along the path
connecting I and T is locally controllable. The system being
drift-free moreover implies that it can flow along this curve,
e.g., [27]. Therefore, a solution to Problem 1 exists if T ∈
GLn

+(R).

If we return to the consensus problem, we have already
established that Tcons in (10) is not computable in finite time



using local rules. However, consider instead the transforma-
tion

Tcons2 =


1/n 1/n · · · 1/n
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (29)

We have
det(Tcons2) =

1

n
(30)

and, as such, it is computable using local rules. In this case,
the network average is only computed by a single node (node
1 in this case), while the remaining nodes return to their
initial values at the end of the computation. This can in fact
be generalized to any scalar, non-zero, linear map ` : Rn →
R through

T`ξ =


`(ξ)
ξ2
...
ξn

 ,
where we have assumed that `(ξ) depends on ξ1.1 The point
with this is that it is possible to compute any scalar, non-
zero, linear map as long as the computation only has to take
place at a single node.

IV. A NUMERICAL EXAMPLE

Just because we know that a computation Tξ can be done
using local rules it does not follow that we can (easily)
find these rules, encoded through W (t) ∈ sparse(G), such
that Ẋ = WX, X(t0) = I,X(tf ) = T . There are many
possible ways in which weight functions can be found. In this
section, we address this problem in the context of optimal
control. The optimal control method detailed below was
chosen simply to illustrate that solutions can be found in
support of Theorem 1 and not for the purpose of providing an
efficient or scalable numerical method. In fact, we consider
the cost

J(W ) =

tf∫
0

1

2
‖W (t)‖2F dt, (31)

where ‖·‖F is the Frobenius norm. The resulting constrained
minimization problem becomes

Problem 2 [Optimal Local Interactions]

min
W

J(W ) =

tf∫
0

1

2
‖W (t)‖2F dt (32)

such that

Ẋ = WX
W (t) ∈ sparse(G), ∀t ∈ [t0, tf ]
X(t0) = I, X(tf ) = T.

(33)

1If not, simply pick another node in the network that ξ does depend on,
as the node where the computation takes place.

Using the maximum principle, the local solution is found
by solving the two point boundary problem numerically

Ẋij = −
∑

k|(i,k)∈E

Xkj

n∑
l=1

λilXkl

X(t0) = I, X(tf ) = T (34)

λ̇ij =
∑

k|(i,k)∈E

λkj

n∑
l=1

λklXil,

where λij i, j = 1, . . . , n are costates. Numerical solutions
for the weight functions were found in both examples by
solving (34) using test shooting. A reference which explains
this method in detail is [28]. Using optimal control to
find weight functions was simply a convenient method for
illustrating the feasibility of finding solutions.

A. Swapping Node Values

Consider the situation when the linear transformation T
represents a reordering (or swapping) of states. We examine
the 4 node case where the underlying graph topology is given
by nodes 2, 3, 4 forming a clique (fully connected subgraph)
and node 1 is connected to node 2. In this example agents
1 and 2 and agents 3 and 4 are to “swap” state values, the
transformation matrix becomes

Tswap =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (35)

However, the linear interpolation between I and Tswap

contains a singular matrix, which makes the two-point
boundary problem numerically ill-conditioned when using
shooting methods, e.g., [28]. There are many such choices
of transformations where this ill-conditioning is a concern,
as discussed in [29]. A way around this problem is to avoid
this singular matrix by solving two sequential two-point
boundary problems.

As an example, in the first iteration, we let the boundary
conditions be X(t0) = I, X((tf − t0)/2) = T1. For the
second iteration, they are X((tf − t0)/2) = T1, X(tf ) =
Tswap, where

T1 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 . (36)

This sequential approach avoids the numerical ill-
conditioning, and the solution is shown in Figures 2 - 3.

V. CONCLUSIONS

In this paper, a step was taken towards computing arbitrary
global functions on networks with local interaction rules. In
particular, it presented a method which allows a networked
system to compute global, linear transformations using only
local rules.

We derived necessary and sufficient conditions under
which it is possible to use a distributed, time-varying weight-
ing scheme to compute the transformation T for undirected,



0.00 0.05 0.10 0.15 0.20
-30

-20

-10

0

10

20

30

Time @sD

w
Edge Weights

Fig. 2. The weight functions define the local interactions needed to achieve
the swap in the 4-node case. The first and second subproblems are solved
over the time intervals [0, 0.1) and [0.1, 0.2] respectively.

0.00 0.05 0.10 0.15 0.20
-1

0

1

2

3

4

Time @sD

x

State Trajectory

Fig. 3. The evolution of the node states for the swap problem. The initial
state is x(t0) = [1, 2, 3, 4]T and the final state is x(tf ) = [2, 1, 4, 3]T ,
i.e., the first and second states swapped values and the third and fourth state
swapped values.

connected networks with fixed topology. Specifically, we
showed that the necessary and sufficient condition for T to
be locally computable is that it has positive determinant, i.e.,
T ∈ GLn

+(R).

ACKNOWLEDGMENT

This work was sponsored in part by a grant from the US
Air Force Office for Sponsored Research. The authors would
like to thank Professor Mark Costello at the Georgia Institute
of Technology for his advice regarding this work.

REFERENCES

[1] F. Bullo, J. Cortes, and S. Martnez, Distributed Control of Robotic Net-
works. A Mathematical Approach to Motion Coordination Algorithms.
Princeton University Press, 2009.

[2] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[4] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle
Cooperative Control. Springer-Verlag, 2008.

[5] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent
system for microgrid control,” Power Systems, IEEE Transactions on,
vol. 20, no. 3, pp. 1447–1455, 2005.

[6] T. Ramachandran, Z. Costello, P. Kingston, S. Grijalva, and M. Egerst-
edt, “Distributed power allocation in prosumer networks,” in IFAC
Necsys, 2012.

[7] S. Grijalva, M. Costley, and N. Ainsworth, “Prosumer-based control
architecture for the future electricity grid,” in IEEE Multi-Conference
on Systems and Control, 2011.

[8] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” Robotics and Automation, IEEE Transactions on,
vol. 14, no. 6, pp. 926–939, 1998.

[9] M. Ji and M. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness,” IEEE Transactions
on Robotics, vol. 23, no. 4, pp. 693–703, 2007.

[10] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[11] H. Tanner, A. Jadbabaie, and G. Pappas, “Stable flocking of mobile
agents, part II : Dynamic topology,” in Proc. 42nd IEEE Conf.
Decision Control, 2003.

[12] N. Michael and V. Kumar, “Controlling shapes of ensembles of robots
of finite size with nonholonomic constraints,” in RSS, 2008.

[13] K. Romer and F. Mattern, “The design space of wireless sensor
networks,” Wireless Communications, IEEE, vol. 11, no. 6, pp. 54–
61, 2004.

[14] F. Zhang and N. Leonard, “Coordinated patterns of unit speed particles
on a closed curve,” Systems and Control Letters, vol. 56, no. 6, pp.
397–407, 2007.

[15] D. Marculescu, R. Marculescu, N. H. Zamora, P. Stanley-Marbell, P. K.
Khosla, S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber,
et al., “Electronic textiles: A platform for pervasive computing,”
Proceedings of the IEEE, vol. 91, no. 12, pp. 1995–2018, 2003.

[16] J. Cortés and F. Bullo, “Coordination and geometric optimization
via distributed dynamical systems,” SIAM Journal on Control and
Optimization, vol. 44, no. 5, pp. 1543–1574, 2005.

[17] A. Nedic, A. Ozdaglar, and A. Parrilo, “Constrained consensus and op-
timization in multi-agent networks,” IEEE Transactions on Automatic
Control, vol. 55, no. 4, pp. 922–938, 2010.

[18] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor
networks and distributed sensor fusion,” in Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC’05. 44th IEEE
Conference on. IEEE, 2005, pp. 6698–6703.

[19] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
and consensus using linear iterative strategies,” Selected Areas in
Communications, IEEE Journal on, vol. 26, no. 4, pp. 650–660, 2008.

[20] M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized control,” Automatic Control, IEEE Transactions on,
vol. 51, no. 2, pp. 274–286, 2006.

[21] J. Swigart and S. Lall, “A graph-theoretic approach to distributed
control over networks,” in Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on. IEEE, 2009, pp. 5409–
5414.

[22] J. M. Hendrickx, R. M. Jungers, A. Olshevsky, and G. Vankeerberghen,
“Graph diameter, eigenvalues, and minimum-time consensus,” Auto-
matica, 2013.

[23] R. Brockett, Finite Dimensional Linear Systems. John Wiley & Sons,
Inc., 1970.

[24] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
New York, 1999, vol. 10.

[25] Z. Costello and M. Egerstedt, “From global, finite-time, linear com-
putations to local, edge-based interaction rules,” ArXiv.org, 2014, a
preprint is available at arXiv.

[26] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge
Press, 1993.

[27] R. W. Brockett, “System theory on group manifolds and coset spaces,”
SIAM Journal on Control, vol. 10, no. 2, pp. 265–284, 1972.

[28] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes: The Art of Scientific Computing. Cambridge University
Press, 2007.

[29] A. Bhaya, “Real matrices with positive determinant are homotopic to
the identity,” SIAM review, vol. 40, no. 2, pp. 335–340, 1998.


