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Abstract— Linear Impulsive Control Systems have been ex-
tensively studied with respect to their equilibrium points which,
in most cases, are no other than the origin. However, the
trajectory of the system cannot be stabilized to arbitrary desired
points which imposes a significant restriction towards their
utilization in various applications such as drug administration.

In this paper, we study the equilibrium of Linear Impul-
sive Systems in light of target-sets instead of the standard
equilibrium point approach. We properly extend the notion
of invariant sets which is crucial in designing asymptotically
stable Model Predictive Controllers (MPC).

I. INTRODUCTION

The motivation for this work comes mainly from the field
of pharmacokinetics and the need for prescribing optimal and
individualized drug administration policies. Physiologically-
Based Pharmacokinetic (PBPK) models have been found to
provide a reliable modeling framework for drug absorption,
distribution, metabolism and elimination and there is already
a lot of relevant experimental data available in the literature
[1]. When the drug is administered orally or in any other
way not continuously, instantaneous jumps are observed
in the concentration of the drug in some organs; this is
mathematically conceptualized as a discontinuity of the first
kind and gives rise to the so called Impulsive Systems [2].
PBPK models are actually systems of differential equations
and it is straightforward to cast them as impulsive differential
systems [3].

Other systems have also been modeled using this ap-
proach. For instance, in [4] a model of a spacecraft is
formulated as a linear impulsive system. Shen et al. use
impulsive differential equations to describe the dynamics
of a fed-batch fermentator [5]. However, there is a dearth
in bibliographical references to applications of impulsive
systems mainly due to the shortcomings of the current
theoretical tools for their analysis and design.

Linear Impulsive Systems have been studied to a great
extent regarding existence and uniqueness of solutions, sta-
bility and other qualitative properties [2], [6]. The existing
theory tackles stability in light of the equilibrium points
of the system and in most cases boils down to the study
of the properties of the zero solution exclusively [7], [8].
For instance, Fontes and Pereira [9] prescribed stability
conditions for the design of MPC for nonlinear impulsive
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systems using Nagumo-like invariance conditions, but with-
out the guarantee that the intersample trajectory of the system
satisfies the state constraints.

Except for trivial cases (e.g. ẋ = 0), it is impossible to
stabilize the state of an impulsive system at any given desired
state - a fact that waxes the wealth of results in this field not
applicable to a great load of scenarios of significant practical
interest such as drug administration control. This calls for
weaker stability qualifications such as stability with respect
to a given target-set as opposed to the traditional approach
that makes use of equilibrium points. This necessary gener-
alization paves the way for the formulation and solution of
MPC problems with linear impulsive models.

II. PRELIMINARIES AND NOTATION

Consider the following linear impulsive system:

dx

dt
= Ax, for t ∈ R \ TN (1a)

∆x (kT ) = Buk, k ∈ N (1b)

Where x ∈ Rn, u ∈ Rm and A and B are matrices of proper
dimensions. Often, we use the notation τk := kT to denote
the impulsive time instants. It should be clear that TN =
{kT ; k ∈ N} where T > 0 is a constant impulsive period.
In (1b) we have used the notation ∆x (kT ) := x (kT+) −
x (kT ) where x

(
τ+k
)

:= limξ→τ+
k
x (ξ).

The system is subject to the following state and input
constraints:

x (t) ∈ X , ∀t ≥ 0, uk ∈ U , ∀k ∈ N (2)

where X and U are assumed to be polyhedral sets.
Requirement (2) renders any optimization problem gener-

ated thereupon (as finite-horizon optimal control problems
arising in MPC) semi-infinite since it employs an infinite
number of constraints. Such a problem would be particularly
difficult to cope with per se, so, we propose a methodology to
convert these constraints into a finite set of affine inequalities.
Such a reduction was proposed by Pierce and Schumitzky for
a planar linear impulsive system of the Kruger-Thiemer form
wherein A has only real eigenvalues and the state and input
constraints are assumed to be rectangular [3]. To overcome
this crux, we employ polytopic inclusions of the continuous-
time trajectory of the system as in our previous work on
sampled-data systems with random time delay [10].

Let π denote a sequence of inputs π =
{u0, u1, . . . , uN−1} drawn from U and ϕ (t;x0, π) be
a solution of (1) satisfying ϕ (0;x0, π) = x0. Whenever



we need to explicitly note that the initial time instant
is other than 0, we use the notation ϕ (t; τ0, x0, π). Let
t > 0 and τj be the largest impulse time not exceeding
t and j ≤ N − 1. Then, for τj < t < τj+1 it is
ϕ (t;x0, π) = eA(t−τj)ϕ

(
τ+j ;x0, π

)
, or, what is the same:

ϕ (t;x0, π) = eA(t−τj)

(
ejATx0 +

j∑
i=0

e(j−i)ATBui

)
(3)

In what follows, stability is considered with respect to a
convex target-set Z into which we want to lead the state of
the system. This set need not contain the origin.

Consider the following impulsive system Σg in closed-
loop form:

dx

dt
= Ax, for t ∈ R \ TN (4a)

∆x (τk) = Bg (x (τk)) , for k ∈ N (4b)

Let us denote by ϕcl (t;x0, g (·)) the closed-loop trajec-
tory of the above system satisfying the initial condition
ϕcl (τ0;x0, g (·)) = x0. Hereinafter we shall use the notation
co {Γ} to denote the convex hull of a set Γ, that is:

co {Γ} =

{
z =

n∑
i=1

αiγi

∣∣∣∣ ∀i ∈ N[1,n] : γi ∈ Γ,
αi ∈ [0, 1] ,

∑n
i=1 αi = 1

}
and the notation cone {Γ} to denote the conic hull of Γ:

cone {Γ} =

{
z =

n∑
i=1

βiγi

∣∣∣∣ ∀i ∈ N[1,n] :
βi ≥ 0, γi ∈ Γ

}
Whenever Γ is finite, the corresponding convex or conic hull
is said to be finitely-generated. Recall that any polytope can
be represented as the convex hull of a finite set of vectors
and every polyhedron H can be represented as H = P + C
where P is a polytope and C is a finitely-generated cone.

III. CONTROLLED INVARIANT SETS

Given a set Z ⊆ X , which stands as a convex target-
set we need to determine a set Y ⊆ Z such that for every
y ∈ Y there is a u ∈ U so that the following conditions are
simultaneously satisfied:
A1. ϕ (T ; y, u) ∈ Y , where ϕ (T ; y, u) = Φ (T ) (y +Bu)

and where Φ (t) := eAt.
A2. W (y, u) := cl {ϕ (r; y, u) ; r ∈ (0, T ]} ⊆ Z , where cl

stands for the set closure.
In what follows, the set Z is assumed to be polyhedral, i.e.
Z = {z ∈ Rn|Hzz ≤ Kz} For a given state y and input u,
we construct a polytope S (y, u) such that

S (y, u) ⊇ cl {ϕ (r; y, u) ; r ∈ (0, T ]} (5)

Thus, introducing some conservatism, we may replace A2
by:
A3. S (y, u) ⊆ Z

and notice that condition A3 implies condition A2. The set
Y will be hereinafter referred to as impulsively controlled
invariant with respect to Z . Once the state enters Y , it will
remain in Z at all impulsive and continuous time instants

and after time T will return to Y . The foregoing discussion
gives rise to the following definitions:

Definition 1 (Impulsively Controlled Invariant Set):
Given a set Z , a set Y ⊆ Z such that for every y ∈ Y there
is a u ∈ U so that A1 and A2 hold true for the system (1a,
1b) is called an impulsively controlled invariant set with
respect to Z .

Definition 2 (Impulsively Invariant Set): Consider the
closed-loop impulsive system (4). Given a set Z , a set Y
such that for every y ∈ Y , one has W (y, g (y)) ⊆ Z and
A1 holds is called an impulsively invariant set with respect
to Z .

A set Y satisfying conditions A1 and A3 has the property:

Y ⊆ ΘS(Y) (6)

where

ΘS(Y) :=

{
y ∈ Rn

∣∣∣∣ ∃u ∈ U s.t. S (y, u) ⊆ Z
and Φ (T ) (y +Bu) ∈ Y

}
(7)

In what follows, we shall focus on those sets Y that are fixed
points of the operator ΘS , i.e. they satisfy (6) with equality
(Y = ΘS(Y)). This choice actually provides a computational
procedure for the calculation of such sets on which we will
elaborate in what follows.

The set S (x, u), being a polytope, can be written as the
convex hull of its extreme points. Let {Ai}Ki=1 be a collection
of matrices so that

{
eAt; t ∈ [0, T ]

}
⊆ co {Ai}Ki=1. Such

a collection can be determined by methods of polytopic
overapproximation of the matrix exponential function as in
[10]. Then,

S (y, u) = (y +Bu) · co {Ai}i∈N[1,K]
(8)

Hence, the set Y can be restated as follows using the
projection operator πx : X × U 3 (x, u) 7→ πx (x, u) =
x ∈ X :

Y = πx

{
(y, u) ∈ Rn+m

∣∣∣∣ Φ (T ) (y +Bu) ∈ Y
Ai (y +Bu) ∈ Z; i ∈ N[1,K]

}
The set Y is the fixed point of the mapping:

F (Ω) := πx

{
(y, u)

∣∣∣∣ Φ (T ) (y +Bu) ∈ Ω
Ai (y +Bu) ∈ Z; i ∈ N[1,K]

}
,

i.e., Y = F (Y), it can be therefore computed using a
standard fixed-point iteration as is outlined below.

If Algorithm 1 converges in a finite number of steps to
a nonempty set, then the resulting set Y is impulsively
controlled invariant and polyhedral, i.e., it admits an H-
representation Y = {y ∈ Rn, Hyy ≤ Ky}.

Having computed the set Y , it is expedient to compute
the set Pre (Y) of all states that can be steered in one step
inside Y while the continuous time trajectory between the
two successive impulse times remains in X . This is defined
as:

Pre (Y) =

{
x ∈ X

∣∣∣∣ ∃u ∈ U , Φ (T ) (x+Bu) ∈ Y
S (x, u) ⊆ X

}
We may successively define the sets Prek+1 (Y) =

Pre
(

Prek (Y)
)

for k ∈ N with Pre0 (Y) = Y . The set



Algorithm 1 Calculate the set Y
Require: U ,Z, A, b and Ai for i = 1, . . . ,K.
k ← 0, Yk ← Z , Y ← ∅
while Y 6= Yk do
Y ← Yk
if Y = ∅ then

return ∅
else
Yk+1 = F (Yk), k ← k + 1

end if
end while
return Y

Prek (Y) contains all initial states at some impulse time that
can be led inside Y in k steps or less using a sequence of
inputs π = {uj}k∈N[0,k−1]

.
To this end we provide a criterion for a polyhedron to be

impulsively controlled invariant with respect to a given set
Z .

Proposition 1: Let Y be a polyhedron and Z a convex
set such that Y ⊆ Z and assume that Y = co {yi}i∈N[1,M]

+

cone {yj}j∈N[M+1,P ]
. Then, if for every i ∈ N[1,P ], there is

a ui ∈ U such that Φ (T ) (yi +Bui) ∈ Y while S (yi, ui) ⊆
Z , then Y is an impulsively controlled invariant set with
respect to Z .

Proof: For every y ∈ Y there are {αj (y)}j∈N[1,P ]
with

αj ≥ 0 and
∑M
j=1 αj = 1 such that y =

∑P
j=1 αjyj . Let

u =
∑P
j=1 αjuj . Then,

Φ (T ) (y +Bu) =

P∑
j=1

αjΦ (T ) (yj +Buj) (9)

Thus, Φ (T ) (y +Bu) ∈ Y since Y is convex. Additionally,
S (yj , uj) ⊆ Z is equivalent to the set of constraints
Ai (yj +Buj) ∈ Z for all j ∈ N[1,P ] and i ∈ N[1,K]. Then,

Ai (y +Bu) =

P∑
i=1

αjAi (yj +Buj) (10)

And since Z is convex and for all j ∈ N[M+1,P ] and λ ≥
0, λyj ∈ Z , we have Ai (y +Bu) ∈ Z . Therefore, Y is
impulsively controlled invariant with respect to Z .

In this paper, invariance is studied in light of a target-
set Z; it is therefore different from the definition used in
the paper of Pereira et al. where the traditional definition of
invariant sets is employed [11]. The framework we introduce
here is more flexible as it requires no elaborate properties
for the target-set Z except for being polyhedral. Second,
it harmonizes with control practice where the target-set is a
predefined requirement as in drug administration (therapeutic
window, [12]).

In the following section we properly extend the notion of
stability of sets in light of the newly introduced impulsively
controlled invariant sets with respect to given target-sets.

IV. STABILITY OF SETS

Consider the closed-loop impulsive system Σg described
by (4). In this section we introduce new definitions for
stability of sets.

Definition 3 (Stable Sets): A nonempty set Z ⊆ X is said
to be stable for an impulsive system Σg described by (4) with
respect to a nonempty set Y if ∀ε > 0,∃δ > 0

distZ (ϕcl (t; 0, x0, g (·))) < ε,∀t ≥ 0 (11)

whenever distY (x0) < δ, where distZ (x) :=
minz∈Z ‖x− z‖. The set Z is said to be an (locally)
asymptotically stable set for Σg with respect to
Y if additionally there is an ε0 > 0 such that
limt→∞ distZ (ϕcl (t;x0, g (·))) = 0 for all x0 with
distY (x0) < ε0.

Definition 4 (Domain of Attraction): If Z is stable for Σg

with respect to Y and for all x0 ∈ A it is

lim
t→∞

distZ (ϕcl (t;x0, g (·))) = 0

then we say that Z is asymptotically stable with respect to
Y and A is its domain of attraction.

This definition of stability is weaker than the one intro-
duced by Bainov and Stamova in [13] in the sense that if a
set Z is stable with respect to a given set Y , it need not be
a stable set unless Y ⊇ Z .

Definition 5 (Weakly Stable Sets): A set Z is said to be
weakly stable for the impulsive system Σg – as in (4) – with
respect to Y if

∀ε > 0,∃δ > 0, distY (x0) < δ ⇒
distZ (ϕcl (τk; 0, x0, g (·))) < ε,∀k ∈ N (12)

Furthermore, Z is said to be weakly asymptotically stable if
it is weakly stable and there is a ε0 > 0 so that:

lim
k→∞

distZ (ϕcl (τk; 0, x0, g (·))) = 0 (13)

whenever distY (x0) < ε0.
The domain of attraction for weakly asymptotically stable
systems is defined analogously.

Results from systems theory involving K-class and KL-
class functions can be properly extended to describe stability
of sets as defined above. This leads to the following propo-
sition:

Proposition 2 (Characterization of stability of sets): Let
Z and Y be nonempty sets. The following statements are
equivalent:

1) Z is a stable set for (4) with respect to Y
2) There is a K-class function α and a constant c > 0

such that distZ (ϕcl (t, 0, x0, g (·))) ≤ α (distY (x0))
whenever distY (x0) ≤ c, for all t ≥ 0.

Proof: This result is adapted for impuslive systems
from [14] where is it stated for continuous time LTI systems.
The proof is analogous.

Proposition 3 (Consequence of stability): If Z is stable
for Σg with respect to Y then any trajectory starting inside
clY will remain inside clZ .



Proof: Since Z is stable with respect to Σg , there is a
c > 0 and an α ∈ K so that distZ (ϕcl (t, 0, x0, g (·))) ≤
α (distY (x0)) for all t ≥ 0 whenever distY (x0) <
c. Let x0 ∈ clY . Then distY (x0) = 0 < c and
distZ (ϕcl (t, 0, x0, g (·))) ≤ α (0) = 0 for all t ≥ 0 which
means that ϕcl (t, 0, x0, g (·)) ∈ clZ for all t ≥ 0. This
proves the assertion.

Proposition 4 (Characterization of Asymptotic Stability):
Let Z and Y be nonempty sets. The following statements
are equivalent:

1) Z is an asymptotically stable set for (4) with respect
to Y

2) There is a KL-class function β and a constant
c > 0 such that distZ (ϕcl (t, 0, x0, g (·))) ≤
β (distY (x0) , t) whenever distY (x0) ≤ c, for all
t ≥ 0.

Proof: The proof follows the exact steps found in [14]
if we replace the standard metric of Rn with the point-to-set
distance defined above.

Definition 6 (Uniform Boundedness): The trajectories of
Σg are called (Z,Y)-locally uniformly bounded over an
interval I ⊆ [0,∞) if there is an η > 0 and a K-
class function α such that the following holds for all
t ∈ I distZ (ϕcl (t; 0, x0, g (·))) ≤ α (distY (x0)) whenever
distY (x0) < η.
It is natural to ask under what conditions (imposed on g),
are the trajectories of Σg (Z,Y)-locally uniformly bounded.

Proposition 5 (Criterion for Uniform Boundedness): Let
hg (x) := x+Bg(x) and assume that there exist a constant
η > 0 and a function α ∈ K so that:

distZ (hg (x)) ≤ α (distY (x)) (14)

whenever distY (x) < η. Then the trajectories of Σg are
(Z,Y)-locally uniformly bounded.

Proof: Let,

M := sup
t∈(0,T ]

sup
x/∈Z

distZ
(
eAtx

)
distZ (x)

∈ [0,∞) (15)

Then, for t ∈ (0, T ], we have:

distZ (ϕcl (t; 0, x0, g (·))) ≤ M distZ (x0 +Bg (x0))

≤ α (distY (x0)) (16)

whenever distY (x) < η, which proves the assertion.
Remark: Unless Z is a linear subspace or a convex

cone, we may not assume that the triangle inequality holds
for distZ , so it is not easy to simplify the expression
distZ (h (x)) = distZ (x+Bg (x)). In that special case,
it holds that distZ (h (x)) ≤ distZ (x) + MB distZ (g (x))
where

MB := sup
x/∈Z

distZ (Bx)

distZ (x)
(17)

Furthermore, if g can be found to be uniformly continuous
in an open set that includes Y as a subset, then hg is also
uniformly continuous and hg(Y) ⊆ Z , so (16) holds true.

It turns out that weak asymptotic stability and uniform
boundedness entail asymptotic stability for a set Z under

certain additional conditions establishing this way a clear
analogy between the following result and Theorem 2.27 in
[15] for Sampled-data systems.

Assumption 1: We assume that ∅ 6= Y ⊆ Z , Y is
impulsively invariant with respect to Z and there is a constant
η > 0 and a function ω ∈ K such that for all k ∈ N:

distY (ϕcl (kT ; 0, x0, g (·))) ≤ ω (distY (x0)) (18)

whenever distY (x0) < η. That is, Y is weakly stable with
respect to itself.

Theorem 1 (Criterion for Asymptotic Stability): Let Z,Y
be given nonempty sets and Assumption 1 is satisfied.
Assume that Z is weakly asymptotically stable for Σg with
respect to Y and the trajectories of Σg are (Z,Y)-locally
uniformly bounded over (0, T ]. Then Z is asymptotically
stable with respect to Y .

Proof: Since Z is weakly asymptotically stable with
respect to Y , there is a ηs > 0 and a β ∈ KL such
that, if distY (x0) < ηs it is: distZ (ϕcl (kT ; 0, x0, g (·))) ≤
β (distY (x0) , kT ) for all k ∈ N.

Since Σg is (Z,Y)-locally uniformly bounded over (0, T ],
there is a positive constant ηb > 0 and an α ∈ K such that
for all t ∈ (0, T ]

distZ (ϕcl (t; 0, x0, g (·))) ≤ α (distY (x0)) (19)

whenever distY (x0) < ηb. Also, since assumption 1 holds,
there is a positive constant ηy and a function ω ∈ K so that
for all k ∈ N:

distY (ϕcl (kT ; 0, x0, g (·))) ≤ ω (distY (x0)) (20)

for all x0 such that distY (x0) < ηy . Let γ0 (r) = β (r, 0)
and let η := min

{
ηs, γ−10

(
ηb
)
, ω−1

(
ηb
)}

. Let x0 be such
that distY (x0) < η. Then, distZ (ϕcl (kT ; 0, x0, g (·))) ≤
β (distY (x0) , kT ) ≤ ηb for all k ∈ N. Define x̂0 :=
ϕcl (kT ; 0, x0, g (·)). Additionally, because of (20),

distY (x̂0) = distY (ϕcl (kT ;x0, g (·)))
≤ ω (distY (x̂0)) < ηb (21)

Since distY (x̂0) < ηb, inequality (19) applies to x̂0; so for
ξ ∈ (kT, (k + 1)T ]:

distZ (ϕcl (ξ; 0, x̂0, g (·))) ≤ α (distY (x̂0))

= α (distY (ϕcl (kT ; 0, x0, g (·))))
≤ α (β (distY (x0) , kT )) (22)

holds for all k ∈ N. Define β̂ (r, s) := α (β (r, s)). Then β̂ is
KL-class and by lemma 1 in [16], without loss of generality
β̂ can be assumed to be uniformly incrementally bounded,
that is, there exists a positive constant P > 0 such that
β̂ (r, kT ) ≤ P β̂ (r, (k + 1)T ) ,∀r ≥ 0,∀k ∈ N and since β̂
is strictly decreasing in the second argument, for any s ∈
[0, 1], it is β̂ (r, (k + 1)T ) ≤ β̂ (r, (k + s)T ). So, for t ≥ 0
let k0 = k0 (t) ∈ N be the maximum integer so that k0T ≤ t.
Equation (22) yields,

distZ (ϕcl (t; 0, x̂0, g (·))) ≤ β̂ (distY (x0) , k0T )

≤ P β̂ (distY (x0) , k0T + t− k0T )

= P β̂ (distY (x0) , t) (23)



The function β̃ (r, t) := P β̂ (r, t) is KL-class and by
proposition 4 the proof is complete.

Taking quite similar steps we can prove the following
criterion stability:

Theorem 2 (Criterion for Stability): Let Z,Y be given
nonempty sets and assumption 1 is satisfied and the trajecto-
ries of Σg are (Z,Y)-locally uniformly bounded over (0, T ].
Then Z is stable with respect to Y .

V. MODEL PREDICTIVE CONTROL

A. Formulation

Unlike other existing MPC formulations for linear and
nonlinear continuous time dynamical systems, it is not possi-
ble to stabilize the state of an impulsive system of the form
(1) at any other state except possibly for the origin. The
replacement of the notion of a set point with that of a target-
set appears to provide a flexible framework for applying
MPC to such systems.

For each x ∈ X we define the set-valued mapping Uf :
X ⇒ U as follows:

Uf (x) =

{
u ∈ U

∣∣∣∣ Φ (T ) (x+Bu) ∈ Y
Ai (x+Bu) ∈ Z; i ∈ N[1,K]

}
(24)

Notice that if x /∈ Y then and only then Uf (x) = ∅, that is
domUf = Y . We also define the set D as follows:

D =
{

(x, u) ∈ Rn+m| x ∈ Y, u ∈ Uf (x)
}

(25)

This set is the graph of the set-valued mapping Uf . To this
end, we introduce the following stage cost function:

`(x, u) = dist2D (x, u) = min
(z,v)∈D

‖(x, u)− (z, v)‖2 (26)

Notice that `(x, u) = 0 if and only if x ∈ Y and u ∈ Uf (x).
This stage cost will allow to automatically perform dual-
mode MPC without actually having computed an auxiliary,
local controller beforehand.

The proposed MPC scheme amounts in solving at every
impulse time τk the following finite horizon optimal control
problem:

V ?N (x (τk)) = inf
π∈UN (x(τk))

VN (x (τk) , π) (27)

where

VN (x (τk) , π) =

N−1∑
j=0

` (ϕ (τk+j ;x (τk) , π) , uj) (28)

and

UN (x) =

π
∣∣∣∣∣∣
∀j ∈ N[0,N−1] : uj ∈ U ,
S (ϕ (τk+j ;x, π) , uj) ⊆ X
ϕ (τk+N−1;x, π) ∈ Y

 (29)

The MPC problem (27) can be reformulated as a convex QP:

V ?N (x (τk)) = inf
π,z,v

V̄N (x(τk), π, z, v) (30a)

where

V̄N (x, π, z, v) :=

N−1∑
j=0

∥∥∥[ ϕ(τk+j ;x,π)−zj
uj−vj

]∥∥∥2 (30b)

subject to the constraints:

π ∈ UN (x (τk)) , (zj , vj) ∈ D, ∀j ∈ N[0,N−1] (30c)

The feasible domain of this problem is simply the set
XN = PreN−1 (Y). This problem is merely convex, there-
fore the optimizer is in general set-valued. This is evi-
dent since for every x ∈ Y and every u ∈ Uf (x) it
holds that `(x, u) = 0. Let us denote by π? (x (τk)) =(
π?0 (x (τk)) , π?1 (x (τk)) , . . . , π?N−1 (x (τk))

)
the set-valued

optimizer of (27). This gives rise to a family of feedback
control laws σ (x (τk)) = π?0 (x (τk)) and notice that if
x ∈ Y then σ (x) = Uf (x). Then every s : XN → U
such that s (x) ∈ σ (x) for all x ∈ XN is called an optimal
control law.

The following result is necessary to guarantee asymptotic
stability of the closed-loop system with the MPC controller.

Proposition 6: For x0 ∈ XN \ Y , σ is single-valued and
Lipschitz continuous.

Proof: The cost function is written as VN (x0, π) =
` (x0, u0) + ϑ(x0, π̄) where π̄ is the trailling part of π
following u0. One has that:

xj = Φ (T )
j
x0 +

j−1∑
p=0

Φ (T )
p+2

Bup (31)

which we shall simply write as:

xj = Ljx0 +

N−1∑
p=1

Ypup (32)

we then have that

ϑ(x0, π̄) =

N−1∑
j=1

`

(
Ljx0 +

N−1∑
p=1

Ypup, uj

)
(33)

` (x0, u0) = distD (x0, u0) is strictly convex for x0 ∈
XN \ Y and ϑ is convex, so VN is strictly convex outside
Y . As a result the solution mapping σ (·) is single valued
and Lipschitz continuous [17]. A fortiori it is uniformly
continuous.

B. Stability Properties

Proposition 7 (Weak Stability of MPC and Invariance):
Given a target-set Z assume that there is a nonempty set Y
which is impulsively controlled invariant with respect to Z .
Let s : XN → U be an optimal control law for (27). Then,
Z is weakly asymptotically stable with respect to Y with
domain of attraction the set XN .

Proof: Step 1. We prove a Lyapunov-type inequality.
First, we show that for all x (τk) ∈ XN , it holds true that

V ?N (x (τk+1))−V ?N (x (τk)) ≤ −` (x (τk) , s (x (τk))) (34)

where x (τk+1) := ϕcl (τk+1; τk, x (τk) , s (·)) =
Φ (T ) (x (τk) +Bs (x (τk))).

Equation (34) is an immediate consequence of the
fact that if π?(x(τk)) is an optimal sequence of inputs
and π̂?(x(τk)) ∈ π?(x(τk)) is an arbitrary optimal se-
quence, then for uτk+N−1

= π̂?N−1(x(τk)) and xτk+N−1
=



ϕcl(τk+N−1;x(τk), π̂?(x(τk))) we have that xτk+N−1
∈ Y

and `(xτk+N−1
, uτk+N−1

) = 0. Indeed, let x ∈ XN be an
initial state at τk. We denote by

π?(x) =
{
u?k(x), u?k+1(x), . . . , u?k+N−1(x)

}
(35)

the optimal control sequence for which it holds that V ?N (x) =
VN (x, π?). If we apply π?(x) to the impulsive system, the
following sequence of states will occur:

x?(x) =
{
x?k(x), x?k+1(x), . . . , x?k+N (x)

}
(36)

where x?k(x) = x, x?k+i(x) = ϕcl(τk+i; τk, x, π
?) for i =

1, . . . , N , and x?k+N (x) ∈ Y . At the next time instant, τk+1,
the state of the system will be x?k+1(x) for which we chose
the (sub-optimal) control sequence

π̃(x) =
{
u?k+1(x), . . . , u?k+N−1(x), u

}
(37)

where the last element u is to be determined. The resulting
sequence of states will be

x̃(x) =
{
x?k+1(x), . . . , x?k+N (x),

ϕcl(τk+N+1; τk+N , x
?
k+N (x), u)

}
(38)

Provided that ϕcl(τk+N+1; τk+N , x
?
k+N (x), u) ∈ Y , the se-

quence of inputs π̃(x) is admissible (but not necessarily opti-
mal). This is accomplished by choosing u ∈ Uf (x?k+N (x)) 6=
∅. We have that:

V ?N (x) = VN (x, π?(x)) =

N−1∑
j=0

`(x?k+j(x), u?k+j(x)) (39)

while

VN (x?k+1(x), π̃) = V ?N (x)− `(x, u?k(x))

+ `(ϕcl(τk+N+1; τk+N , x
?
k+N (x), u), u)

= V ?N (x)− `(x, u?k(x))

= V ?N (x)− `(x, s(x)) (40)

Because of the fact that π̃(x) is sub-optimal, and making use
of the previous equation, it is:

V ?N (x?k+1(x)) ≤ VN (x?k+1(x), π̃)

= V ?N (x)− `(x, s(x)), (41)

for all x ∈ XN , which proves (34).
Step 2. Weak Stability of Y . For ε > 0, let us denote by
BYε := {x ∈ XN , distY(x) ≤ ε}. Let also

Ωβ :=
{
x ∈ BYε , V ?N (x) ≤ β

}
. (42)

Take x0 ∈ Ωβ ⊆ BYε . Then, be (34), one has
that V ?N (ϕcl(τk+1; τk, x0, s(·))) ≤ V ?N (x0) ≤ β, hence
ϕcl(τk+1; τk, x0, s(·)) ∈ Ωβ . Since V ?N takes the value 0
on Y and Ωβ ⊇ Y and V ?N is continuous, there is a η > 0
such that BYη ⊆ Ωβ . So, if we choose x0 ∈ BYη , that is
distY(x0) < η, we have that ϕcl(τk+1; τk, x0, s(·)) ∈ BYε so
Y is weakly stable with respect to itself.

Step 3. Asymptotic Stability and Attractivity of Y over XN .
We now need to prove that

lim
j→∞

distY (ϕcl(τk+j ; τk, x, s(·))) = 0

for all x ∈ XN . V ?N is strictly decreasing and nonnegative
outside Y , so there is a c ≥ 0 so that

lim
j→∞

V ?N (ϕcl(τk+j ; τk, x, s(·))) = c (43)

Let

Ω̃c = {x ∈ XN |V ?N (x) ≤ c} .

Assume that c > 0 and let ζ > 0 such that BYζ ⊆ Ω̃c.
Then, for all j > 0, V ?N (ϕcl (τk+j ; τk, x, s (·))) > ζ. Define
γr := −maxζ≤distY(x)≤r l (x, s (x)) for r > ζ (Evidently
γr < 0 for all r > ζ). Then, by (34) it is:

V ?N (x (τk+j)) ≤ V ?N (x (τk))−
j−1∑
i=0

` (x (τk+i) , s (x (τk+1)))

< V ?N (x (τk))− jγr (44)

Eventually, for j ≥ γr
−1V ?N (x (τk)) we have that

V ?N (x (τk+j)) < 0 which is a contradiction. As a result:

lim
j→∞

V ?N (ϕcl(τk+j ; τk, x, s(·))) = 0 (45)

for all x ∈ XN . The set Y is therefore weakly asymptotically
stable with respect to itself with domain of attraction the set
XN . As a result, since Z ⊇ Y , Z is weakly asymptotically
stable with respect to Y with domain of attraction XN .
Remark 1: By Proposition 6, σ(·) is a single-valued control
law outside Y and Lipschitz-continuous. As a result, it is
uniformly continuous over XN \Y and hs (x) := x+Bs (x)
is also uniformly continuous. This being the case, (16) holds
true and the closed-loop system trajectories are (Z,Y)-
locally uniformly bounded. According to Theorem 1, Z is
locally asymptotically stable with respect to Y and because
of Proposition 7 the domain of attraction of the closed-loop
system is XN .

Remark 2: XN is not invariant in continuous-time;
that is if x(τk) ∈ XN , then on one hand at impulsive time
instants the trajectory of the closed-loop will remain in XN

ϕcl(τk+j ; τk, x(τk), s(·)) ∈ XN , ∀j ∈ N,

but on the other hand, this property is not implied for
the intermediate time instants. There may be time instants
t̂ ∈ [τk, τk+1) so that x(τk) ∈ XN and x(τk+1) ∈ XN , but
ϕcl(t̂; τk, x(τk), s(·)) ∈ X \ XN . However, in the interim
between impulsive time instants, the state trajectory will be
bounded inside X , thus the imposed constraints will not be
violated. At the same time, XN is a feasible subset of X .

Remark 3: The set Y in Proposition 7 is impulsively
invariant for the closed-loop system with respect to Z .
Indeed, if x(τk) ∈ Y , the the MPC feedback law possesses
the property s(x) ∈ Uf (x) and by definition of Uf and
since Y = domUf , impulsive invariance follows.



Fig. 1. The set of state constraints X (white), the target-set Z (checkboard)
and the impulsively controlled invariant set Y (yellow). The continuous time
trajectory of the system after an impulse is also illustrated starting from the
initial point x0 = [−0.8, 0.4] and using the MPC feedback with prediction
horizon N = 5.

Fig. 2. The impuslively controlled invariant set Y and feasible regions for
different prediction horizon values.

C. Illustrative Example

We provide here an illustrative example of the computation
of the aforementioned impulsively controlled invariant set for
the linear planar single-input impulsive system with matrices:

A =
[−1 1
−5 2

]
and B = [ 12 ] (46)

and impulsive period T = 0.3. The system is subject to the
state and input constraints given by:

X = R2
[−1,1] and U = [−1, 1] (47)

We consider the following target-set which does not contain
the origin:

Z =

{
z ∈ Rn,

[
I2
−I2

]
z ≤

[
0.95
0.9
−0.55
0.9

]}
(48)

The set Y was computed using Algorithm 1 which terminated
in 3 iterations. The three sets X , Z and Y are illustrated
in Fig. 1. An MPC controller was designed for this system

using prediction horizon N = 6. For every x inside Y ,
the controller picks a value from Uf (x) and applies it to
the system - any such value assures that Y is impuslively
controlled invariant with respect to Z for the closed-loop
system. In this example the state enters the set Y so by
definition it will stay in Y at all future impulse times and
that whole continuous-time trajectory of the system will be
bound to be inside Z .
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