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Abstract— We consider the Hegselmann-Krause model for
opinion dynamics and study the evolution of the system under
various settings. We first analyze the termination time of the
synchronous Hegselmann-Krause dynamics in arbitrary finite
dimensions and show that the termination time in general only
depends on the number of agents involved in the dynamics.
To the best of our knowledge, that is the sharpest bound
for the termination time of such dynamics that removes
dependency of the termination time from the dimension of
the ambient space. This answers an open question in [1] on
how to obtain a tighter upper bound for the termination time.
Furthermore, we study the asynchronous Hegselmann-Krause
model from a novel game-theoretic approach and show that
the evolution of an asynchronous Hegselmann-Krause model
is equivalent to a sequence of best response updates in a
well-designed potential game. We then provide a polynomial
upper bound for the expected time and expected number of
switching topologies until the dynamic reaches an arbitrarily
small neighborhood of its equilibrium points, provided that the
agents update uniformly at random. This is a step toward anal-
ysis of heterogeneous Hegselmann-Krause dynamics. Finally,
we consider the heterogeneous Hegselmann-Krause dynamics
and provide a necessary condition for the finite termination
time of such dynamics. In particular, we sketch some future
directions toward more detailed analysis of the heterogeneous
Hegselmann-Krause model.

Index Terms— Multidimensional Hegselmann-Krause model;
homogeneous, heterogeneous, synchronous, asynchronous, opin-
ion dynamics; potential game; strategic equivalence; best re-
sponse dynamics.

I. INTRODUCTION

Opinion formation in social networks is an important area
of research that has attracted a lot of attention in recent
years in a wide range of disciplines, such as psychology,
economics, political science, and electrical and computer
engineering. A natural question that commonly arises in
all those areas is the extent to which one can predict the
outcome of the opinion formation of entities under some
complex interaction process running among these social
actors. Consensus problems in which a set of agents are
trying to achieve the same goal have been addressed by many
researchers, such as [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. In such problems, which are still an active area of
research, the goal is to achieve a certain agreement among
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NSF grant CCF 11-11342.

agents. However, there are many of situations in which there
is neither a desire for consensus nor any tendency for the
underlying process to approach a common outcome. In fact,
such situations frequently emerge in the context of political
elections and product marketings when there are multiple
candidates or product choices to be selected among. Those
facts have motivated researchers to study disagreement along
with consensus.

One of the first studies that considers disagreement beside
consensus was undertaken by Friedkin and Johnsen [13],
whose model was later extended by Hegselmann and Krause
in [14], in the sense that [14] relaxes the assumption of
time-invariant influence weights among the agents. More pre-
cisely, the Hegselmann-Krause dynamics allow the influence
weights to be a function of not only time, but also the states.
It is worth noting that although such extensions make the
analysis of Hegselmann-Krause dynamics mathematically
much more complicated but interesting, one may argue that
the assumption of influence weights depending on the evolv-
ing opinion distance (which is the case in the Hegselmann-
Krause dynamics) is questionable from a practical point of
view, given the literature in experimental social psychology,
e.g., see [15], [16], where social psychologists have long
been intrigued by the hypothesis that opinion differences
reliably predict direct relations of interpersonal influence.
Still, a rigorous analysis of the Hegselmann-Krasue dynamics
is both theoretically and practically important. The theo-
retical aspects is that it allows us to develop novel tools
useful to study more complex time and state dependent
evolutionary dynamics and elaborate on their connections
with other fields. The practical aspect is that, other than
applications in the modeling of opinion dynamics, the model
has applications in the robotics rendezvous problem in plane
and space [17]. Accordingly, we consider the Hegselmann-
Krause model in Rd, where d ≥ 1.

In the Hegselmann-Krause model, a finite number of
agents frequently update their opinions based on the possible
interactions among them. The opinion of each agent in this
model is captured by a scalar quantity in one dimension or a
vector in Euclidean space Rd>1 in higher dimensions. In fact,
because of the conservative nature of social entities, each
agent in this model communicates only with those whose
opinions are closer to him and lie within a certain level
of his confidence (bound of confidence), where the distance
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between agents’ opinions is measured by the Euclidian norm
in the ambient space. Depending on whether the bound
of confidence is the same for all the agents or not, one
can distinguish two different types of dynamics, known as
homogeneous and heterogeneous, respectively. Moreover, the
updating process of the agents may be synchronous, meaning
that all the agents update simultaneously, or asynchronous,
where the agents update in turn. Although at first glance
the differences among these four types of dynamics may
seem negligible, in fact, their outcomes are substantially
different, such that most of the results from one cannot
be carried over to the others [18], [19], [20]. In particular,
because of the extra freedom for the agents’ movements in
higher dimensions, analyzing such dynamics for dimensions
higher than one is considerably more complex than for one
dimension [21], [1], [22].

It is known that synchronous homogeneous Hegselmann-
Krause dynamics will terminate after finitely many steps
[14], [18]. The same model has also been used for distributed
rendezvous in a robotic network [17], [23]. In the model,
depending on the initial profile and the confidence bound,
the final state may or may not be a consensus. The existing
studies on the behavior of the Hegselmann-Krause model in
one dimension where the agents’ opinions are scalars can
be found in [24]. It was shown in [17] that the termination
time of the Hegselmann-Krause dynamics in one dimension
is at least O(n), where n is the number of agents, and
at most O(n3) [1], [25]. Moreover, the stability and the
termination time of such dynamics in higher dimensions
were studied in [26], [21], and the work in [21] bounds
the termination time of such dynamics using the number of
isolated agents through the evolution of the dynamics. In a
recent work of Bhattacharyya et al. [1], a polynomial upper
bound of O(n10d2) was given for such dynamics in higher
dimensions, but leaving the dependency of such a bound on
the dimension of ambient space as an open problem. In this
work, we improve the upper bound to O(n8) and show that
the termination time is, indeed, independent of the dimension
of the ambient space.

The asynchronous homogeneous Hegselmann-Krause
model was considered in [27], where the authors were able
to establish stability of this model using a proper quadratic
comparison function when the probability of updating for
each agent is uniformly bounded from below by some
positive constant p > 0. In this paper, we model the evolution
of such dynamics as a sequence of best response updates in a
potential game and provide a polynomial upper bound for the
maximum expected switching topologies and the expected
time it takes for the dynamics to reach an arbitrarily small
neighborhood of its steady state provided that the agents
update uniformly at random. We refer readers to [28] and
[29] for some of the possible connections between control
of distributed systems and potential games. Furthermore, the
synchronous heterogeneous Hegselmann-Krause model was
studied in [19], and recently in [20], where the authors con-
jecture that the number of switching topologies throughout
the dynamics must be finite. In fact, our analysis for an

asynchronous homogeneous Hegselmann-Krause model here
is a step toward more detailed analysis of the heterogeneous
model using an appropriate potential function over directed
graphs [30], [4]. Furthermore, numerous simulation results
have been conducted to study and explore the evolutionary
properties of the Hegselmann-Krause dynamics under vari-
ous settings. For more information, we refer the reader to
[18], [19], [14], [31].

This paper is organized as follows. In Section II, we review
the Hegselmann-Krause dynamics under various settings.
In Section III, we develop some preliminary results and
mention some existing results for later use. In Section IV
we consider the synchronous Hegselmann-Krause model in
arbitrary finite dimensions and provide a polynomial upper
bound for the termination time, independent of the dimension
of the opinion space. That not only improves on the previous
bounds, but also removes the dependency of the termination
time on the dimension of the ambient space. In Section V,
we model the asynchronous Hegselmann-Krause model as
a potential game and provide its corresponding potential
function. Using that function, we bound the expected number
of switching topologies of the network when the agents
update their opinions uniformly at random. Moreover, we
provide an upper bound for the expected number of steps
until the agents reach a δ-neighborhood of their steady
state for some δ > 0. We also directly show strategic
equivalence of the game to a team problem. In Section VI
we turn our attention to the heterogeneous Hegselmann-
Krause model and provide a necessary condition for such
dynamics to terminate in finite time. In Section VII, using
the tools developed in this work, we discuss some of the
possible future directions toward more detailed analysis of
heterogeneous Hegselmann-Krause dynamics. We conclude
the paper with the final remarks of Section VIII.

Notations: For a positive integer n, we let [n] :=
{1, 2, . . . , n}. For a vector v ∈ Rn, we let vi be the ith
entry of v. We say that v is stochastic if vi ≥ 0 for all
i ∈ [n] and

∑n
i=1 vi = 1. Similarly, for a matrix A, we

let Aij be the ijth entry of A. We say that A is stochastic
(or row-stochastic) if each of its rows is stochastic, and we
let min+A = mini,j{Aij |Aij > 0}. We use Ai to denote
the ith row of A. We use A′ to denote the transpose of
a matrix A, and ‖v‖ to denote the Euclidean norm of a
vector v. We let the consensus vector 1 be a vector of unit
size (‖1‖ = 1) with equal entries. For a matrix A with real
eigenvalues, we let λ2(A) be its second smallest eigenvalue.
A scrambling matrix is a stochastic matrix such that the
inner product of each pair of its rows is positive. For a
vector y we use conv(y) to show the convex hull of its
components and diam(conv(y)) = maxp,q∈conv(y) ‖p− q‖.
We define the distance between two sets P,Q ⊆ Rn to be
dist(P,Q) = infp∈P,q∈Q ‖p − q‖. For a graph G, we let
AG be its adjacency matrix and DG be a diagonal matrix
whose diagonal entries are equal to the degree of the nodes
in the graph. Moreover, we use LG = AG − DG to denote
the Laplacian of that graph. Finally, we use |S| to denote the
cardinality of a finite set S.



II. HEGSELMANN-KRAUSE DYNAMICS

In this section we describe the discrete-time Hegselmann-
Krause opinion dynamics model as introduced in [14].

Let us assume that we have a set of n agents [n] =
{1, . . . , n} and we want to model the interactions among
their opinions. It is assumed that at each time t = 0, 1, 2, . . .,
the opinion of agent i ∈ [n] can be represented by a vector
xi(t) ∈ Rd for some d ≥ 1. According to that model, the
evolution of opinion vectors can be modeled by the following
discrete-time dynamics:

x(t+ 1) = A(t, x(t),~ε)x(t), (1)

where A(t, x(t),~ε) is an n×n row-stochastic matrix and x(t)
is the n×d matrix such that its ith row contains the opinion
of the ith agent at time t = 0, 1, 2, . . ., i.e., it is equal to
xi(t). We refer to x(t) as the opinion profile at time t. The
entries of A(t, x(t),~ε) are functions of time step t, current
profile x(t), confidence vector ~ε = (ε1, ε2, . . . , εn) > 0 and
an updating scheme. The parameters εi, i ∈ [n] are referred
to as the confidence bounds. In the homogeneous case of the
dynamics, we assume that εi = ε, ∀i ∈ [n] for some ε > 0,
while in the heterogeneous model, different agents may have
different bounds of confidence. Our focus in this paper is
mainly on the homogeneous model, but we also analyze the
heterogeneous case toward the end, in Section VI. For the
sake of simplicity of notation and for a fixed x(0) ∈ Rn×d,
we drop the dependency of A(t, x(t),~ε) on x(t) and ε and
simply write A(t). In what follows next, we distinguish two
different versions of Hegselmann-Krause dynamics.

A. Synchronous Hegselmann-Krause Model

In the synchronous Hegselmann-Krause model, each agent
i updates its value at time t = 0, 1, 2, . . ., by averaging its
own value and the values of all the other agents that are in
its ε-neighborhood at time t. To be more specific, given a
profile x(t) at time t, define the matrix A(t) in (1) by:

Aij(t) =

{
1

|Ni(t)| if j ∈ Ni(t),
0 else,

(2)

where Ni(t) is the set of agents in the ε-neighborhood of
agent i, i.e.,

Ni(t) = {j ∈ [n] | ‖xi(t)− xj(t)‖ ≤ ε}.

B. Asynchronous Hegselmann-Krause Model

In the asynchronous case and at each time instant t =
0, 1, 2, . . ., only one agent, namely i∗, updates its value to the
average of its neighbors, while the others remain unchanged.
Selection of such an agent may be at random or based
on some predefined order. In this paper, we assume that
the agents are chosen uniformly at random to update their
opinions. In that case the updating matrix A(t, x(t),~ε) given
in (1) can be written as

Aij(t) =


1

|Ni∗ (t)|
if i = i∗, j ∈ Ni∗(t),

1 if i = j 6= i∗

0 else,

(3)

where here we have assumed that agent i∗ updates its opinion
at time t.

Remark 1: In the heterogeneous Hegselmann-Krause
model, each agent i is able to observe only its εi-
neighborhood, and we have

Ni(t, εi) = {j ∈ [n] | ‖xi(t)− xj(t)‖ ≤ εi}.
Remark 2: There are other types of Hegselmann-Krause

dynamics where the evolution of dynamics is subject to noise
or perturbation in the system or when the agents are truth
seekers in the sense that they are attracted by the truth by a
positive amount [32], [33]. Moreover, the continuous version
of the Hegselmann-Krause model, in which a continuum of
opinions are involved in the dynamics, has been considered
in [34], [35], [36].

Remark 3: As can be seen from the above formulations,
the Hegselmann-Krause dynamics do not preserve the opin-
ion average of the agents, and the evolution of the system
strongly depends on the history and the states, which may
switch between different topologies. In fact, it is not possible
to determine the topology of the network at the current
time, unless one can observe the state of the system in
the previous time step. Those facts make the analysis of
such dynamics much more complicated than analysis of the
average-preserving dynamics with fixed topology.

III. PRELIMINARY RESULTS

In this section, we briefly discuss some preliminary results
and provide some definitions that will be used to prove our
main results.

Lemma 1: (Perron-Frobenius for Laplacians [37]): Let L
be a matrix with non-positive off-diagonal entries such that
the graph of the non-zero off-diagonal entries is connected.
Then the smallest eigenvalue has multiplicity 1, and the
corresponding eigenvector is strictly positive.

Next, we state Cheeger’s inequality, which relates the
spectral gap of the Laplacian matrix to the expansion of its
corresponding graph.

Lemma 2 (Cheeger’s Inequality [38]): Let G = (V, E) be
an undirected graph with Laplacian matrix L. Moreover, for
a subset of vertices S ⊆ V let e(S, Sc) denote the number of
edges with one vertex in S and one vertex in its complement
Sc. Defining the cut ratio Φ(S) = e(S,Sc)

|S||Sc| and isoperimetric
number of G by Φ = minS⊂V Φ(S), we have

Φ2

2dmax
≤ λ2(L) ≤ 2Φ,

where dmax denotes the maximum degree of the graph G and
λ2(L) is the second smallest eigenvalue of the Laplacian L.



Lemma 3: (Courant-Fischer Formula [39]) Let A be an
n× n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ,≤
λn and corresponding eigenvectors v1, . . . , vn. Moreover, for
1 ≤ k ≤ n, let Sk denote the span of v1, . . . , vk (with
S0 = {0}), and let S

⊥

k denote the orthogonal complement
of Sk, i.e., S

⊥

k = {v ∈ Rn|v′u = 0,∀u ∈ Sk}. Then

λk = min
‖x‖=1

x∈S
⊥
k−1

x′Ax.

Corollary 1 (Rayleigh-Quotient [39]): Let G = (V, E) be
a graph and L be the Laplacian of G. We already know from
the Perron-Frobenius lemma (Lemma 1) that the smallest
eigenvalue is λ1 = 0 with eigenvector v1 = 1. By the
Courant-Fischer Formula, we get

λ2(L) = min
‖x‖=1
x⊥1

x′Lx.

Lemma 4: Suppose C is a stochastic matrix and y = Cx;
then

diam(conv(y)) ≤ (1− µ(C))diam(conv(x))

where µ(C) = mini 6=j(
∑n
k=1 min(cik, cjk)). In particular,

when C is a scrambling matrix with min+ C ≥ δ,
then we can say µ(C) ≥ δ, or diam(conv(y)) ≤ (1 −
δ)diam(conv(x)).

Proof: A short proof of the above lemma can be found
in [40].

In fact, one of the fundamental concepts and properties of
the synchronous Hegselmann-Krause dynamics that will be
used extensively throughout this paper is that the dynamics
admit a quadratic Lyapunov function [35], [41], [42].

IV. SYNCHRONOUS MULTIDIMENSIONAL
HEGSELMANN-KRAUSE DYNAMICS

In this section we consider the homogeneous synchronous
Hegselmann-Krause model as was introduced in (2). We start
our discussion by introducing some notation that will be used
throughout this section.

Definition 1: We say that a time instance t is a merging
time for the dynamics if two agents with different opinions
move to the same place.

Based on that definition, we can see that if two agents i
and j merge at time instant t, then they will have the same
opinion at time t+1 and onward, while their common opinion
may vary with time. Moreover, prior to the termination time
of the dynamics, we cannot have more than n merging times,
since there are n agents in the model. In what follows next,
we define the notions of termination time and communication
graphs.

Definition 2: For every set of n ≥ 1 agents we define the
termination time Tn of the synchronous Hegselmann-Krause
dynamics to be the maximum number of iterations before
steady state is reached over all the initial profiles.

Definition 3: Given an opinion profile at time t, we asso-
ciate with that opinion profile an undirected graph G(t) =
([n], E(t)) where the edge (i, j) ∈ E(t) if and only if i ∈
Nj(t). We refer to such a graph as the communication graph
or communication topology of the dynamics at time step t.
Furthermore, a connected component of the communication
graph is called δ-trivial for some δ > 0, if all the agents in
that component lie within a distance of at most δ from each
other.

Remark 4: From Definition 3, it is not hard to see that
for any δ < ε, a δ-trivial component forms a complete
component (clique) in the communication topology of the
dynamics. In particular, if there is such a δ-trivial component
at some time t, then in the next time step, all the agents in
that component will merge to the same opinion.

In our earlier work [21], we were able to analyze the
termination time of the Hegselmann-Krause dynamics based
on the number of isolated agents throughout the dynamics.

Theorem 1: For the termination time Tn of the syn-
chronous Hegselmann-Krause dynamics in Rd, we have:

Tn∑
t=0

(
1

2
)|S0(t)| < 8n6,

where S0(t) denotes the set of agents (singletons) at time t
who do not observe any opinions other than them inside their
neighborhood, i.e., i ∈ S0(t) if and only if Ni(t) = {xi(t)}.

Proof: A proof can be found in [21].

As a particular result of Theorem 1, if for a particular in-
stance of the dynamics, the agents maintain the connectivity
throughout the dynamics, we conclude that Tn = O(n6).
In fact, Theorem 1 gives us the idea that the termination
time of the dynamics greatly depends on the connectivity
of the underlying graph and should be independent of the
dimension of the opinions (d). In this paper, we resolve
that problem and show that indeed, the termination time is
independent of the dimension. That answers one of the open
questions raised in [1] related to the existence of a tighter
polynomial upper bound independent of the dimension of
the opinion space. For that purpose, we utilize a quadratic
Lyapunov function that was introduced earlier in [42].

Lemma 5: Let V (t)=
∑
i,j∈[n] min{‖xi(t)−xj(t)‖2, ε2}.

Then V is non-increasing along the trajectory of the syn-
chronous Hegselmann-Krause dynamics. In particular, we
have

V (t)− V (t+ 1) ≥ 4

n∑
`=1

‖x`(t+ 1)− x`(t)‖2.

Proof: A proof can be found in [42].

In the following theorem, we provide a lower bound for the
amount of decrease of the above Lyapunov function as long
as there exists one non-ε-trivial component in the dynamics.

Theorem 2: The termination time of the synchronous
Hegselmann-Krause dynamics in arbitrary finite dimensions



is independent of the dimension and is bounded from above
by Tn ≤ n8 + n.

Proof: Let us assume that the opinion profile x(t) =
(x1(t), x2(t), . . . , xn(t))′ is not an equilibrium point of the
dynamics and that time t is not a merging time. Therefore,
without loss of generality, we may assume that the com-
munication graph at time t is connected with a non-ε-trivial
component; otherwise, we can restrict ourselves to one of
the non-ε-trivial components. (Note that such a non-ε-trivial
component exists, because of Remark 4 and the fact that t is
not a merging time.) By projecting each individual column
of x(t) to the consensus vector 1 we can write

x(t) =
[
c11|c21| . . . |cd1

]
+
[
c̄11
⊥(1)

|c̄21
⊥(2)

| . . . |c̄d1
⊥(d)
]
,

(4)

where 1
⊥(k)

, k = 1, . . . , d are column vectors of unit size that
are orthogonal to the consensus vector, i.e., 1′1

⊥(k)

= 0, and
ck, c̄k, k = 1, . . . , d are coefficients of projection of the kth
column of x(t) on 1 and 1

⊥(k)

, respectively.

Now we claim that
∑d
k=1 c̄

2
k >

ε2

4 . Otherwise, we show
that every two agents xi(t) and xj(t) must lie within a
distance of at most ε from each other, which is in contrast
with the assumption that the component is a non-ε-trivial
component. In fact, if

∑d
k=1 c̄

2
k ≤ ε2

4 , we can write,

‖xi(t)− xj(t)‖2 =

d∑
k=1

c̄2k
(
1
⊥(k)

i − 1
⊥(k)

j

)2
≤ 2

d∑
k=1

c̄2k
(
(1
⊥(k)

i )2 + (1
⊥(k)

j )2
)

≤ 2

d∑
k=1

c̄2k
(
‖1
⊥(k)

‖2 + ‖1
⊥(k)

‖2
)

= 4

d∑
k=1

c̄2k ≤ ε2, (5)

where the first equality is due to the decomposition given
in (4) and the second equality is valid since the vectors
1
⊥(k)

, k = 1 . . . , d, are of unit size. The contradiction shows
that

∑d
k=1 c̄

2
k >

ε2

4 .

Next, we notice that x(t + 1) = A(t)x(t), where A(t) is
the stochastic matrix defined in (2). Using (4) we can write,

x(t)− x(t+ 1) = (I −A(t))x(t)

=
[
c̄1(I −A(t))1

⊥(1)

| . . . |c̄d(I −A(t))1
⊥(d)
]
,(6)

where the equality holds since 1 belongs to the null space
of I −A(t). In particular, we have,
n∑
`=1

‖x`(t)− x`(t+1)‖2 =

n∑
`=1

d∑
k=1

(
x`k(t)− x`k(t+1)

)2
=

d∑
k=1

( n∑
`=1

(
x`k(t)− x`k(t+1)

)2)
=

d∑
k=1

c̄2k‖(I −A(t))1
⊥(k)

‖2,

(7)

where in the last equality we have used (6). Let us assume
that Q(t) = (I − A(t))′(I − A(t)). It is not hard to see
that Q(t) is a positive semidefinite matrix. Moreover, 0 is an
eigenvalue of Q with multiplicity one, corresponding to the
eigenvector 1. To see that, let us assume that there exists
another vector v, such that Q(t)v = 0. Multiplying that
equality from the left by v′, we get ‖(I − A(t))v‖2 = 0,
and hence (I − A(t))v = 0. Since by the Perron-Frobenius
lemma (Lemma 1), 1 is the only unit eigenvector of I−A(t)
corresponding to eigenvalue 0, we conclude that v = α1 for
some α ∈ R. In other words, 1 is the only unit eigenvector
of Q(t) corresponding to eigenvalue 0. Moreover, Q(t) is
a symmetric real-valued matrix and, hence, diagonalizable,
where 1 is its only eigenvector corresponding to eigenvalue
0. That shows that the multiplicity of the eigenvalue 0 in
Q(t) is exactly one.

Let us use λ2(Q(t)) to denote the second smallest eigen-
value of Q(t). By the above argument, it must be strictly
positive. Using the Courant-Fischer lemma (Lemma 3), we
get λ2(Q(t)) = min‖y‖=1,y⊥1 y

′Q(t)y. Now for every k =
1, . . . , d, we can write

‖(I −A(t))1
⊥(k)

‖2 = (1
⊥(k)

)′(I −A(t))′(I −A(t))1
⊥(k)

= (1
⊥(k)

)′Q(t)1
⊥(k)

≥ min
‖y‖=1
y⊥1

y′Q(t)y

= λ2(Q(t)), (8)

where the inequality holds, since 1′1
⊥(k)

= 0 and ‖1⊥(k)‖ = 1.
Substituting (8) in (7) we get
n∑
`=1

‖x`(t)− x`(t+ 1)‖2 ≥
d∑
k=1

λ2(Q(t))c̄2k ≥ λ2(Q(t))
ε2

4
.

(9)

Henceforth, we bound λ2(Q(t)) from below based on a
function of n. For that purpose, let us assume that D(t) =
diag

(
1 + d1(t), 1 + d2(t), . . . , 1 + dn(t)

)
, i.e., D(t) is a

diagonal matrix with Dkk(t) = 1+dk(t), k ∈ [n]. Moreover,
let L(t) denote the Laplacian matrix of the communication
graph at time step t. By entry wise comparison of both sides,
it is not hard to see that I − A(t) = D(t)−1L(t). Now we
can write,

λ2(Q(t)) = λ2((D(t)−1L(t))′(D(t)−1L(t)))

= λ2(L(t)D(t)−2L(t)), (10)



where the last equality is due to the fact that L(t) and
D(t) are both symmetric matrices. Next, using the same
argument as above, we notice that since L(t)D(t)−2L(t)
is a symmetric and real-valued matrix, it is diagonalizable,
and its zero eigenvalue corresponding to eigenvector 1 has
multiplicity one. To see that, let us assume that there is
another vector u such that L(t)D(t)−2L(t)u = 0; then, we
must have,

0 = u′L(t)D(t)−2L(t)u =

n∑
i=1

(
1

1 + di(t)
)2(L(t)u)2i ,

which results in L(t)u = 0, or, equivalently, u is a scalar
multiple of the consensus vector 1.

Now, using the Courant-Fischer lemma, we can write,

λ2
(
L(t)D(t)−2L(t)

)
= min
‖y‖=1
y⊥1

y′L(t)D(t)−2L(t)y

≥ min
‖y‖=1
y⊥1

y′L(t)(
1

n2
I)L(t)y

=λ2

(
L(t)(

1

n2
I)L(t)

)
=

1

n2
λ2
(
L2(t)

)
=

1

n2
λ22
(
L(t)

)
, (11)

where the last equality is due to the fact that L is diag-
onalizable (it is a symmetric and real-valued matrix) with
an eigenvalue 0 of multiplicity 1. Substituting (11) in (10)
we get λ2(Q(t)) ≥ 1

n2λ
2
2

(
L(t)

)
. Now, using Cheeger’s

Inequality (Lemma 2) and since L(t) is the Laplacian of
a connected graph, we can bound λ2

(
L(t)

)
from below

by 2
n2 , which is due to the isoperimetric number of the

communication graph for the minimum cut set. Putting it
all together, we have,

λ2(Q(t)) ≥ 1

n2
λ22
(
L(t)

)
≥ 4

n6
. (12)

Finally, combining (12) with (9), we conclude that the
amount of decrease in the quadratic Lyapunov function if
there is a non-ε-trivial component is at least ε2

n6 . In other
words, if t is not a merging time, we have V (t)−V (t+1) ≥
ε2

n6 . Since by definition V (·) is always a nonnegative quantity
with V (0) ≤ ε2n2 and the number of merging times can be
at most n, we conclude that the termination time is bounded
from above by n8 + n.

V. ASYNCHRONOUS HEGSELMANN-KRAUSE DYNAMICS

In this section, we consider the asynchronous Hegselmann-
Krause dynamics as introduced in Section II. We first notice
that such dynamics do not necessarily reach their steady state
in finite time. The simplest case one can consider is when
there are only two agents on the real line, separated by a
distance less than the confidence bound ε. In such a case,
no matter what the order of the updating process is, the
agents will never arrive at the same opinion or disappear
from each other’s neighborhood. The two agents will get

closer and closer and asymptotically converge to some steady
state. That justifies asymptotic analysis of the asynchronous
Hegselmann-Krause dynamics, which we will consider in
this section.

In fact, one can easily show that unless the dynamics
start from a steady state, it will never reach its steady state
in finite time for any asynchronous updating scheme. The
reason is that unless the dynamics start from a steady state,
at any time instant t, there are at least two agents i and j
who are connected (j ∈ Ni(t)), and updating any of them
does not bring them to the same opinion. Furthermore, unlike
the synchronous case in one dimension, where the order of
agents’ opinions is preserved throughout the dynamics, in
the asynchronous case, the order of the agents’ opinions may
or may not change, depending on the updating scheme. In
this section, we consider a uniformly randomized updating
scheme for the agents and analyze the asymptotic conver-
gence of such dynamics to their steady state. But before we
start, we need the following two definitions.

Definition 4: We call an updating process a uniform up-
dating scheme for the asynchronous Hegselmann-Krause
mode if at each time instant t = 0, 1, . . ., only one agent
is chosen independently and with probability 1

n from the set
of all agents [n] and updates its opinion.

Definition 5: Given a δ > 0, we say that an opinion
profile x(t) is a δ-equilibrium if the set of agents partition
into different sets (clusters) {C1, C2, . . . , Cm} for some
m ∈ N such that dist

(
conv(Ci), conv(Cj)) > ε,∀i 6= j

and diam(conv(Ck)) < δ, ∀k = 1 . . .m.

In fact, Definition 5 simply states that a profile x(t) is a
δ-equilibrium if the opinions of agents at time t form some
small groups of diameter at most δ that are far from each
other by a distance of at least ε. Next, we introduce a network
formation game that can explain the behavior of the agents
in asynchronous Hegselmann-Krause dynamics.

A. Network Formation Game

Let us consider a set of n road constructors (players) in Rd
who are funded by the government to construct roads. The
budget that the government allocates to each player at the
beginning is a fixed amount and is equal to $(n− 1)ε2 ($ε2

support for each possible road that one player can construct).
Ideally, the government would like for all the possible

(
n
2

)
roads to be constructed by the players. To that end and in
order to create an incentive for players to build as many
roads as they can, the government will punish each player
by $ε2 if he or she decides not to construct a road (i.e.,
the government will take that player’s supporting $ε2 back).
On the other hand, each player has the ability to construct
roads only within an ε2-neighborhood of himself or herself.
(One can assume that the players do not take risks and do
not want to spend money beyond the support they received
from the government per road.) In such a game, players
act myopically, trying to build roads with those who are
most beneficial to them. If two players who are located at



x, y ∈ Rd build a road together, the cost to them is naturally
proportional to their distance from each other and is equal
to ‖x − y‖2. (The farther the players are from each other,
the more costly to make a road.) Therefore, in that setting,
the payoff for the ith player, i ∈ [n], at location xi can be
formulated as

Ui(xi, x−i) = (n− 1)ε2 −
n∑
j=1

min{‖xi − xj‖2, ε2}, (13)

where x−i denotes the actions of all players except the ith
one. In such a game, we assume that agents act rationally
and are able to compute and play their best response at time
steps t = 0, 1, 2, . . .. Based on the above scenario, we have
the following lemma.

Lemma 6: The sequence of the players’ best responses
in the network formation game under some specific up-
dating scheme is equivalent to the evolution of the asyn-
chronous Hegselmann-Krause dynamics under the same up-
dating scheme.

Proof: Let us assume that at time step t the ith
agent updates his location in order to increase his pay-
off. If the current locations of the players are denoted by
x1(t), x2(t), . . . , xn(t), the position of agent i at the next
time step would be

xi(t+ 1) = argmin
x

n∑
j=1

min{‖x− xj(t)‖2, ε2}

= argmin
x

∑
j∈Ni(t)

‖x− xj(t)‖2 =

∑
j∈Ni(t) xj(t)

|Ni(t)|
.

That establishes the equivalence between the best response
dynamics and the updating process in the asynchronous
Hegselmann-Krause model.

Proposition 3: An action profile (x∗1, x
∗
2, . . . , x

∗
n) is a

Nash equilibrium of the network formation game if and only
if it is a steady state of the asynchronous Hegselmann-Krause
dynamics.

Proof: Given an arbitrary Nash equilibrium
(x∗1, x

∗
2, . . . , x

∗
n), we show that it is a steady state of

the asynchronous Hegselmann-Krause dynamics by showing
that for all i, j ∈ [n] we either have x∗i = x∗j , or
‖x∗i −x∗j‖ > ε. To show this by contradiction, let us assume
that there are two players at locations x∗p 6= x∗q such that
‖x∗p − x∗q‖ ≤ ε. Let L = {x∗p, x∗q , x∗`1 , . . . , x

∗
`s
} denote

the set of all the players’ actions at this equilibrium point
which are in the same connected component as x∗p and x∗q
in the communication graph. Denoting one of the extreme
points of conv(L) by x∗` and using Lemma 6, it is not hard
to see that player `’s action is not his best response, i.e.,∑

j∈N∗
`
x∗j

|N∗` |
6= x∗` , where N ∗` = {j : ‖x∗j − x∗`‖ ≤ ε}. This is

in contrast with the assumption of (x∗1, x
∗
2, . . . , x

∗
n) being

a Nash equilibrium. To show that every steady state of
the asynchronous Hegselmann-Krause dynamics is a Nash
equilibrium of the network formation game is quite straight
forward.

Next we show that the above network formation game
is, indeed, a potential game, with the sum of the utilities
as a potential function. A further result (Corollary 2) shows
directly that it is strategically equivalent to a team problem.

Theorem 4: The network formation game is a potential
game with a potential function of U(x1, x2, . . . , xn) =∑n
i=1 Ui(xi, x−i). In particular, we have

U(xi, x−i)− U(x′i, x−i) ≤ −2|Ni|‖xi − x′i‖2,

where x′i denotes the deviation of the ith player from action
xi to his best response x′i = 1

|Ni|
∑
j∈Ni xj , and x−i denotes

the actions of all players except the ith one.
Proof: Let Ni and N ′i denote the set of neighbors of

player i before and after deviating, respectively. By definition
of the payoff function of players (13), we can write,

U(xi, x−i)− U(x′i,x−i) =
∑

j∈Ni∪N ′i

(
Uj(xi, x−i)− Uj(x′i, x−i)

)
= Ui(xi, x−i)− Ui(x′i, x−i)

+
∑

j∈Ni∩N ′i

(
Uj(xi, x−i)− Uj(x′i, x−i)

)
+

∑
j∈Ni\Ni∩N ′i

(
Uj(xi, x−i)− Uj(x′i, x−i)

)
+

∑
j∈N ′i\Ni∩N ′i

(
Uj(xi, x−i)− Uj(x′i, x−i)

)
,

(14)

where the first equality is due to the fact that the utility of
the players who do not observe xi or x′i does not change.

Next, we compute each of the summands in the above
expression. Note that only the action of player i changes
from xi to x′i, while all others’ actions remain unchanged
(Figure 1). We can write,

Uj(xi, x−i)−Uj(x′i, x−i)=‖xj−x′i‖2−‖xj−xi‖2, j∈Ni∩N ′i
Uj(xi, x−i)−Uj(x′i, x−i)= ε2−‖xj−xi‖2, j ∈ Ni \ Ni∩N ′i
Uj(xi, x−i)−Uj(x′i, x−i)=‖xj−x′i‖2− ε2, j ∈ N ′i \ Ni∩N ′i .

(15)

Fig. 1. Deviation of the ith player by updating to his best response x′
i.

The reason for the first equality in (15) is that after the
ith player deviates, every agent in j ∈ Ni∩N ′i still holds



his connection with i, and hence, by the definition of the
payoff function (13), his payoff is subjected to a change of
‖xj−x′i‖2−‖xj−xi‖2. (Note that all players except the ith
one are kept fixed.) Similarly, every player j ∈ Ni \Ni∩N ′i
stays connected to xi while disconnecting his link with the
ith player after i’s deviation (since agent i gets far from him
by moving from xi to x′i, and hence they both prefer to
stop building the road and each pay $ε2 to the government).
Therefore, the amount of change in the jth player’s payoff
is equal to ε2−‖xj−xi‖2. In a similar way, one can observe
that the third equality in (15) holds. By the same line of
argument and because of symmetry, one can easily show
that the amount of change in the ith player’s payoff is equal
to the sum of all the terms in (15) over j ∈ Ni∪N ′i . In fact,
we can write,

Ui(xi, x−i)−Ui(x′i, x−i)=
∑

j∈Ni∩N ′i

(
‖xj−x′i‖2 − ‖xj−xi‖2

)
+
∑

j∈Ni\Ni∩N ′i

(
ε2−‖xj − xi‖2

)
+
∑

j∈N ′i\Ni∩N ′i

(
‖xj − x′i‖2−ε2

)
= (|Ni| − (|Ni ∩N ′i |))ε2 − (|N ′i | − (|Ni ∩N ′i |))ε2

+
∑
j∈N ′i

‖xj−x′i‖2 −
∑
j∈Ni

‖xj−xi‖2

≤
∑

j∈Ni\Ni∩N ′i

‖xj−x′i‖2−
∑

j∈N ′i\Ni∩N ′i

‖xj−x′i‖2+
∑
j∈N ′i

‖xj−x′i‖2−
∑
j∈Ni

‖xj−xi‖2

=
∑
j∈Ni

‖xj−x′i‖2 −
∑
j∈Ni

‖xj−xi‖2,

(16)

where in the last inequality we have used the facts that

(|Ni| − (|Ni ∩N ′i |))ε2 ≤
∑

j∈Ni\Ni∩N ′i

‖xj − x′i‖2

(|N ′i | − (|Ni ∩N ′i |))ε2 ≥
∑

j∈N ′i\Ni∩N ′i

‖xj − x′i‖2.

(Note that ‖xj − x′i‖2 ≥ ε2, if j ∈ Ni \ Ni ∩ N ′i , and
‖xj−x′i‖2 ≤ ε2, if j ∈ N ′i \Ni∩N ′i .) Substituting (15) and
(16) in (14) and using (16), we get

U(xi, x−i)− U(x′i, x−i) ≤ 2[
∑
j∈Ni

‖xj−x′i‖2 −
∑
j∈Ni

‖xj−xi‖2]

= −2|Ni|‖xi − x′i‖2,

where the last equality comes from substituting x′i =
1
Ni
∑
j∈Ni xj because player i deviates to his best place

(Lemma 6).

Corollary 2: The network formation game is strategically
equivalent to a team problem.

Proof: For any arbitrary player i ∈ [n], let us define
β(x−i)=(n−1)(n−2)ε2−

∑
r,s∈[n]\{i}min{‖xr−xs‖2, ε2}.

Note that β(x−i) depends on the actions of all the players
except the ith player. By definition of U(x1, . . . , xn) =∑n
k=1 Uk(xk, x−k), we can write

2Ui(xi, x−i) + β(x−i) = U(x1, x2, . . . , xn).

This shows that the network formation game is essentially a
team problem, in the sense that every Nash equilibrium of
the game is a person-by-person optimal solution for the team,
and vice versa. More details on such strategic equivalence
can be found in [43].

Now we are ready to provide an upper bound on the ex-
pected number of steps until the asynchronous Hegselmann-
Krause dynamics with a uniform updating scheme reaches
its δ-equilibrium.

Theorem 5: The expected number of steps until the agents
in the asynchronous Hegselmann-Krause dynamics with a
uniform updating schedule reach a δ-equilibrium is bounded
from above by 2n9( εδ )2.

Proof: We evaluate the expected increase of the poten-
tial function given in Theorem 4. Since each player is chosen
independently and with probability 1

n , we have

E[U(t+ 1)− U(t)] =

n∑
i=1

1

n
E[U(t+ 1)− U(t)|i updates]

≥ 2

n∑
i=1

|Ni(t)|
n
‖xi(t)− xi(t+ 1)‖2

≥ 2

n

n∑
i=1

‖xi(t)− xi(t+ 1)‖2,

(17)

where in the first inequality we have used the result of
Theorem 4.

Now using the result of Theorem 1 and by the same
argument as in derivation of (5), we know that as long as
there is a non-δ-trivial component, we must have

∑d
k=1 c̄k ≥

δ2

4 , and therefore,
∑n
i=1 ‖xi(t)−xi(t+1)‖2 ≥ δ2

n6 . Moreover,
since U(τ) < n2ε2, we conclude that the expected number
of times that nontrivial components of a diameter larger than
δ > 0 will emerge is bounded from above by 2n9( εδ )2.

In fact, in the case of scalar asynchronous Hegselmann-
Krause dynamics, one could come up with a sharper bound
which we state in the following lemma.

Lemma 7: The expected number of steps until the scalar
asynchronous Hegselmann-Krause dynamics reach an ε

n -
equilibrium is bounded from above by n5+2 logn(n+1) + n.

Proof: Consider a particular time instant t, and let
x1(t) = mink∈[n] xk(t) and xm(t) = maxk∈N1(t) xk(t).
Also, without loss of generality, let us assume that x1(t) = 0.
It is clear that if xm(t) > ε

nα and agent 1 updates, then we
will have x1(t + 1) > ε

n1+α , where α is a number to be
determined later. In this case, the expected potential function
will increase by at least 2

n‖x1(t) − x1(t + 1)‖2 ≥ 2ε2

n3+2α .
Otherwise, there is no other agent in the interval [ ε

nα , ε].
Now we consider two cases (Figure 2):
• Agent xm(t) has a neighbor in the interval (ε, xm(t)+ε].

Assuming that agent m updates, we will have xm(t +

1) ≥ xm(t)+ε
n , and hence,

‖xm(t+ 1)− xm(t)‖2 ≥ ‖ ε
n
− xm(t)‖2 ≥ (

ε

n
− ε

nα
)2.



Therefore, in this case and using (17), the amount of
increase in the expected potential function is at least
2ε2

n3 (1− 1
nα−1 )2.

• Agent xm(t) does not have any neighbor in the interval
(ε, xm(t)+ε]. We note that all the agents in the interval
[0, xm(t)] form a cluster that is separated from other
agents by a distance of at least ε. Noting that two
separate clusters of nodes on a real line will stay apart
from each other in the rest of the dynamics, we can
decompose the original dynamics into two groups and
analyze each of them separately.

Fig. 2. Illustration of two different cases in the proof of Lemma 7.

By choosing α = logn(n + 1), we get 2ε2

n3+2α = 2ε2

n3 (1 −
1

nα−1 )2, and we can see that either we have an increase
of size 2ε2

n3+2 logn(n+1) in the expected potential function, or
the dynamics decompose into a cluster of size at most
ε
nα < ε

n and another part. Since the expected potential
function cannot increase more than n5+2 logn(n+1) number
of steps (U(·) ≤ n2ε2) and we cannot have more than n
clustering decompositions, the expected number of steps until
the dynamics decompose to clusters whose size is at most ε

n

is bounded from above by n5+2 logn(n+1) + n.

Remark 5: From the above lemma, after the expected
number of n5+2 logn(n+1)+n ≈ n7, every agent lies within a
cluster of diameter at most ε

n , and those always are separated
from each other by a distance of at least ε. Therefore, each
agent in a cluster can observe the others, and henceforth, the
diameter of the convex hull of each of the clusters shrinks
very fast.

In the following, we provide a bound on the expected
number of switching topologies during the evolution of the
asynchronous Hegselmann-Krause process.

Theorem 6: The expected number of switching topologies
of the asynchronous Hegselmann-Krause dynamics with a
uniform updating scheme is bounded from above by 16n9.

Proof: We show that switching topologies substantially
increase the expected value of the potential function. To see
that, first assume that the opinion profile at time t− 1, i.e.,
x(t− 1), is ε

2 -trivial, and that updating some agent i at this
time causes a switch in the topology of the network. We
claim that the next profile, i.e., x(t), is not ε2 -trivial. Note that
since there is a switch at time t and that within each of the ε

2 -
trivial components each agent is able to observe the others,

the convex hull of such a component shrinks even further
after the updating of any agent in the component. Therefore,
the switches must occur between the ε

2 -trivial components
and not within them.

Now, let us assume that i ∈ Cp (Cp denotes an ε
2 -trivial

component) and that updating agent i at time t−1 makes him
visible to another agent j in a different ε

2 -trivial component
Cq (Figure 3). Since Cp is an ε

2 -trivial component and the
agents in Cp are all the agents who are visible to agent i at
time t− 1, the movement of agent i from xi(t− 1) to xi(t)
can be at most ε

2 . Moreover, since agents j and i belong to
different ε

2 -trivial components, their distance at time t − 1
was larger than ε. That means that such a switching causes
i and j to make a link with a distance of at least ε

2 in the
profile x(t).

Fig. 3. Switching topology at time t from an ε
2

-trivial profile x(t− 1).

Now we partition all the possible switching times based
on the profile at the previous time instant:

• Time t is a switching time, and x(t− 1) is an ε
2 -trivial

profile. In this case and based on the above argument,
x(t) is not an ε

2 -trivial profile, and using the same
argument as in relation (5) and in view of (9) and (12),
we get

∑n
k=1 ‖xk(t)− xk(t+ 1)‖2 ≥ ε2

16n6 .
• Time t is a switching time, and x(t − 1) is not an ε

2 -
trivial profile. In this case and within a non- ε2 -trivial
component, using the same argument as in the first case,
we get

∑n
k=1 ‖xk(t− 1)− xk(t)‖2 ≥ ε2

16n6 .

Therefore, if t is a switching time, using (17) we conclude
that there is an increase of ε2

16n6 at either time t−1 or t in the
expected potential function. In other words, if t is a switching
time, using (17) we can write,

E[U(t+1)−U(t−1)] = E[U(t+1)−U(t)]

+ E[U(t)−U(t−1)] ≥ 2

n

ε2

16n6
=

ε2

8n7
.

Now, given an arbitrary initial profile x(0), let us use pt
to denote the probability of occurrence of a switching at
time t = 1, 2, . . .. Therefore, the amount of increase in the
expected potential function is at least

∑∞
t=0 pt

ε2

16n7 (since
we may count each instant twice). On the other hand, since
U(τ) ≤ n2ε2,∀τ = 1, 2, . . ., we conclude that

∑∞
t=0 pt. But∑∞

t=0 pt is exactly equal to the expected number of switching



topologies. Therefore, the expected number of switching
topologies is bounded from above by 16n9.

VI. HETEROGENEOUS HEGSELMANN-KRAUSE
DYNAMICS

Once again we consider the Hegselmann-Krause model
(2), but this time we assume that each agent i has his or her
own bound of confidence εi, which could be different from
the others. Therefore, Ni(x(t)) = {1 ≤ j ≤ n : ‖xi(t) −
xj(t)‖ ≤ εi} and A(t), t ≥ 0 will change correspondingly.
That causes an asymmetry for the interactions among the
agents. In other words, there is a possibility that one agent
xi(t) observes agent xj(t) but not vice versa. In fact, we
are interested in studying the convergence behavior of such
dynamics. In contrast with the homogeneous Hegselmann-
Krause model, which reaches its steady state after finite time,
the following example shows that in the heterogeneous case,
steady state may not be reached in finite time.

Example 1: Consider three agents x1, x2, x3 that are lo-
cated at −1, 13 , 1, respectively, at the initial time t = 0.
Also, let us assume ε1 = 1

2 , ε2 = 2, ε3 = 1
2 . As can be

seen, agent x2 is able to see all the agents at each time step.
Therefore, after the first iteration, x2(1) =

−1+ 1
3+1

3 = 1
32 ,

and since the confidence bounds of x1 and x3 are small,
they can see no one except themselves, and hence they will
remain in their own locations. Therefore, at time t = 1,
we will have x1(1) = −1, x2(1) = 1

32 , x3(1) = 1. With
the same line of argument, it is not hard to see that at
any time instant t = 1, 2, . . . the position of agents will be
x1(t) = −1, x2(t) = 1

3t+1 , x3(t) = 1. That shows that the
dynamics will converge to their steady state (−1, 0, 1), but
not in finite time.

In the above example, one of the main reasons that the
convergence was not achieved in finite time was that there
were two agents who didn’t have interaction with others in
the dynamics and remained fixed without any movement
forever. We refer to such agents as silent agents. In the
next theorem, we show that if the amount of time an
agent sleeps (is inactive) is finite, then we will have finite
time convergence of the dynamics to their steady state. We
note that similar type of such asynchronous analysis under
different scenarios and settings can be found in [44], [45],
[46].

Theorem 7: Consider the heterogeneous Hegselmann-
Krause model, where the ith agent i ∈ [n] has a confidence
bound of εi > 0. Also, assume that there is an integer T ∗

such that no agent is silent for a period of time longer than
T ∗. Then, the dynamics will converge to their steady state
in finite time.

Proof: We prove the theorem by induction on the
number of agents. For n = 1 the result is obvious, and the
initial time is the termination time. Let us assume that the
result holds for each k ≤ n, and now suppose that we have
n+1 agents with different confidence bounds. We show that

there is a finite time T such that the left product of every
T consecutive matrices A(t), t ≥ 0 of the dynamics will
generate a matrix with at least one positive column.

Starting from agent 1, let us define

S(t) = {i ∈ [n+ 1]|(A(t)A(t− 1) . . . A(0))i1 > 0},

and Sc(t) = [n+ 1] \S(t) to be its complement. Since each
agent can see itself at each time instant, if i ∈ S(t) for some
time t, then it will be in S(t′) for all t′ ≥ t. In other words,
we have S(0) ⊆ S(1) ⊆ S(2) ⊆ . . .. Now we claim that
there must be a finite time T such that S(T ) = [n + 1].
Otherwise, let us assume that there exists a time instant
t0 such that S(t0) = S(t),∀t > t0. By the definition of
S(t), that means that for t > t0, none of the agents in
Sc(t) can see any agent in S(t) (although it may happen
that some agents in S(t) are still able to see some of the
agents in Sc(t)). That means that the agents in the set Sc(t0)
constitute a group of agents whose opinions in the future of
the dynamics t ≥ t0 will not be influenced by any other
agent in S(t0). On the other hand, since |Sc(t0)| ≤ n (note
that S(0) = {1}), according to the induction assumption, the
agents in Sc(t0) will reach their steady state after some finite
time Tn, where Tn denotes the maximum number of steps
for n agents to reach their steady state, which, by induction
assumption, is considered to be a finite number. However,
under the hypothesis of the Theorem, after reaching the
steady state, these agents cannot remain silent for more than
T ∗ more steps. Therefore, after a finite time T ∗ + Tn, at
least one more agent will be added to the set S(t0), and the
cardinality of S(t0) will increase by at least 1. Since the
total number of agents is n + 1, T := (n + 1)(T ∗ + Tn)
steps are enough to guarantee S(T ) = [n + 1]. That shows
that A(T ) . . . A(1)A(0) will be a matrix in which the first
column will be strictly positive.

On the other hand, since all the positive entries of those
matrices are bounded from below by min+(A(t)) ≥ 1

n+1 ,
the minimum positive entry of the left product of every T
consecutive such matrices will be larger than ( 1

n+1 )T . Using
Lemma 4, we can see that after every T steps, the diameter
of the convex hull of the agents’ opinions will shrink by
a factor of at least 1 − ( 1

n+1 )T . Therefore, there exists a
finite time Tn+1 < ∞ such that the diameter of the convex
hull of the agents’ opinions at time Tn+1 is smaller than
mini∈[n+1] εi. That means that after Tn+1 steps, every agent
is able to observe the others in his or her own neighborhood,
and in the next step, the dynamics reach a steady state.

In fact, the above theorem asserts that if there exists an
external input which creates an incentive for the agents to
interact with someone else after some period of time, then
the circulation of information in the society will be sufficient
to guarantee the finite time formation of the opinions.

VII. DISCUSSION

Inspired by the results given in Section V, we will now
discuss some of the possible directions that could be pursued



to analyze the asynchronous heterogeneous Hegselmann-
Krause model in more detail. In fact, because of the different
confidence bounds, the symmetry from which we benefit in
the homogeneous case does not hold anymore. Therefore, the
communication topology in this case can be interpreted as
a digraph (directed graph) instead of an undirected graph.
In this case one way of showing the asymptotic conver-
gence of the heterogeneous Hegselmann-Krause dynamics
to an steady state is to design a proper utility function for
each player such that the resulting network formation game
changes to a team problem, such that each player’s update
contributes an increase (decrease) to a global function toward
an equilibrium.

A natural idea here is to define the utility of the players
based on functions of their own confidence bound and their
relative distance from others such that their best response
dynamics coincide with the evolution of the asynchronous
heterogeneous Hegselmann-Krause dynamics. For example,
one may define the utility of the ith player to be Ui(t) =
(n − 1)ε2i −

∑n
j=1 min{(xi(t) − xj(t))2, ε2i }, where εi de-

notes the confidence bound of the ith agent and x(t) =
(x1(t), x2(t), . . . , xn(t)) denotes the opinion profile at time
instant t. It turns out that such utility functions do not
make the network formation game a potential game or
lead to a strategically equivalent team problem. However,
one can consider 15 different possibilities for creation or
breaking of edges among agents, assuming that only one
agent updates (deviates) to a new position. In that case,
one can think of a proper weighting on the edges in order
to distinguish one-sided edges from symmetric (two-sided)
edges. For example, if there is a one-sided edge from player
i to player j, one can rescale the utility of agent i by a
fraction of his own confidence bound and his neighbors’ in
order to adjust the influence of other players’ actions on
his own utility function. At this point, we are not aware of
any such utility functions, and we leave the full analysis of
the heterogeneous Hegselmann-Krause dynamics as a future
direction of research.

VIII. CONCLUSION

In this paper, we studied the termination time of the
Hegselmann-Krause dynamics in finite dimensions and un-
der various settings: synchronous, asynchronous, homoge-
neous, and heterogeneous. We provided a polynomial upper
bound for the termination time of the synchronous homoge-
neous model independent of the dimension of the ambient
space. We showed that the asynchronous Hegselmann-Krause
model can be formulated as a sequence of best response
dynamics of a potential game. Furthermore, we provided an
upper bound for the expected number of steps until the dy-
namics reaches its δ-equilibrium. In particular, we bounded
the expected number of switchings in the topology of the
networks during the evolution of the system. We considered
the heterogeneous Hegselmann-Krause dynamics, and we
obtained a necessary condition for finite time convergence of
such dynamics. Finally, we discussed some of the possible

future directions that could be pursued to enable analysis of
heterogeneous Hegselmann-Krause dynamics in more detail.
As a future direction of research, one may think of how
to enrich the Hegselmann-Krause model in order to remove
some of its current limitations. As an example, one could
modify the model by allowing the agents with the same
opinion to be related to each other by some constraints,
meaning that having the same opinion at some time instant
does not necessarily lead to having the same opinion for all
the future time instances.
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