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Optimal Energy-Aware Epidemic Routing in DTNs
Soheil Eshghi, MHR. Khouzani, Saswati Sarkar, Ness B. Shroff, Santosh S. Venkatesh

Abstract—In this work, we investigate the use of epidemic
routing in energy constrained Delay Tolerant Networks (DTNs).
In epidemic routing, messages are relayed by intermediate nodes
at contact opportunities, i.e., when pairs of nodes come within
the transmission range of each other. Each node needs to decide
whether to forward its message upon contact with a new node
based on its own residual energy level and the age of that
message. We mathematically characterize the fundamental trade-
off between energy conservation and a measure of Quality of
Service as a dynamic energy-dependent optimal control problem.
We prove that in the mean-field regime, the optimal dynamic
forwarding decisions follow simple threshold-based structures in
which the forwarding threshold for each node depends on its
current remaining energy. We then characterize the nature of
this dependence. Our simulations reveal that the optimal dynamic
policy significantly outperforms heuristics.

Index Terms—DTN, Energy-Based Epidemic Routing, Strati-
fied Optimal Control, Threshold-Based Forwarding.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) have been envisioned
for civilian disaster response networks, military networks,
and environmental surveillance, e.g., where communication
devices are carried by disaster relief personnel and soldiers,
or where they can be mounted on wandering animals. These
networks are comprised of mobile nodes whose communi-
cation range is much smaller than their roaming area, and
therefore messages are typically relayed by intermediate nodes
at times of spatial proximity. Relaying messages consumes
a signicant amount of energy in the sending and receiving
nodes. However, mobile nodes in DTNs typically have lim-
ited battery reserves and replacing/recharging the batteries
of drained nodes is usually infeasible or expensive. Simple
epidemic forwarding depletes the limited energy reserves of
nodes, while conservative forwarding policies jeopardize the
timely delivery of the message to the destination. Hence, there
is an inherent trade-off between timely message delivery and
energy conservation.
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The literature on message routing in DTNs is extensive [1]–
[15]. Most notably, Vahdat and Becker [1] present a policy
where each node propagates the message to all of its neigh-
bours simultaneously (“Epidemic Routing”), while Spyropou-
los et al. [6] propose spreading a specific number of copies
of the message initially and then waiting for the recipients of
these copies to deliver the message to the destination (“Spray
and Wait”). Wang and Wu [7] present “ Optimized Flooding”,
where flooding is stopped once the total probability of message
delivery exceeds a threshold. Singh et al. [11] and Altman et
al. [14] identify optimal and approximately optimal message
forwarding policies in the class of policies that do not take
the distribution of node energies into account. In summary,
the state of the art in packet forwarding in DTNs comprises
of heuristics that ignore energy constraints [1]–[3], those that
consider only overall energy consumption but provide no
analytic performance guarantees [4]–[9], and those that do not
utilize the energy available to each node in making forwarding
decisions [10]–[15] (we describe some of these policies in
more detail in §IV). An efficient forwarding strategy can use
knowledge of the distribution of energy among among nodes
to its advantage, and this motivates the design of dynamic
energy-dependent controls which are the subject of this paper.

We start by formulating the trade-off between energy con-
servation and likelihood of timely delivery as a dynamic
energy-dependent optimal control problem: at any given time,
each node chooses its forwarding probability based on its cur-
rent remaining energy. Since the number of relay nodes with
the message increases and residual energy reserves decrease
with transmissions and receptions, the forwarding probabilities
vary with time. Thus, they must be chosen so as to control the
evolution of network states, which capture both the fraction
of nodes holding a copy of the message and the remaining
battery reserves of the nodes. We model the evolution of these
states using epidemiological differential equations that rely
on mean-field approximation of Markov processes, and seek
dynamic forwarding probabilities (optimal controls) that opti-
mize objective functions penalizing energy depletion subject
to enforcing timely message delivery (§§II-A,II-B).

Our first result is to prove that dynamic optimal controls
follow simple threshold-based rules (§III, Theorem 2). That
is, a node in possession of a copy of the message forwards
the message to nodes it encounters that have not yet received
it until a certain threshold time that depends on its current re-
maining energy. Calculating these thresholds is much simpler
than solving the general problem and can be done once at the
source node of the message. Subsequently, they can be added
to the message as a small overhead. Each node that receives
the message can retrieve the threshold times and forward the
message if its age is less than the threshold entry of the node’s

ar
X

iv
:1

40
3.

16
42

v2
  [

cs
.S

Y
] 

 2
 J

un
 2

01
5



2

residual energy level. The execution of the policy at each node
is therefore simple and based only on local information.

Our second result is to characterize the nature of the
dependence of the thresholds on the energy levels. Intuitively,
the less energy a node has, the more reluctant it should be to
transmit the message, as the transmission will drive it closer to
critically low battery levels. However, our investigations reveal
that this intuition can only be confirmed when the penalties
associated with low final remaining energies are convex (§III,
Theorem 3), and does not hold in general otherwise.

Finally, our optimal control provides a missing benchmark
for forwarding policies in large networks in which no infor-
mation about the mobility pattern of the individual nodes is
available and a minimum QoS is desired. This benchmark
allows us to observe the sub-optimality of some simpler
heuristic policies, and to identify parameter ranges in which
they perform close to the optimal (§IV).

II. SYSTEM MODEL

We assume a low-load scenario in which only one message
is propagated in the network within a terminal time T . This
message has a single destination and it is sufficient for a
copy of the message to be delivered to its destination by the
terminal time. We use the deterministic mean-field (i.e., for
large numbers of nodes) regime which models state evolution
using a system of differential equations. Such models have
been shown to be acceptable approximations both analytically
and empirically for large and fast-moving mobile wireless
networks [16]. In §II-A, we develop our system dynamics
model based on mean-field deterministic ODEs. Subsequently,
in §II-B we consider two classes of utility functions that
cogently combine a penalty for the impact of the policy on
the residual energy of the nodes with guarantees for the QoS
of the forwarding policy.

A. System Dynamics

We begin with some definitions: a node that has received
a copy of the message and is not its destination is referred
to as an infective; a (non-destination) node that has not
yet received a copy of the message is called a susceptible.
The maximum energy capacity of all nodes is B units. A
message transmission between a pair of nodes consumes s
units of energy in the transmitter and r units in the receiver,
independent of their total energy level. Naturally, r ≤ s.
When an infective node contacts a susceptible at time t, the
message is transmitted with a certain forwarding probability
if the infective (transmitter) and susceptible (receiver) have
at least s and r units of energy. If either does not have the
respective sufficient energy, transmission will not occur.

Two nodes contact each other at rate β̂. We assume that
inter-contact times are exponentially distributed and uniform
among nodes, an assumption common to many mobility
models (e.g., Random Walker, Random Waypoint, Random
Direction, etc. [17]). Moreover, it is shown in [17] that

β̂ ∝ average rel. speed of nodes× communication ranges
the roaming area

.

(1)

Assuming t = 0 mark the moment of message generation, we
define Si(t) (respectively, Ii(t)) to be the fraction of nodes that
are susceptible (respectively, infective) and that have i energy
units at time t. Hence for t ∈ [0, T ]:

∑B
i=0 (Si(t) + Ii(t)) = 1.

At any given time, each node can observe its own level
of available energy, and its forwarding decision should, in
general, utilize such information. Hence, upon an instance of
contact between a susceptible node with i units of energy and
an infective node with j units of energy at time t, as long as
i ≥ r and j ≥ s, the message is forwarded with probability
uj(t) (0 ≤ uj(t) ≤ 1). We take these probabilities to be our
controls u(t) =

(
us(t), us+1(t), . . . , uB(t)

)
∈ U , where U is

the set of piecewise continuous controls with left-hand limits
at each t ∈ (0, T ], and right-hand limits at each t ∈ [0, T ).
If the message is forwarded, the susceptible node transforms
to an infective node with i− r energy units, and the infective
node likewise to an infective node with j − s energy units.
We assume that once an infective contacts another node, the
infective can identify (through a low-load exchange of control
messages) whether the other node has a copy of the message
(i.e., is infective), or does not (i.e., is susceptible), whether the
contacted node is a destination and also whether it has enough
energy to receive the message. We assume that the dominant
mode of energy consumption is the transmission and reception
of the message, and that each exchange of the control messages
consumes an insignificant amount of energy. If a message-
carrying node that has sufficient energy for one transmission
contacts the destination that has yet to receive the message,
the message is always forwarded to the destination.

Let N be the total number of nodes and define β := Nβ̂.
Following (1), β̂ is inversely proportional to the roaming area,
which scales with N . Hence, if we can define a density
of nodes, β has a nontrivial value. The system dynamics
in this regime over any finite interval can be approximated
thus, except at the finite points of discontinuity of u ([18,
Theorem 1]):

Ṡi =

 −βSi
B∑
j=s

ujIj (r ≤ i ≤ B), (2a)

0 (0 ≤ i < r), (2b)

İi =



−βuiIi
B∑
j=r

Sj (B − r < i ≤ B), (2c)

−βuiIi
B∑
j=r

Sj + βSi+r

B∑
j=s

ujIj

(B − s < i ≤ B − r), (2d)

−βuiIi
B∑
j=r

Sj + βSi+r

B∑
j=s

ujIj + βui+sIi+s

B∑
j=r

Sj

(s ≤ i ≤ B − s), (2e)

βSi+r

B∑
j=s

ujIj + βui+sIi+s

B∑
j=r

Sj (0 ≤ i < s). (2f)

Note that in the above differential equations and in the rest of
the paper, whenever not ambiguous, the dependence on t is
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made implicit. We now explain each of these equations:1

(2a): The rate of decrease in the fraction of susceptible nodes
with energy level i ≥ r is proportional to the rate of contacts
between these nodes and transmitting infective nodes with
energy level equal to or higher than s.
(2b): Susceptibles with less than r units of energy cannot
convert to infectives.
The rate of change in infectives of energy level i is due to
three mechanisms:

1) Transmitting infectives of energy level i convert to infec-
tives with energy level i−s upon contact with susceptibles
that have sufficient energy for message exchange. This
conversion happens due to the energy consumed in trans-
mitting the message, resulting in a decrease in infectives
of energy level i.

2) Susceptibles with energy level i + r are transformed to
infectives of energy level i upon contact with transmitting
infectives that have at least s units of energy, swelling
the ranks of infectives of energy level i. This conversion
occurs due to the energy consumed in receiving the
message.

3) Transmitting infectives of energy level i + s convert to
infectives with energy level i upon contact with suscep-
tibles that have sufficient energy for message exchange,
adding to the pool of infectives of energy level i. Like
1, this is due to the energy consumed in transmitting the
message.

Now, given that energy levels are upper-bounded by B:
I If B − r < i ≤ B, only mechanism 1 is possible, as
i+ s ≥ i+ r > B, ruling out 2 and 3 respectively. This
results in (2c).

II If B − s < i ≤ B − r, only mechanisms 1 and 2 are
possible, as i+ s > B rules out 3, leading to (2d).

III If s ≤ i ≤ B − s, all three mechanisms are in play,
resulting in (2e).

IV If 0 ≤ i < s, only mechanisms 2 & 3 remain, as i−s < 0
rules out 1. Thus, we have (2d).

We consider continuous state solutions S(t) =(
S0(t), . . . , SB(t)

)
, I(t) =

(
I0(t), . . . , IB(t)

)
to the dynami-

cal system (2) subject to initial conditions

S(0) = S0 := (S00, . . . , S0B),

I(0) = I0 := (I00, . . . , I0B).
(3)

We naturally assume that the initial conditions satisfy S(0) ≥
0, I(0) ≥ 0, and

∑B
i=0

(
Si(0)+Ii(0)

)
= 1 (vector inequalities

are to be interpreted component-wise throughout).
We say that a state solution (S(t), I(t)) for the system (2) is

admissible if the non-negativity and normalization conditions

S(t) ≥ 0, I(t) ≥ 0,

B∑
i=0

(Si(t) + Ii(t)) = 1, (4)

are satisfied for all t ∈ [0, T ]. We next show that states
satisfying (2) are admissible and unique for any u ∈ U :

1We will consider protocols where a destination receives at most one copy
of the message by the terminal time. Nothing changes in the system dynamics
if we allow multiple copies to be received because isolated transmissions have
no effect on the mean-field regime.

Theorem 1. Suppose the initial conditions satisfy S(0) ≥ 0,
I(0) ≥ 0, and

∑B
i=0

(
Si(0) + Ii(0)

)
= 1, and suppose

u(t) =
(
us(t), us+1(t), . . . , uB(t)

)
is any system of piecewise

continuous controls. Then the dynamical system (2) has a
unique state solution (S(t), I(t)), which is admissible. If
Ii(t
′) > 0 for any i (respectively, Sj(t′) > 0 for any j) and

t′ ∈ [0, T ), Ii(t) > 0 (respectively Sj(t) > 0) for all t > t′.
Also, for each j, Sj(t′) = 0 for all t′ ∈ (0, T ] if Sj(0) = 0.

In our proof, we use the following general result:

Lemma 1. Suppose the vector-valued function f = (fi, 1 ≤
i ≤ N) has component functions given by quadratic forms
fi(t,x) = xTQi(t)x (t ∈ [0, T ]; x ∈ S), where S is the
set of N -dimensional vectors x = (x1, . . . , xN ) satisfying
x ≥ 0 and

∑N
i=1 xi = 1, and Qi(t) is a matrix whose

components are uniformly, absolutely bounded over [0, T ].
Then, for an N -dimensional vector-valued function F, the
system of differential equations

Ḟ(t) = f(t,F) (0 < t ≤ T )

subject to initial conditions F(0) ∈ S
(5)

has a unique solution, F(t), which varies continuously with
the initial conditions F0 ∈ S at each t ∈ [0, T ].

This follows from standard results in the theory of ordinary
differential equations [19, Theorem A.8, p. 419] given the
observation that f(t,F) is comprised of quadratic forms and
is thus Lipschitz over [0, T ] ∗ S.

Proof: We write F(0) = F0, and in a slightly informal
notation, F = F(t) = F(t,F0) to acknowledge the depen-
dence of F on the initial value F0.

We first verify the normalization condition of the admissibil-
ity criterion. By summing the left and right sides of the system
of equations (2) we see that

∑B
i=0

(
Ṡi(t) + İi(t)

)
= 0, and,

in view of the initial normalization
∑B
i=0

(
Si(0) + Ii(0)

)
= 1,

we have
∑B
i=0

(
Si(t) + Ii(t)

)
= 1 for all t.

We now verify the non-negativity condition. Let F =
(F1, . . . , FN ) be the state vector in N = 2(B + 1) dimensions
whose elements are comprised of (Si, 0 ≤ i ≤ B) and
(Ii, 0 ≤ i ≤ B) in some order. The system of equations (2a)–
(2f) can thus be represented as Ḟ = f(t,F), where for
t ∈ [0, T ] and x ∈ S, the vector-valued function f = (fi, 1 ≤
i ≤ N) has component functions fi(t,x) = xTQi(t)x in
which Qi(t) is a matrix whose non-zero elements are of the
form ±βuk(t). Thus, the components of Qi(t) are uniformly,
absolutely bounded over [0, T ]. Lemma 1 establishes that the
solution F(t,F0) to the system (2a)–(2f) is unique and varies
continuously with the initial conditions F0; it clearly varies
continuously with time. Next, using elementary calculus, we
show in the next paragraph that if F0 ∈ Int S (and, in
particular, each component of F0 is positive), then each
component of the solution F(t,F0) of (2a)–(2f) is positive
at each t ∈ [0, T ].2 Since F(t,F0) varies continuously with
F0, it follows that F(t,F0) ≥ 0 for all t ∈ [0, T ], F0 ∈ S,
which completes the overall proof.

2Throughout the paper, we use positive for strictly positive, etc.
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Accordingly, let each component of F0 be positive. Since
the solution F(t,F0) varies continuously with time, there
exists a time, say t′ > 0, such that each component of F(t,F0)
is positive in the interval [0, t′). The result follows trivially if
t′ ≥ T . Suppose now that there exists t′′ < T such that each
component of F(t,F0) is positive in the interval [0, t′′), and
at least one component is 0 at t′′. We first show that such
components can not be Si for any i ≥ 0 and subsequently
rule out Ii for all i ≥ 0. Note that uj(t), Ij(t), Sj(t) are
bounded in [0, t′′] (recall

∑B
j=0 (Sj(t) + Ij(t)) = 1, Sj(t) ≥

0, Ij(t) ≥ 0 for all j, t ∈ [0, t′′]). First, let r ≤ i ≤ B.

From (2a), Si(t′′) = Si(0)e−β
∫ t′′
0

∑B
j=s uj(t)Ij(t) dt. Since all

uj(t), Ij(t) are bounded in [0, t′′], and Si(0) > 0, β > 0,
therefore Si(t

′′) > 0. From (2b), Si(t′′) = Si(0) > 0
for 0 ≤ i < r. Thus, Si(t

′′) > 0 for all i. Since
Si(t) > 0, Ii(t) ≥ 0 for all i, t ∈ [0, t′′], from (2c) –
(2e), İi ≥ −βuiIi

∑B
j=r Sj for all i ≥ s in the interval

[0, t′′]. Thus, Ii(t′′) ≥ Ii(0)e−β
∫ t′′
0

ui(t)
∑B
j=r Sj(t) dt. Since all

uj(t), Ij(t), Sj(t) are bounded in [0, t′′], and Ii(0) > 0, β > 0,
it follows that Ii(t′′) > 0 for all i ≥ s. Finally, since
Si(t) > 0, Ii(t) ≥ 0 for all i, t ∈ [0, t′′], from (2f), it follows
that İi ≥ 0 for all i < s, t ∈ [0, t′′]. Thus, Ii(t′′) ≥ Ii(0) > 0
for all i < s. This contradicts the definition of t′′ and in turn
implies that F(t,F0) > 0 for all t ∈ [0, T ], F0 ∈ Int S.

Since the control and the unique state solution S(t), I(t)
are non-negative, (2a) implies that S(t) is a non-increasing
function of time. Thus, Sj(t) = 0 if Sj(0) = 0 for any j.
Using the argument in the above paragraph and starting from
a t′ ∈ [0, T ) where Sj(t′) > 0, or Ij(t′) > 0, it may be shown
that Sj(t) > 0 or Ij(t) > 0 respectively for all t > t′.

The above proof allows for choices of T that depend on
the controls u, provided such controls result in finite T . For
the problem to be non-trivial, we assume henceforth that there
exist i ≥ r, j ≥ s for which Si(0) > 0 and Ij(0) > 0.

We conclude this section with another technical lemma
which we will use later:

Lemma 2. For all t ∈ (0, T ) and all i, |İi(t+)| and |İi(t−)|
exist and are bounded, as is |İi(T−)|.

Proof: The states are admissible (Theorem 1) and con-
tinuous, and the controls are bounded by definition. Hence,
due to (2), |İi(t)| exists and is bounded at all points except
the finite set of points of discontinuity of the controls, and
continuous over each interval over which u is continuous.
Thus, |İi(t+)| and|İi(t−)| exist and are bounded for all
t ∈ (0, T ). Using the same reasoning, |İi(T−)| also exists
and is bounded.
B. Throughput constraint and objective functions

The objective function of the network can represent both
a measure of the efficacy of the policy in ensuring timely
message delivery, and the effect of the policy on the residual
energy reserves of the nodes. We first develop measures for
each of these cases, and then utilize them to define an objective
function and a constraint on the achieved network throughput.

Throughput constraint: One plausible measure of QoS
in the context of DTNs is the probability of delivery of the
message to the destination before a terminal time T . We

examine two cases: one in which a minimum probability of
delivery is mandated on the message before a fixed terminal
time T , and another in which the time-frame of message
delivery is flexible and the goal is to meet the minimum
probability of delivery requirement as soon as possible. In
what follows, we discuss these two cases.

Let β̂0 be the rate of contact of a node with the destination,
potentially different from β̂, and define β0 := Nβ̂0.

Following from the exponential distribution of the inter-
contact times, the mandated probability of delivery constraint
P(delivery) ≥ p (i.e., the message being delivered to the
destination with probability greater than or equal to p within
[0, T ]) implies that: 1− exp

(
−
∫ T

0
β0

∑B
i=s Ii(t) dt

)
≥ p. 3

Note that the exponential term in the LHS is the proba-
bility that no contact occurs between the destination and any
infective with sufficient energy during the interval of [0, T ].

Also notice that similar to (1), β̂0 is inversely proportional
to the roaming area, which itself scales with N . Another point
to note is that the summation inside the integral starts from
index s, since infective nodes with less than s units of energy
cannot forward their message to the destination upon potential
contact. This is equivalent to a throughput constraint:∫ T

0

B∑
i=s

Ii(t) dt ≥ − ln(1− p)/β0. (6)

In the first case, referred to as the fixed terminal time
problem, the terminal time T is fixed and the throughput
constraint is satisfied (along with minimizing the adverse
effects on the residual energy of the nodes which we will
discuss next) through appropriate choice of control function
u, if any such functions exist. In the second case, referred to
as the optimal stopping time problem, for every choice of the
control function u, the terminal time T is chosen to satisfy
(6) with equality. The terminal time is therefore variable and
depends on the choice of u. Such a T exists for a given control
u if and only if for the resulting states

lim
T ′→∞

∫ T ′

0

B∑
i=s

Ii(t) dt ≥ − ln(1− p)/β0. (7)

The throughput constraint will not be satisfied in any finite
time horizon for controls that do not satisfy the above. We
will therefore exclude such controls in the optimizations we
formulate next. Note that if the system uses a zero-control
(i.e., u(t) = (0, . . . , 0) at all t) then Si(t) = Si(0) and
Ii(t) = Ii(0) for all t; thus, since

∑B
i=s Ii(0) > 0, (7) holds.

Therefore, there exists at least one control that satisfies (7).

3This is because P (delivery) = E{1σ=t}, where σ is the time of delivery
of the message to the destination. Therefore:

P (delivery) =

∫ T

0
P (σ = t) dt

=

∫ T

0
exp

(
−β̂0

∫ t

0

B∑
i=s

NIi(ξ) dξ

)
· β̂0

B∑
i=s

NIi(t) dt

= 1− exp

(
−
∫ T

0
β0

B∑
i=s

Ii(t) dt

)
.

A special case of this was shown in [17, Appendix A] and [14, §II.A].
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Since T is finite for every control that satisfies (7), the system
is admissible for each such control as well.

Energy cost of the policy: In the simplest representation
of the trade-off with the energy overhead, one can think of
maximizing the aggregate remaining energy in the network
at the terminal time, irrespective of how it is distributed. It
is however desirable for the network to avoid creating nodes
with critically low energy reserves. We capture the impact
of a forwarding policy on the residual energy reserves of
the nodes by penalizing the nodes that have lower energy
levels. Specifically, denoting the terminal time as T , the overall
penalty associated with the distribution of the residual energies
of nodes at T , henceforth referred to as the energy cost of the
policy, is captured by:

∑B
i=0 ai (Si(T ) + Ii(T )), in which,

{ai} is a decreasing sequence in i, i.e., a higher penalty is
associated with lower residual energies at T .

The trade-off can now be stated as follows: by using a more
aggressive forwarding policy (i.e., higher ui(t)’s and for longer
durations), the message propagates faster and there is a greater
chance of delivering the message to the destination in a timely
manner. However, this will lead to lesser overall remaining
energy in the nodes upon delivery of the message, and it will
potentially push the energy reserves of some nodes to critically
low levels, degrading the future performance of the network.

Overall Objective and Problem Statements: We now state
the two optimization problems for which we provide necessary
structural results for optimal forwarding policies in §III.

Problem 1: Fixed Terminal Time Considering a fixed
terminal time T, we seek to maximize the following utility:

R = −
B∑
i=0

ai (Si(T ) + Ii(T )) (8)

by dynamically selecting the vector u(t) = (us(t), . . . , uB(t))
of piece-wise continuous controls subject to control constraints
0 ≤ ui(t) ≤ 1 for all s ≤ i ≤ B, 0 ≤ t ≤ T and throughput
constraint (6). States S(t) and I(t) satisfy state dynamics (2)
and positivity and normalization conditions (4).

Problem 2: Optimal Stopping Time We seek to minimize
a combination of a penalty associated with the terminal time
T (the time taken to satisfy the throughput constraint (6))
and one associated with the adverse effects on the residual
energy of nodes through choice of the control u. We represent
the penalty associated with terminal time T as f(T ). We
make the natural assumption that f(T ) is increasing in T . We
further assume that f(T ) is differentiable (thus f ′(T ) > 0).
Considering a variable terminal time T that is selected to
satisfy (6) with equality, the system seeks to maximize:

R = −f(T )−
B∑
i=0

ai(Si(T ) + Ii(T )) (9)

by dynamically regulating the piecewise continuous set of
controls u(t) = (us(t), . . . , uB(t)) subject to the control
constraints 0 ≤ ui(t) ≤ 1 for all s ≤ i ≤ B, 0 ≤ t ≤ T
and (7). As in Problem 1, states S(t) and I(t) satisfy state
dynamics (2) and positivity and normalization conditions (4).

III. OPTIMAL FORWARDING POLICIES

We identify the structure of the optimal forwarding policies
in §III-A and prove them in §III-B and $III-C respectively. Our
theorems apply to both the Fixed Terminal Time and Optimal
Stopping Time problem statements.

A. Structure of the optimal controls

We establish that the optimal dynamic forwarding policies
require the nodes to opportunistically forward the message
to any node that they encounter until a threshold time that
depends on their current remaining energy.4 Once the threshold
is passed, they cease forwarding the message until the time-to-
live (TTL) of the message. In the language of control theory,
we show that, excluding the optimal controls related to energy
levels for which the fraction of infectives is zero throughout,
all optimal controls are bang-bang with at most one jump from
one to zero. In the excluded cases, optimal controls do not
affect the evolution of states or objective values.

Theorem 2. Suppose the set U∗ of optimal controls is not
empty.5 Then for all optimal controls u in U∗, and for all
s ≤ i ≤ B such that Ii 6≡ 0, there exists a ti ∈ [0, T ] such
that ui(t) = 1 for 0 < t < ti and ui(t) = 0 for ti < t ≤ T.6

Moreover, under any optimal control, for all s ≤ i ≤ B, either
Ii(t) = 0 for all t ∈ [0, T ] or Ii(t) > 0 for all t ∈ (0, T ].

Given any optimal control u, we define a set Z(u) such
that Z(u) = {i : s ≤ i ≤ B, Ii(t) > 0,∀t ∈ (0, T ]}.
The above theorem implies that the population of the infec-
tives is zero throughout for any index outside Z(u) (i.e., if
i 6∈ Z(u), Ii(t) = 0 for all t ∈ [0, T ]), and we therefore
characterise the optimal control only for the indices that are
in Z(u). Also, for each i ∈ Z(u), ti is the threshold time
associated with the optimal control ui. Intuitively, we would
expect each optimal control to be a non-increasing function
of time, since if a control is increasing over an interval,
flipping that part of the control in time would result in earlier
propagation of the message and a higher throughput with the
same final state energies. The theorem, however, goes beyond
this intuition in that it establishes that optimal controls are at
their maximum value up to certain threshold times and then
drop abruptly to zero (Fig. 1-(a)). For the fixed terminal time
problem, the optimal controls can therefore be represented
as a vector of B − s + 1 threshold times corresponding to
different energy levels. This vector can be calculated through

4As an infective node transmits, its energy level sinks; the threshold of each
infective node should therefore be measured with regards to the residual level
of energy (and not, for example, the starting level).

5If U∗ is non-empty, the problem is feasible, i.e., there exists at least one
control for which the throughput constraint holds. But, even if the problem
is feasible, U∗ may be empty, albeit rarely. For example, there may be an
infinite sequence of optimal controls such that the objective values constitute
a bounded increasing sequence of positive real numbers; such a sequence will
have a limit but the limiting value may not be attained by any control.

6Since the optimal controls associated with energy levels for which the
population of the infectives is zero throughout do not influence the evolution
of states or the objective values, this theorem implies that unless U∗ is empty,
there exists an optimal control in U∗ that will have the reverse-step function
structure posited in the theorem for all s ≤ i ≤ B. Note that the irrelevance
of optimal controls associated with energy levels with zero population of
infectives implies that the optimal controls are not, in general, unique.
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(a) convex terminal-time penalties

(b) non-convex terminal-time penalties

Fig. 1. Illustrative examples for Theorems 2 and 3 for the fixed terminal
time problem. The controls are plotted for a system with parameters: B = 5,
r = 1, s = 2, β = β0 = 2, T = 10, and S0 = (0, 0, 0, 0.55, 0.3, 0.1),
with the mandated probability of delivery being 90%. In (a), the terminal time
penalty sequence was ai = (B− i)2 and I0 = (0, 0, 0, 0, 0, 0.05), while in
(b) the terminal time penalty sequence was a0 = 4.4, a1 = 4.2, a2 = 4,
a3 = 1.2, a4 = 1.1, a5 = 1 (i.e., the {ai} sequence was neither convex nor
concave) and I0 = (0, 0, 0, 0, 0.025, 0.025).

an optimization in the search space of [0, T ]B−s+1. For the
optimal stopping time problem, there is an additional degree
of freedom; the stopping time T itself. Note that T ∈ [0, T0],
where T0 satisfies (6) with equality if all controls are always
zero. This is because no optimal control can have T > T0, as
in that case both the energy cost and the penalty associated
with terminal time will exceed that of the all-zero controls
case. Thus, the optimal stopping time and the thresholds
can be calculated through an optimization in the space of
{(T, t) : 0 ≤ T ≤ T0, t ∈ [0, T ]B−s+1}. The one-time
calculation of the threshold levels (and the optimal stopping
time as appropriate) at the origin can be done by estimating
the the fractions of nodes with each energy level irrespective
of their identities. This data can then be added to the message
as a small overhead. Therefore, optimal message forwarding
has the following structure:

Algorithm 1 Source Node
1: Given: I0 := (I00, . . . , I0B).
2: Estimate the distribution of energy among nodes.
3: Find the best set of thresholds {ti} (and optimal stopping

time T in the optimal stopping time problem).
4: Append the header, which contains the destination, T , and
{ti}, to the message.

5: Create an initial distribution of messages such that for
j = 0, . . . , B, infectives of energy level j constitute a
fraction I0j of the whole population.

Intuitively, it appears that the threshold-times will be non-
decreasing functions of the energy levels, since lower levels of
residual energy are penalized more and the energy consumed
in each transmission and reception is the same irrespective of
the energy levels of the nodes. The optimal controls depicted

Algorithm 2 Infective Nodes
1: On receipt of the message, extract destination, thresholds
{ti}, and stopping time T from the header.

2: Measure own residual energy i.
3: while i ≥ s and t ≤ T do
4: if node n encountered then
5: query its state [low cost].
6: if n = {destination} then
7: if n has not received the message yet then
8: transmit the message.
9: end if

10: exit.
11: else if n = {S with energy j ≥ r} and t < ti then
12: forward message.
13: i← (i− s).
14: end if
15: end if
16: end while

in Fig. 1-(a) suggest the same: t2 < t3 < t4 < t5. We now
confirm the above intuition in the case that the terminal-time
penalty sequence {ai} satisfies certain properties:

Theorem 3. Assume that the sequence {ai} in (8) is strictly
convex.7 Then, for any optimal control u, the sequence {ti}
for i ∈ Z(u) is non-decreasing in i.

Fig. 1-(a) illustrates the threshold times for a strictly convex
and decreasing sequence of terminal penalties. The naive
intuition provided before Theorem 3 will however mislead
us in general — we now present examples that show when
the strict convexity requirement of the terminal-time penalty
sequence is not satisfied, the claim of the theorem may not
hold. One sample configuration is when we have a sharp
reduction in penalty between two consecutive final energy
levels, with penalties on either side being close to each
other, e.g., a0 ≈ a1 ≈ a2 � a3 ≈ a4 ≈ a5 in Fig.
1-(b). The motivation for such a setting could be the case
where the system is primarily interested in ensuring that it
retains a certain minimum amount of energy (e.g., 3 units
in Fig. 1-(b)) at the terminal time: energy values above the
requisite threshold (e.g., 4, 5 in Fig. 1-(b)) acquire insignificant
additional rewards and energy values below the threshold (e.g.,
0, 1, 2 in Fig. 1-(b)) incur insignificant additional penalties, but
the penalty at the threshold amount is substantially lower than
that at the next lowest value. Fig. 1-(b) reveals that Theorem 3
need not hold for such a setting, as nodes with energy values
that are either higher or lower than 3 would be incentivized to
propagate the message (because of the low loss incurred for
propagation in terms of final states), but those with exactly 3
units of energy would be extremely conservative, as there is
a large penalty associated with any further propagation of the

7A sequence {ai} is strictly convex if the difference between the penalties
associated with consecutive energy levels increases with a decrease in energy
levels (mathematically, for each 2 ≤ i ≤ B, ai−1 − ai < ai−2 − ai−1).
A sequence {ai} is strictly concave if the difference between the penalties
associated with consecutive energy levels decreases with an increase in energy
levels (mathematically, for each 2 ≤ i ≤ B, ai−1 − ai > ai−2 − ai−1).
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message. Thus, t3 < min(t2, t4, t5). The sequence of terminal-
time penalties in Fig. 1-(b) is neither convex nor concave. But,
Theorem 3 does not hold for concave terminal-time penalties
either (Table I). Therefore, the convexity of the terminal-time
penalty sequence is integral to the result of Theorem 3.

Threshold Times of Controls
Energy Level 4 Energy Level 5

α = 0.5 5.75 1.75
α = 1.5 2.5 2.75
α = 2 2.5 2.75

TABLE I
AN EXAMPLE FOR NON-ORDERED THRESHOLD TIMES OF THE OPTIMAL CONTROLS

FOR CONCAVE TERMINAL TIME PENALTIES IN THE SETTINGS OF THEOREM 3 FOR

THE FIXED TERMINAL TIME PROBLEM. THE PARAMETERS WERE EXACTLY THE SAME

AS THOSE USED IN FIG. 1-(A), WITH THE DIFFERENCE THAT ai = (B − i)α , α IS

VARIED OVER THE VALUES {0.5, 1.5, 2}, I0 = (0, 0, 0, 0, 0, 0.1) AND

S0 = (0, 0, 0, 0.3, 0.3, 0.3). FOR α = 0.5, THE TERMINAL TIME PENALTIES

BECOME CONCAVE, AND t4 > t5. FOR α = {1.5, 2}, THE TERMINAL TIME

PENALTIES ARE STRICTLY CONVEX, AND t4 < t5 AS THEOREM 3 PREDICTS.

B. Proof of Theorem 2

We prove Theorem 2 using tools from classical optimal
control theory, specifically Pontryagin’s Maximum Principle,
which is stated in §III-B1. We provide the full proof for
the fixed terminal time problem (8) in §III-B2, and specify
the modifications for the optimal stopping time problem in
§III-B3.

1) Pontryagin’s Maximum Principle with Terminal Con-
straint: We start by stating the problem for a fixed terminal
time t1. Let u∗ be a piecewise continuous control solving:

maximize
∫ t1

t0

f0(x(t),u(t), t) + S1(x(t1)) (10)

ẋ(t) = f(x(t),u(t), t), x(t0) = x0, u ∈ U ,
x1
i (t1) = x1

i 1 ≤ i ≤ l,
x1
i (t1) ≥ x1

i l + 1 ≤ i ≤ m,
x1
i (t1) free i = m+ 1 ≤ i ≤ n,

and let x∗(t) be the associated optimal path. Define

H(x(t),u(t),p(t), t) :=

p0f0(x(t),u(t), t) + pT (t)f(x(t),u(t), t) (11)

to be the Hamiltonian, with p = {pi}ni=1.

Theorem 4. [19, p.182] There exist a constant p0 and a
continuous and piecewise continuously differentiable vector
function p(t) = (p1(t), . . . , pn(t)) such that for all t ∈ [t0, t1],

(p0, p1(t), . . . , pn(t)) 6= ~0, (12)
H(x∗,u∗,p(t), t) ≥ H(x∗,u,p(t), t) ∀u ∈ U . (13)

Except at the points of discontinuities of u∗(t), for i =

1, . . . , n: ṗi(t) = −∂H(x∗,u∗,p(t), t)

∂xi
.

Furthermore, p0 = 0 or p0 = 1, and, finally, the following

transversality conditions are satisfied,

pi(t1) no condition 1 ≤ i ≤ l,

pi(t1)− p0
∂S1(x∗(t1))

∂xi
≥ 0

(= 0 if x∗i (t1) > x1
i ) l + 1 ≤ i ≤ m,

pi(t1)− p0
∂S1(x∗(t1))

∂xi
= 0 m+ 1 ≤ i ≤ n.

(14)

Now, we state the analogous theorem when t1 is not fixed in
(10), and S1(x(t1)) is replaced with S1(x(t1), t1), allowing
explicit dependence of the cost on the terminal time:

Theorem 5. [19, p.183] Let (x∗(t),u∗(t), t∗1) be an admissi-
ble triple solving (10) (with S1(x(t1), t1)) with t1 ∈ [T1, T2],
t0 ≤ T1 < T2, T1, T2 fixed. Then the conclusions in Theorem 4
hold, with S1(x∗(t1), t1) replacing S1(x∗(t1)), and with the
addition that

H(x∗,u∗,p, t∗1) + p0
∂S1(x∗(t1), t1)

∂t


≤ 0 if t∗1 = T1

= 0 if t∗1 ∈ (T1, T2)

≥ 0 if t∗1 = T2

.

(15)

2) Fixed Terminal Time Problem: For every control ũ, we
define τi(I(0),S(0), ũ) ∈ [0, T ] as follows: If Ii(0) > 0, and
therefore Ii(t) > 0 for all t > 0 due to Theorem 1, we
define τi(I(0),S(0), ũ) to be 0. Else, τi(I(0),S(0), ũ) is the
maximum t for which Ii(t) = 0. It follows from Theorem 1
that Ii(t) = 0 for all t ≤ τi(I(0),S(0), ũ) and all i such that
Ii(0) = 0, and Ii(t) > 0 for all τi(I(0),S(0), ũ) < t ≤ T . We
begin with the hypothesis that there exists at least one optimal
control, say ũ ∈ U∗, and construct a control u that chooses
ui(t) := 0 for t ≤ τi(I(0),S(0), ũ) and ui(t) := ũi(t) for t >
τi(I(0),S(0), ũ). Clearly, the states S(t), I(t) corresponding
to ũ also constitute the state functions for u, as the state equa-
tions only differ at t = 0, a set of measure zero. Thus, u is also
an optimal control, and τi(I(0),S(0), ũ) = τi(I(0),S(0),u)
for each i. Henceforth, for notational convenience, we will
refer to τi(I(0),S(0), ũ), τi(I(0),S(0),u) as τi. Note that the
definition of this control completely specifies the values of
each ui in [0, τi]. We will prove the following lemmas.

Lemma 3. For each s ≤ i ≤ B, if τi < T there exists a
ti ∈ [τi, T ] such that ui(t) = 1 for τi < t < ti and ui(t) = 0
for t > ti.

Lemma 4. For all s ≤ i ≤ B, τi ∈ {0, T}.

If τi = 0 for some i ≥ s, ũi(t) = ui(t), and Ii(t) > 0, for
all t ∈ (0, T ]. If τi = T , Ii(t) = 0 for all t ∈ [0, T ]. So the
theorem follows from these lemmas, which we prove next.

a) Proof of Lemma 3: The lemma clearly holds if u ≡ 0
(with ti = τi for all i ≥ s); we therefore consider the case
that u 6≡ 0.8 We proceed in the following steps:

1) Applying standard results from optimal control theory, we
show that each optimal control ui assumes the maximum value

8Note that u ≡ 0 in (τi, T ] does not imply τi = T .
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(1) when a switching function (denoted ϕi) is positive and the
minimum value (0) when the switching function is negative.
However, standard optimal control results do not specify
the nature of the optimal control when the corresponding
switching function is at 0 or the durations for which the
switching function is positive, zero, or negative. The next step
answers these questions using specifics of the problem.

2) The switching functions turn out to be continuous func-
tions of time. We want to show that for each i ≥ s, there exists
ti ∈ [τi, T ] such that the relevant switching function (ϕi) is
positive for t ∈ (τi, ti), negative for t ∈ (ti, T ], and equal to
zero at ti only if ti ∈ (τi, T ). Lemma 3 now follows from
the relation between the optimal control and the switching
function obtained in the first step.9

Step 1 Consider the system in (2) and the objective function
in (8). To make the analysis more tractable, we introduce the
following new state variable: Ė :=

∑B
i=s Ii, with E(0) := 0.

Therefore, our throughput constraint (6) simply becomes:
E(T ) ≥ − ln(1− p)/β0.

To facilitate an appeal to Theorem 4, we take xT =
(E,ST , IT ), u = u, p0 = λ̄0, p = (λE ,λ,ρ), l = 0,
m = 1, x1

1 = − ln(1 − p)/β0, f0 ≡ 0, t0 = 0, t1 = T ,
and S1(x∗(t1)) = R, the optimization objective. In this case,
{fi}2N+3

i=1 are given by the Ė equation above and by (2).
Using these replacements, the Hamiltonian (11) becomes

H = −
B∑
i=r

[βλiSi

B∑
j=s

ujIj ] +

B∑
i=r

[βρi−rSi

B∑
j=s

ujIj ]

+

B∑
i=s

[βuiρi−sIi

B∑
j=r

Sj ]−
B∑
i=s

[βuiρiIi

B∑
j=r

Sj ] + λE

B∑
i=s

Ii

(16)

where, at the points of continuity of the controls, the absolutely
continuous co-state functions λi, ρi and λE satisfy

λ̇i = − ∂H
∂Si

= βλi

B∑
j=s

ujIj − βρi−r
B∑
j=s

ujIj

− β
B∑
j=s

ujρj−sIj + β

B∑
j=s

ujρjIj (r ≤ i ≤ B)

λ̇i = − ∂H
∂Si

= 0 (i < r)

ρ̇i = −∂H
∂Ii

= βui

B∑
j=r

λjSj + βuiρi

B∑
j=r

Sj

− λE − βui
B∑
j=r

ρj−rSj − βuiρi−s
B∑
j=r

Sj (s ≤ i ≤ B)

ρ̇i = −∂H
∂Ii

= 0 (i < s)

λ̇E = −∂H
∂E

= 0 (17)

9Note that we still do not know the value of ui at the time epoch ti at
which the corresponding switching function ϕi may be zero. This is not,
however, a serious deficiency since the value of the optimal control in any
set of measure zero does not affect the state evolution.

with the final constraints:

λi(T ) = −λ̄0ai, ρi(T ) = −λ̄0ai, ∀i = 0, . . . , B

λE(T ) ≥ 0, λE(T ) [E(T ) + ln(1− p)/β0] = 0,
(18)

and λ̄0 ≥ 0.
We formally define the switching functions ϕi as follows:

ϕi :=
∂H
∂ui

= βIi

[
B∑
j=r

(−λj + ρj−r + ρi−s − ρi)Sj

]
,

(s ≤ i ≤ B). (19)

Note that ϕi is a continuous function of time for each s ≤
i ≤ B. Also, we have:

H = λE

B∑
i=s

Ii +

B∑
i=s

ϕiui. (20)

From Theorem 4, maximizing the Hamiltonian (13) yields

ui(t) =

{
1 for ϕi(t) > 0

0 for ϕi(t) < 0.
(21)

Furthermore, ϕi(t)ui(t) ≥ 0 for each s ≤ i ≤ B and all
t ∈ [0, T ]; otherwise the value of the Hamiltonian can be
increased at t by choosing ui(t) = 0.

Equations (19, 21) reveal an accessible intuition about the
logic behind the decision process: at any given time, by
choosing a non-zero ui, infectives with energy level i ≥ s
forward the message to susceptibles of any energy level j ≥ r
and turn into infectives with i − s energy units, with the
susceptibles turning into infectives of energy level j − r.
The optimal control determines whether such an action is
beneficial, taking into account the advantages (positive terms)
and disadvantages (negative terms).
Step 2 To establish this claim, we prove the following lemma:

Lemma 5. Let u 6≡ 0. For all i ≥ s, if ϕi(t′) = 0 for t′ ∈
(τi, T ), then ϕi(t) < 0 for all t > t′. Also, if ϕi(T ) = 0,
ϕi(t) > 0 for t ∈ (τi, T ).

For any i ≥ s, we show that for any t ∈ (τi, T ) at which
ϕi(t) = 0, ϕ̇i(t+) < 0 and ϕ̇i(t

−) < 0.10 Furthermore, we
show that if ϕi(T ) = 0, ϕ̇i(T−) < 0. We state and prove a
property of real-valued functions which we will use in proving
Lemma 5 from the above.

Property 1. If g(x) is a continuous and piecewise differ-
entiable function over [a, b] such that g(a) = g(b) while
g(x) 6= g(a) for all x in (a, b), dg

dx (a+) and dg
dx (b−) cannot

be negative simultaneously.

Proof: We denote the value of g(a) and g(b) by L. If
dg
dx (a+) < 0, there exists ε > 0 such that g(x) < L for all
x ∈ (a, a + ε), and if dg

dx (b−) < 0, there exists α > 0 such
that g(x) > L for all x ∈ (b − α, b). Now g(a + ε

2 ) < L
and g(b − α

2 ) > L; thus, due to the continuity of g(t), the
intermediate value theorem states that there must exist a y ∈
(a+ ε

2 , b−
α
2 ) such that g(y) = L. This contradicts g(x) 6= g(a)

for x ∈ (a, b). The property follows.

10x(a+) = limt↓a x(t), x(a−) = limt↑a x(t).
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If ϕi(t) = 0 and ϕ̇i(t
+) < 0 for t < T , we have

ϕi(t + ∆t) = ϕi(t) +
∫ t+∆t

t
ϕ̇i(x) dx =

∫ t+∆t

t
ϕ̇i(x) dx,

which proves the existence of an interval (t, t+ ε] over which
ϕi is negative. If t + ε ≥ T , then the claim holds, otherwise
there must exist a t′, t < t′ ≤ T such that ϕi(t′) = 0 and
ϕ(t̄) 6= 0 for t < t̄ < t′ (from the continuity of ϕi(t)). Note
that because ϕi(t′) = 0, we have ϕ̇i(t′−) < 0. This contradicts
Property 1, thereby completing the proof of the first part of
the lemma. For the second part, note that if ϕi(T ) = 0 and
ϕ̇i(t

−) < 0, there exists an interval (T − ε, T ) over which ϕi
is positive. If T −ε ≤ τi, then the claim holds, otherwise there
must exist a t′ ∈ (τi, T ) such that ϕi(t′) = 0 and ϕ(t̄) 6= 0 for
t′ < t̄ < T (from the continuity of ϕi(t)). Note that because
ϕi(t

′) = 0, as we show we have ϕ̇i(t′+) < 0. This contradicts
Property 1, thereby completing the proof of the second part
of the lemma.

We now seek to upper bound ϕ̇i(t
+) and ϕ̇i(t

−) for t ∈
(τi, T ) at which ϕi(t) = 0, and subsequently prove that the
upper bound is negative. For t = T , we only consider the left
hand limit of the derivative. Keeping in mind that Ii(t) > 0
for t > τi, at any t > τi at which u is continuous,

ϕ̇i =İi
ϕi
Ii

− ϕiβ

B∑
j=s

ujIj + βIi

B∑
j=r

(−λ̇j + ρ̇j−r + ρ̇i−s − ρ̇i)Sj .

From the expressions for the time derivative of the co-states
in (17) combined with the expression for the switching func-
tions in (19), and using (from (16)) that

∑B
j=r −λ̇j(t)Sj(t) =

H(t)− λE(t)
∑B
j=s Ij(t), we can write:

ϕ̇i = βIi

H(t)− λE
B∑
j=s

Ij − λE
B∑
j=r

Sj


+ İi

ϕi
Ii
− ϕiβ

B∑
j=s

ujIj + ϕiuiβ

B∑
j=r

Sj

− β2Ii

B∑
j=r

Sjuj−r(

B∑
k=r

[−λk + ρk−r + ρj−r−s − ρj−r]Sk)

− β2Ii(

B∑
j=r

Sj)ui−s(

B∑
k=r

[−λk + ρk−r + ρi−2s − ρi−s]Sk).

Now, consider a t ∈ (τi, T ) at which ϕi(t) = 0. We show
that the right and left-hand limits of all terms in the second
line are zero at t:

From the continuity of Ii and since t > τi, Ii(t) > 0.
Thus Ii(t

′) is positive and bounded away from 0 for t′

in a neighborhood of t. Furthermore, Lemma 2 shows that
|İi(t+)| and |İi(t−)| exist and are bounded for all t ∈ (0, T ).
Thus, from the continuity of ϕi at t and since ϕi(t) = 0,
İi(t

+)ϕi(t
+)

Ii(t+) and İi(t−)ϕi(t
−)

Ii(t−) equal zero. Due to Theorem 1,
since the states and controls are bounded and since ϕi(t) = 0,
the right hand and left hand limits at t of the second and
third terms in the second line are also zero. We now argue
that the right hand and left hand limits of lines 3 and 4 are
non-positive. Starting with line 3, this is because for j ≥ r,

Ij−r

(
uj−r

B∑
k=r

[−λk + ρk−r + ρj−r−s − ρj−r]Sk

)
= ϕj−ruj−r.

The right hand side is non-negative at each t, as argued
after (21). For t > τj−r, Ij−r(t) > 0. Thus for all such t,(

uj−r

B∑
k=r

[−λk + ρk−r + ρj−r−s − ρj−r]Sk

)
≥ 0.

For 0 < t ≤ τj−r, uj−r(t) = 0. Thus, at all t > 0, the above
inequality holds.

Now, since I, S are continuous and u has right and left
hand limits at each t, the right and left hand limits of the LHS
above exist; such limits are clearly non-negative at each t. The
same arguments apply for line 4 as well (except that i−s must
be considered instead of j − r, with i ≥ s). It follows that at
any t > τi at which ϕi(t) = 0,

ϕ̇i(t
+) ≤βIi(t+)

H(t+)− λE [

B∑
j=s

Ij(t
+) +

B∑
j=r

Sj(t
+)]

 ,

ϕ̇i(t
−) ≤βIi(t−)

H(t−)− λE [

B∑
j=s

Ij(t
−) +

B∑
j=r

Sj(t
−)]

 .

Using the same arguments it may also be shown that the latter
inequality holds at t = T if ϕi(T ) = 0.

The lemma now follows once we prove (in Appendix-A):

Lemma 6. If u 6≡ 0, then for all t ∈ (0, T ), we have:

H(t−)− λE(t−)

 B∑
j=s

Ij(t
−)−

B∑
j=r

Sj(t
−)

 < 0. (22)

H(t+)− λE(t+)

 B∑
j=s

Ij(t
+)−

B∑
j=r

Sj(t
+)

 < 0. (23)

Furthermore, (22) applies for t = T .

b) Proof of Lemma 4: We start by creating another
control ū from u such that for every i ≥ s, for every
t ≤ τi, ūi(t) := 1, and for every t > τi, ūi(t) := ui(t).
We prove by contradiction that τi(I(0),S(0), ū) ∈ {0, T} for
each i ≥ s. Since ūi 6≡ ui only in [0, τi] and Ii(t) = 0
for t ∈ (0, τi] when u is used, the state equations can only
differ at a solitary point t = 0, and therefore both controls
result in the same state evolutions. Thus, for each i ≥ s,
τi(I(0),S(0), ū) = τi(I(0),S(0),u), and τi(I(0),S(0), ū)
may be denoted as τi as well. The lemma therefore follows.

For the contradiction argument, assume that the control is
ū and that τi ∈ (0, T ) for some i ≥ s. Our proof relies on the
fact that if ūi(t′) = 0 at some t′ ∈ (0, T ), then ūi(t) = 0 for
t > t′, which follows from Lemma 3 and the definition of ū.
We break the proof into three parts:

Case 1: i > B − r
Here, for t ∈ [0, T ] (2c) leads to: Ii(t) =

Ii(0)e−β
∫ t
0
ūi(t

′′)
∑B
j=r Sj(t

′′) dt′′ . Since Ii(t) = 0 for t ∈
[0, τi], Ii(0) = 0. Thus, Ii(t) = 0 for all t ∈ [0, T ]. So τi = T
which contradicts our assumption that τi ∈ (0, T ).

Case 2: B − s < i ≤ B − r
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For t ∈ [0, τi], since Ii(t) = 0 for t ≤ τi, (2d) becomes İi =
βSi+r

∑B
j=s ūjIj = 0 in this interval. Now, since all elements

in βSi+r
∑B
j=s ūjIj are non-negative, we must either have (i)

Si+r(t) = 0 for some t ∈ [0, τi], or (ii) for all s ≤ k ≤ B,
ūk(t)Ik(t) = 0 for all t ∈ [0, τi].

(i) In the first case, from two appeals to Theorem 1,
Si+r(0) = 0 and therefore Si+r(t) = 0 for all t ∈ [0, T ].
So in [τi, T ], (2d) becomes İi = −βūiIi

∑B
j=r Sj , leading to

Ii(t) = Ii(τi)e
−β

∫ t
τi
ūi(t

′′)
∑B
j=r Sj(t

′′) dt′′
. (24)

Since Ii(τi) = 0, Ii(t) = 0 for all t ∈ [τi, T ]. Therefore
τi = T which contradicts our assumption that τi ∈ (0, T ).

(ii) In this case, from (2a) to (2f), it follows that for all
k ≥ 0, İk = 0 and Ṡk = 0 in [0, τi], leading to I(t) = I(0)
and S(t) = S(0) for t ∈ [0, τi]. Also, since Ik(t) > 0 for
all t > τk, we know that for all k ≥ s such that τk < τi,
Ik(t) > 0 for t ∈ (τk, τi] and therefore ūk(t) = 0 for t ∈
(τk, τi]. This leads to ūk(t) = 0 for t ≥ τi (since Lemma 3
and the definition of ū show that if ūk(t′) = 0 at some t′ ∈
(τk, T ), then ūk(t) = 0 for t > t′). Especially notice that
for all k ≥ s such that Ik(0) > 0, τk = 0 and this would
apply. Thus, for each k, either Ik(0) = 0 or ūk(t) = 0 for
all t ≥ τi, and hence Ik(0)ūk(t) = 0 for all t ≥ τi. Looking
at the interval [τi, T ], we prove that S ≡ S(0) and I ≡ I(0)
constitute solutions to the system of differential equations (2)
in this interval. Replacing these functions and ū into the RHS
of equations (2), all terms will be zero (since Ik(0)ūk(t) = 0
for all k ≥ s, t ≥ τi), leading to İk = 0 and Ṡk = 0 for all
k ≥ s, which in turn leads to (S(t), I(t)) = (S(τi), I(τi)) =
(S(0), I(0)) for all t ∈ [τi, T ]. Thus, S ≡ S(0) and I ≡ I(0)
are the unique solutions to the system of differential equations
(2) in [0, T ], wherein uniqueness follows from Theorem 1. So
τk ∈ {0, T} for these state solutions; a contradiction.

Case 3: s ≤ i ≤ B − s
We prove this case using induction on i. In the induction

case, we will consider i such that τl ∈ {0, T} for all l such
that i < l ≤ B. From the arguments for the previous cases, we
know that i = B−s satisfies the above criterion and therefore
constitutes our base case. We only present the proof for the
induction case as that for the base case is identical. For t ∈
[0, τi], since Ii(t) = 0, (2e) becomes İi = βSi+r

∑B
j=s ūjIj+

βūi+sIi+s
∑B
j=r Sj = 0. Now, since both of these terms are

non-negative, each must be equal to zero in [0, τi]. As there
exists k ≥ r such that Sk(0) > 0, there will exist k ≥ r
such that Sk(t) > 0 for all t ∈ [0, τi] (due to Theorem 1).
Also from the same theorem, we have Sm(t) ≥ 0 for all m.
Thus,

∑B
j=r Sj(t) > 0 for all t ∈ [0, τi], and hence the second

term is zero contingent on ūi+s(t)Ii+s(t) = 0 for all t in this
interval. So we must either have (I) Si+r(t) = 0 for some t
and ūi+s(t)Ii+s(t) = 0 for all t in this interval, or (II) for all
s ≤ k ≤ B, ūk(t)Ik(t) = 0 over this interval. Note that the
condition on (II) is exactly the same as in (ii) of Case 2, and
following the same argument it may be shown that τk ∈ {0, T}
for each k ≥ s in this case. So we focus on (I):

In (I), again with two appeals to Theorem 1, we see that
Si+r(0) = 0 and therefore Si+r(t) = 0 for all t ∈ [0, T ]. Thus,
for all t ∈ [0, T ], İi = −βūiIi

∑B
j=r Sj+βūi+sIi+s

∑B
j=r Sj .

If τi+s < τi, Ii+s(t) > 0 for all t ∈ (τi+s, τi] and therefore
ūi+s(t) = 0 for t ∈ (τi+s, τi], leading to ūi+s(t) = 0 for
t ≥ τi. So again, we have (24) and therefore τi = T , a
contradiction. If τi+s > τi, on the other hand, for t ∈ [τi, τi+s],
(2e) becomes İi = −βūiIi

∑B
j=r Sj , again leading to (24) and

thus Ii(t) = 0 for all t ∈ [τi, τi+s], a contradiction. Thus,
we are left with τi = τi+s. But, since i < i + s ≤ B,
τi+s ∈ {0, T}. Thus, τi ∈ {0, T}, which contradicts our
assumption that 0 < τi < T. This completes our proof.

3) Optimal Stopping Time Problem: Using Theorem 5
(with S1(x∗(t1), t1) = R), the proof differs from the fixed
terminal time case only in the arguments used to establish
λ̄0 = 1 and λE > 0 in the proof of Lemma 6 in Appendix A.
Note that we need separate arguments since the problem is no
longer autonomous. Equation (12) along with λ̄0 ≥ 0 leads to
λ̄0 = 1, because λ̄0 = 0 would imply:
(i) λi(T ) = ρi(T ) = 0, ∀i = 0, . . . , B,
(ii) H(T ) = λE(T )

∑B
i=s Ii(T ) = λ̄0f

′(T ) = 0. The first
equality in (ii) comes from replacing λi(T ) = ρi(T ) = 0 for
all i into (16), and the second from (15). Now, there exists a
j ≥ s such that Ij(0) > 0, and due to Theorem 1, Ij(T ) > 0,
and Im(T ) ≥ 0 for all m. Thus,

∑B
i=s Ii(T ) > 0, leading to

λE(T ) = 0. This, combined with λ̄0 = 0 and (i), contradicts
(12) at t = T .

Thus, henceforth we consider λ̄0 = 1. As in Lemma 8, it
can be shown that ui(T ) = 0 for all i ≥ s. So we again
have H(T ) = λE(T )

∑B
i=s Ii(T ), and, from (15), f ′(T ) =

λE(T )
∑B
i=s Ii(T ). Since f ′(T ) > 0 and

∑B
i=s Ii(T ) > 0,

λE(T ) > 0. The rest of the proof is identical to that for the
fixed terminal time case.

C. Proof of Theorem 3
We present the proof without explicitly mentioning which

version of the optimal control problem (fixed terminal time or
optimal stopping time) we are considering since the proof is
identical. We will use Lemma 5, (19), (21), and the values of
λi(T ), ρi(T ) from (18) which hold for both versions.

We will prove this theorem for an optimal control u such
that ui ≡ 0 for all i 6∈ Z(u). It is sufficient to consider only
such optimal controls because for any optimal control ũ we
can construct a control u such that ui(t) := 0 for i 6∈ Z(ũ)
and ui := ũi for i ∈ Z(ũ). Since u leads to the same state
evolutions as ũ, u is optimal, Z(ũ) = Z(u), and both controls
have identical threshold times for i ∈ Z(ũ) = Z(u). The
theorem therefore follows for ũ if it is proven for u.

The result clearly holds if u ≡ 0 as then ti = tj = 0 for all
i, j ∈ Z(u). We therefore assume that u 6≡ 0. It suffices to
show that if ϕi(t) = 0 for some t > 0 and for i ∈ Z(u), we
have ϕk(t) ≤ 0 for any k < i where we have k ∈ Z(u). From
the definition of Z(u), τi = τk = 0. Then, from Lemma 5
and (21), the threshold time for uk will precede that of ui.

To prove the above, we examine two cases: (1) λ̄0 = 0 and
(2) λ̄0 = 1. In case (1), ρi(T ) = λi(T ) = 0 for all i, leading
to ϕi(T ) = 0 for all i ≥ s from (19). From Lemma 5, this
means that ϕi(t) > 0 for all 0 < t < T and all i ∈ Z(u) (note
that τi = 0 if i ∈ Z(u)). Therefore, from (21), ui(t) = 1 for
all t ∈ (0, T ); thus ti = T for all i ∈ Z(u). Thus, henceforth
we focus on the case where λ̄0 = 1.



11

Consider an i ∈ Z(u) and a time σi > 0 such
that ϕi(σi) = 0. From (19) we have: ϕi(σi) =

βIi

(∑B
j=r (−λj + ρj−r + ρi−s − ρi)Sj

) ∣∣∣∣
t=σi

= 0. Note

that Ii(σi) > 0 (since i ∈ Z(u), σi > 0); thus, at t = σi,
B∑
j=r

(−λj + ρj−r)Sj = −
B∑
j=r

(ρi−s − ρi)Sj .

Using the above and (19), it turns out that for all k ∈ Z(u),
ϕk(σi) = βIkψi,k(σi)

∑B
j=r Sj , where ψi,k, for s ≤ k < i,

is defined as:

ψi,k(σi) := −ρi−s + ρi + ρk−s − ρk.

We know that
∑B
j=r Sj(σi) ≥ 0, Ik(σi) > 0 (from Theo-

rem 1). The theorem now follows from the following lemma:

Lemma 7. For any k < i such that i, k ∈ Z(u) and for
σi > 0 such that ϕi(σi) = 0, we have ψi,k(σi) ≤ 0.

Proof: At t = T , following (18), we have:

ψi,k(T ) =− ρi−s(T ) + ρi(T ) + ρk−s(T )− ρk(T )

=[ai−s − ai − (ak−s − ak)],

which due to the properties assumed for ai (ai decreasing
and strictly convex in i), yields ψi,k(T ) < 0. This also holds
on a sub-interval of nonzero length that extends to t = T ,
owing to the continuity of ψi,k. We now prove the lemma by
contradiction: going back in time from t = T towards t = σi,
suppose a ψi,k becomes non-negative at time σ̄ > σi for some
k < i, k ∈ Z(u). That is, for at least one such k we have:

(−ρi−s + ρi + ρl−s − ρl) < 0

∀l < i, l ∈ Z(u) , ∀t σi < σ̄ < t ≤ T ; (25)

and at t = σ̄,{
(−ρi−s + ρi + ρk−s − ρk) = 0

(−ρi−s + ρi + ρl−s − ρl) ≤ 0,∀ l < i, l ∈ Z(u).
(26)

We show that the time derivative of ψi,k is non-negative over
the points of continuity of the controls in the interval [σ̄, T ].
Note that this, plus the continuity of ψi,k, leads to a contra-
diction with the existence of σ̄ and hence proves the lemma,
since: ψi,k(σ̄) = ψi,k(T ) −

∫ T
t=σ̄

ψ̇i,k(ν) dν ≤ ψi,k(T ) < 0.
We now investigate ψ̇i,k over the points of continuity of the
controls in [σ̄, T ].11 For s ≤ k < i < 2s such that k ∈ Z(u):

ψ̇i,k =− ϕiui
Ii

+
ϕkuk
Ik

, (27)

and for s ≤ k < 2s ≤ i such that k ∈ Z(u) it follows that:

ψ̇i,k =βui−s(

B∑
m=r

[−λm + ρm−r + ρi−2s − ρi−s]Sm)

+ λE −
ϕiui
Ii

+
ϕkuk
Ik

. (28)

The RHS of (27-28) is non-negative because:
(A)

ϕkuk
Ik

is non-negative due to (21) for all k ≥ s,

11Note that since i, k ∈ Z(u), Ii(t) > 0 and Ik(t) > 0 for all t > 0.

(B) ui−s(
∑B
m=r [−λm + ρm−r + ρi−2s − ρi−s]Sm) is non-

negative for i ≥ 2s. To see this, note that for i such
that Ii−s(t) > 0 for t > 0 this term is equal to
ϕi−sui−s
Ii−s

which is non-negative, again as imposed by the

optimizations in (21); else (i− s) 6∈ Z(u) and ui−s ≡ 0;
(C) ϕi(t)ui(t) = 0 for t ≥ σi. To see this note that ϕi(σi) =

0. For t > σi, from Lemma 5, we have ϕi(t) < 0, which
together with (21) leads to ui(t) = 0,

(D) λE = λE(T ) > 0, as established after (32) for the fixed
terminal time problem and in §III-B3 for the optimal
stopping time problem.

For i > k ≥ 2s we have:

ψ̇i,k = βui−s(

B∑
m=r

[−λm + ρm−r + ρi−2s − ρi−s]Sm)

− βuk−s(
B∑

m=r

[−λm + ρm−r + ρk−2s − ρk−s]Sm)

− ϕiui
Ii

+
ϕkuk
Ik

≥ −βuk−s(
B∑

m=r

[−λm + ρm−r + ρk−2s − ρk−s]Sm). (29)

The above inequality follows from (A), (B), (C) above. Now
we show that the RHS in the last line is zero over the interval
of [σ̄, T ], completing the argument. If k − s 6∈ Z(u), then
uk−s ≡ 0. Else, Ik−s(t) > 0 for all t > 0, and the RHS
equals

ϕk−suk−s
Ik−s

. We now show that ϕk−s(t) ≤ 0 for all

t ∈ [σ̄, T ]; thus (21) leads to ϕk−s(t)uk−s(t) = 0, for all
t ∈ [σ̄, T ]. The result follows.

From (19), we have:ϕi = βIi

(∑B
j=r (−λj + ρj−r + ρi−s − ρi)Sj

)
ϕk−s = βIk−s

(∑B
j=r (−λj + ρj−r + ρk−2s − ρk−s)Sj

)
Now, since Ii(t) > 0 for t > 0, ϕi(t) ≤ 0 leads
to:
∑B
j=r (−λj + ρj−r + ρi−s − ρi)Sj ≤ 0. From (25, 26)

and for k′ = k − s < i, we have ρk−2s − ρk−s ≤
ρi−s − ρi over the interval of [σ̄, T ]. Hence we now have:∑B
j=r (−λj + ρj−r + ρk−2s − ρk−s)Sj ≤ 0, which together

with Ik−s(t) ≥ 0 for t > 0 results in ϕk−s(t) ≤ 0.
This concludes the lemma, and hence the theorem.

IV. NUMERICAL INVESTIGATIONS

Numerous heuristic policies have been proposed for mes-
sage passing in DTNs in prior literature [1]–[15]. Many of
these heuristics are simpler to implement than our optimal
control as they employ controls that either do not depend on
residual energy levels or do not change with time. We start by
experimentally validating the mean-field deterministic model
we used (§IV-A) and quantifying the benefit of our optimal
policy relative to some of these heuristics (§IV-B). Next, we
investigate the sensitivity of our optimal control to errors
in clock synchronization and residual energy determination
among nodes (§IV-C). Finally, in §IV-D, we investigate the
sending of multiple messages over successive time intervals
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empirically, and assess the performance of a natural general-
ization of our policy (which is optimal for the transmission of
a single message) relative to that of the mentioned heuristics.

We focus on the fixed terminal time problem and derive
the optimal controls using the GPOPS software [20]–[24]
with INTLAB [25]. Unless otherwise stated, our system used
parameters: B = 5, s = 2, and r = 1 (note that s ≥ r, as
demanded by our system model), S0 = (0, 0, 0, 0.3, 0.3, 0.35),
and ai = (B − i)2. Note that βT denotes the average
number of contacts of each node in the system in the time
interval [0, T ]. Thus, as expected we observed that changing
β and T had very similar effects on the costs and the drop-
off points of the optimal controls. We further assumed that
β = β0 (i.e., the rate of contact between any two nodes is the
same as the rate of contact of the destination and any given
node). We compared policies based on the difference between∑B
i=s ai(Si(T ) + Ii(T )) and

∑B
i=s ai(Si(0) + Ii(0)) (which,

as the initial penalty function value, is the same for all policies)
for each policy, which we call the “Unbiased Energy Cost”.

A. Validation of the mean-field deterministic model

We noted in §II-A that assuming exponential contact among
nodes leads to the system dynamics (2) (the mean-field de-
terministic regime) in the limit that the number of nodes,
N , approach ∞. We therefore assess the applicability of
(2) for exponential contact processes and large, but finite
N (§IV-A1). Subsequently we assess the validity of (2)
for a specific truncated power-law contact process that was
experimentally observed for human mobility at INFOCOM
2005 [26] (§IV-A2). Under this model, nodes do not mix
homogenously, as those that have met in the past are more
likely to meet in the future, and their convergence to ODEs
like ours has not been established.

For each contact process, we simulated 100 runs of the
evolution of the states with forwarding probabilities provided
by the optimal control for the fixed terminal time problem and
state equations (2). We compared the average state evolutions
and unbiased energy costs of these cases with those obtained
from (2) under the same control. We describe the results below.

1) Exponential Contact Process: For a system with N =
160 nodes, I0 = (0, 0, 0, 0.0125, 0.0125, 0.025), β = 2, and
T = 5, leading to an average of 10 meetings per node, Fig. 2
and Fig. 3 reveal that the results obtained from the simulation
of the exponential contact process and (2) are similar, as
expected.

2) Truncated Power Law Contact Process: We consider the
truncated power-law contact process observed in [26] for a
network with N = 41 nodes and α = 0.4. The power-law
process was truncated in that the contact times are restricted
to be between 2 minutes and 24 hours. We use β = 4.46 in our
differential equations (2) so that 1/β equals the expected inter-
contact time between any pair of nodes under this distribution.
Also, I0 = (0, 0, 0, 0, 0.025, 0.025). Even though N is small
and the contact process is not memoryless, Fig. 4 shows that
the states derived from this simulation and (2) follow the
same trends, but there is a gap, which is to be expected
because this contact model does not have the homogeneity

Fig. 2. Comparison of the state processes for the mean-field deterministic regime
(dashed lines) and simulated exponential contact process. We consider a mandated
probability of delivery of 80%.

Fig. 3. Comparing the costs of the mean-field deterministic regime (dashed line) and
simulated exponential process as a function of the mandated probability of delivery. The
error bars represent the standard deviations of the statistical simulations.

of the exponential case, and the number of nodes is small
(N = 41, since the experimental data in [26] was obtained for
this N ). Fig. 5 show that the costs in this model are, however,
quite close to those derived from our equations, suggesting the
robustness of energy cost to the change in contact process.

B. Performance advantage of optimal control over heuristics

1) Description of Heuristics: We propose two classes of
heuristic policies, and describe sub-classes that correspond to
policies in prior literature. In all classes and sub-classes, we
define the best policy to be that which minimizes the unbiased
energy cost subject to satisfying the throughput constraint (6).

I- Static Across Energy Levels: Policies that choose a one
jump (from a fixed value in [0, 1] to zero) control that is the
same for all energy levels. In these policies, nodes do not need
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Fig. 4. Comparison of the evolution of the infection in a mean-field deterministic
regime (dashed lines) and the power-law contact process observed in [26]. We use a
mandated probability of delivery of 90%.

Fig. 5. Here, the cost under the mean-field deterministic regime (dashed line) is
compared to that of a truncated power law contact process (solid line) as a function of
the mandated probability of delivery. The error bars represent the standard deviations of
the costs and probabilities of delivery.

to know their residual energy level. The best policy in this class
is selected through a search over the range [0, T ]×[0, 1], which
is less than that of the optimal control ([0, T ]B−s+1).

II- Static Across Time: Policies that force all controls to
be at a fixed value (potentially different for each energy level)
throughout [0, T ]. These policies are inherently robust to errors
in clock synchronization, and the best policy in this class can
be determined through a search over the range [0, 1]B−s+1,
which is similar to that of the optimal control.

Policies where controls depend on residual energy levels,
e.g., those in (II), have not been proposed in existing literature.
Several sub-classes of (I) have been proposed, however:12

1) Probability Threshold (also known as optimized flood-
ing): Policies whose controls drop from 1 to 0 when the

12Sub-classes inherit constraints of classes from which they are descended.

probability of message delivery in [0, T ] surpasses a certain
threshold (e.g., [7]).

2) Infection Threshold: Policies whose controls drop from
1 to 0 when the total number of infected nodes with enough
energy to transfer the message to the destination surpasses a
certain threshold (e.g., [15]).

3) Static Across Time and Energy Levels: Policies that force
all energy levels to choose the same fixed control (between 0
and 1) throughout [0, T ] (e.g., [15]).

4) One Control (also known as flooding, epidemic routing):
The single policy that sets all controls to one. (Originally in
[1], also in [10] and [7].)

5) Zero Control (also known as Spray and Wait, two-hop
transmission, direct transmission): The single policy that sets
all controls to zero. (Originally in [6], also in [10] and [7].)

The best policy in the Probability and Infection Threshold
classes can be determined through a search over [0, T ], and
that in the Static Across Time and Energy Levels class through
a search over [0, 1]. However, the Zero Control policy fails to
attain the mandated probability of delivery in settings that we
consider (small to moderate values of initial infection and T ),
and is thus excluded from Fig. 6 and 9 presented below.

2) Relative Performance: In Fig. 6, the costs associated
with energy consumption for the optimal policy and also
the best policies in each of the proposed classes are com-
pared as β is varied. We use the name of the class/sub-
class to refer to the best policy in that class/sub-class.
The mandated probability of delivery is 90%, while I0 =
(0, 0, 0.0125, 0.0125, 0.0125, 0.0125). As the number of con-
tacts increases, forwarding the message at every available
opportunity becomes less desirable as it leads to massive
energy consumption. The “One Control” policy, therefore, acts
as a battery depletion attack on the nodes, using up all of their
energy reserves and leading to significantly higher cost (over
30% worse than the second worst heuristic), and therefore it
is left out of the figure for illustrative purposes. We see that
the optimal policy significantly outperforms the best of the
rest of the heuristic for low and moderate values of β (for
β ≤ 2.5), e.g., the performance difference is 50% for β ≈ 2.
We also see that the Static Across Energy Levels and Static
in Time heuristics respectively outperform all other heuristics
for low and high values of β. As contacts (βT ) increase, the
flexibility to adapt the control in accordance with the residual
energy of the nodes provided by Static in Time turns out to
be beneficial, as the mandated probability of delivery can be
achieved by utilizing higher energy nodes. In fact, Static in
Time performs close to the optimal for large values of β.
In summary, the improvement in performance attained by the
optimal control over simpler heuristics justifies its utilization
of time-dependent and residual-energy-dependent decisions
except for relatively large values of β where there is less need
to spread the message due to more frequent meetings with
the destination. In this case, near-optimal performance can be
achieved by choosing controls based only on residual energy
and not time, as is the case for Static in Time. Such choices
may be used instead of the optimal policy for more robustness
to clock synchronization errors, an issue we visit next.
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Fig. 6. Performance of the optimal and heuristic controls. The performances of
the “Static Across Energy Levels”, “Infection Threshold”, and “Probability Threshold”
policies are very close, and they are indicated with a single arrow.

C. Sensitivity of the optimal control to synchronization and
residual energy determination errors

We will consider a system with N = 500 nodes, I0 =
(0, 0, 0, 0.0125, 0.0125, 0.025), T = 5, mandated probability
of delivery 75% and β = 2 simulated over 200 runs.

1) Synchronization Errors: We allow each node to have a
clock synchronization error that manifests itself as a time-shift
in implementing the control decisions.13 Thus, the optimal
policy may incur a higher energy cost than the optimal value
and provide a probability of delivery which is lower than
the mandated value. We assess the extent of the deviations
considering node time-shifts as mutually independent and
uniformly distributed in [−θ∗, θ∗]; θ∗ represents a measure
of the magnitude of the synchronization errors. Fig. 7 reveals
that the network’s performance is remarkably robust in terms
of both unbiased energy cost and probability of delivery (with
maximum standard deviations of 0.5 for the unbiased energy
cost and 0.03 for the probability of delivery) for θ∗ up to 10%
of the TTL T . This suggests that the optimal policy does not
have a significant operational drawback compared to the Static
In Time heuristics that incur substantially higher energy costs
except for large values of β.

2) Energy Determination Errors: Now we examine the case
where each node is uncertain about its residual energy level, as
may be the case for nodes with dated hardware. We assume
each node under/over-estimates its residual energy level by
one unit, each with probability p∗, independent of others.
Specifically, if a node has i units of energy, where 0 < i < B,
it estimates its energy availability as i − 1, i and i + 1 with
probabilities p∗, 1− 2p∗ and p∗ respectively.14 Fig. 8 reveals

13In other words, if a node has a time-shift of ∆, while implementing the
optimal control it uses a threshold time of ti + ∆ instead of ti when it has
i units of residual energy.

14If a node has B (respectively 0) units of energy, it estimates its energy
to be B − 1 and B (respectively 0 and 1) energy units with probabilities p∗
and 1− p∗ (respectively 1− p∗ and p∗).

(a) Unbiased energy cost

(b) Probability of delivery

Fig. 7. Comparison of the performance of the optimal policy when we have perfect
synchronization (solid line) and an implementation with synchronization errors, in terms
of both unbiased energy cost and probability of message delivery. θ∗ is the range of the
synchronization error for each node, and the error bars represent standard deviations.

that the network’s performance is robust to such errors in terms
of probability of message delivery, though the unbiased energy
cost incurred increases slightly with p∗ (a change of less than
10% for p∗ < 0.15). The maximum standard deviations of both
cases are similar to their analogs from §IV-C1, confirming the
previous observation. This suggests that the optimal policy
does not suffer from any significant operational drawbacks as
compared to the Static Across Energy Levels heuristics, which
attain substantially higher energy costs.

D. Multiple Message Transmission

We now consider a scenario where the network seeks to
successively transmit M messages, where M is a system
parameter. Each message is associated with a TTL of T
and all nodes drop the message at the end of the TTL. The
transmission of the ith message starts at the end of the TTL
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(a) Unbiased energy cost

(b) Probability of delivery

Fig. 8. Comparison of the performance of the optimal policy when nodes have correct
knowledge of their residual energy (solid line) with cases where each node can makes a
one unit error in determining its residual energy level (with probability p∗). Again, the
error bars represent the standard deviations of each parameter.

of the (i− 1)-th message. The transmission of each message
must satisfy the throughput requirement (6).

We assume that at its initial time each message is uniformly
spread to a fixed, say Υ, fraction of the nodes that have at least
s + r units of energy. Since each initial reception consumes
r units of energy, the nodes that receive the initial copies of
a message have enough (i.e., at least s units of) energy to
subsequently forward the message after reception.15 Once the
network cannot guarantee the mandated probability of delivery
for a message, we consider it to have been exhausted.

In these settings, we consider the natural generalization
of our single transmission policies: the “Myopic Optimal”
policy uses the one-step optimal for the transmission of each

15Here, r + s = 3. Thus, for example, if 50% of nodes have 4 units of
energy and 80% of nodes have at least 3 units of energy at the beginning of
transmission of a message, and Υ = 0.01, then 1.25% of the nodes with 4
units of energy receive the initial copy of the message. So at the beginning
of this transmission, I3 = 0.00625 and S4 = 0.04375.

message, while others use the single-transmission best policy
in their corresponding class (from §IV-B). Our metric for
comparing the performance of policies is the unbiased energy
cost

∑B
i=s ai (Si(MT ) + Ii(MT ))−

∑B
i=s ai(Si(0) + Ii(0)).

We only consider the cost of messages that can be forwarded
to the destination before network exhaustion.

We plot the performance of each policy for {ai} that are
quadratic functions of B−i (Fig. 9), though similar results are
seen for linear and exponential functions of B− i [27]. Here,
T = 100, β = 3,Υ = 0.001, and the mandated probability
of delivery for each message is 95%. Also, before the initial
copies of the first message are distributed, all nodes have at
least 3 units of energy - 33%, 33%, and 34% of the nodes
have 3, 4, and 5 units of energy respectively. We see that the
Myopic Optimal policy outperforms all the other policies that
we consider in terms of the unbiased energy cost for each fixed
number of transmissions and also the number of messages
transmitted till exhaustion. Note that as M increases, the
difference between the unbiased energy costs of the Myopic
Optimal policy and other policies becomes substantial, e.g.,
the difference is around 90% for around 10 transmissions.
The number of messages forwarded to the destination till
exhaustion by the Myopic Optimal policy is also slightly
greater than that of the Static Across Time policy, and 60%
better than the best of the rest.

Fig. 9. The figures plot the unbiased energy cost as a function of M, the number of
messages transmitted, for different policies. The battery penalties were ai = (B− i)2.

V. FUTURE RESEARCH

Our analysis has targeted the transmission of a single mes-
sage, and our simulations reveal that a natural generalization
of the corresponding optimal policy substantially outperforms
heuristics even for sequential transmission of multiple mes-
sages. It would be of interest to characterise the optimal
policy in this case and also for the transmission of multiple
messages with overlapping time-to-live intervals. Next, in
order to attain an adequate balance between tractability and
emulation of reality, we have abstracted certain features that
arise in practice. A case in point is that we ignored the energy
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dissipated in scanning the media in search of new nodes. We
have also assumed homogeneous mixing, i.e., the inter-contact
times are similarly distributed for all pairs of nodes. Future
research may be directed towards generalizing the analytical
results for models that relax the above assumptions. For
example, we may be able develop optimal policies for spatially
inhomogeneous networks by partly relaxing the homogenous
mixing assumption using the approach of [28]. Similarly, we
have demonstrated using simulations that our optimal control
policy is robust to clock synchronization errors and also
errors in the determination of a node’s residual energy level.
Designing policies that are provably robust to the above errors
as per some formal robustness metric remains open.
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APPENDIX A
PROOF OF LEMMA 6

We only prove (22); the proof for (23) is exactly the same
and therefore omitted for brevity. We first establish:

Lemma 8. If λ̄0 = 1, for each j ≥ s there exists a positive-
length interval containing T in which uj equals 0. In addition,
irrespective of the value of λ̄0 and for all t,

H(t−) = H(T ) = λE(T )

B∑
k=s

Ik(T ). (30)

Proof: Since the system is autonomous16, the Hamiltonian
is continuous in time and H(t) = H(T ) for all t ∈ [0, T ] [19,
p. 86 & p. 197]. We separately consider: λ̄0 = 1 and λ̄0 = 0.

1) λ̄0 = 1. The first part of the lemma clearly holds for
j ≥ s if τj = T , since then uj(t) = 0 for all t ∈ [0, T ]. We
now seek to establish the same in the case that τj < T , and
therefore Ij(T ) > 0. At t = T , for s ≤ j ≤ B we have:

ϕj(T ) = βIj(T )λ̄0

B∑
k=r

(ak − ak−r − aj−s + aj)Sk(T ). (31)

Recall that ak is decreasing in k. Hence, since S(0) 6= 0,
and so for at least one k ≥ r, Sk(T ) > 0 (from Theorem 1),
for all j ≥ s we have ϕj(T ) < 0.17 Since ϕj is a continuous

16An autonomous optimal control problem is one whose dynamic differen-
tial equations and objective function do not explicitly vary with time t.

17To see this, note that each term is negative as ak−r > ak and aj−s > aj
for k ≥ r and j ≥ s.
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function, ϕj is negative in an interval of positive length
including T . The first part of the lemma follows from (21).

Now, since uk(T ) = 0 for all k ≥ s from the first part of
this lemma, (16) simplifies to (30).

2) λ̄0 = 0. Replacing λ̄0 = 0 in (31), it follows that
ϕj(T ) = 0 for all j ≥ s; the expression for the Hamiltonian
in (20) would thus lead again to (30).

From (17), we have λ̇E = 0 , except at the points of dis-
continuity of u – a countable set – leading to λE(t) = λE(T )
for all t ∈ [0, T ] due to the continuity of the co-states. Hence,
from Lemma 8, the LHS in (22) becomes

λE(T )

 B∑
j=s

Ij(T )−
B∑
j=r

Sj(t
−)−

B∑
j=s

Ij(t
−)

 . (32)

The lemma follows from two subsequently established facts:
(A) λE(T ) > 0,18 and
(B)

∑B
j=s Ij(T )−

∑B
j=r Sj(t

−)−
∑B
j=s Ij(t

−) < 0.
In order to establish (A), we rule out λE(T ) = 0; it must

therefore be positive by (18). We again consider two cases:
(i) λ̄0 = 0 and (ii) λ̄0 = 1. (i) If λ̄0 = 0, λE(T ) = 0
would lead to (λ̄0, ~λ(T ), ~ρ(T ), λE(T )) = ~0, which contradicts
(12). (ii) Otherwise (i.e., for λ̄0 = 1), let λE(T ) = 0.
Then, λE(t) = 0 for all t ∈ [0, T ]. Thus, from (20),
H(t) =

∑B
j=r ϕj(t)uj(t). Furthermore, since our system is

autonomous and from Lemma 8, H(t) = H(T ) = 0 for all
t ∈ [0, T ]. But, as argued after (21), ϕj(t)uj(t) ≥ 0, for all
t ∈ [0, T ] and all j ≥ s. Hence, we have ϕj(t)uj(t) = 0 for
all such t and j. From Lemma 8 and since u 6≡ 0, there exists
t′ ∈ (0, T ) such that uj(t) = 0 for all t ∈ (t′, T ] and all j ≥ s
and for some k ≥ s, there exists a non-zero value of uk in
every left neighbourhood of t′. At any t ∈ (t′, T ] at which u
is continuous and from equations (17), ρ̇j(t) = λ̇j(t) = 0 for
0 ≤ j ≤ B. Since u may be discontinuous only at a countable
number of points and due to the continuity of the co-states,
ρj(t

′) = ρj(T ) = λj(T ) = λj(t
′) = −aj for all j ≥ s.

For j ≥ r and k ≥ s, define Ωj,k(t) := λj(t) − ρj−r(t) −
ρk−s(t) + ρk(t). For all such j, k, we know that Ωj,k(t′) =
(−aj + aj−r + ak−s − ak) > 0. Hence, due to continuity of
the co-states, there exists ε > 0 such that for all t ∈ (t′− ε, t′)
and all j, k, we have Ωj,k(t) > 0. But for all t, we had:

H(t) = −
B∑
j=r

[
β

B∑
k=s

Ωj,k(t)uk(t)Ik(t)

]
Sj(t)

= −
∑

r≤j≤B:Sj(0)>0

[
β

B∑
k=s

Ωj,k(t)uk(t)Ik(t)

]
Sj(t).

The last equality follows since for each j ≥ 0, Sj(t) = 0 at
each t ∈ (0, T ] if Sj(0) = 0 (Theorem 1). Since S(0) 6= 0
there exists k ≥ r such that Sk(0) > 0. We examine a point
t̄ ∈ (t′ − ε, t′) for which ul(t̄) > 0 for some l ≥ s. Since
H(t̄) = 0, and every variable in the above summation is non-
negative, Ωk,l(t̄)ul(t̄)Il(t̄)Sk(t̄) = 0. Since ul(t̄) > 0, Il(t̄) >

18 In this part we show that λE(T ) > 0 whenever u 6≡ 0. This combined
with (18) leads to E(T ) = −ln(1−p)/β0. Therefore, the delivery probability
of the optimal control at the given terminal time T equals the mandated
probability of delivery except possibly when u ≡ 0.

0 by definition of u, and Ωk,l(t̄) > 0, therefore Sk(t̄) = 0.
This contradicts Sk(0) > 0 (Theorem 1). Thus, (A) holds.

We now seek to establish (B). The proof follows from
the key insight that it is not possible to convert all of the
susceptibles to infectives in a finite time interval, and hence at
the terminal time the total fraction of infectives with sufficient
energy reserves for transmitting the message is less than
the sum fraction of susceptibles and infectives with energy
reserves greater than r, s respectively at any time before T .
To prove this, observe that for all t ∈ [0, T ], we have:

(

B∑
j=s

İj +

B∑
j=r

Ṡj) = −β
B∑
j=r

Sj

B∑
k=s

ukIk − β
B∑
j=s

ujIj

B∑
k=r

Sk

+ β

B−r∑
j=s

Sj+r

B∑
k=s

ukIk + β

B−s∑
j=s

uj+sIj+s

B∑
k=r

Sk

= −β(

s+r−1∑
j=r

Sj

B∑
k=s

ukIk +

2s−1∑
j=s

ujIj

B∑
k=r

Sk) ≤ 0.

Thus (
∑B
j=s Ij +

∑B
j=r Sj) is a decreasing function of time,

leading to
∑B
j=s Ij(T ) −

∑B
j=s Ij(t

−) −
∑B
j=r Sj(t

−) ≤
−
∑B
j=r Sj(T ). Now, since there exists k ≥ r such that

Sk(0) > 0, there will exist k ≥ r such that Sk(T ) > 0 (The-
orem 1). Also, from the same theorem, we have Sm(T ) ≥ 0
for all m. Thus,

∑B
j=r Sj(T ) > 0. The result follows.
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