
PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN

P. Apkarian∗, M. N. Dao†,‡, D. Noll†

Abstract. We present a new approach to parametric robust controller design,
where we compute controllers of arbitrary order and structure which minimize
the worst-case H∞ norm over a pre-specified set of uncertain parameters. At the
core of our method is a nonsmooth minimization method tailored to functions
which are semi-infinite minima of smooth functions. A rich test bench and a more
detailed example illustrate the potential of the technique, which can deal with
complex problems involving multiple possibly repeated uncertain parameters.

Keywords. Real uncertain parameters · structured H∞-synthesis · parametric
robust control · nonsmooth optimization · local optimality · inner approximation

I. Introduction

Parametric uncertainty is among the most challenging problems in control system
design due to its NP-hardness. Albeit, being able to provide solutions to this funda-
mental problem is a must for any practical design tool worthy of this attribute. Not
surprisingly, therefore, parametric uncertainty has remained high up on the agenda
of unsolved problems in control for the past three decades.

It is of avail to distinguish between analysis and synthesis techniques for para-
metric robustness. Analysis refers to assessing robustness of a closed-loop system
when the controller is already given. If the question whether this given controller
renders the closed loop parametrically robustly stable is solved exhaustively, then it
is already an NP-hard problem [1]. Parametric robust synthesis, that is, computing
a controller which is robust against uncertain parameters, is even harder, because it
essentially involves an iterative procedure where at every step an analysis problem
is solved. Roughly, we could say that in parametric robust synthesis we have to
optimize a criterion, a single evaluation of which is already NP-hard.

For the analysis of parametric robustness, theoretical and practical tools with only
mild conservatism and acceptable CPUs have been proposed over the years [2]. In
contrast, no tools with comparable merits in terms of quality and CPU are currently
available for synthesis. It is fair to say that the parametric robust synthesis problem
has remained open. The best currently available techniques for synthesis are the µ
tools going back to [3], made available to designers through the MATLAB Robust
Control Toolbox. These rely on upper bound relaxations of µ and follow a heuristic
which alternates between analysis and synthesis steps. When it works, it gives
performance and stability certificates, but the approach may turn out conservative,
and the computed controllers are often too complicated for practice.

The principal obstruction to efficient robust synthesis is the inherent nonconvexity
and nonsmoothness of the mathematical program underlying the design. These

∗ Control System Department, ONERA, Toulouse, France.
† Institut de Mathématiques de Toulouse, France.
‡ Hanoi National University of Education, Vietnam.

1

ar
X

iv
:1

40
5.

42
02

v1
 [

m
at

h.
O

C
]

 1
6

M
ay

 2
01

4

2 P. APKARIAN, M. N. DAO, D. NOLL

obstacles have to some extent been overcome by the invention of the nonsmooth
optimization techniques for control [4, 5, 6], which we have applied successfully
during recent years to multi-model structured control design [7, 8, 9, 4]. These have
become available to designers through synthesis tools like HINFSTRUCT or SYSTUNE.
Here we initiate a new line of investigation, which addresses the substantially harder
parametric robust synthesis problem.

In order to understand our approach, it is helpful to distinguish between inner and
outer approximations of the robust control problem on a set ∆ of uncertain parame-
ters. Outer approximations relax the problem over ∆ by choosing a larger, but more
convenient, set ∆̃ ⊃∆, the idea being that the problem on ∆̃ becomes accessible to
computations. If solved successfully on ∆̃, this provides performance and robustness
certificates for∆. Typical tools in this class are the upper bound approximation µ of
the structured singular value µ developed in [10], the DK-iteration function DKSYN
of [11], or LMI-based approaches like [12, 13]. The principal drawback of outer
approximations is the inherent conservatism, which increases significantly with the
number of uncertainties and their repetitions, and the fact that failures occur more
often.

Inner approximations are preferred in practice and relax the problem by solving
it on a smaller typically finite subset ∆a ⊂ ∆. This avoids conservatism and
leads to acceptable CPUs, but has the disadvantage that no immediate stability
or performance certificate for ∆ is obtained. Our principal contribution here is to
show a way how this shortcoming can be avoided or reduced. We present an efficient
technique to compute an inner approximation with structured controllers with a
local optimality certificate in such a way that robust stability and performance are
achieved over∆ in the majority of cases. We then also show how this can be certified
a posteriori over ∆, when combined with outer approximation for analysis. The
new method we propose is termed dynamic inner approximation, as it generates the
inner approximating set ∆a dynamically. The idea of using inner approximations,
and thus multiple models, to solve robust synthesis problems is not new and was
employed in different contexts, see e.g. [14, 15, 16].

To address the parametric robust synthesis problem we use a nonsmooth opti-
mization method tailored to minimizing a cost function, which is itself a semi-infinite
minimum of smooth functions. This is in contrast with previously discussed non-
smooth optimization problems, where a semi-infinite maximum of smooth functions
is minimized, and which have been dealt with successfully in [9]. At the core of our
new approach is therefore understanding the principled difference between a min-
max and a min-min problem, and the algorithmic strategies required to solve them
successfully. Along with the new synthesis approach, our key contributions are

• an in-depth and rigorous analysis of worst-case stability and worst-case per-
formance problems over a compact parameter range.
• the description of a new resolution algorithm for worst-case programs along
with a proof of convergence in the general nonsmooth case.

Note that convergence to local minima from an arbitrary, even remote, starting
point is proved, as convergence to global minima is not algorithmically feasible due
to the NP-hardness of the problems.

The paper is organized as follows. Section II states the problem formally, and
subsection II-B presents our novel dynamic inner approximation technique and the

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 3

elements needed to carry it out. Section III highlights the principal differences
between nonsmooth min-min and min-max problems. Sections IV-A and IV-B ex-
amine the criteria which arise in the optimization programs, the H∞-norm, and the
spectral abscissa. Section V presents the optimization method we designed for min-
min problems and the subsections V-B, V-C are dedicated to convergence analysis.
Section VI-A presents an assessment and a comparison of our algorithm on a bench
of test examples. Section VI-B gives a more refined study of a challenging missile
control problem.

Notation

For complex matrices XH denotes conjugate transpose. For Hermitian matrices,
X � 0 means positive definite, X � 0 positive semi-definite. We use concepts from
nonsmooth analysis covered by [17]. For a locally Lipschitz function f : Rn → R,
∂f(x) denotes its (compact and convex) Clarke subdifferential at x ∈ Rn. The
Clarke directional derivative at x in direction d ∈ Rn can be computed as

f ◦(x, d) = max
g∈∂f(x)

gTd .

The symbols Fl, Fu denote lower and upper Linear Fractional Transformations
(LFT) [18]. For partitioned 2 × 2 block matrices, ? stands for the Redheffer star
product [19].

II. Parametric robustness

A. Setup
We consider an LFT plant in Fig. 1 with real parametric uncertainties Fu(P,∆)

where

(1) P (s) :





ẋ = Ax + Bpp + Bww + Bu
q = Cqx + Dqpp + Dqww + Dquu
z = Czx + Dzpp + Dzww + Dzuu
y = Cx + Dypp + Dyww + Du

and x ∈ Rnx is the state, u ∈ Rm2 the control, w ∈ Rm1 the vector of exogenous
inputs, y ∈ Rp2 the output, and z ∈ Rp1 the regulated output. The uncertainty
channel is defined as p = ∆q where the uncertain matrix ∆ is without loss assumed
to have the block-diagonal form

(2) ∆ = diag [δ1Ir1 , . . . , δmIrm]

with δ1, . . . , δm representing real uncertain parameters, and ri giving the number
of repetitions of δi. We assume without loss that δ = 0 represents the nominal
parameter value. Moreover, we consider δ ∈ ∆ in one-to-one correspondence with
the matrix ∆ in (2).

Given a compact convex set ∆ ⊂ Rm containing δ = 0, the parametric robust
structured H∞ control problem consists in computing a structured output-feedback
controller u = K(κ∗)y with the following properties:

(i) Robust stability. K(κ∗) stabilizes Fu(P,∆) internally for every δ ∈∆.
(ii) Robust performance. Given any other robustly stabilizing controllerK(κ)

with the same structure, the optimal controller satisfies

max
δ∈∆
‖Tzw (δ, κ∗) ‖∞ ≤ max

δ∈∆
‖Tzw (δ, κ) ‖∞.

4 P. APKARIAN, M. N. DAO, D. NOLL

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 3

The symbols Fl, Fu are used to denote lower and upper Linear Fractional Transfor-
mations (LFT) [15]. For partitioned 2 ⇥ 2 block matrices, the symbol ? stands for the
Redheffer star product [16].

2. Parametric robustness

We consider an LFT plant with real parametric uncertainties Fu(P,�) where

(1) P (s) :

8
>><
>>:

ẋ = Ax + Bpp + Bww + Bu
q = Cqx + Dqpp + Dqww + Dquu
z = Czx + Dzpp + Dzww + Dzuu
y = Cx + Dypp + Dyww + Du

and x 2 Rnx is the state, u 2 Rm2 the control, w 2 Rm1 the vector of exogenous inputs,
y 2 Rp2 the output, and z 2 Rp1 the regulated output. The uncertainty channel is
defined as p = �q where the uncertain matrix � is without loss assumed to have the
block-diagonal form

� = diag [�1Ir1 , . . . , �mIrm](2)

with �1, . . . , �m representing real uncertain parameters, and ri giving the number of repe-
titions of �i. We assume without loss that � = 0 represents the nominal parameter value.
Moreover, we consider � 2 � in one-to-one correspondence with the matrix � in (2).

Figure 1. Robust synthesis interconnection

∆

P
z w

K(κ)

Figure 2. Robust synthesis interconnection

Given a compact convex set � ⇢ Rm containing � = 0, the parametric robust structured
H1 control problem consists in computing a structured output-feedback controller u =
K(⇤)y with the following properties:

(i) Robust stability. K(⇤) stabilizes Fu(P,�) internally for every � 2 �.
(ii) Robust performance. Given any other robustly stabilizing controller K() with

the same structure, the optimal controller satisfies

max
�2�

kTzw (�, ⇤) k1  max
�2�

kTzw (�, ) k1.

Here Tzw(�, ) := Fl (Fu(P,�(�)), K()) denotes the closed-loop transfer function of the
performance channel w ! z of (1) when the control loop with controller K() and the
uncertainty loop with uncertainty � are closed.

Figure 1. Robust synthesis interconnection

Here Tzw(δ, κ) := Fl (Fu(P,∆(δ)), K(κ)) denotes the closed-loop transfer function
of the performance channel w → z of (1) when the control loop with controller K(κ)
and the uncertainty loop with uncertainty ∆ are closed.

We recall that according to [4] a controller

(3) K(κ) :

{
ẋK = AK(κ)xK + BK(κ)y
u = CK(κ)xK + DK(κ)y

in state-space form is called structured if AK(κ), BK(κ), . . . depend smoothly on a
design parameter κ varying in a design space Rn or in some constrained subset of
Rn. Typical examples of structure include PIDs, reduced-order controllers, observer-
based controllers, or complex control architectures combining controller blocks such
as set-point filters, feedforward, washout or notch filters, and much else [9]. In
contrast, full-order controllers are state-space representations with the same order
as P (s) without particular structure, and are sometimes referred to as unstructured,
or as black-box controllers.

Parametric robust control is among the most challenging problems in linear feed-
back control. The structured singular value µ developed in [18] is the principled
theoretical tool to describe problem (i), (ii) formally. In the same vein, based on
the spectral abscissa

α(A) = max{Re(λ) : λ eigenvalue of A}
of a square matrix A, criterion (i) may be written as

(4) max
δ∈∆

α (A(δ, κ∗)) < 0,

where A(δ, κ) is the A-matrix of the closed-loop transfer function Tzw(δ, κ).
If the uncertain parameter set is a cube ∆ = [−1, 1]m, which is general enough for

applications, then the same information is obtained from the distance to instability
in the maximum-norm

(5) d∗ = min{‖δ‖∞ : α (A(δ, κ∗)) ≥ 0},

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 5

because criterion (i) is now equivalent to d∗ ≥ 1. It is known that the computation
of any of these elements, µ, (4), or (5) is NP-complete, so that their practical use
is limited to analysis of small problems, or to the synthesis of tiny ones. Practical
approaches have to rely on intelligent relaxations, or heuristics, which use either
inner or outer approximations.

In the next chapters we will develop our dynamic inner approximation method to
address problem (i), (ii). We solve the problem on a relatively small set ∆a ⊂ ∆,
which we construct iteratively.

B. Dynamic inner approximation
The following static inner approximation to (i), (ii) is near at hand. After fixing

a sufficiently fine approximating static grid ∆s ⊂ ∆, one solves the multi-model
H∞-problem

(6) min
κ∈Rn

max
δ∈∆s

‖Tzw (δ, κ) ‖∞.

This may be addressed with recent software tools like HINFSTRUCT and SYSTUNE, cf.
[11], or HIFOO [20], but has a high computational burden due to the large number of
scenarios in ∆s, which makes it prone to failure. Straightforward gridding becomes
very quickly intractable for sizable dim(δ).

Here we advocate a different strategy, which we call dynamic inner approximation,
because it operates on a substantially smaller set ∆a ⊂ ∆ generated dynamically,
whose elements are called the active scenarios, which we update a couple of times by
applying a search procedure locating problematic parameter scenarios in ∆. This
leads to a rapidly converging procedure, much less prone to failure than (6). The
method can be summarized as shown in Algorithm 1.

The principal elements of Algorithm 1 will be analyzed in the following sections.
We will focus on the optimization programs v∗ in step 4, α∗ in step 3, and d∗,
h∗ in step 6, which represent a relatively unexplored type of nonsmooth programs,
with some common features which we shall put into evidence here. In contrast,
program v∗ in step 2 is accessible to numerical methods through the work [4] and
can be addressed with tools like HINFSTRUCT or SYSTUNE available through [11], or
HIFOO available through [20]. Note that our approach is heuristic in so far as we
have relaxed (i) and (ii) by computing locally optimal solutions, so that a global
stability/performance certificate is only provided in the end as a result of step 6.

III. Nonsmooth min-max versus min-min programs

A. Classification of the programs in Algorithm 1
Introducing the functions a±(δ) = ±α (A(δ)), the problem of step 3 can be equiv-

alently written in the form

(7) minimize a−(δ) = −α (A(δ))
subject to δ ∈∆

for a matrix A(δ) depending smoothly on the parameter δ ∈ Rm. Here the depen-
dence of the matrix on controller K(κ∗) is omitted for simplicity, as the latter is
fixed in step 3 of the algorithm. Similarly, if we introduce h±(δ) = ±‖G(δ)‖∞, with
G(s, δ) a transfer function depending smoothly on δ ∈ Rm, then problem of step 4

6 P. APKARIAN, M. N. DAO, D. NOLL

Algorithm 1. Dynamic inner approximation for parametric robust synthesis over∆
Parameters: ε > 0.
. Step1 (Nominal synthesis). Initialize the set of active scenarios as∆a = {0}.

. Step2 (Multi-model synthesis). Given the current finite set ∆a ⊂ ∆ of
active scenarios, compute a structured multi-model H∞-controller by solving

v∗ = min
κ∈Rn

max
δ∈∆a

‖Tzw (δ, κ) ‖∞.

The solution is the structured H∞-controller K(κ∗).
� Step3 (Destabilization). Try to destabilize the closed-loop system Tzw (δ, κ∗)

by solving the destabilization problem
α∗ = max

δ∈∆
α (A(δ, κ∗)) .

If α∗ ≥ 0, then the solution δ∗ ∈ ∆ destabilizes the loop. Include δ∗ in the
active scenarios ∆a and go back to step 2. If no destabilizing δ was found then
go to step 4.

. Step4 (Degrade performance). Try to degrade the robust H∞-performance
by solving

v∗ = max
δ∈∆
‖Tzw (δ, κ∗) ‖∞.

The solution is δ∗.
� Step5 (Stopping test). If v∗ < (1 + ε)v∗ degradation of performance is only
marginal. Then exit, or optionally, go to step 6 for post-processing. Otherwise
include δ∗ among the active scenarios ∆a and go back to step 2.
� Step6 (Post-processing). Check robust stability (i) and performance (ii) of
K(κ∗) over ∆ by computing the distance d∗ to instability (5), and its analogue
h∗ = min{‖δ‖∞ : ‖Tzw(δ, κ∗)‖∞ ≥ v∗}. Possibly use µ-tools from [11] to as-
sess d∗, h∗ approximately. If all δ∗ obtained satisfy δ∗ 6∈ ∆, then terminate
successfully.

has the abstract form

(8) minimize h−(δ) = −‖G(δ)‖∞
subject to δ ∈∆

where again controller K(κ∗) is fixed in step 4, and therefore suppressed in the
notation. In contrast, the H∞-program v∗ in step 2 of Algorithm 1 has the form

(9) minimize h+(κ) = ‖G(κ)‖∞
subject to κ ∈ Rn

which is of the more familiar min-max type. Here we use the well-known fact
that the H∞-norm may be written as a semi-infinite maximum function h+(κ) =
maxω∈[0,∞] σ (G(κ, jω)). The maximum over the finitely many δ ∈ ∆a in step 2
complies with this structure and may in principle be condensed into the form (9),
featuring only a single transfer G(s, κ). In practice this is treated as in [5].

Due to the minus sign, programs (7) and (8), written in the minimization form,
are now of the novel min-min type, which is given special attention here. This
difference is made precise by the following

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 7

Definition 1 (Spingarn [21], Rockafellar-Wets [22]). A locally Lipschitz function
f : Rn → R is lower-C1 at x0 ∈ Rn if there exist a compact space K, a neighborhood
U of x0, and a mapping F : Rn ×K→ R such that

(10) f(x) = max
y∈K

F (x, y)

for all x ∈ U , and F and ∂F/∂x are jointly continuous. The function f is said to
be upper-C1 if −f is lower-C1. �

We expect upper- and lower-C1 functions to behave quite differently in descent
algorithms. Minimization of lower-C1 functions, as required in (9), should lead to
a genuinely nonsmooth problem, because iterates of a descent method move toward
the points of nonsmoothness. In contrast, minimization of upper-C1 functions as
required in (7) and (8) is expected to be better behaved, because iterates move
away from the nonsmoothness. Accordingly, we will want to minimize upper-C1

functions in (7) and (8) in much the same way as we optimize smooth functions in
classical nonlinear programming, whereas the minimization of lower-C1 functions in
(9) requires specific techniques like nonconvex bundle methods [23, 24]. See Fig. 2
for an illustration.

Remark 1 (Distance to instability). Note that the computation of the distance
to instability d∗ defined in (5) for step 6 of Algorithm 1 has also the features of a
min-min optimization program. Namely, when written in the form

(11)
minimize t
subject to −t ≤ δi ≤ t, i = 1, . . . ,m

−α (A(δ)) ≤ 0

with variable (δ, t) ∈ Rm+1, the Lagrangian of (5) is

L(δ, t, λ, µ±) = t+
m∑

i=1

µi− (−t− δi) + µi+(δi − t)− λα (A(δ))

for Lagrange multipliers λ ≥ 0 and µ± ≥ 0. In particular, if (δ∗, t∗, λ∗, µ∗±) is a
Karush-Kuhn-Tucker (KKT) point [17] of (11), then the local minimum (δ∗, t∗) we
are looking for is also a critical point of the unconstrained program

min
δ∈Rm,t∈R

L(δ, t, λ∗, µ∗±),

which features the function a− and is therefore of min-min type. Therefore, in
solving (5), we expect phenomena of min-min type to surface rather than those of
a min-max program. A similar comment applies to the computation of h∗ in step 6
of the algorithm.

Remark 2 (Well-posedness). Yet another aspect of Algorithm 1 is that in order to
be robustly stable over the parameter set ∆, the LFTs must be well-posed in the
sense that (I −∆D)−1 exists for every δ ∈∆, where D is the closed-loop D-matrix.
Questioning well-posedness could therefore be included in step 3 of the algorithm,
or added as posterior testing in step 6. It can be formulated as yet another min-min
program

(12) minimize −σ((I −∆D)−1)
subject to δ ∈∆

8 P. APKARIAN, M. N. DAO, D. NOLL

where one would diagnose the solution δ∗ to represent an ill-posed scenario as soon
as it achieves a large negative value. Program (12) exhibits the same properties as
minimizing h− in section IV-A and is handled with the same techniques.

For programs v∗ in step 4, α∗ in step 3, and d∗, h∗ in step 6 of Algorithm 1,
well-posedness (12) is a prerequisite. However, we have observed that it may not be
necessary to question well-posedness over∆ at every step, since questioning stability
over ∆ has a similar effect. Since the posterior certificate in step 6 of the algorithm
covers also well-posedness, this is theoretically justified.

Remark 3. Our notation makes it easy for the reader to distinguish between min-
min and min-max programs. Namely, minimizations over the controller variable κ
turn out the min-max ones, while minimizations over the uncertain parameters δ
lead to the min-min type.

B. Highlighting the difference between min-max and min-min
In this section we look at the typical difficulties which surface in min-max and min-

min programs. This is crucial for the understanding of our algorithmic approach.
Consider first a min-max program of the form

(13) min
κ∈Rn

max
i∈I

fi(κ),

where the fi are smooth. When the set I is finite, we may simply dissolve this into a
classical nonlinear programming (NLP) using one additional dummy variable t ∈ R:

minimize t
subject to fi(κ) ≤ t, i ∈ I.

The situation becomes more complicated as soon as the set I is infinite, as is for
instance the case in program v∗ in step 2 of Algorithm 1. The typical difficulty in
min-max programs is to deal with this semi-infinite character, and one is beholden
to use a tailored solution, as for instance developed in [4, 24, 23]. Altogether this
type of difficulty is well-known and has been thoroughly studied.

In contrast, a min-min program

(14) min
δ∈Rn

min
i∈I

fi(δ)

cannot be converted into an NLP even when I is finite. The problem has disjunctive
character, and if solved to global optimality, min-min programs lead to combinatorial
explosion. On the other hand, a min-min problem has some favorable features when
it comes to solely finding a good local minimum. Namely, when meeting a nonsmooth
iterate δj, where several branches fi are active, we can simply pick one of those
branches and continue optimization as if the objective function were smooth. In
the subsequent sections we prove that this intuitive understanding is indeed correct.
Our experimental section will show that good results are obtained if a good heuristic
is used.

The above considerations lead us to introduce the notion of active indices and
branches for functions f(δ) defined by the inner max and min in (13) and (14).

Definition 2. The set of active indices for f at δ is defined as

I(δ) := {i ∈ I : fi(δ) = f(δ)} .
Active branches of f at δ are those corresponding to active indices, i.e, fi, i ∈ I(δ).

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 9

min−max

nonsmoothness

min−min
worst−case analysis

synthesis

Figure 2. Min-max versus min-min programs

IV. Computing subgradients

In this section we briefly discuss how the subgradient information needed to min-
imize h− and a− is computed.

A. Case of the H∞-norm
We start by investigating the case of the H∞-norm h±. We recall that function

evaluation is based on the Hamiltonian algorithm of [25, 26] and its further devel-
opments [27]. Computation of subgradients of h− in the sense of Clarke can be
adapted from [4], see also [28]. We assume the controller is fixed in this section and
investigate the properties of h− as a function of δ. To this aim, the controller loop is
closed by substituting the structured controller (3) in (1), and we obtain the transfer
function M(κ) := Fl(P,K(κ)). Substantial simplification in Clarke subdifferential
computation is then obtained by defining the 2× 2-block transfer function

(15)
[
∗ Tqw(δ)

Tzp(δ) Tzw(δ)

]
:=

[
0 I
I ∆

]
? M ,

where the dependence on κ has now been suppressed, as the controller will be fixed
to κ∗ after step 2. It is readily seen that Tzw coincides with the closed-loop transfer
function where both controller and uncertainty loops are closed.

Now consider the function h−(δ) := −‖Tzw(δ)‖∞, which is well defined on its
domain D := {δ ∈ Rm : Tzw(δ) is internally stable}. We have the following

Proposition 1. The function h− is everywhere Clarke subdifferentiable on D. The
Clarke subdifferential at δ ∈ D is the compact and convex set

∂h−(δ) =

{
φY : Y = (Yω), ω ∈ Ω(δ), Yω � 0,

∑
ω∈Ω(δ) Trace(Yω) = 1

}
,

where the i-th entry of φY is Trace
(
∆T
i ΦY

)
with ∆i = ∂∆/∂δi, and

ΦY = −
∑

ω∈Ω(δ)

Re
(
Tqw(δ, jω)PωYωQ

H
ω Tzp(δ, jω)

)T
.

10 P. APKARIAN, M. N. DAO, D. NOLL

Here Ω(δ) is the set of active frequencies at δ, Qω is a matrix whose columns are the
left singular vectors associated with the maximum singular value of Tzw(δ, jω), Pω is
the corresponding matrix of right singular vectors, and Yω is an Hermitian matrix
of appropriate size.

Proof. Computation of the Clarke subdifferential of h− can be obtained from the
general rule ∂(−h) = −∂h, and knowledge of ∂h+, see [4]. Note that in that reference
the Clarke subdifferential is with respect to the controller and relies therefore on the
Redheffer star product

P ?

[
K(κ) I
I 0

]
.

Here we apply this in the upper loop in ∆, so we have to use the analogue expression
(15) instead. �

Remark 4. In the case where a single frequency ω0 is active at δ and the maximum
singular value σ of Tzw(δ, jω0) has multiplicity 1, h− is differentiable at δ and the
gradient is

∂h−(δ)

∂δi
= −Trace Re

(
Tqw(δ, jω0)pω0q

H
ω0
Tzp(δ, jω0)

)T
∆i,

where pω0 and qω0 are the unique right and left singular vectors of Tzw(δ, jω0) asso-
ciated with σ(Tzw(δ, jω0)) = h+(δ).

Proposition 2. Let D = {δ : Tzw(δ) is internally stable}. Then h+ : δ 7→ ‖Tzw(δ)‖∞
is lower-C1 on D, so that h− : δ 7→ −‖Tzw(δ)‖∞ is upper-C1 there.

Proof. Recall that the maximum singular value has the variational representation

σ(G) = sup
‖u‖=1

sup
‖v‖=1

∣∣uTGv
∣∣ .

Now observe that z 7→ |z|, being convex, is lower-C1 as a mapping R2 → R, so we
may write it as

|z| = sup
l∈L

Ψ(z, l)

for Ψ jointly of class C1 and L compact. Then

(16) h+(δ) = sup
jω∈S1

sup
‖u‖=1

sup
‖v‖=1

sup
l∈L

Ψ
(
uTTzw(δ, jω)v, l

)
,

where S1 = {jω : ω ∈ R ∪ {∞}} is homeomorphic with the 1-sphere. This is the
desired representation (10), where the compact space K is obtained as K := S1×{u :
‖u‖ = 1} × {v : ‖v‖ = 1} × L, F as F (δ, jω, u, v, l) := Ψ

(
uTTzw(δ, jω)v, l

)
and y as

y := (jω, u, v, l). �

B. Case of the spectral abscissa
For the spectral abscissa the situation is more complicated, as a± is not locally

Lipschitz everywhere. Recall that an eigenvalue λi of A(δ) is called active at δ if
Re(λi) = α (A(δ)). We use I(δ) to denote the indices of active eigenvalues. Let us
write the LFT describing A(δ) as A(δ) = A + C∆(I −D∆)−1B, where dependence
on controller parameters κ is again omitted and considered absorbed into the state-
space data A, B, etc.

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 11

Proposition 3. Suppose all active eigenvalues λi, i ∈ I(δ) of A(δ) at δ are semi-
simple. Then a±(δ) = ±α (A(δ)) is Clarke subdifferentiable in a neighborhood of
δ. The Clarke subdifferential of a− at δ is ∂a−(δ) = {φY : Y = (Yi)i∈I(δ), Yi �
0,
∑

i∈I(δ) Trace(Yi) = 1}, where the i-th entry of φY is −Trace ∆i
TΦY with ∆i =

∂∆/∂δi, and

ΦY =
∑

i∈I(δ)
Re
(
(I −D∆)−1CViYiUH

i B(I −∆D)−1
)T
,

where Vi is a column matrix of right eigenvectors, UH
i a row matrix of left eigenvec-

tors of A(δ) associated with the eigenvalue λi, and such that UH
i Vi = I.

Proof. This follows from [29]. See also [30]. A very concise proof that semi-simple
eigenvalue functions are locally Lipschitz could also be found in [31]. �

When every active eigenvalue is simple, Yi reduces to a scalar yi and a fast im-
plementation is possible. We use the LU-decomposition to solve for ũi and ṽi in the
linear systems

ũHi (I −∆D) := uHi B, (I −D∆)ṽi := Cvi .
Given the particular structure (2) of ∆, subgradients with respect to the kth en-
try are readily obtained as a sum over i ∈ I(δ) of inner products of the form
yiRe ũi(J(k))H ṽi(J(k)), where J(k) is a selection of indices associated to the rows/columns
of δk in ∆(δ). Similar inner product forms apply to the computation of H∞ norm
subgradients.

It was observed in [29] that a± may fail to be locally Lipschitz at δ if A(δ) has a
derogatory active eigenvalue.

Proposition 4. Suppose every active eigenvalue of A(δ) is simple. Then a− is
upper-C1 in a neighborhood of δ.

Proof. If active eigenvalues are simple, then a+ is the maximum of C1 functions in
a neighborhood of δ. The result follows from a− = −a+. �

V. Algorithm for min-min programs

In this section we present our descent algorithm to solve programs (7) and (8).
We consider an abstract form of the min-min program with f a general objective
function of this type:

(17) minimize f(δ)
subject to δ ∈∆

where as before ∆ is a compact convex set with a convenient structure. As we
already pointed out, the crucial point is that we want to stay as close as possible
to a standard algorithm for smooth optimization, while assuring convergence under
the specific form of upper nonsmoothness in these programs.

In order to understand Algorithm 2 and its step finding subroutine (Subroutine
1), we recall from [32, 6] that

φ](η, δ) = f(δ) + f ◦(δ, η − δ)
the standard model of f at δ, where f ◦(δ, d) is the Clarke directional derivative of f
at δ in direction d [17]. This model can be thought of as a substitute for a first-order

12 P. APKARIAN, M. N. DAO, D. NOLL

Algorithm 2. Descent method for min-min programs.
Parameters: 0 < γ < Γ < 1, 0 < θ < Θ < 1.
. Step1 (Initialize). Put outer loop counter j = 1, choose initial guess δ1 ∈∆,
and fix memory step size t]1 > 0.
� Step2 (Stopping). If δj is a KKT point of (17) then exit, otherwise go to inner
loop.

. Step3 (Inner loop). At current iterate δj call the step finding subroutine
(Subroutine 1) started with last memorized stepsize t]j to find a step tk > 0 and
a new serious iterate δj+1 such that

ρk =
f(δj)− f(δj+1)

f(δj)− φ]k(δj+1, δj)
≥ γ.

� Step4 (Stepsize update). If ρk ≥ Γ then update memory stepsize as t]j+1 =

θ−1tk, otherwise update memory stepsize as t]j+1 = tk. Increase counter j and
go back to step 2.

Taylor expansion at δ and can also be represented as

(18) φ](η, δ) = f(δ) + max
g∈∂f(δ)

gT (η − δ),

where ∂f(δ) is the Clarke subdifferential of f at δ. In the subroutine we generate
lower approximations φ]k of φ] using finite subsets Gk ⊂ ∂f(δ), putting

φ]k(η, δ) = f(δ) + max
g∈Gk

gT (η − δ).

We call φ]k the working model at inner loop counter k.

Remark 5. Typical values are γ = 0.0001, γ̃ = 0.0002, and Γ = 0.1. For back-
tracking we use θ = 1

4
and Θ = 3

4
.

A. Practical aspects of Algorithm 2
The subroutine of the descent Algorithm 2 looks complicated, but as we now

argue, it reduces to a standard backtracking linesearch in the majority of cases.
To begin with, if f is certified upper-C1, then we completely dispense with step 4
and keep Gk = {g0}, which by force reduces the subroutine to a linesearch along a
projected gradient direction. This is what we indicate by flag = upper in step 4 of
the subroutine.

If f is only known to have a strict standard model φ] in (18), without be-
ing certified upper-C1, which corresponds to flag = strict, then step 4 of the
subroutine is needed, as we shall see in section V-C. However, even then we ex-
pect the subroutine to reduce to a standard linesearch. This is clearly the case
when the Clarke subdifferential ∂f(δ) at the current iterate δ is singleton, because
φ]k(η, δ) = f(δ) +∇f(x)T (η − δ) is then again independent of k, so ρk ≥ γ reads

f(ηk) ≤ f(δj) + γ∇f(δj)T (ηk − δj),
which is the usual Armijo test [33]. Moreover, ηk is then a step along the projected
gradient P∆−δ(−∇f(δ)), which is easy to compute due to the simple structure of
∆. More precisely, for ∆ = [−1, 1]m and stepsize tk > 0, the solution η of tangent

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 13

Subroutine 1. Descent step finding for min-min programs.

Input: Current serious iterate δ, last memorized stepsize t] > 0. Flag.
Output: Next serious iterate δ+.
. Step1 (Initialize). Put linesearch counter k = 1, and initialize search at
t1 = t]. Choose subgradient g0 ∈ ∂f(δ). Put G1 = {g0}.

. Step2 (Tangent program). Given tk > 0, a finite set of Clarke subgradients
Gk ⊂ ∂f(δ), and the corresponding working model φ]k(·, δ) = f(δ) + max

g∈Gk
gT (· −

δ), compute solution ηk ∈∆ of the convex quadratic tangent program

(TP) min
η∈∆

φ]k(η, δ) + 1
2tk
‖η − δ‖2.

� Step3 (Armijo test). Compute

ρk =
f(δ)− f(ηk)

f(δ)− φ]k(ηk, δ)
If ρk ≥ γ then δ+ = ηk successfully to Algorithm 2. Otherwise go to step 4

. Step4 (If Flag = strict. Cutting and aggregate plane). Pick a sub-
gradient gk ∈ ∂f(δ) such that f(δ) + gTk (ηk − δ) = φ](ηk, δ), or equivalently,
f ◦(δ, ηk − δ) = gTk (ηk − δ). Include gk into the new set Gk+1 for the next sweep.
Add the aggregate subgradient g∗k into the set Gk+1 to limit its size.
� Step5 (Step management). Compute the test quotient

ρ̃k =
f(δ)− φ]k+1(ηk, δ)

f(δ)− φ]k(ηk, δ)
.

If ρ̃k ≥ γ̃ then select tk+1 ∈ [θtk,Θtk], else keep tk+1 = tk. Increase counter k
and go back to step 2.

program (TP) in step 2 can be computed coordinatewise as

min
{
γiη + (2tk)

−1η2 +
(
γi − δit−1

k

)
η : −1 ≤ η ≤ 1

}
,

where γi := ∂f(δ)/∂δi. Cutting plane and aggregate plane in step 4 become re-
dundant, and the quotient ρ̃k in step 5 is also redundant as it is always equal to
1.

Remark 6. Step 4 is only fully executed if f is not certified upper-C1 and the
subgradient g0 ∈ ∂f(δ) in step 1 of Subroutine 1 does not satisfy f(δ)+gT0 (ηk−δ) =
φ](ηk, δ). In that event step 4 requires computation of a new subgradient gk ∈ ∂f(δ)
which does satisfy f(δ) + gTk (ηk − δ) = φ](δ, ηk − δ). From here on the procedure
changes. The sets Gk+1 may now grow, because we will add gk into Gk+1. This
corresponds to what happens in a bundle method. The tangent program (TP) has
now to be solved numerically using a QP-solver, but since we may limit the number
of elements of Gk+1 using the idea of the aggregate subgradient of Kiwiel [34], see
also [35], this is still very fast.

Remark 7. For the spectral abscissa f(δ) = a−(δ), which is not certified upper-C1,
we use this cautious variant, where the computation of gk in step 4 may be required.
For f = a− this leads to a low-dimensional semidefinite program.

14 P. APKARIAN, M. N. DAO, D. NOLL

Remark 8. The stopping test in step 2 of Algorithm 2 can be delegated to Subrou-
tine 1. Namely, if δj is a Karush-Kuhn-Tucker point of (17), then ηk = δj is solution
of the tangent program (TP). This means we can use the following practical stop-
ping tests: If the inner loop at iterate δj finds δj+1 ∈∆ such that

‖δj+1 − δj‖
1 + ‖δj‖ < tol1,

|f(δj+1)− f(δj)|
1 + |f(δj)| < tol2,

then we decide that δj+1 is optimal and stop. That is, the (j + 1)st inner loop is
not started. On the other hand, if the inner loop at δj has difficulties finding a new
iterate and provides five consecutive unsuccessful backtracks ηk such that

‖ηk − δj‖
1 + ‖δj‖ < tol1,

|f(ηk)− f(δj)|
1 + |f(δj)| < tol2,

or if a maximum kmax of linesearch steps k is exceeded, then we decide that δj was
already optimal and stop. In our experiments we use tol1 = 10−4, tol2 = 10−4,
kmax = 50.

Remark 9. The term stepsize used for the parameter t in the tangent program (TP)
in step 2 of Algorithm 1 is understood verbatim when Gk consists of a single element
g0 and the minimum in (TP) is unconstrained, because then ‖ηk − δ‖ = tk‖g0‖.
However, even in those cases where step 4 of the subroutine is carried out in its full
version, tk still acts like a stepsize in the sense that decreasing tk gives smaller steps
(in the inner loop), while increasing t] allows larger steps (in the next inner loop).

B. Convergence analysis for the negative H∞-norm
Algorithm 2 was studied in much detail in [32], and we review the convergence

result here, applying them directly to the functions a− and h−. The significance of
the class of upper-C1 functions for convergence lies in the following

Proposition 5. Suppose f is upper-C1 at δ̄. Then its standard model φ] is strict
at δ̄ in the following sense: For every ε > 0 there exists r > 0 such that

(19) f(η) ≤ φ](η, δ) + ε‖η − δ‖
is satisfied for all δ, η ∈ B(δ̄, r).

Proof. The following, even stronger property of upper-C1 functions was proved in
[35], see also [36, 32]. Suppose δk → δ̄ and ηk → δ̄, and let gk ∈ ∂f(δk) arbitrary.
Then there exist εk → 0 such that
(20) f(ηk) ≤ f(δk) + gTk (ηk − δk) + εk‖ηk − δk‖
is satisfied. �

Remark 10 below shows that upper-C1, and thus (20), are stronger than strictness
(19) of the standard model.

Theorem 1 (Worst-case H∞ norm on ∆). Let δj ∈∆ be the sequence generated by
Algorithm 2 with standard linesearch for minimizing program (8). Then the sequence
δj converges to a Karush-Kuhn-Tucker point δ∗ of (8).

Proof. The proof of [6, Theorem 2] shows that every accumulation point of the
sequence δj is a critical point of (8), provided φ] is strict. Moreover, since the
iterates are feasible, we obtain a KKT point. See Clarke [17, p. 52] for a definition.
However, it was observed in [35] that estimate (26) in that proof can be replaced by

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 15

(20) when the objective is upper-C1. Since this is the case for h− on its domain D,
the step finding Subroutine 1 can be reduced to a linesearch. Reference [35] gives
also details on how to deal with the constraint set ∆. Note that hypotheses assuring
boundedness of the sequence δj in [6, 32, 35] are not needed, since ∆ is bounded.

Convergence to a single KKT point is now assured through [32, Cor. 1], because
G depends analytically on δ, so that h− is a subanalytic function, and satisfies
therefore the Łojasiewicz inequality [37]. Subanalyticity of h− can be derived from
the following fact [38]. If F : Rn ×K→ R is subanalytic, and K is subanalytic and
compact, then f(δ) = miny∈K F (δ, y) is subanalytic. We apply this to the negative
of (16). �

Remark 10. The lightning function f : R → R in [39] is an example which has a
strict standard model but is not upper C1. It is Lipschitz with constant 1 and has
∂f(x) = [−1, 1] for every x. The standard model of f is strict, because for all x, y
there exists ρ = ρ(x, y) ∈ [−1, 1] such that

f(y) = f(x) + ρ|y − x| ≤ f(x) + sign(y − x)(y − x)

≤ f(x) + f ◦(x, y − x) = φ](x, y − x),

using the fact that sign(y − x) ∈ ∂f(x). At the same time f is certainly not upper-
C1, because it is not semi-smooth in the sense of [40]. This shows that the class
of functions f with a strict standard model offers a scope of its own, justifying the
effort made in the step finding subroutine.

C. Convergence analysis for the negative spectral abscissa
While we obtained an ironclad convergence certificate for the H∞-programs (8),

and similarly, for (12), theory is more complicated with program (7). In our numer-
ical testing a−(δ) = −α (A(δ)) behaves consistently like an upper-C1 function, and
we expect this to be true at least if all active eigenvalues of A(δ∗) are semi-simple.
We now argue that we expect a− to have a strict standard model as a rule.

Since A(δ) depends analytically on δ, the eigenvalues are roots of a characteristic
polynomial pδ(λ) = λm + a1(δ)λm−1 + · · ·+ am(δ) with coefficients ai(δ) depending
analytically on δ. For fixed d ∈ Rm, every eigenvalue λν(t) of A(δ∗+td) has therefore
a Newton-Puiseux expansion of the form

(21) λν(t) = λν(0) +
∞∑

i=k

λν,i−k+1t
i/p

for certain k, p ∈ N, where the coefficients λν,i = λν,i(d) and leading exponent
k/p can be determined by the Newton polygon [41]. If all active eigenvalues of
a−(δ) = −α(A(δ)) are semi-simple, then a− is Lipschitz around δ∗ by Proposition
3, so that necessarily k/p ≥ 1 in (21). It then follows that either a′−(δ∗, d) = 0 when
k/p > 1 for all active ν, or a′−(δ∗, d) = −Reλν,1 ≤ a◦−(δ∗, d) for the active ν ∈ I(δ∗)
if k/p = 1. In both cases a− satisfies the strictness estimate (19) directionally,
and we expect a− to have a strict standard model. Indeed, for k/p = 1 we have
a−(δ∗+td) ≤ a−(δ∗)+a◦−(δ∗, d)t−Reλν,2t

(p+1)/p+o(t(p+1)/p), while the case k/p > 1

gives a′−(δ∗, d) = 0, hence a◦−(δ∗, d) ≥ 0, and so a−(δ∗ + td) ≤ a−(δ∗)−Reλν,1t
k/p +

o(tk/p) ≤ a−(δ∗) + a◦−(δ∗, d)t−Reλν,1t
k/p + o(tk/p). As soon as these estimates hold

uniformly over ‖d‖ ≤ 1, a− has indeed a strict standard model, i.e., we have the
following

16 P. APKARIAN, M. N. DAO, D. NOLL

Lemma 1. Suppose every active eigenvalue of A(δ∗) is semi-simple, and suppose
the following two conditions are satisfied:

(22)
lim
t→0

sup
‖d‖≤1

sup
ν∈I(δ∗),k/p=1

∞∑

i=k+1

Reλν,i−k+1(d)ti/p−1 ≥ 0

lim
t→0

sup
‖d‖≤1

sup
ν∈I(δ∗),k/p>1

∞∑

i=k

Reλν,i−k+1(d)ti/p−1 ≥ 0.

Then the standard model of a− is strict at δ∗. �

Even though these conditions are not easy to check, they seem to be verified most
of the time, so that the following result reflects what we observe in practice for the
min-min program of the negative spectral abscissa a−.

Theorem 2 (Worst-case spectral abscissa on ∆). Let δj ∈ ∆ be the sequence
generated by Algorithm 2 for program (7), where the step finding subroutine is carried
out with step 4 activated. Suppose every accumulation point δ∗ of the sequence δj is
simple or semi-simple and satisfies condition (22). Then the sequence converges to
a unique KKT point of program (7).

Proof. We apply once again [32, Corollary 1], using the fact that a− satisfies the
Łojasiewicz inequality at all accumulation points. �

Remark 11. Convergence certificates for minimizing a− or a+ seem to hinge on ad-
ditional hypotheses which are hard to verify in practice. In [42] the authors propose
the gradient sampling algorithm to minimize a+, and their subsequent convergence
analysis in [43] needs at least local Lipschitzness of a+, which is observed in practice
but difficult to verify algorithmically. A similar comment applies to the hypotheses
of Theorem 2, which appear to be satisfied in practice, but remain difficult to check
directly.

D. Multiple performance measures
Practical applications often feature several design requirements combining H∞

and H2 performances with spectral constraints related to pole locations. The results
in section V-B easily extend to this case upon definingH(κ, δ) := maxi∈I hi (Tzi,wi(κ, δ)),
where several performance channels wi → zi are assessed against various require-
ments hi, as in [44, 8]. All results developed so far carry over to multiple require-
ments, because the worst-case multi-objective performance in step 4 of Algorithm 1
involves H− = −H which has the same min-min structure as before.

VI. Experiments

A. Algorithm testing
In this section our dynamic inner relaxation technique (Algorithm 1) is tested

on a bench of 14 examples of various sizes and structures. All test cases have been
taken and adapted from the literature and are described in Table 1. Some tests have
been made more challenging by adding uncertain parameters in order to illustrate
the potential of the technique for higher-dimensional parametric domains ∆. The
notation [r1 r2 . . . rm] in the rightmost column of the table stands for the block
sizes in ∆ = diag [δ1Ir1 , . . . , δmIrm]. Uncertain parameters have been normalized so
that ∆ = [−1, 1]m, and the nominal value is δ = 0.

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 17

The dynamic relaxation technique of Algorithm 1 is first compared to static re-
laxation (6). That technique consists in choosing a dense enough static grid ∆s

of the uncertainty box ∆ and to perform a multi-model synthesis for a large num-
ber card(∆s) of models. In consequence, static relaxation cannot be considered a
practical approach. Namely,

• Dense grids become quickly intractable for high-dimensional ∆.
• Static relaxation may lead to overly optimistic answers in terms of worst-case
performance if critical parametric configurations are missed by gridding.

This is what is observed in Table 2, where we have used a 5m-point grid with
m = dim(δ) the number of uncertain parameters. Worst-case performance is missed
in tests 6, 9, 12 and 14, as we verified by Algorithms 2. Running times may rise to
hours or even days for cases 1, 2, 5 and 10. On the other hand, when gridding turns
out right, then Algorithm 1 and static relaxation are equivalent. In this respect, the
dynamic relaxation of Algorithm 1 can be regarded as a cheap, and therefore very
successful, way to cover the uncertainty box. The number of scenarios in ∆a rarely
exceeds 10 in our testing. Computations were performed using Matlab R2013b on
OS Windows 7 Home Premium with CPU Intel Core i5-2410M running at 2.30 Ghz
and 4 GB of RAM.

The results achieved by Algorithm 1 can be certified a posteriori through the
mixed µ upper bound [10]. This technique computes an overestimate µp of the
worst-case performance on the unit cube ∆. We introduce the ratio ρ := µp/h∞,
where h∞ is the underestimate of µ predicted by our Algorithm 1, given in column
4 of Table 2. Clearly h∞ ≤ µ̄p, or what is the same, ρ ≥ 1, so that values ρ ≈ 1
certify the values predicted by Algorithm 1. Note that a value ρ � 1 indicates
failure to certify the value h∞ a posteriori, but such a failure could be due either
to a sub-optimal result of Algorithm 1, or to conservatism of the upper bound µ̄p.
This was not observed in our present testing, so that Algorithm 1 was certified in
all cases. For instance, in row 2 of Table 3 we have a guaranteed performance for
parameters in ∆/1.01.

Our last comparison is between Algorithm 1 and DKSYN for complex and real µ
synthesis, and the results are shown in Table 3. A value µR = b in column 6 of that
table means worst-case performance of b is guaranteed on the cube (1/b) [−1, 1]m.
It turned out that no reasonable certificates were to be obtained with µR synthesis,
since b = µR � 1 as a rule, so that (1/b)[−1, 1]m became too small to be of use,
except for test cases 8, 9 and 13. In this test bench, Algorithm 1 achieved better
worst-case performance on a larger uncertainty box with simpler controllers. It also
proves competitive in terms of execution times.

B. Tail fin controlled missile
We now illustrate our robust synthesis technique in more depth for a tail fin

controlled missile. This problem is adapted from [54, Chapter IV] and has been made
more challenging by adding parametric uncertainties in the most critical parameters.
The linearized rigid body dynamics of the missile are

[
α̇
q̇

]
=

[
Zα 1
Mα Mq

] [
α
q

]
+

[
Zd
Md

]
u

[
η
q

]
=

[
V/kGZα 0

0 1

] [
α
q

]
+

[
V/kGZd

0

]
u

18 P. APKARIAN, M. N. DAO, D. NOLL

Table 1. Test cases

No Benchmark name Ref. States Uncertainty block structure
1 Flexible Beam [45] 8 [1 1 1 3 1]
2 Mass-Spring-Dashpot [46] 12 [1 1 1 1 1 1]
3 DC Motor [47] 5 [1 2 2]
4 DVD Drive [48] 5 [1 3 3 3 1 3]
5 Four Disk [49] 10 [1 3 3 3 3 3 1 1 1 1]
6 Four Tank [50] 6 [1 1 1 1]
7 Hard Disk Drive [51] 18 [1 1 1 2 2 2 2 1 1 1 1]
8 Hydraulic Servo [52] 7 [1 1 1 1 1 1 1 1]
9 Mass-Spring System [53] 4 [1 1]
10 Tail Fin Controlled Missile [54] 23 [1 1 1 6 6 6]
11 Robust Filter Design 1 [55] 4 [1]
12 Robust Filter Design 2 [56] 2 [1 1]
13 Satellite [57] 5 [1 6 1]
14 Mass-Spring-Damper [11] 8 [1]

Table 2. Comparisons of Algorithm 1 with static relaxation on unit
box running times in sec., I: intractable

No order Algorithm 1 Static relaxation
scenarios H∞ norm time # scenarios H∞ norm time

1 3 4 1.290 25.093 3125 I ∞
2 5 16 2.929 261.754 15625 I ∞
3 PID 2 0.500 6.256 125 0.500 127.952
4 5 1 45.455 2.012 15625 45.454 4908.805
5 6 6 0.672 68.768 9765625 I ∞
6 6 4 5.571 41.701 625 5.564 3871.898
7 4 4 0.026 34.647 48828125 I ∞
8 PID 3 0.701 10.140 390625 I ∞
9 4 4 0.814 22.917 25 0.759 67.268
10 12 6 1.810 159.299 15625 I ∞
11 4 4 2.636 16.723 5 2.636 6.958
12 1 3 2.793 8.221 25 2.660 23.400
13 6 5 0.156 48.445 125 0.156 876.039
14 5 3 1.651 39.250 5 1.644 27.456

where α is the angle of attack, q the pitch rate, η the vertical acceleration and
u the fin deflection. Both η and q are measured through appropriate devices as
described below. A more realistic model also includes bending modes of the missile
structure. In this application, we have 3 bending modes whose contribution to η
and q is additive and described as follows:

[
ηi(s)
qi(s)

]
=

1

s2 + 2ζωis+ ω2
i

[
s2Ξηi

sΞqi

]
, i = 1, 2, 3 .

It is also important to account for actuator and detector dynamics. The actuator
is modeled as a 2nd-order transfer function with damping 0.7 and natural frequency

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 19

Table 3. Comparisons between DKSYN (complex and real) µ synthesis
and dynamic relaxation on the same uncertainty box

No complex µ syn. real µ syn. Algorithm 1
ord. µC time ord. µR time ρ = µ̄p/h∞

1 38 2.072 80.231 88 1.835 86.144 1.00
2 54 2.594 123.288 66 2.586 141.181 1.01
3 51 17.093 76.799 65 16.854 27.269 1.01
4 5 72.464 27.113 5 45.455 53.898 1.00
5 10 5.151 131.259 10 1.894 315.949 1.01
6 6 4.558 17.519 12 4.555 29.469 1.01
7 18 50.451 159.152 F F F 1.01
8 61 0.963 100.636 61 0.878 133.740 1.05
9 24 0.921 47.565 28 0.989 112.820 1.04
10 147 5.639 1412.402 337 2.834 7611.679 1.04
11 14 1.804 13.759 14 1.782 22.293 1.02
12 10 2.268 16.021 16 2.323 21.310 1.01
13 133 0.821 183.052 255 0.509 257.589 1.04
14 14 1.523 16.583 16 1.562 46.722 1.00

188.5 rad./sec. Similarly, the accelerometer and pitch rate gyrometer are 2nd-order
transfer functions with damping 0.7 and natural frequencies 377 rad./sec. and 500
rad./sec., respectively.

Uncertainties affect both rigid and flexible dynamics and the deviations from
nominal are 30% for Zα, 15% for Mα, 30% for Mq, and 10% for each ωi. This leads
to an uncertain model with uncertainty structure given as

∆ = diag
[
δZα , δMα , δMq , δω1I6, δω2I6, δω3I6

]
,

which corresponds to δ ∈ R6 and repetitions [1 1 1 6 6 6] in the terminology of Table
1. The controller structure includes both feed-forward Kff(s) and feedback Kfb(s)
actions

uc = Kff(s)ηr +Kfb(s)

[
ηr − ηm
−qm

]
= K(s)



ηr − ηm
qm
ηr


 ,

where ηr is the acceleration set-point and ηm, qm are the detectors outputs. The
total number of design parameters κ in K(κ, s) is 85, as a tridiagonal state space
representation of a 12-th order controller was used.

The missile autopilot is optimized over κ ∈ R85 to meet the following requirements:
• The acceleration ηm should track the reference input ηr with a rise time of
about 0.5 seconds. In terms of the transfer function from ηr to the tracking
error e := ηr−ηm this is expressed as ||We(s)Teηr ||∞ ≤ 1, where the weighting
function We(s) is

We(s) := 1/M
s/ωB +M

s/ωB + A
, A = 0.05, M = 1.5, ωB = 10 .

• Penalization of the high-frequency rate of variation of the control signal and
roll-off are captured through the constraint ||Wu(s)Tuηr ||∞ ≤ 1, whereWu(s)

is a high-pass weighting Wu(s) := (s/100(0.001s+ 1))2.

20 P. APKARIAN, M. N. DAO, D. NOLL

• Stability margins at the plant input are specified through the H∞ constraint
‖Wo(s)S(s)Wi(s)‖∞ ≤ 1, where S is the input sensitivity function S :=
(I +KfbG)−1 and with static weights Wo = Wi = 0.4.

Finally, stability and performance requirements must hold for the entire range
of parametric uncertainties, where ∆ is the R6-hyperbox with limits in percentage
given above. The resulting nonsmooth program v∗ to be solved in step 2 of Algorithm
1 takes the form

min
κ∈R85

max
δ∈∆a⊂R6

‖Tzw (δ, κ) ‖∞.

We have observed experimentally that controllers K(s) of order greater than 12
do not improve much. The order of the augmented plant including flexible modes,
detector and actuator dynamics, and weighting filters is nx = 23.

The evolution of the worst-case H∞ performance vs. iterations in Algorithm 2
(and its Subroutine 1) is problem-dependent. For the missile example, a destabilizing
uncertainty is found at the 1st iteration. The algorithm then settles very quickly
in 5 iterations on a final set ∆a consisting of 6 scenarios. The number of scenarios
in the final ∆a coincides with the number of iterations in Algorithm 1 plus the
nominal scenario, and can be seen in column 3 of Table 2. Note that the evolution
of the worst-case H∞ performance is not always monotonic. Typically the curve may
bounce back when a bad parametric configuration δ is discovered by the algorithm.
This is the case e.g. for the mass-spring example.

The achieved values of the H∞ norm and corresponding running times are given
in Table 2. Responses to a step reference input for 100 models from the uncertainty
set ∆ are shown in Fig. 3 to validate the robust design. Good tracking is obtained
over the entire parameter range. The magnitude of the 3 controller gains of K(s)
are plotted in Fig. 4. Robust roll-off and notching of flexible modes are clearly
achieved. Potential issues due to pole-zero cancellations are avoided as a consequence
of allowing parameter variations in the model. Finally, Fig. 5 displays the Nichols
plots for 100 models sampled in the uncertainty set. We observe that good "rigid"
margins as well as attenuation of the flexible modes over ∆ has been achieved.

Remark 12. Real µ synthesis turned out time-consuming, exceeding two hours in
the missile example. The controller order inflates to 337 and conservatism is still
present as compared to dynamic relaxation via Algorithm 1. A value µR = 2.834
reads as a worst-case H∞ performance of 2.834 over the box ∆ = 1/2.834 [−1, 1]m.
To resort to interpreting uncertain parameters as complex cannot be considered an
acceptable workaround either. Even when it delivers a result, this approach as a
rule leads to high-order controllers (147 states in the missile example). Complex
µ synthesis is also fairly conservative, as we expected. It appears that scaling- or
multiplier-based approaches using outer relaxations [58, 2] encounter two typical
difficulties:

• The number and repetitions of parametric uncertainties lead to conservatism.
• Repetitions of the parameters lead to high-order multipliers, which in turn
produce high-order controllers.

Our approach is not affected by these issues.

Remark 13. Static relaxation remains intractable even for a coarse grid of 5 points
in each dimension. See Table 2.

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 21

Figure 3. Step responses of controlled missile for 100 sampled mod-
els in uncertainty range

10−2 10−1 100 101 102 103 104
−40

−30

−20

−10

0

10

20

30

40

Singular Values

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

K
η

Kq
F

Figure 4. Feedback and feed-forward gains

22 P. APKARIAN, M. N. DAO, D. NOLL

−360 −180 0 180 360 540 720
−80

−60

−40

−20

0

20

40

60

80

 6 dB
 3 dB
 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB
 −6 dB

 −12 dB

 −20 dB

 −40 dB

 −60 dB

 −80 dB

From: deltac To: deltac

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n

(d
B)

Figure 5. Nichols plots for 100 sampled models in uncertainty range

VII. Conclusion

We have presented a novel algorithmic approach to parametric robust H∞ control
with structured controllers. A new inner relaxation technique termed dynamic inner
approximation, adapting a set of parameter scenarios ∆a iteratively, was developed
and shown to work rapidly without introducing conservatism. Global robustness
and performance certificates are then best obtained a posteriori by applying analy-
sis tools based on outer approximations. At the core our new method is leveraged by
sophisticated nonsmooth optimization techniques tailored to the class of upper-C1

stability and performance functions. The approach was tested on a bench of chal-
lenging examples, and within a case study. The results indicate that the proposed
technique is a valid practical tool, capable of solving challenging design problems
with parametric uncertainty.

References

[1] H. Özbay. O. Toker, “On the NP-hardness of the purely complex µ computation, analy-
sis/synthesis, and some related problems in multidimensional systems,” in Proc. American
Control Conf., Seattle, June 1995, pp. 447–451.

[2] A. Packard, J. C. Doyle, and G. J. Balas, “Linear, multivariable robust control with a µ
perspective,” J. Dyn. Sys., Meas., Control, Special Edition on Control, vol. 115, no. 2b, pp.
426–438, June 1993.

[3] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, µ-Analysis and synthesis
toolbox: User’s Guide. The MathWorks, Inc., 1991.

[4] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” IEEE Trans. Automat. Control, vol. 51,
no. 1, pp. 71–86, 2006.

[5] ——, “Nonsmooth optimization for multidisk H∞ synthesis,” Eur. J. Control, vol. 12, no. 3,
pp. 229–244, 2006.

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 23

[6] D. Noll, O. Prot, and A. Rondepierre, “A proximity control algorithm to minimize nonsmooth
and nonconvex functions,” Pac. J. Optim., vol. 4, no. 3, pp. 571–604, 2008.

[7] P. Gahinet and P. Apkarian, “Automated tuning of gain-scheduled control systems,” in Proc.
IEEE Conf. on Decision and Control, Florence, December 2013, pp. 2740 – 2745.

[8] P. Apkarian, “Tuning controllers against multiple design requirements,” in Proc. American
Control Conf., Washington, June 2013, pp. 3888 – 3893.

[9] P. Apkarian and D. Noll, “Optimization-based control design techniques and tools,” in Ency-
clopedia of Systems and Control, J. Baillieul and T. Samad, Eds. Springer-Verlag, 2015.

[10] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence of mixed parametric
uncertainty and unmodeled dynamics,” IEEE Trans. Automat. Control, vol. 36, no. 1, pp.
25–38, 1991.

[11] Robust Control Toolbox 5.0. MathWorks, Natick, MA, USA, Sept 2013.
[12] C. W. Scherer and I. E. Köse, “Gain-scheduled control synthesis using dynamic D-scales,”

IEEE Trans. Automat. Control, vol. 57, no. 9, pp. 2219–2234, 2012.
[13] D. Peaucelle and D. Arzelier, “Robust Multi-Objective Control toolbox,” in Proc. IEEE Conf.

on Computer Aided Control Systems Design, Munich, October 2006, pp. 1152–1157.
[14] R. H. Nyström, K. V. Sandström, T. K. Gustafsson, and H. T. Toivonen, “Multimodel robust

control of nonlinear plants: a case study,” J. Process Contr., vol. 9, no. 2, pp. 135–150, 1999.
[15] J.-F. Magni, Y. Le Gorrec, and C. Chiappa, “A multimodel-based approach to robust and

self-scheduled control design,” in Proc. IEEE Conf. on Decision and Control, vol. 3, 1998, pp.
3009–3014.

[16] J. Ackermann, A. Bartlett, D. Kaesbauer, W. Sienel, and R. Steinhauser, Robust control.
Systems with Uncertain Physical Parameters, ser. Comm. Control Engrg. Ser. London:
Springer-Verlag London, Ltd., 1993.

[17] F. H. Clarke, Optimization and Nonsmooth Analysis, ser. Canad. Math. Soc. Ser. Monogr.
Adv. Texts. New York: John Wiley & Sons, Inc., 1983.

[18] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. New Jersey: Prentice
Hall, 1996.

[19] R. M. Redheffer, “On a certain linear fractional transformation,” J. Math. and Phys., vol. 39,
pp. 269–286, 1960.

[20] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “HIFOO - A Matlab package
for fixed-order controller design and H∞ optimization,” in 5th IFAC Symposium on Robust
Control Design, Toulouse, July 2006.

[21] J. E. Spingarn, “Submonotone subdifferentials of Lipschitz functions,” Trans. Amer. Math.
Soc., vol. 264, no. 1, pp. 77–89, 1981.

[22] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Berlin: Springer-Verlag, 1998.
[23] P. Apkarian, D. Noll, and O. Prot, “A proximity control algorithm to minimize nonsmooth

and nonconvex semi-infinite maximum eigenvalue functions,” J. Convex Anal., vol. 16, no.
3-4, pp. 641–666, 2009.

[24] ——, “A trust region spectral bundle method for nonconvex eigenvalue optimization,” SIAM
J. Optim., vol. 19, no. 1, pp. 281–306, 2008.

[25] S. Boyd, V. Balakrishnan, and P. Kabamba, “A bisection method for computing the H∞ norm
of a transfer matrix and related problems,” Math. Control Signals Systems, vol. 2, no. 3, pp.
207–219, 1989.

[26] S. Boyd and V. Balakrishnan, “A regularity result for the singular values of a transfer matrix
and a quadratically convergent algorithm for computing its L∞-norm,” Systems Control Lett.,
vol. 15, no. 1, pp. 1–7, 1990.

[27] P. Benner, V. Sima, and M. Voigt, “L∞-norm computation for continuous-time descriptor
systems using structured matrix pencils,” IEEE Trans. Automat. Control, vol. 57, no. 1, pp.
233–238, 2012.

[28] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance. New York:
Prentice Hall, 1991.

[29] J. V. Burke and M. L. Overton, “Differential properties of the spectral abscissa and the
spectral radius for analytic matrix-valued mappings,” Nonlinear Anal., vol. 23, no. 4, pp.
467–488, 1994.

24 P. APKARIAN, M. N. DAO, D. NOLL

[30] V. Bompart, P. Apkarian, and D. Noll, “Non-smooth techniques for stabilizing linear systems,”
in Proc. American Control Conf., New York, July 2007, pp. 1245–1250.

[31] S. H. Lui, “Pseudospectral mapping theorem II,” Electron. Trans. Numer. Anal., vol. 38, pp.
168–183, 2011.

[32] D. Noll, “Convergence of non-smooth descent methods using the Kurdyka-Łojasiewicz inequal-
ity,” J. Optim. Theory Appl., vol. 160, no. 2, pp. 553–572, 2014.

[33] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods, ser. Comput. Sci.
Appl. Math. New York-London: Academic Press, Inc., 1982.

[34] K. C. Kiwiel, “An aggregate subgradient method for nonsmooth convex minimization,” Math.
Programming, vol. 27, no. 3, pp. 320–341, 1983.

[35] M. N. Dao, “Bundle method for nonconvex nonsmooth constrained optimization,” 2014, sub-
mitted.

[36] D. Noll, “Cutting plane oracles to minimize non-smooth non-convex functions,” Set-Valued
Var. Anal., vol. 18, no. 3-4, pp. 531–568, 2010.

[37] J. Bolte, A. Daniilidis, and A. Lewis, “The Łojasiewicz inequality for nonsmooth subanalytic
functions with applications to subgradient dynamical systems,” SIAM J. Optim., vol. 17, no. 4,
pp. 1205–1223, 2006.

[38] E. Bierstone and P. D. Milman, “Semianalytic and subanalytic sets,” Inst. Hautes Études Sci.
Publ. Math., vol. 67, pp. 5–42, 1988.

[39] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Meth-
ods and Applications, ser. Nonconvex Optim. Appl. Dordrecht: Kluwer Academic Publishers,
2002, vol. 60.

[40] R. Mifflin, “Semismooth and semiconvex functions in constrained optimization,” SIAM J.
Control Optimization, vol. 15, no. 6, pp. 959–972, 1977.

[41] J. Moro, J. V. Burke, and M. L. Overton, “On the Lidskii-Vishik-Lyusternik perturbation
theory for eigenvalues of matrices with arbitrary Jordan structure,” SIAM J. Matrix Anal.
Appl., vol. 18, no. 4, pp. 793–817, 1997.

[42] J. V. Burke, A. S. Lewis, and M. L. Overton, “Two numerical methods for optimizing matrix
stability,” Linear Algebra Appl., vol. 351-352, pp. 117–145, 2002, fourth special issue on linear
systems and control.

[43] ——, “A robust gradient sampling algorithm for nonsmooth, nonconvex optimization,” SIAM
J. Optim., vol. 15, no. 3, pp. 751–779, 2005.

[44] P. Apkarian, P. Gahinet, and C. Buhr, “Multi-model, multi-objective tuning of fixed-structure
controllers,” in European Control Conf. (ECC), Strasbourg, June 2014.

[45] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. New York:
Macmillan Publishing Company, 1992.

[46] C. S. Resnik, “A method for robust control of systems with parametric uncertainty motivated
by a benchmark example,” Master’s thesis, June 1991.

[47] U. Chaiya and S. Kaitwanidvilai, “Fixed-structure robust DC motor speed control,” in Proc.
International MultiConference of Engineers and Computer Scientists (IMECS), vol. II, Hong
Kong, March 2009, pp. 1533–1536.

[48] G. Filardi, O. Sename, A. Besancon-Voda, and H.-J. Schroeder, “Robust H∞ control of a
DVD drive under parametric uncertainties,” in European Control Conf. (ECC), Cambridge,
September 2003.

[49] D. F. Enns, “Model reduction for control system design,” Ph.D. dissertation, Stanford Uni-
versity, 1984.

[50] R. Vadigepalli, E. P. Gatzke, and F. J. Doyle III, “Robust control of a multivariable experi-
mental four-tank system,” Ind. Eng. Chem. Res., vol. 40, no. 8, pp. 1916–1927, 2001.

[51] D. W. Gu, P. H. Petkov, and M. M. Konstantinov, Robust Control Design with Matlab. Lon-
don: Springer-Verlag, 2005.

[52] Y. Cheng and B. L. R. D. Moor, “Robustness analysis and control system design for a hydraulic
servo system,” IEEE Trans. on Control System Technology, vol. 2, no. 3, pp. 183–197, 1994.

[53] D. Alazard, C. Cumer, P. Apkarian, M. Gauvrit, and G. Ferreres, Robustesse et Commande
Optimale. Toulouse: Cépaduès Éditions, 1999.

[54] D. L. Krueger, “Parametric uncertainty reduction in robust multivariable control,” Ph.D.
dissertation, Naval Postgraduate School, September 1993.

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 25

[55] C. W. Scherer and I. E. Köse, “Robustness with dynamic IQCs: an exact state-space charac-
terization of nominal stability with applications to robust estimation,” Automatica J. IFAC,
vol. 44, no. 7, pp. 1666–1675, 2008.

[56] Y.-M. Kim, “Robust and reduced order H-Infinity filtering via LMI approach and its applica-
tion to fault detection,” Ph.D. dissertation, Wichita State University, May 2006.

[57] D. Noll, M. Torki, and P. Apkarian, “Partially augmented Lagrangian method for matrix
inequality constraints,” SIAM J. Optim., vol. 15, no. 1, pp. 161–184, 2004.

[58] P. M. Young, “Controller design with real parametric uncertainty,” Internat. J. Control, vol. 65,
no. 3, pp. 469–509, 1996.

	I. Introduction
	Notation
	II. Parametric robustness
	A. Setup
	B. Dynamic inner approximation

	III. Nonsmooth min-max versus min-min programs
	A. Classification of the programs in Algorithm ??
	B. Highlighting the difference between min-max and min-min

	IV. Computing subgradients
	A. Case of the H-norm
	B. Case of the spectral abscissa

	V. Algorithm for min-min programs
	A. Practical aspects of Algorithm ??
	B. Convergence analysis for the negative H-norm
	C. Convergence analysis for the negative spectral abscissa
	D. Multiple performance measures

	VI. Experiments
	A. Algorithm testing
	B. Tail fin controlled missile

	VII. Conclusion
	References

