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Sensor Networks Localization: Extending

Trilateration via Shadow Edges

Gabriele Oliva∗‡, Stefano Panzieri†, Federica Pascucci† and Roberto Setola∗

Abstract

Distance-based network localization is known to have solution, in general, if the network is globally

rigid. In this paper we relax this condition with reference to unit disk graphs. To this end “shadow edges"

are introduced to model the fact that selected nodes are not able to sense each other. We provide a

localization algorithm based on such edges and a necessary and sufficient localizability condition. We

also inspect the relation of the the proposed approach with trilateration, showing from both a theoretical

and empirical point of view that shadow edge localization may solve the problem also when trilateration

fails.
Index Terms

Wireless Sensor Networks Localization; Rigidity; Trilateration; Unit Disk Graphs; Delaunay Graphs;

Gabriel Graphs.
I. INTRODUCTION

In the literature several sensor network localization approaches based on relative distance

measurements have been proposed [1]–[3]. Among others, trilateration algorithms [1], [4] are

widely adopted, but they fail in some cases, especially when low-range communication devices

are used, or when the environment contains obstacles.

Typical distance-based localization algorithms require the network to be globally rigid [5],

[6]. In the case of unit disk graphs [8], i.e., such that each pair of nodes within a given distance

threshold ρ are connected by means of an edge, while some additional piece of information can

be used [1], [7]. Specifically, in [1] unit disk graphs are used to characterize the probability of

having a trilateration graph depending on the number of nodes and on the value of the threshold

ρ , while in [7], assuming the graph is a unit disk graph, an NP-hard algorithm is devised that

inspects the possible configurations and gets rid of those in conflict with the unit disk graph

structure.
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Even if the idea that unit disk graphs may help to get rid of some ambiguities is not new in

the literature, to the best of our knowledge no theoretical result is given on the localizability of

a sensor network over a unit disk graph, and the available algorithms are intrinsically centralized

and complex.

In this paper, based on the preliminary results of [9]–[11], we provide a localization framework

for unit disk graphs that models the a priori information as additional virtual links, namely shadow

edge, to localize networks that are not globally rigid.

As a result we provide an efficient and ready to be distributed algorithm, namely Shadow

Edge Localization Algorithm (SELA), and we give conditions that guarantee the localizability

of the sensor network also when the graph is not globally rigid. We also prove that set of nodes

localized by SELA always contains the one localized by trilateration when the anchors (i.e., a

small set of already localized nodes) coincide, while the maximum number of nodes that can be

localized by SELA (i.e., choosing the best seed) is always greater or equal than the maximum

number of nodes that can be localized via trilateration. Hence SELA algorithm is able to succeed

when algorithms based on classical trilateration fail.

The remainder of the paper is as follows: Section II provides some preliminary definitions;

Section III reviews the network localization problem; the proposed approach is discussed in

Section IV, while some simulation results are given in Section V; eventually, some conclusions

are drawn in Section VI, while the Appendix contains the proofs.

II. PRELIMINARIES

Given a set H, let |H| be the number of elements in the set H.

Let a graph G = {V,E}, where the set V denotes the nodes v1, . . . ,vn and E is the set of edges

(vi,v j). A graph G is connected if there is a path composed of edges in E that connects each

pair of nodes in G, while it is complete if for each pair of nodes vi,v j the edge (vi,v j) ∈ E. In

the following we will assume that G is undirected, i.e., (vi,v j) ∈ E whenever (v j,vi) ∈ E. A set

of Vm ⊆V of vertices of a graph G are fully connected if the subgraph of G induced by Vm is a

full graph. A graph G is edge 2-connected if for any two vertices vi and v j there are at least 2
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paths that connect them and do not have edges in common.

A graph G is chordal [12] if each of its cycles of four or more vertices has a chord, which

is an edge that is not part of the cycle but connects two vertices of the cycle.

Let us define a graph G as perfectly chordal if it is chordal and each node belongs to at least

a cycle of three nodes. It can be noted that a graph G is perfectly chordal if it is chordal and

edge 2-connected.

Let us suppose that the nodes of a graph G are embedded in R2 and let pi the position in

R2 of the i-th node of G. A framework (G,P) is a graph G = {V,E} together with a coordinate

assignment P : V → R2 for the vertices of the graph.

Let us define a partial framework (G,Pl) as a graph G = {V,E} together with a coordinate

assignment Pl : Vl → R2 for a subset Vl ⊆V of the nodes of the graph.

Two frameworks (G,P) and (G,P∗) are equivalent if ||pi− p j|| = ||p∗i − p∗j || holds for all

pairs vi,v j such that (vi,v j) ∈ E, i.e., for all the available edges. Two frameworks (G,P) and

(G,P∗) are congruent if ||pi− p j||= ||p∗i − p∗j || holds for all pairs vi,v j ∈V , i.e., for any couple

of vertices.

A framework (G,P) is globally rigid if every framework which is equivalent to (G,P) is also

congruent to (G,P). This definition implies that the position of nodes can not be continuously

deformed nor flipped without violating the distance constraints. If the position of at least 3 nodes

is generic in R2, i.e., they do not lie on the same line, then the graph topology alone determines

the global rigidity of the framework, which in this case is called generic global rigidity [5], [13].

Let a trilateration graph be a graph GT = {VT ,ET} with an ordering of the vertices v1, . . . ,vn,

such that the nodes v1, . . . ,v3 are fully connected and each node vi for i = 4, . . . ,n is connected

to at least 3 of the vertices v1, . . . ,vi−1. A set of 3 fully connected nodes is often referred to as

a seed.

Note that in R2, if a graph G = {V,E} contains a trilateration graph such that VT = V and

ET ⊆ E, then it is generically globally rigid [1], [14].

A framework (G,P) is a Delaunay framework if G is composed of triangles (i.e., G is perfectly

chordal) and for each 3 vertices vi,v j and vk of G the circumference passing through the points
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pi, p j and pk does not contain any other point in (G,P). A well known property of a Delaunay

framework is that the union of the triangles that compose it coincide with the convex hull of

the nodes [15]. Let a framework (G,P); the Gabriel circle of an edge (vi,v j) of G is the circle

with diameter equal to di j that intersects the points pi and p j. A framework (G,P) is a Gabriel

framework [16] if for each edge (vi,v j) of G the corresponding Gabriel circle does not contain

any other point of P. In [17] it is proved that an edge (vi,v j) belongs to a Gabriel graph if and

only if the angle ∠pi pk p j is acute for every vk ∈V , vk 6= vi,v j.

III. NETWORK LOCALIZATION PROBLEM

Let a sensor network N = {Σ∪Σa,D} composed of n sensors σi ∈ Σ∪Σa, each with a fixed

position in R2. Suppose that only the position of a small set of anchors σa ∈ Σa is known a priori

while the location of the sensors in Σ is not known. Suppose further that the distances di j ∈ D

of some pairs of sensors (σi,σ j) are known. We can represent the sensor network by means of

a framework (G,P) where the points pi ∈ P are the coordinates of the sensors σi ∈ Σ∪Σa in R2

and the graph G = {V,E} is obtained associating each sensor σi ∈ Σ∪Σa to a node vi ∈V and

each known distance di j to an edge (vi,v j) ∈ E.

The (relative) network localization problem consists in finding a coordinate assignment P for

the non-anchor nodes which assigns coordinates pi = [xi,yi]
T ∈ R2 (with respect to a relative

framework of reference) to each sensor σi ∈ Σ in a way such that ||pi− p j||= di j holds for all

sensor pairs (σi,σ j) for which di j is given (we assume di j = d ji).

If a partial framework (G,Pl) that does not violate the distance constraints is found for a

subset of the nodes Vl ⊆V then the network is (relatively) partially localized.

A. Trilateration

In [1], [14] it is shown that a sensor network is localizable provided that the graph G is

generically globally rigid.

Although localizing a globally rigid framework (G,P) is in general hard, a computationally

efficient algorithm has been provided using trilateration. Trilateration is the operation whereby
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a node vi, knowing its relative distance from three generically positioned and localized nodes

v j,vh and vk, is able to derive its own position by intersecting the circumferences centered in

v j,vh and vk whose radius is di j,dih and dik, respectively.

An easy way to localize a sensor network whose graph contains a trilateration graph is thus

to iteratively localize the nodes via trilateration, until no more node can be localized. Let us

refer to this approach as the Trilateration Localization Algorithm (TLA) algorithm [1], [18].

IV. SHADOW EDGE LOCALIZATION

Let us assume that each sensor σi is characterized by a communication radius ρ > 0, and is

able to detect the presence of any sensor σ j within such a communication radius (i.e., those

sensors σ j such that di j ≤ ρ), obtaining also information about the distance di j ≤ ρ between

them. The resulting structure is a unit disk graph, since every piece of distance information di j

that can be obtained given the communication radius ρ is taken into account; such an assumption

is typically verified in practical situations, in particular when circular antennas are adopted [8].

Under the above assumptions, the sensor network may be localizable even when the underlying

graph is not globally rigid, exploiting the idea illustrated in Figure 1. In the Figure, the sensor

σi can not be localized using trilateration. Although sensor σ j is out of reach for sensor σi,

however, the fact that σ j is not sensed by σi may contribute to identify the correct position

sensor σi.

In the following, we will refer the edges like the one reported in a blue dotted line in Figure

1 as shadow edges.

Definition 1 (Shadow Edge): Let a unit disk graph sensor network defined for some ρ > 0,

represented by a partially localized framework (G,Pl) where Vl ⊆V contains the localized nodes

(i.e., anchors and nodes localized via trilateration). Suppose that a node vi 6∈Vl is connected to

two nodes vh,vk ∈Vl . Given the two distances dih and dik there are two admissible positions pi1

and pi2 for the location of node vi (the intersections of the circumferences centered in vh and

vk, of radius dih and dik, respectively). Let another node v j ∈Vl such that {(v j,vh),(v j,vk)} ∈ E.

A shadow edge is an edge (vi,v j) such that:
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Figure 1. Example of localizable unit disk graph network whose associated graph G is not globally rigid. Sensors σ j,σh and
σk, represented by the nodes v j,vh and vk are localized. Sensor σi perceives sensor σh and σk but it is unable to perceive sensor
σ j (the node v j is outside the dashed circumference). On the base of the distances dih and dik, there are 2 distinct admissible
positions pi1 and pi2 for the node vi (i.e., the intersection of the solid circumferences centered in vh and vk of radius dih and
dik, respectively). Sensor σi may exclude pi2 (represented by the red cross), since σi does not perceive σ j. The blue dotted line
represents the shadow edge that may be created between vi and v j.

1) (vi,v j) 6∈ E;

2) either ||pi1− p j||< ρ or ||pi2− p j||< ρ .

Hence a shadow edge is a “virtual" edge that does not exist in the original graph. Notice that

a shadow edge does not always exist, since the conditions of Definition 1 may not be verified

for particular frameworks.

Let us denote by Es a set of shadow edges. Note that, for any (vi,v j) ∈ Es, vi and v j have to

be considered as virtual two-hop neighbors, because their distance is di j ∈ (ρ,2ρ].

Definition 2 (Shadow localizable framework): Let a framework (G,P) with n nodes. A frame-

work (G′,P) contained in (G,P) is a shadow localizable framework if:

• G′ is connected and perfectly chordal;

• for each perfectly chordal subframework (Gsub,Psub) of (G,P) with 4 nodes which is not

complete, the corresponding subframework (G′sub,Psub) of (G′,P) is Delaunay and Gabriel.

A. Main Result

Let us provide the following result, whose proof is given in the appendix.

Theorem 1: Let a unit disk graph sensor network with n ≥ 3 sensors, represented by the
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graph G = {V,E} and let Es be the maximum set of shadow edges that can be obtained starting

from a seed Vl . Let P be the position of the nodes in the sensor network. The extended graph

Ge = {V,E ∪Es} contains a trilateration graph GT = {V,ET}, ET ⊆ E ∪Es if and only if the

framework (G,P) contains a shadow localizable framework (G′,P) with n nodes.

Let us provide the following corollary.

Corollary 1: A unit disk graph sensor network with n ≥ 3 sensors, represented by a graph

G can be localized over the extended graph Ge if and only if the framework (G,P) contains a

shadow localizable framework (G′,P) with n nodes.

B. Shadow Edge Localization Algorithm

The above results yield an algorithm to localize a sensor network based on shadow edges,

namely Shadow Edge Localization Algorithm (SELA). Starting with a seed of 3 generically

positioned nodes (we can say, without loss of generality that Vl = {v1,v2,v3}), the nodes are

iteratively tested for localizability. Specifically, if each tested node vi is connected to 3 already

localized nodes, or to 2 localized nodes and there is a shadow edge, then it is localized. The

algorithm terminates when all nodes have been localized or when the remaining nodes can no

longer be localized.

The following result is a corollary of Definition 2.

Corollary 2: Let a unit disk graph sensor network with n ≥ 3 sensors, represented by the

graph G = {V,E} and suppose that SELA and TLA algorithms are executed starting from the

same seed Vl ⊆V . Let V S,V T be the set of nodes localized via SELA and TLA, respectively; it

holds V T ⊆V S.

We can provide the following result, whose proof is given in the appendix.

Proposition 1: Let a unit disk graph sensor network with n ≥ 3 sensors represented by the

graph G = {V,E} and let Vl ⊆ V be a seed with 3 ≤ m < n nodes. Let V S
l ,V

T
l be the set of

nodes localized via SELA and TLA algorithms, respectively, starting from the seed Vl . It holds:

maxVl⊆V |V S
l | ≥maxVl⊆V |V T

l |.
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Remark 1: The SELA algorithm can be easily implemented in a distributed fashion: each node

is able to calculate its own position knowing the position of 3 one-hop localized neighbors and

its distance from them (just like trilateration) of knowing the position of a two-hop localized

neighbor if one of the 3 one-hop localized neighbors can not be found.

V. SIMULATION RESULTS

We compare the performances of SELA and TLA in terms of percentage ψ of localized nodes,

i.e. ψ = l
n , where l is the number of localized nodes and n is the total number of nodes in the

network.

To this end we consider 100 randomly generated networks (the nodes have uniformly randomly

distributed positions in the unit square) for several choices of the number of nodes n = 30,50,70

and 100 and considering a communication radius ρ ranging from 0.1 to 0.4. We choose the same

3 anchors in fixed positions in the lower left corner of the unit square for each of the trials. Figure

2 shows some examples for different choices of the network size n and of the communication

radius ρ . Looking at this figure, it is evident that in situations where TLA is unable to localize

the network, SELA is able to almost completely localize all the nodes. Specifically, there is up to

about a +19% of localized nodes (when ρ = 0.35) for n = 30, and up to about a +23% both for

n = 50 and 100, in correspondence of ρ = 0.3 and ρ = 0.25, respectively. Notice that, according

to Corollary 2, SELA algorithm localizes the maximal localizable subset, which contains the

maximal globally rigid subset localized also by TLA algorithm. Figure 3 shows the percentage of

localized nodes plotted against ρ; for each choice of n and ρ , the average of 100 runs is reported.

In all the runs, SELA algorithm localizes more nodes than TLA. The proposed algorithm appears

particularly effective for moderately dense networks, i.e., intermediate values of ρ . Indeed, for

very dense networks (right extrema of Figure 3), each node is generally connected with 3 or

more nodes, hence TLA can be successfully applied. On the other hand, for very sparse networks

(left extrema of Figure 3), the connectivity of the graph is so low that no localization algorithm

can succeed.
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n = 30, ρ = 0.35

nT LA= 16.66% , nSE LA= 90%

n = 50, ρ = 0.35

nT LA= 10% , nSE LA= 100%

n = 70, ρ = 0.25

nT LA= 50% , nSE LA= 97%

n = 100, ρ = 0.2

nT LA= 45% , nSE LA= 93%

Figure 2. Comparison between TLA and SELA on some random sample graphs: green stars are the anchor nodes, white triangles
are nodes localized by both TLA and SELA, while blue squares are nodes localized exclusively by SELA; the red circles are
not localized nodes.
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Figure 3. Comparison between TLA and SELA on the percentage of localized nodes plotted against the communication radius
ρ: the figure represents the average percentage of localized nodes by SELA and TLA over 100 runs. Dotted lines and empty
markers represent the results for TLA while the results for SELA are plotted with solid lines and filled markers; triangles,
squares and circles represent networks with n = 30,50 and 100 nodes, respectively.

VI. CONCLUSIONS

In this paper we extend trilateration over unit disk graphs by exploiting the information about

not being connected, modeled as a link, namely shadow edge. Moreover we provide conditions

for the localizability of the network and we prove that the proposed approach has better results

than trilateration. The proposed algorithm, in fact is able to localize the sensor network also

when trilateration fails. Future work will be devoted to extend the methodology to a 3D setting,

so as to provide a partial localization of the sensor network in the case where only a single link
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Figure 4. Situations considered in Lemma 1: (a) a framework which is both Gabriel and Delaunay is such that point pi2 lies in
the lower halfplane with respect to the line that intersects ph and pk; moreover, the angles ∠pi2 ph p j and ∠pi2 pk p j are acute,
hence di2 j ≤ ρ; (b) only possible case where (G,P) is not both Delaunay and Gabriel and di2 j ≤ ρ; in this case ∠pi1 ph p j is
acute, hence di1 j is smaller than ρ yielding to a contradiction.

and several shadow edges are available and address the noisy case.

APPENDIX: PROOFS

In order to prove Theorem 1 we need the following lemma, for which a visual explanation is

given in Figure 4.

Lemma 1: Let a sensor unit disk graph network for some ρ > 0 be represented by framework

(G,P) with 4 nodes and G = {V,E} such that V = {vi,v j,vh,vk} and

E = {(vi,vh),(vi,vk),(vh,vk),(v j,vh),(v j,vk)}.

Suppose the nodes v j,vh,vk are localized and let pi1 and pi2 be the two options for the position

of node vi given the position of nodes vh,vk and the distances dih,dik. Suppose further that pi1

is the true position of node v1. It holds that di2 j ≤ ρ if and only if the framework (G,P) is

Delaunay and Gabriel.

Proof 1: ⇐: Suppose (G,P) is a Delaunay and Gabriel framework. Being (G,P) a unit disk

graph network, since (vi,v j) 6∈ E it follows that di1 j > ρ .

Since (G,P) is a Delaunay framework, the union of the triangles must coincide with the

convex hull of the vertices [15]. In this case pi2 , obtained by mirroring the triangle
a

hi1k with

respect to the line overlapping with segment ph pk, lies in the same halfplane where p j lies,

while pi1 lies in the opposite halfplane; as a consequence di2 j < di1 j.
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The framework is Gabriel, hence both angles ∠pi1 ph p j and ∠pi1 pk p j must be acute [17]; as

a consequence, also ∠pi2 ph p j and ∠pi2 pk p j are acute. Since dih,dik,dh j and dk j are all smaller

than ρ and ∠pi2 ph p j, ∠pi2 pk p j are acute, we can conclude that di2 j ≤ ρ .

⇒: Suppose di2 j ≤ ρ but the framework (G,P) is not both Delaunay and Gabriel.

Note that, with respect to the above halfplane decomposition of the space, since di1 j > ρ and

di2 j ≤ ρ , then pi2 j must lie in the same halfplane of p j, while pi1 must lie in the other halfplane.

In this case, since ∠pi1 ph p j is acute and both di1h and d jh are smaller than ρ , it follows that

di1, j ≤ ρ , a contradiction.

Proof 2 (Proof of Theorem 1): ⇒: If Ge contains a trilateration graph with n nodes, then by

Lemma 1 each perfectly chordal subgraph of (G,P) with 4 nodes is either complete or such

that it is possible to find a shadow edge, hence (G,P) contains a shadow localizable framework

(G′,P) with n nodes.

⇐: The framework (G,P) contains a shadow localizable framework (G′,P) with n nodes,

which is perfectly chordal. This implies that (G′,P) contains at least 3 fully connected nodes

v1,v2 and v3. By Lemma 1, for each non complete perfectly chordal subgraph of (G′,P) with

4 nodes it is possible to obtain a shadow edge. It is therefore possible to label the remaining

nodes so that vi is connected to at least 3 nodes v j with j < i, i = 3, . . . ,n, hence Ge contains a

trilateration graph and is generically globally rigid.

Proof 3 (Proof of Proposition 1): Let Vs be the seed that maximizes the number of nodes

localized by SELA, and let V S
s be the set of such localized nodes. Similarly, let Vt be the seed

that maximizes the number of nodes localized by TLA, and let V T
t be the set of such localized

nodes.

From Definition 2 and Corollary 2, if Vt is used as seed for the SELA algorithm, then it holds

V T
t ⊆V S

t . Hence |V S
s | is a fortiori greater or equal than |V T

t |, proving the statement.
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