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Abstract—In this paper, we propose a systematization of the
(discrete-time) Unscented Kalman Filter (UKF) theory. We gather
all available UKF variants in the literature, present corrections to
theoretical inconsistencies, and provide a tool for the construction
of new UKF’s in a consistent way. This systematization is
done, mainly, by revisiting the concepts of Sigma-Representation,
Unscented Transformation (UT), Scaled Unscented Transforma-
tion (SUT), UKF, and Square-Root Unscented Kalman Filter
(SRUKF). Inconsistencies are related to 1) matching the order
of the transformed covariance and cross-covariance matrices
of both the UT and the SUT; 2) multiple UKF definitions; 3)
issue with some reduced sets of sigma points described in the
literature; 4) the conservativeness of the SUT; 5) the scaling
effect of the SUT on both its transformed covariance and cross-
covariance matrices; and 6) possibly ill-conditioned results in
SRUKF’s. With the proposed systematization, the symmetric sets
of sigma points in the literature are formally justified, and we
are able to provide new consistent variations for UKF’s, such as
the Scaled SRUKF’s and the UKF’s composed by the minimum
number of sigma points. Furthermore, our proposed SRUKF has
improved computational properties when compared to state-of-
the-art methods.

Index Terms—Unscented Kalman Filter (UKF), Unscented
Transformation (UT).

I. INTRODUCTION

S INCE the seminal work of Julier and Uhlmann in 1995
[1], the Unscented Kalman Filter (UKF) has been an

object of great interest in the control community. One of the
main reasons behind its popularity is the fact that the UKF
has provided better results in comparison to the Extended
Kalman Filter (EKF) in numerous applications, such as state
estimation for battery charging [2], plasma insulins [3], and
simultaneous localization and mapping (SLAM) [4], among
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others. However, in contrast with the more mathematically-
principled approaches utilized in the Gauss-Hermite Filter
(GHF) of [5] or the Cubature Kalman Filter (CKF) of [6], all
known UKF formulations have had their algorithms originated
by ad hoc reasoning following Julier’s intuitive principle that
“it is easier to approximate a probability distribution than it is
to approximate an arbitrary non-linear function” [7]. Although
this intuition was suitable for the initial derivation of the
filter, its lack of rigor might lead to misleading interpretations
and inconsistencies. In fact, some of those have already been
reported in the literature. For instance:

• the UKF of [8] presents instability problems (see [9]);
• there are problems with the estimation accuracy of the

UKF of [1] (see [10], [11] and Section II-C1);
• the UKF’s of [8] and [9] are valid only for scalar systems

(see [12] and Sections II-D1 and II-D2).

This work is an attempt to systematize the theory behind
the UKF, its first goal being to find a formal justification
for the existing UKF definitions. As a result, we unify the
most popular discrete-time UKF formulations into a single
framework; clarify the reasons behind the aforementioned
inconsistencies and propose solutions (see Sections II-B to
II-F); and derive new consistent formulations of the UKF (see
Section V).

This paper is organized as follows. In Section II, we briefly
review non-linear filtering theory and all known discrete-time
formulations of the UKF. Next, we discuss previously-known
and some new inconsistencies related to these UKF’s. From
Section III to V, we propose a systematization of the UKF.
We introduce the concept of sigma-representations of a random
variable (rv) in Section III and present new formalizations for
the Unscented Transformation (UT) and the UKF in Sections
IV and V, respectively. We conclude with our final remarks
in Section VI. Throughout this work, the following notations
and definitions are used:

• the set of all real valued rv of length n is denoted by �n.
For X 2 �n, p

X

(x) is its probability density function
(pdf) and E{X} or X̄ , its expected value. If p

X

(X̄ +

x) = p

X

(X̄ � x), 8x 2 Rn, then X is symmetric. X ⇠
(m,M2, ...,Mk

)n stands for a rv X 2 �n with mean m
and ith central moment M

i

X

= M

i

, i = 2, ..., k.
• ⌦ stands for the Kronecker product operator.
•

nN
i=1

A

i

:= A1 ⌦ · · ·⌦A

n

, and A

⌦n :=
nN

i=1
A.

•
p
A stands for a square-root matrix of the matrix A.

• [A]
p⇥q

stands for a block matrix consisting on the matrix
A being repeated p times on the rows and q on the
columns.
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• (A)(i1:i2),(j1:j2) stands for a sub-matrix of the matrix A
formed by the rows i1 to i2 and the columns j1 to j2.
(A)

i,j

stands for the ith row and jth column element.
(A)⇤j and (A)

i⇤ stand, respectively, for the jth column
and ith row of A. If no ambiguities exist, we can write
A

ij

:= (A)
i,j

.
• |A|, A 2 Rn⇥m, is such that |A|

ij

:= |A
ij

|, where | • |
represents the absolute value operator.

• diag (A1, ..., Aq

), where A
i

is square, stands for a block
diagonal matrix with each block equal to A

i

, i = 1, ..., q.
• sign (A), where A 2 Rn⇥m, is such that (sign (A))

i,j

:= 1,
if A

i,j

� 0, or (sign (A))
i,j

:= �1, if A
i,j

< 0.
• tria{A} represents a lower triangularization of A (e.g. QR

decomposition), and cdown{A,B} the Cholesky factor of
AA

T �BB

T

> 0.
• Tab X [p:q,n:m] refers to the rows p to q and the columns

n to m of Table X. If Table X has only one column, then
Tab X [n:m] refers to its rows n to m.

• A set {�
i

|�
i

2 Rn} generated by a genera-
tor [u1, ..., u�

],�  n, is composed by all dif-
ferent permutations of the elements of the vector⇥
u1, ..., u�

, [0]1⇥(n��)

⇤
T . We use the notation {�

i

} =

gen

�
[u1, ..., u�

, [0]1⇥(n��)]
�

(see details in [13]).

II. NONLINEAR AND UNSCENTED KALMAN FILTERING

The Unscented Kalman Filter is a suboptimal solution for
the stochastic filtering problem of a discrete-time, dynamical
system described either in the additive form

x
k

= f (x
k�1, k) + q

k

, y
k

= h (x
k

, k) + r
k

(1)

or, more generally, in the form

x
k

= f (x
k�1, qk, k) y

k

= h (x
k

, r
k

, k) (2)

where k is the time step; x
k

2 Rn

x is the internal state;
y
k

2 Rn

y is the measured output; and q
k

2 Rn

q and r
k

2 Rn

r

are the process and measurement noises, respectively. The
noise terms q

k

and r
k

are assumed to be uncorrelated, with
means q̂

k

= [0]1⇥n

q

and r̂
k

= [0]1⇥n

r

and covariance matrices
(CM’s) Q

k

and R
k

, respectively.
The stochastic filtering problem consists in finding estimates

of the state x
k

as new measurements y
k

are acquired. Based
on the output history y1:k := {y

i

|1  i  k}, the conditional
mean E{x

k

|y1:k} =
R
R

n

x

k

p(x
k

|y1:k)dxk

is, in general, chosen
to be the estimate of x

k

because E{x
k

|y1:k} is unbiased
(E{x

k

�E{x
k

|y1:k}|y1:k} = 0) and it is also an optimal solution
with respect to the Minimum Variance (MV) criterion [14],
[15]. For linear dynamical systems, the Kalman Filter (KF)
provides the optimal solution with respect to the MV criterion,
as well as other criteria, when independent Gaussian noise
and initial state are considered [14], [16]. However, in the
case of non-linear systems, the computation of such optimal
solutions tends to be computationally intractable [14], [17],
[18]. Therefore, suboptimal approaches must be sought.

Suboptimal, non-linear filters can be classified under four
different criteria, at least. A first classification distinguishes
the filters approximating the system’s functions around the
previous estimates (local methods [19])—EKF [18], second

order extended Kalman filter (SOEKF) [18], [20]—, from
those that do not (global methods)— Gaussian Mixture filter
[21], point-mass filter [22], Sequential Monte Carlo Filters
(SMCF’s) (e.g. Particle Filters, Bootstrap Filters) [23]–[26]
and Markov Chain Monte Carlo based filters (MCMCF’s)
(e.g. filters using Metropolis-Hastings or Gibbs sampling)
[27]. A second classification (see [11], [19]) is based on
whether there is the necessity of calculating derivatives of
system functions—EKF and SOEKF—or not, i.e., if the filter
is derivative-free—UKF [1], [7], GHF [5], Central Difference
Filter (CDF) [5], Divided Difference filter (DDF) [28], and
CKF [6], [29]. A third classification considers filters for which
statistics of posterior random variables (rv’s) are obtained by
sampling of previous pdf’s. The sampling can be stochastic, as
in SMCF’s and MCMCF’s, or deterministic, as in the UKF and
the DDF. Monte Carlo (MC) methods consist, essentially, on
taking a very large quantity of samples of the rv of interest in a
random fashion [23]–[27], while sigma point methods consist
on analytically choosing a finite number of weighted samples
[30]. A fourth classification takes into account if the posterior
estimate of a filter is based on a Gaussian assumption (EKF,
SOEKF, UKF’s, GHF, CDF, DDF, CKF) or not (Gaussian
Mixture filter, point-mass filter, SMCF’s, MCMCF’s).

Among all non-linear filters, the EKF is the most widely-
known and implemented in practical applications [7], [14],
[18]. It is obtained as the first order truncation of the Taylor se-
ries approximation of system’s non-linear dynamics, retaining
the same prediction-correction structure as the KF for linear
dynamical systems. Although several filters in the literature
have been proposed in order to improve upon computational
aspects related to the EKF, it was just recently that UKF’s have
become noticeable as a competitive and preferable alternative
[7], [30]. Among the positive features related to the UKF, one
can mention:

• the computational complexities of the UKF’s and of the
EKF are of the same order—O(n3)—, but UKF’s tend
to attain better estimation performance;

• the UKF is derivative-free (no need to compute Ja-
cobians), while the EKF requires the dynamics to be
differentiable. Thus, unlike the EKF, UKF’s can be used
in situations where Jacobians may not always exist, such
as systems with discontinuities (cf. [7]).

These and other good properties related to the UKF have
become well-known since its introduction (see more details in
Section II-B). However, later UKF variants have been reported
to be inconsistent (see Sections II-C to II-F) and it is currently
difficult to assess whether these inconsistencies are present in
all UKF variants. Seeking to provide clarifications, we first
review all main UKF variants in the next subsection.

A. Unscented Kalman Filters

All UKF variants, as in the EKF, keep the structure of
the Kalman filter for linear systems of one prediction (or a
priori estimation) and one correction (or update) step. This
can be seen, for instance, in the UKF of [31]: consider (1)
and suppose that, at time step k, x̂

k�1|k�1 and P̂
k�1|k�1
xx

are
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given. Choose a real  > �n
x

and define, for 1  i  n
x

,
the weights and points

w0 := 

n

x

+

, w
i

= w
i+n

x

:= 1
2(n

x

+) ,�
k�1|k�1
0 := x̂

k�1|k�1

�
k�1|k�1
i

:= x̂
k�1|k�1 +

✓

q

(n
x

+ )P̂ k�1|k�1
xx

◆

⇤i

�
k�1|k�1
i+n

x

:= x̂
k�1|k�1 �

✓

q

(n
x

+ )P̂ k�1|k�1
xx

◆

⇤i
(3)

For 0  i  2n
x

, define the transformed sigma points

�
k|k�1
i

:= f
⇣

�
k�1|k�1
i

, k
⌘

, �
k|k�1
i

:= h
⇣

�
k|k�1
i

, k
⌘

(4)

and their associated statistics
�

(A)(⇧)T stands for (A)(A)T
�

x̂
k|k�1 :=

P2n
x

i=0 wi

�
k|k�1
i

, ŷ
k|k�1 :=

P2n
x

i=0 wi

�
k|k�1
i

P̂
k|k�1
xx
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P2n

x

i=0 wi

⇣

�
k|k�1
i

� x̂
k|k�1

⌘

(⇧)T +Q
k

P̂
k|k�1
xy
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P2n

x

i=0 wi

⇣

�
k|k�1
i

� x̂
k|k�1

⌘⇣

�
k|k�1
i

� ŷ
k|k�1

⌘

T

(5)

along with the innovation’s covariance

P̂
k|k�1
yy

:=
P2n

x

i=0 wi

⇣

�
k|k�1
i

� ŷ
k|k�1

⌘

(⇧)T +R
k

. (6)

Finally, instantiate the KF’s correction equations

G
k

:=P̂
k|k�1
xy

⇣

P̂
k|k�1
yy

⌘�1
, x̂

k|k := x̂
k|k�1 +G

k

�

y
k

� ŷ
k|k�1

�

P̂
k|k
xx

:=P̂
k|k�1
xx

�G
k

P̂
k|k�1
yy

GT

k

. (7)

All popular variants of the UKF for discrete-time systems
have the same prediction-correction structure of the UKF of
[31], but with different expressions for (3)-(7). They can be
classified according to a few different criteria.

A first criterion is related to the form of the underlying
dynamical system, i.e., whether the system is described in
additive form (1) or in the more general form (2). Depending
on the case, the a priori rv is either the previous state estimate
x̂
k�1|k�1 with estimate CM P̂

k�1|k�1
xx

(as in the UKF of [31]
above) or the previous augmented vector estimate x̂a

k�1|k�1
with dimension n

a

= n
x

+ n
q

+ n
r

, which is defined as
x̂a

k�1|k�1 :=
⇥

x̂T

k�1|k�1, q̂
T

k

, r̂T
k

⇤

T with covariance matrix and
square-root covariance matrix

P̂
a,k�1|k�1
xx

:= diag
⇣

P̂
k�1|k�1
xx

, Q
k

, R
k

⌘

(8)
q

P̂
a,k�1|k�1
xx

:= diag
✓

q

P̂
k�1|k�1
xx

,
p
Q

k

,
p
R

k

◆

. (9)

Although it is always possible to use the general form of
the UKF for either (1) or (2), the additive form of the UKF
is preferable for (1) because its algorithm is computationally
less expensive than the corresponding UKF in general form.
Nevertheless, as pointed out by [32], the additive version yields
the same result as the augmented one only if the predicted
sigma points �

k|k�1
i

are resampled from the previous mean
x̂
k|k�1 and covariance matrix P̂

k|k�1
xx

when performing the
UT in the correction step. If correlated noises are considered,
the general form for the UKF with a simple change in (8)-(9)
(see [7]) should be used for either (1) or (2).

Remark 1 Filters for system descriptions besides (1) and (2)
can be easily obtained. For partially-additive dynamical sys-
tems, where either the process or the measurement equations
are given in additive form and the other is given in the general
form, the augmented state vector of the filter is composed only
by the noise of whatever function is in general form [15].
For partially nonlinear dynamical systems, where one of these
equations is linear, the linear KF equations can usually be
used in the part of the UKF referring to the linear equation
[33].

A second major criterion to classify UKF variants is the
propagation form of CM’s in the algorithm for the filter.
The UKF can be in the covariance form, where the CM’s
are calculated directly, or in the square-root form, where the
square-root of the CM’s are computed recursively instead of
propagating the CM’s themselves.

Let us first consider the UKF algorithms in the covariance
form. In these algorithms, the mean and the CM of the
predicted and corrected variables are approximated using a
so-called Unscented Transformation of the previous estimate.
Any UT variant is based on some set of sigma points which
is chosen using a given mean and CM information. Roughly,
an UT approximates the joint pdf of two rv’s X ⇠ �

X̄, P

XX

�
n

and Y ⇠ �Ȳ , P
Y Y

�

n

y related by a given function Y = F (X)
by introducing the sets of weighted points (the sigma points)
�

�

= {�
i

, w

m

i

, w

c

i

}N
i=1 and

�
�

= {�
i

, wm

i

, wc

i

|�
i

= F (�
i

)}N
i=1 (10)

with the following sample statistics:

µ
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P

N

i=1 w
m

i

�
i

, ⌃
��

:=
P

N

i=1 w
c

i

(�
i

� µ
�

) (⇧)T (11)

µ
�

:=
P

N

i=1 w
m

i

�
i

, ⌃
��

:=
P

N

i=1 w
c

i

(�
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� µ
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) (⇧)T (12)

⌃
��

:=
P

N

i=1 w
c

i

(�
i

� µ
�

) (�
i

� µ
�

)T . (13)

For any UT variant, the points and weights in the sigma
set �

�

are required1 to be such that µ
�

= X̄ , ⌃
��

= P
XX

and, as consequence, µ
�

and ⌃
��

are expected to be, respec-
tively, equal to Ȳ and P

Y Y

up to their second order Taylor
approximations [7]. In additive UKF’s for (1), generally two
UT’s are performed: one for F (X) = f(X, k) + q

k

with
X being the previous estimate x̂

k�1|k�1, and another for
H(X) = h(X, k) + r

k

with X being x̂
k|k�1. For general

UKF’s, one has UT for F (X) with X = x̂a

k|k�1 and for H(X)
with X = x̂a

k|k�1.
Variants of the UKF can be classified according to the

underlying UT used. The UT variants differ from each other
depending on how the transformed statistics are calculated and
by their choice of the sigma set �

�

. All basic sigma set variants
in the literature are presented in Table I. The ones from [1]
and [7] are equivalent if one chooses w0 = /( + n) (cf.
Tab I [1:2]). Hence, we can say that the general and additive
UKF’s of [1] and [7] are equivalent (cf. Tab III [1:2,1:3] and
Remark 3). The basic difference is in their choice of the tuning
parameter w0 or .

1In the literature, these requirements are said to be properties of UT’s. In
Section II-C, we present several counter-examples to these claims.
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TABLE I
SETS OF SIGMA POINTS FOR X ⇠ (X̄, P

XX

)n

Symmetric set of [1] (N = 2n+ 1). Choose  > �n. Set
w0 = 

n+

,�0 = X̄ and, for i = 1, ..., n : w
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Symmetric set of [7] (N = 2n+ 1). Choose w0 < 1. Set
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Reduced set of [8] (N = n+ 1). Choose 0  w0  1. Define
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Spherical simplex set of [9] (N = n+ 2). Choose 0  w0  1.
Set: w

i

= 1�w0
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Symmetric set of [35] (N = 2n+ 1). Choose ↵, 2 R. Set � =
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Fifth order set of [36] (N = 2n2 + 1). Set: w
i

= 1
36 , for 2n+ 1

 i  2n2;w
i

= 4�n

18 , for 1  i, 2n;w2n2+1 = n

2�7n
18 + 1;

{⇠
i

}2n
i=1 = gen

�⇥
±

p
3
⇤�

, {⇠
i

}2n
2

i=2n+1 = gen
�⇥

±
p
3,±

p
3
⇤�
,

⇠2n2+1 = [0]
n⇥1; for i = 1, ..., 2n2 + 1, set �

i

= X̄ +
p
P
XX

⇠
i

.

Set of [37] (N = 'n). Choose ' 2 N. For j = 1, ...,'; i = 1, ..., n,
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, where �
i

is an eigenvalue and v
i

an eigenvector of P
XX

.

One can also consider the geometrical distribution of the
sigma points. For points �

i

symmetrically distributed in a
geometrical sense, we have the UKF’s [1], [7], [35], [36].
For asymmetric sets, one can mention the reduced of [8]; the
spherical simplex of [9]; the simplex of [34]; and the minimum
of [12].

Another classification criterion considers the number of
sigma points in the sigma set �

�

for the previous variable
X 2 �n. As can be seen by Table I, among the major general
and additive UKF variants that use symmetric sets, the UKF’s
of [1], [7], and [35] use �

�

with N = 2n+1 points. Among the
major general and additive UKF variants that use asymmetric
sets, the UKF’s of [9] use �

�

with N = n+ 2 points and the
UKF’s of [8], [34], and [12] use �

�

with N = n + 1 sigma
points, which is the minimum amount [8]. Finally, the UKF
of [36] uses �

�

with N = 2n2 +1 points and the one of [37]
uses N = 'n,' 2 N.

One can consider which moments of the sigma set �
�

are

TABLE II
OTHER UNSCENTED TRANSFORMATIONS

Scaled UT [38]

1 Obtain previous {�
i

, w
i

}N
i=1. Choose ↵ � 0. Set, for 2  i  N :
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3 Transformed CM: ⌃⇤
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0
i
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i

� µ
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) (⇧)T .
Auxiliary form of the UT (AuxUT) [38]

4 Obtain previous {�
i

, w
i

}N
i=1. Choose ↵ � 0. Define

g (X, c,↵,) := �1F (c+ ↵ (X � c))� �1F (c) + F (c).
5 Transformed set:

�
�
i

, w
i

|�
i

= g
�
X̄, µ
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,↵,↵2
�  

N

i=1
.

6 Transformed CM: ⌃⇤
��

:= ↵2PN

i=0 wi

(�
i

� µ
�

) (⇧)T .

equal to the moments of the previous rv X . The sets �
�

of
the UKF’s of [1], [7], [8], [12], [34], [35] and [36] match
the first two moments of any X . If X is symmetric, then the
sets �

�

in the UKF’s of [1], [7], [35] and [36] match also all
odd moments. If X is Gaussian, then �

�

in the UKF of [36]
further matches the fourth moment of X and the one of [37]
matches the first two moments of X . However, not all UKF
variants have their �

�

matching the first and second moments
of X (see Section II-D).

Considering how the transformed statistics are calculated,
one can distinguish two more UT’s other than the first six that
arrive from the different choices of �

�

(the ones of Table I): the
AuxUT of [38] and the scaled UT of [38] (cf. Table II). Their
sigma sets are scaling transformations of a previous sigma set
and the statistics calculations are modified versions of (11)-
(13) (cf. Table II). According to [38], the auxiliary and the
scaled forms yield the same results. Note that [39] presented
an embryonic form of these scaling unscented forms.

In summary, all additive UKF’s in covariance form in the
literature are represented in Table III using the sigma sets
of Table I and the UT’s of Table II and (10)-(13) [all UKF
variants for the general case (2) can be obtained similarly with
a corresponding slightly modified version of Table III].

Remark 2 Some particularities of Tables I, II, and III should
be highlighted. If, for example, one wished to implement the
UKF of [31], it would be necessary to choose wm

i

= w
i

when
calculating any mean and wc

i

= w
i

when calculating any
covariance matrix. As an example of how these tables can be
used, the additive form UKF of [31], (3)-(6), can be obtained
by taking Tab III [1,1:3]. The previous set of this filter is
the symmetric set of [1] calculated for X̄ = x̂

k�1|k�1 and
P
XX

= P̂
k�1|k�1
xx

.

Remark 3 Due to the difficulty of describing UKF’s as pre-
sented in the original formulations in a simple and system-
atized way, the forms of the UKF’s shown in Table III are
not necessarily the ones introduced by their corresponding
authors. Nevertheless, the forms contained in this table, if
different from the original ones, are trivial extensions (e.g.,
the additive form for the symmetric UKF of [7] in Table I is
slightly more general). Besides, some of these extensions have
already been explicitly proposed (e.g., the additive form of the
symmetric UKF of [1] was modified in [31]).
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TABLE III
MOST KNOWN ADDITIVE UNSCENTED KALMAN FILTERS a

Pre. Pos. Pos. Pre. Pos. Pos.
setsb setsc CMd setsb setsc CMd

Sym. UKF of [1] Simp. UKF of [34]
1 (N = 2n+ 1) (N = n+ 1)

Tab I [1] (10) (6) Tab I [5] (10) (6)
Sym. UKF of [7] Min. UKF of [12]

2 (N = 2n+ 1) (N = n+ 1)
Tab I [2] (10) (6) Tab I [6] (10) (6)

Red. UKF of [8] Sc. UKF [38]
3 (N = n+ 1) (N depends on the set)

Tab I [3] (10) (6) Tab II [1] Tab II [2] Tab II [3]
Sph. Simp. UKF of [9] UKF with the AuxUT [38]

4 (N = n+ 2) (N depends on the set)
Tab I [4] (10) (6) Tab II [4] Tab II [5] Tab II [6]

Sym. UKF of [35] UKF of [36]
5 (N = 2n+ 1) (N = 2n2 + 1)

Tab I [7] (10) (13) Tab I [8] (4) (6)
UKF of [37]

6 (N = mn,m 2 N) – – –
Tab I [9] (10) (6)

aPre. stands for Previous and Pos. for Posterior. For all the filters, the
transformed means (x̂

k|k�1 and ŷ
k|k�1) are obtained by the left equation

of (12), the CCM P̂
k|k�1
xy

by (13), and the correction step is given by (7).
bPoints �

k�1|k�1
i

, �k|k�1
i

and their weights. cPoints �
k|k�1
i

, �k|k�1
i

and
their weights. dP̂

k|k�1
xx

and P̂
k|k�1
yy

.

Remark 4 There are three other UKF’s that are not presented
in Table III: [40] describes a symmetric UKF matching up to
the 4th central moment of the previous rv; [39], an asymmetric
UKF matching up to the 3rd central moment of the previous
rv; and [41], a symmetric UKF matching up to the 8th central
moment of a scalar Gaussian rv. Table III does not show these
UKF’s because, instead of presenting their expressions, these
works only show procedures from which these UKF’s can be
obtained.

Remark 5 Although some sigma sets can be composed by
negative weights, one should note that these can lead to non-
positive sample CM’s [7] and to higher errors [13].

There are applications where the machine precision is such
that rounding errors can cause KF’s to diverge. Hence, one
should use algorithms that are less susceptible to such errors,
which is the case of KF’s in square-root form [42]. In order
to propagate square-root matrices in square-root UKF’s, one
can use the QR decomposition and Cholesky update factor
techniques (see [43]). To date, we are aware of five variants
for the Square-Root Unscented Kalman Filters (SRUKF’s):
SRUKF of [43] (system in additive form (1) with the sigma set
of [35], Tab I [7], and statistics calculation (10)-(13)); SRUKF
of [30] (general form (2) with the set of [35]); SRUKF of [44]
(additive form (1) with the spherical simplex set of [9], Tab I
[4]); SRUKF of [4] (general form (2) with the set of [1], Tab
I [1]); the Improved SRUKF of [45] (additive form (1) with
the reduced set of [8], Tab I [3]).

Next, we present general comments about UKF variants and
analyze some of their properties.

B. Definitions for UKF’s
1) Variations on UKF definitions: From Section II-A, it is

clear that there are many UKF variants. Given that, in general,
these variants are not equivalent, one cannot properly point out

which one is “the definition” for the UKF. Nonetheless, most
works in the literature use the term ‘UKF’ when referring to
either the UKF of [1] – as can be seen in [6], [19] – or to the
UKF of [35] – as can be seen in [11], [46]. By comparing their
sets of sigma points (cf. Tab I [1] with Tab I [7]), one can see
that there are two main differences between these filters. First,
the UKF of [1] uses a  to calculate the weights and the sigma
points, while the one of [35] uses a term � = ↵2(n+ )� n
to do so. Second, in the UKF of [35], wm

0 and wc

0 are distinct
objects, while in the UKF of [1], wm

0 = wc

0 = w0.
2) Variation on scaled UKF definitions: Although the UKF

of [35] (Tab III [5,1-3]) is described and widely referred to
as a non-scaled UKF (cf. [11], [46]), Merwe himself, one of
the authors in [35], describes this filter as a scaled UKF form
(cf. [30]) – it has a scaling parameter ↵ (cf. Tab I [7]). Apart
from that, one should notice that this scaled UKF form differs
from the ones proposed by [38] (the ones using the UT’s of
Table II).

C. Accuracy of the UKF’s
1) Transformed covariance matrix: As [11] states, a large

number of papers repeat the statement of [7] that the CM
of transformed rv’s is matched up to the second order in the
UKF’s when the mean and the CM of the prior rv are matched
[7]. However, that is not true for all UKF variants. Indeed,
[11] has already pointed out this issue for the symmetric
UKF of [35] by providing a counter-example: considering
X ⇠ N(0

n⇥1, In) and Y := f(X) = XTX , the theoretical
result for the CM of Y is P

yy

= 2n. The second order Taylor
approximation gives the correct result, but the UT of [35]
differs from it (see Table II in [11]).

2) Transformed cross covariance matrix: The transformed
cross-covariance matrix (CCM) is necessary for the UKF, but
the literature has not yet provided an estimation quality for it.

D. Sigma sets composed by less than 2n sigma points
1) Reduced set of [8]: This set has two drawbacks. First,

it can be numerically unstable for great values of n due to
the fact that the weights are composed by fractions of 2n [9].
Second, neither the sample mean, µ

�

, nor the sample CM,
⌃

��

, are equal to the mean and CM of the prior distribution
when n is greater than one [12]. In fact, from Tab I [3], for
n = 2, X ⇠ ([0]2⇥1, I2)2, w0 = 0.5, and using (11) with
wc

i

= wm

i

= w
i

, we have that µ
�

= 1/4[�1, 3]T 6= [0]2⇥1

and ⌃
��

= 1
2



1 1
1 5

�

6= I2.

2) Spherical simplex set of [9]: This set does not present
the instability problem of the set of [8], but still has the same
problem that neither µ

�

, nor ⌃
��

, are equal to the mean and
the CM of X when n is greater than one [12]. In fact, from
Tab I [4], for n = 2, X ⇠ ([0]2⇥1, I2)

2, w0 = 0.5, and using
(11) with wc

i

= wm

i

= w
i

, we have that µ
�

= 1/(2
p
6)[0, 1]T 6=

[0]2⇥1 and ⌃
��

= diag(1, 53/96) 6= I2.
3) Minimum set of [34]: The CM for this set is not

matched. Using Tab I [5] and (11), it can be shown that
⌃

��

= P
XX

+ 1/(n + 1)
⇥

X̄
⇤

1⇥(n+1)

⇥

X̄T

⇤

(n+1)⇥1
for

X ⇠ (X̄, P
XX

)n. In fact, for X ⇠ (3, 4)1, ⌃
��

= 13 6= 4.
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4) Minimum set of [12]: This is the only sigma set com-
posed by less than 2n points matching the mean and CM of
X .

E. Scaled Transformations
1) Scalable sigma sets: the authors in [38] state that the

“scaled unscented transform [...] allows any set of sigma
points to be scaled by an arbitrary scaling factor” (the italic is
of the authors and the bold is ours). However, suppose X ⇠
([0]2⇥1, I2)

2 and that the previous sigma set is �1 =
⇥

p
2, 0
⇤

T

,
�2 =

⇥

0,
p
2
⇤

T

, �3 =
⇥�p

2, 0
⇤

T

, �4 =
⇥

0,�p
2
⇤

T

and
w1 = w2 = w3 = w4 = 1

4 . From Tab II [1:3], one can see that,
for ↵ = 0.5 and �0

1 = �1 = [0 2]T , the sample mean, µ
�

0 , and
the sample CM, ⌃

�

0 , of the (previous) scaled sigma set are
µ
�

0 = [�p
2, 0]T 6= [0]2⇥1 and ⌃

�

0 = diag([�3, 1]T ) 6= I2.
This example shows that the sample mean and the sample

CM of �0 are not equal to the mean and CM of X , respectively.
In fact, as one can see from the following theorem, this
property is not guaranteed to hold for any sigma set, except
for those having one sigma point equal to the mean of X .

Theorem 1 Consider X ⇠ (X̄, P
XX

)n and a function f :
Rn ! Rn

y defining a new rv Y := f (X) and consider a set
of sigma points � = {�

i

, w
i

}N
i=1 for X . Consider also the set

of scaled sigma points �0 =
�

�0
i

, w0
i

 

N

i=1
obtained from the

scaled UT of [38] (Tab II [1:3]). We have that:
1) if
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The last assertions can be proven by the fact that ⌃
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.
Therefore, the scaled UT of [38] is restrictive in the sense
that this UT does not provide the mentioned results for any
previous set of sigma points. On the other hand, this restriction
is not applied to the AuxUT of [38].

2) Covariance matrix: Consider X ⇠ N([0]3⇥1, I3)
3 and

Y := f(X) = X

T

X. Then, Ȳ = 3 and P
Y Y

= 6. Using the
scaled UT of [38] with the symmetric sigma set of [7], we
get, from (12), µ

�

= 3 = Ȳ and ⌃⇤
��

= 3↵2�8 6= P
Y Y

. This
result shows two problems involving the matching of the CM.
First, the transformed CM for this scaled UT is not matched
up to the order 2, but only to the order 1. Second, the scaling
factor modifies the CM even for second order polynomial
approximation.

3) Cross-covariance matrix: Similar to the case for the
non-scaled UTs, the estimation quality of CCM’s for the
scaled UT of [38] and for the AuxUT of [38] has not been
presented in the literature yet. Besides, there is no mention of
the influence of the scaling factor on the transformed CCM for
the UKF of [35]. Since it is desirable to match the first and the

second moments, the free parameter ↵ should modify only the
third and higher terms. However, consider X ⇠ N(03⇥1, I3)
and Y := f(X) = XTX . Then, from Tab I [7], (12) and
(13), we have µ

�

= 3 = Ȳ and ⌃
��

= 6↵ [I3]⇤i � 9
2↵ [I3]⇤i.

Therefore, the second order term is also modified.

F. Square-root forms of the UKF’s
1) Downdating the Cholesky factor: For an equation in

the form AAT = RRT � SST , where A,R, S are Cholesky
factors, we say that A is a downdated Cholesky factor of R
by S. There are three parts within the SRUKF algorithms
in the literature where Cholesky factors are downdated: in
the calculations of the square-root matrices (SRM’s) of the
predicted state’s CM, of the innovation’s CM, and of the
corrected state’s CM. In the first two steps, the downdating
steps are performed only for the sigma points with negative
weights, while, in the last, they are always performed.

Since the direct downdating of a Cholesky factor is “inher-
ently more ill-conditioned than if Q (the Q matrix of a QR
decomposition) is also available” [47] (the comment within
parentheses is ours), filters resulting from the substitution of
downdating steps by QR decompositions – or, more generally,
by any triangulation technique [6] – should be computationally
more stable. In fact, [48] has developed such a technique for
calculating the SRM of the corrected state’s CM for quadrature
Kalman filters and [6] for the CKF.

2) Square-Root Scaled UKF: The literature does not
present any filter conjugating the SRUKF with the scaled UT
of [38] (Tab II [1:3]) nor with the AuxUT (Tab II [4:6]).

3) Square-Root UT: Although there are definitions for
SRUKF’s, we have not been able to find any definition
for a Square-Root Unscented Transformation (SRUT). The
importance of defining a SRUT can be motivated by the
importance of defining an UT: it gives its resulting UKF a
better mathematical formal principle; it is possible to study
a UKF focusing on its respective UT, since it is the core
difference between the UKF relative to other nonlinear KF-
based filters; one can apply a UT not only within the KF
framework, but in any framework or application that requires
uncertainty propagation (e.g. [49]) or within other stochastic
filter (e.g. [50]).

G. Conclusion of the literature review
This section showed that many variations for the UKF have

been proposed. Some of them are different in the recursive
filter framework, others in the composition of sigma sets, and
others in the transformation from the previous to the posterior
sigma sets. Sections II-B to II-F presented some problems and
gaps within the UKF theory.

The difficulty in gathering all results related to Unscented
and the problems within some of them reveal a lack of
foundation in terms of mathematical principles and also the
absence of mathematical solutions generalizing the sigma sets,
UTs and UKFs of the literature. In order to address these
needs, we propose a systematization that treats the construction
of UKF’s in parts. We first consider the problem of estimating
the mean of a non-linear transformation, which will lead us
to the definition of the sigma-representation.
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III. SIGMA-REPRESENTATIONS

Given a rv X 2 �n with pdf p
X

(x), many problems, such
as calculating the moments of an rv, can be reduced to the
problem of finding the posterior expectation

E{f(X)} =
R

Rn

f(⇠)p
X

(⇠)d⇠, (14)

for an appropriate function f : Rn ! Rn

y . As a first attempt
to solve this problem, one could consider using numerical
integration techniques. In the scalar case (n = n

y

= 1) and if
the function f is well approximated by a polynomial of order
2N � 1, the Gaussian quadrature methods give approximate
solutions for (14) of the form (see [5], [51]–[54])

E{f(X)} =

Z 1

�1
f(⇠)p

X

(⇠)d⇠ ⇡
N

X

i=1

w
i

f(x
i

),

where x1, . . . , xN

are samples of X . For X being a standard
scalar normal rv, the solution is obtained by the Gauss-Hermite
Quadrature (GHQ) [5], [30], [51]–[53], [55]. The multivariate
case can be obtained by first using a stochastic decoupling
technique X 0 =

p
P
XX

�1�
X�X̄

�

, where X 0 is a multivariate
standard Gaussian rv. Then, for f̃(X) := f

�p
P
XX

T

X+ X̄
�

,
the GHQ is applied on the form

E
X

0
�

f̃(X 0)
 

=

Z

Rn

f̃(⇠)p
X

0(⇠)d⇠

⇡
N

X

i1,...,in=1

w
i1 · · ·wi

n

f̃(x
i1 , . . . , xi

n

),

and E
X

{f(X)} is obtained from E
X

0{f̃(X 0)} [5]. An alter-
native to solving the multivariate Gaussian case is to use the
spherical cubature rule along with the Gaussian Quadrature
after performing a Cartesian-to-spherical coordinate transfor-
mation. In fact, consider the Gaussian case p

⇠

(⇠) = exp(�⇠⇠

T )

and let ⇠ = ⇢y, with y

T

y = 1, ⇢ 2 [0,1). In this case, (14)
becomes

E{f(X)} =
R1
0 S(⇢)⇢n�1exp(�r2)d⇢, S(⇢) :=

R

U

n

f(⇢y)d�(y),

where U
n

:= {u 2 Rn|uTu = 1} and �(•) is the spherical
surface measure of U

n

[6]. The spherical integral S(⇢) is
solved by the spherical cubature rule, while the expectation
by a Gaussian Quadrature rule [6].

Instead of using a quadrature solution, one can obtain a
suboptimal solution by approximating the function f . For
instance, one can use linearization or higher-order polyno-
mial approximations of the kind f(x) ⇡ P

k

a
k

xk [56].
In this case, (14) would be approximated by E{f(X)} =
P

k

a
k

R

Rn

⇠kp
X

(⇠)d⇠. Well-known methods are the trape-
zoidal rule, Simpson’s Rule, the Newton-Cotes Formulas, the
Clenshaw-Curtis Integration, among others [56].

Another alternative for obtaining (14) is by approximating
p
X

(x). We can classify this type of suboptimal approximation
into two categories, namely Monte Carlo methods [23]–[27],
[57] and sigma-point methods [30], [55]. Monte Carlo (MC)
methods consist of taking a very large quantity of samples x

i

of X (the method gets more accurate as the number of samples
N ! +1) randomly [23], [24], [26], [27]. Sigma point
methods, on the other hand, consist on analytically choosing

finite N samples x
i

and weights w
i

[30]. These approaches can
be viewed as generalized—negative weights are admitted—
discrete approximations of p

X

(x).
There is some overlap in this type of classification, as well

as other interpretations. Some sigma-point formulas can be
obtained from integration approaches [15], [33], [58]. For
instance, [6] derives a particular case of the symmetric sigma-
point set of [7] (Tab I [2]) using the spherical cubature
quadrature; and [36] and [13] derive the fifth-order sigma-point
set (Tab I [8]) also by this quadrature rule [15]. It is worthwhile
to mention that the symmetric sigma-point set of [7] can also
be viewed as a statistical linear regression technique [31].

All techniques for expected value calculation can be used
for dynamical systems (1) or (2) in order to obtain recursive
filters. For instance, GHQ yields the GHF [5] when applied
in a KF framework; the cubature spherical rule yields the
CKF [6], [29]; the Central Difference technique, the CDF [5];
the linearization and the second order approximation of the
functions yield the EKF and the SOEKF, respectively; different
UT’s yield different forms of the UKF; Stirling’s interpolation
formula yields the Divided Difference Filter (DDF) [28]; and
the Monte Carlo methods yield SMCF’s (e.g. PF’s [23]–[26])
or MCMCF’s [27].

The DDF and the CDF are considered to be “essentially
identical” [30]. The CKF is a particular case of the derivations
in [36] and [13], where the CKF is also showed to be
equivalent to the UKF of [1] (Tab III [1,1:3]) by making the
central weight equal to zero [11], [19].

The UKF of [1] is showed to be a particular case of the GHF
in the scalar case (n = n

y

= 1) [5]. In fact, consider a scalar
standard normal rv X ⇠ N (0, 1). Both a GHQ approach of
order N = 3 and a sigma set of [1] with k = 2 and n = 1
would yield the set �1 = �p

3, �2 = 0, �3 =
p
3, w1 =

w3 = 1
6 , w2 = 2

3 [5]. However, for larger lengths of the state
vector, this equivalence does not hold. The GHF is O(Nn),
while the UKF of [1] is O(n3) [5], [13], [55]. In fact, for
X ⇠ ([0]T2⇥1, I2)

2, the Gauss-Hermite set would be w
i

=
1/36, i = 1, 3, 7, 9;w

j

= 1/9, j = 2, 4, 6, 8;w5 = 4/9;�1 =
�3 = ��7 = ��9 = [

p
3,
p
3]T ;�2 = ��8 = [0,

p
3]T ;�4 =

��6 = [
p
3, 0]T ;�5 = [0]2⇥1; while the sigma set of [1] (Tab

I [1]) for k = 2 and n = 2 would be w0 = 0.5;w1 = ... =
w4 = 0.125; and x0 = [0, 0]T ;x1 = �x3 = [2, 0]T ;x2 =
�x4 = [0, 2]T .

In order to properly construct the systematization of
the UKF filtering theory, we propose definitions of three
fundamental mathematical elements: (I) the sigma (�)-
representation; (II) the Unscented Transformation; and (III)
the recursive filters. The first is an approximation of a rv’s pdf
by a set of weighted points. The second is an approximation
of the joint pdf of two rv’s by two sets of weighted points,
where one is a function of the other. The third consists of
solutions to the stochastic filtering problems applying the UT
in a recursive manner.

A. Sigma-representation

The �-representations (�R’s) are approximations of a rv’s
pdf by a set of weighted points via moment matching. We say
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that a set is an lth order �R of a rv if the central moments of
its samples are equal to the central moments of the chosen rv
up to, and including, order l.

The case l = 2 is of particular interest, since the majority of
works in Unscented literature focus on second order moment
matching [1]–[4], [7]–[9], [30], [38], [40], [43], [59]. This
is mainly motivated by three facts. First, these are usually the
estimated statistics within a stochastic filter. Second, they fully
describe a Gaussian distribution [55]. Third, the mean is the
point estimate with the least mean squared error.

The notation M j

X

stands for the jth central moment of X 2
�n, and is defined, for even and odd j, respectively, as

M j

X

:= E

⇢

h

�

X � X̄
� �

X � X̄
�

T

i⌦ j

2

�

,

M j

X

:= E
nh

�

X � X̄
� �

X � X̄
�

T

i⌦ j�1
2 ⌦

⇣

X � X̄
⌘o

.

Definition 1 (Sigma (�)-Representation) Define, for even
and odd j, respectively,

Mj

�

:=
P

N

i=1 w
(j)
i

h

(�
i

� µ
�

) (�
i

� µ
�

)T
i⌦ j

2
,

Mj

�

:=
P

N

i=1 w
(j)
i

h

(�
i

� µ
�

) (�
i

� µ
�

)T
i⌦ j�1

2 ⌦ (�
i

� µ
�

) ,

as the jth sample central moment of � := {�
i

, w
(1)
i

, . . . ,

w
(l)
i

}N
i=1, which has sample mean µ

�

:=
P

N

i=1 w
(1)
i

�
i

and
consider X ⇠ (X̄,M2

X

, . . . ,M l

X

)n. Then � is an lth order
N points �-representation (lthN�R) of X if

w
(j)
i

6= 0, i = 1, . . . , N and j = 1, . . . , l;

µ
�

= X̄; Mj

�

= M j

X

, j = 2, 3, . . . , l.

Besides, assume � to be an lthN�R of X , then:
• � is normalized if

P

N

i=1 wi

(j)=1, j = 1, 2, . . . , l.
• � is symmetric if, for N odd, �

i

� �
N

= ���
i+N�1

2
�

�
N

�

and w
(j)
i

= w
(j)

i+N�1
2

, 1  i  N�1
2 ; or for N

even, �
i

� �
N

= ���
i+N

2
� �

N

�

and w
(j)
i

= w
(j)

i+N

2

,
1  i  N

2 .
• � is homogeneous if, for N odd, w(j)

1 = w
(j)
i

, 1  i 
N � 1, or for N even, w(j)

1 = w
(j)
i

, 1  i  N .

When calling an lthN�R of X , the reference to the lth order
can be omitted if l = 2. Also, the reference to N point and/or
to X can be omitted in case they are obvious from the context
or irrelevant for a given statement.

Theorem 2 X ⇠ (X̄,M2
X

, . . . ,M l

X

)n admits a normalized
lthN�R if and only if there exists E 2 Rn⇥N , w(1) :=
[w(1)

1 , . . . , w
(1)
N

]T , W (j) := diag
�

w(j)
�

, where w(j) :=

[w(j)
1 , . . . , w

(j)
N

]T , for j = 2, 3, . . . , l that satisfy, for l even,
the following equations:
h

E
⌦ j

2
⇤1 , ..., E

⌦ j

2
⇤N

i

W (j)
h

E
⌦ j

2
⇤1 , ..., E

⌦ j

2
⇤N

i

T

= M j

X

, j = 2, 4, . . . , l; (15)

h

E
⌦ j+1

2
⇤1 , ..., E

⌦ j+1
2

⇤N

i

W (j)
h

E
⌦ j�1

2
⇤1 , ..., E

⌦ j�1
2

⇤N

i

T

= M j

X

, j = 1, 3, . . . , l � 1;
(16)

Ew(1)= 0; (17)
[1]1⇥N

w(j)= 1, j = 1, 2, . . . , l. (18)

If (15) - (18) admits a solution (E,w(1),W (2), . . . ,W (l)),
then a normalized lth order lthN�R of X is
{�

i

, w
(1)
i

, ..., w
(l)
i

}N
i=1 such that [�1, ...,�N

] := E + [X̄]1⇥N

.

Proof: Define E := [�1 � µ

�

, ...,�

N

� µ

�

]. So, from the
definition of Mj

�

, for j even,

Mj

�

=
P

N

i=1

h

E
⌦ j

2
⇤i

i

w
(j)
i

h

E
⌦ j

2
⇤i

i

T

=
h

E
⌦ j

2
⇤1 , ..., E

⌦ j

2
⇤N

i

W (j)
h

E
⌦ j

2
⇤1 , ..., E

⌦ j

2
⇤N

i

T

,

which proves (15). (16) can be proven similarly and the
remaining is trivial.

Results for odd l can be obtained in a similar fashion. The
next corollary uses Theorem 2 to obtain two novel results: the
minimum amount of �-points for both the symmetric and the
non-symmetric case when P

XX

� 0. Note that the previously-
stated result that the minimum number is n+1 for P

XX

> 0
[7]–[9] is a particular case of Corollary 1.

Corollary 1 Let � := {�
i

, w
(1)
i

, . . . , w
(l)
i

}N
i=1 be an lthN�R

of X 2 �n, which has CM P
XX

with rank r  n. Then
1) N � r+1. If N = r+1, then � is a minimum lthN�R

of X .
2) If � is symmetric, then N � 2r. In this case, if N = 2r,

then � is a minimum symmetric lthN�R of X .

Proof: To prove assertion 1), consider, first, E 2 Rn⇥N

and the singular value decomposition of P
XX

, P
XX

=
USV T , where S := diag

�

[↵1, ...,↵r

, [0](n�r)⇥1]
T

�

, and
↵1, ...,↵r

are the singular values of P
XX

. Assume, for con-
tradiction, m := rank{E} < r. Then there exists v :=
⇥

vT1 , [0]T1⇥(n�r)

⇤

T , v1 2 Rr, v1 6= 0, such that vTE = 0.
Then, from (15),

EW (2)ET =



U1 U2

U3 U4

�

SV T , vT1 U1S1 = 0 , vT1 = 0,

which is a contradiction. Therefore, m � r. Second, suppose
N = m. Then, E is full column rank and, from (17), w(1) = 0,
which is a contradiction for, from Definition 1, w(1) 6= 0. So
N � rank {E} + 1 � r + 1. To prove assertion 2), let � be
symmetric. Then E =

⇥

E2, � E2

⇤

, where E2 2 Rn⇥N

2 . So

r  rank{E} = rank {[E2, � E2]} = min
�

n, N

2

 , N � 2r.

Corollary 2 Let � =
�

�
i

, w
(1)
i

, . . . , w
(l)
i

 

N

i=1
be a normal-

ized lthN�R of X ⇠ (X̄,M2
X

, . . . ,M l

X

)n and consider the
rv Z = AX + b, A 2 Rn⇥n, b 2 Rn. Then, the set
⌅ :=

�

⇠
i

, w
(1)
i

, . . . , w
(l)
i

|⇠
i

= A�
i

+ b
 

N

i=1
is a normalized

lthN�R of Z. In particular, we have µ
⇠

= AX̄ + b and
⌃

⇠⇠

= AP
XX

AT .

Proof: The sample mean of ⌅ is µ
⇠

=
P

N

i=1 w
(1)
i

(A�
i

+ b) = Z̄. The j-th sample central moment
of ⌅, j = 2, 4, . . . , l (l even) is

M j

⇠

= A⌦ j

2



P

N

i=1 w
(j)
i

h

(�
i

� µ
�

)⌦ (�
i

� µ
�

)T
i⌦ j

2

�

�

AT

�⌦ j

2
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= A⌦ j

2M j

X

�

AT

�⌦ j

2 = M j

Z

.

The odd j case can be similarly proven.
The result used by [7], [40], [59] and others that a sigma

set {�
i

, w
i

}N
i=1 approximating an rv X ⇠ (X̄, P

XX

)n can be
obtained by the transformation �

i

=
p
P
XX

⇠
i

+ X̄ , where
{⇠

i

, w
i

}N
i=1 is a sigma set of an rv with mean [0]

n⇥1 and
covariance matrix I

n

, is a particular case of Corollary 2.

B. Particular sigma-representations
Motivated by Theorem 2 and Corollary 1, we now seek a

�R for the minimum symmetric and the minimum cases.
1) Minimum Symmetric �-Representation: Let � =

{�
i

, wm

i

, wc

i

}2n
i=1 be a �R of X ⇠ (X̄, P

XX

)n, P
XX

�
0. Considering the equations of Theorem 2, suppose � is
minimum symmetric. Then, we have E = [Ē,�Ē], where
Ē 2 Rn⇥n. Define W := diag

�

[wc

1 · · ·wc

n

]T
�

> 0, Then,
from (15),
⇣

⇥

Ē,�Ē
⇤

p

diag([W,W ])
⌘

(⇧)T = 2�1
�p

P
XX

[I
n

,�I
n

]
�

(⇧)T .

Clearly, a sufficient condition is Ē =
�

p
2W

��1p
P
XX

. Since
(17) is satisfied for all symmetric �R’s, a closed form for this
case is obtained. The next corollary formalizes it.

Corollary 3 (Minimum Symmetric �-representation)
Consider a symmetric X ⇠ (X̄, P

XX

)n, P
XX

> 0. A
minimum symmetric �R of X is the set � = {�

i

, wm

i

, wc

i

}2n
i=1

with W := diag
�

[wc

1 · · ·wc

n

]T
�

> 0, wm

i

6= 0 and

[�1 · · ·�2n+1] =


⇣p
2W

⌘�1 p
P
XX

, �
⇣p

2W
⌘�1 p

P
XX

�

+ [X̄]1⇥2n.

In addition, if
P2n

i=1 w
m

i

=
P2n

i=1 w
c

i

= 1, then � is normal-
ized. Moreover, if W = (1/(2n))I

n

and w
i

:= wm

i

= wc

i

,
i = 1, . . . , 2n, then � = {�

i

, w
i

}2n
i=1 is a (normalized)

homogeneous minimum symmetric �-representation of X.

If an extra point located on X̄ is added to this �R, neither the
sample mean, nor the sample CM, will be modified. Therefore,
the extra point’s weight can act as a tuning parameter.

Corollary 4 ([Odd] Min. Symmetric �-representation)
Consider a symmetric X ⇠ (X̄, P

XX

)n, P
XX

� 0. An odd
minimum symmetric �R of X is the set � = {�

i

, wm

i

, wc

i

}2n
i=1

with W := diag
�

[wc

1 · · ·wc

n

]T
�

> 0, wm

i

6= 0, and

[�1 · · ·�2n+1] =


⇣p
2W

⌘�1 p
P
XX

, �
⇣p

2W
⌘�1 p

P
XX

, 0
n⇥1

�

+ [X̄]1⇥(2n+1).

In addition, if
P2n+1

i=1 wm

i

=
P2n+1

i=1 wc

i

= 1, then � is a nor-
malized odd minimum symmetric �-representation (MiSy�R).
Moreover, if W = ((1�w2n+1)/(2n))In and w

i

:= wm

i

= wc

i

,
i = 1, . . . , 2n + 1, then � = {�

i

, w
i

}2n+1
i=1 is a (normalized)

homogeneous (odd) minimum symmetric �-representation
(HoMiSy�R) of X, which is equivalent to the symmetric sigma
set of [7] (Tab I [2]).

Corollaries 3 and 4 present the even and odd �R’s with
the least amount of symmetric sigma points. The classical

symmetric sigma sets of [1], [7] (Table I), which have been
presented in the literature without formal justification, are
rewritten forms of the homogeneous cases of these corollaries.

Regarding the choice of the tuning parameter, a couple
of results have already been proposed in the literature. The
authors in [60] provide an off-line way of computing it by
maximizing the likelihood function with a training set of data.
In [19], an on-line method of computing the tuning parameter
by means of maximizing a Gaussian approximation of the
likelihood function is proposed.

2) Minimum Sigma-Representation: In this section, we
look for a �R with the least amount of (non-symmetric) sigma
points. For P

XX

> 0, this number is n+ 1 (cf. Corollary 1).
We first present a heuristic for finding this �R, followed by a
formal and more general minimum �R (Mi�R) in Theorem 3.
At the end of this section, Corollary 5 shows that this minimum
�R has the minimum sigma set of [12] as a particular case.

Let {�
i

, w
i

}n+1
i=1 be a normalized minimum �R of X ⇠

(X̄, P
XX

)n, P
XX

> 0. From Theorem 2 and Corollary 1,
E = [Ē, e], where Ē 2 Rn⇥n and e 2 Rn. Define
w̄ = [w1 . . . wn

]T and W̄ := diag (w̄) > 0. Then, from (15),
e = �w�1

n+1Ēw̄. Substituting it on (17),

P
XX

= ĒW̄ ĒT + w�1
n+1Ēw̄w̄T ĒT

= Ē
p

W̄
�

I
n

+ vvT
� �

Ē
p

W̄
�

T

,

where v := w
� 1

2
n+1

p
W̄ w̄. Then Ē =

p
P
XX

�

I
n

+

vvT
�� 1

2 W̄� 1
2 is a sufficient condition. Moreover, from (17),

w
n+1 = 1/

�

1 +
P

n

i=1 v
2
i

�

.
The following theorem gives the minimum �R for an even

more general solution (without the w
i

> 0 restriction).

Theorem 3 (Minimum �-representation) Consider X ⇠
(X̄, P

XX

)n, P
XX

> 0. Then a Mi�R of X is, for v :=
[v1, ..., vn]T 2 Rn, v

i

6= 0, the set � = {�
i

, w
i

}n+1
i=1 with

w
n+1 = 1P

n

i=1(|wi

|+v

2
i

)
,
�

�W̄
�

�

� 1
2 w̄ =

p
w

n+1v,

Ē :=
p
P
XX

�

sign
�

W̄
�

+ vvT
�� 1

2
�

�W̄
�

�

� 1
2 ,

e := �w�1
n+1Ēw̄, [�1, ...,�n+1] =

⇥

Ē, e
⇤

+
⇥

X̄
⇤

1⇥(n+1)
.

Corollary 5 If w
i

> 0, then the normalized Mi�R of Theorem
3 becomes

w
n+1 =

1

1 +
P

n

i=1 v
2
i

, w̄ = w
n+1

⇥

v21 , ..., v
2
n

⇤

T

,

Ē :=
q

w�1
n+1PXX

�

I + vvT
�� 1

2 diag(v)�1,

e := �w�1
n+1Ēw̄, [�1, ...,�n+1] =

⇥

Ē, e
⇤

+
⇥

X̄
⇤

1⇥(n+1)
.

If w
i

> 0 and v = ⇢C�1[1]
n⇥1, with ⇢ and C as in Tab I [6],

then � is the minimum sigma set of [12].

The Mi�R from Theorem 3 is currently the only consistent
�R constituted by less than 2n points, given that the set of
[12] is a particular case of it and, to the best of the authors’
knowledge, the other reduced sets do not fit Definition 1, i.e.
the mean and/or covariance matrix of their prior distribution
are not matched (see Section II-D).
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IV. UNSCENTED TRANSFORMATIONS

A. Unscented Transformation
In this section, we reintroduce the definition of the Un-

scented Transformation (UT). In general terms, the UT con-
sists of two sets of weighted points (the sigma points) that
approximate a pdf of two rv’s in the case where there is a
functional dependence between them.

Henceforth, consider Y := f(X) 2 �n

y , X ⇠
(X̄,M2

X

, ...,M l

X

)n. For the sets � :=
�

�
i

, w
(m)
i

, w
(mj

�

1
...�

j

)

i

:

j � 2
 

N

i=1
; � :=

�

�
i

, w
(m)
i

, w
(mj

�

1
...�

j

)

i

|�
i

= f(�
i

), j �
2
 

N

i=1
; and vectors �⌘ 2 {�1, ...,�N

, �1, ..., �N}, ⌘ = 1, 2, ...;
the sample means are

µ
�

:=
N

X

i=1

w
(m1

�

)
i

�
i

, µ
�

:=
N

X

i=1

w
(m1

�

)
i

�
i

. (19)

For even j, their sample central moments are

Mj

�

:=
P

N

i=1 w

⇣
mj

�1,...,�

j

⌘

i

⇥

(�
i

� µ
�

)
�

�T

i

� µT

�

�⇤⌦ j

2 , (20)

Mj

�

:=
N

X

i=1

w

⇣
mj

�1,...,�

j

⌘

i

⇥

(�
i

� µ
�

)
�

�T

i

� µT

�

�⇤⌦ j

2 , (21)

Mj

�

1
...�

j

:=
P

N

i=1 w
(mj

�

1
...�

j

)
i

j/2
N

q=1



(�q

i

� µ
�

q )
⇣

�q+1
i

� µ
�

(q+1)

⌘

T

�

.

(22)

For odd j, they are

Mj

�

:=
P

N

i=1 w

⇣
mj

�1,...,�

j

⌘

i

⇥

(�
i

� µ
�

)
�

�T

i

� µT

�

�⇤⌦ j�1
2 ⌦ (�

i

� µ
�

) ,

(23)

Mj

�

:=
P

N

i=1 w

⇣
mj

�1,...,�

j

⌘

i

⇥

(�
i

� µ
�

)
�

�T

i

� µT

�

�⇤⌦ j�1
2 ⌦ (�

i

� µ
�

) ,

(24)

Mj

�

1
...�

j

:=
P

N

i=1 w
(mj

�

1
...�

j

)
i

(j�1)/2
N

q=1
(25)



(�q

i

� µ
�

q )
⇣

�q+1
i

� µ
�

(q+1)

⌘

T

�

⌦
⇣

�j

i

� µ
�

j

⌘

.

Definition 2 (Unscented Transformation) Consider
equations (19)-(25). If µ

�

= X̄ and Mj

�

= M

j

X

, j = 2, ..., l,
then the lth order Unscented Transformation (lUT) is defined by

lUT

�
f, X̄,M

2
X

,...,M

l

X

�

:=
h
µ

�

,M2
�

, ...,Ml

�

,M2
�

2
�

2 , ...,Ml

�

1
...�

l

i
.

Remark 6 Every lthN�R is a set � of a lUT.

This form of defining the lUT as a function mapping (f, X̄,
P
XX

) to the transformed sample mean and CM’s can also be
used in Monte Carlo and quadrature methods. Moreover, one
should notice that negative weights can lead to negative values
of the sample moments.

A lUT can be viewed as a function that maps X and Y to
sets which approximate the (X,Y) joint pdf. For instance, a
2UT can be viewed as the approximation (this interpretation
is inspired on [46])

✓

X
Y

◆

⇡
✓

X̃

Ỹ

◆

⇠
✓✓

µ
�

µ
�

◆

,

✓

⌃
��

⌃
��

⌃T

��

⌃
��

◆◆

.

The next theorem states the approximation quality for the
Y ’s. The notation Y [c,l] stands for the Taylor Series of Y =
f(X) around X = c truncated at the lth order.

Theorem 4 If Mj

�

= M

j

X

, j = 2, ..., l, µ
�

= X̄ and f is lth
differentiable, then:

1) µ

[µ
�

,l]
�

= Ȳ

[X̄,l];
2) ⌃

[µ
�

,l/2]
��

= P

[X̄,l/2]
Y Y

if l is even,
⌃

[µ
�

,(l�1)/2]
��

= P

[X̄,(l�1)/2]
Y Y

if l is odd;
3) ⌃

[µ
�

,l�1]
��

= P

[X̄,l�1]
XY

.

Proof: Suppose µ

�

= X̄ and Mp

�

= M

p

X

, p = 2, ..., l. For
the first assertion,

µ
[µ

�

,l]
�

= f (µ
�

) + 1
2!

n

P

i1,i2=1

�M2
�

�

i1,i2

@

2
f(x)

@x

(i1)
@x

(i2)

�

�

�

x=µ

�

+ ...

+ 1
l!

n

P

i1,...,il=1

�Ml

�

�

i1,(i2⇤i3⇤...⇤il)
@

l

f(x)

@x

(i1)
...@x

(i
l

)

�

�

�

x=µ

�

= Ȳ [X̄,l].

For the second, ⌃[l/2,µ
�

]
��

= ⇥2
⌃

��

+ ... + ⇥l/2
⌃

��

, where ⇥q

⌃
��

is given in (27), shown at the top of the next.
For the third assertion, ⌃[µ

�

,l�1]
��

= ⇥1
⌃

��

+ ...+⇥l�1
⌃

��

, where

⇥q

⌃
��

= 1
q!

n

P

i1,...,iq=1

h

�Mq+1
�

�

1,(i1⇤...⇤iq)
, ...,

�Mq+1
�

�

n,(i1⇤...⇤iq)

i

T

@

q

f(x)

@x

(i1)
...@x

(i
q

)

�

�

�

T

x=µ

�

.

The remaining steps can be proven similarly.
Theorem 4 is the first to provide the estimation quality of

the CCM, which is of the order l � 1
�
⌃

[µ
�

,l�1]
��

= P

[X̄,l�1]
XY

�
.

The approximations of the posterior rv’s are not guaranteed
for any function f , but only for the lth differentiable ones.

⇥q

⌃
��

=
P

q�1
j=1



1
j!q!

P

n

i1,...i(q+j)=1

✓

�Mq+j

�

�

i1,(i2⇤...⇤i(q+j))
� �Mq

�

�

i1,(i2⇤...⇤iq)

�Mj

�

�

i(l/2+1),(i(q+2)⇤...⇤i(q+j))

◆

⇥
 

@

q

f(x)

@x

(i1)
...@x

(i
q

)

�

�

�

x=µ

�

@

j

f(x)

@x

(i(q+1))
...@x

(i(q+j))

�

�

�

�

T

x=µ

�

+ @

j

f(x)

@x

(i(q+1))
...@x

(i(q+j))

�

�

�

�

x=µ

�

@

q

f(x)

@x

(i1)
...@x

(i
q

)

�

�

�

T

x=µ

�

!#

+ 1
q!q!

P

n

i1,...,

i2q=1

⇣

�M2q
�

�

i1,(i2⇤...⇤i2q)
� �Mq

�

�

i1,(i2⇤...⇤iq)

�Mq

�

�

i(q+1),(i(q+2)⇤...⇤i2q)

◆

⇥ @

q

f(x)

@x

(i1)
...@x

(i
q

)

�

�

�

x=µ

�

@

q

f(x)

@x

(i(q+1))
...@x

(i2q)

�

�

�

�

T

x=µ

�

. (27)
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For l = 2, the transformed CM is approximated up to order 1�
⌃

[µ
�

,1]
��

= P

[X̄,1]
Y Y

�
(cf. Section II-C1).

According to Theorem 4, a sufficient condition for a second
order approximation of the transformed CM is l = 4, since,
for even l, ⌃[µ

�

,l/2]
��

= P

[X̄,l/2]
Y Y

. In order to verify this, suppose
µ

�

= X̄ and Ml

�

= M

l

X

, i = 2, ..., 4. Then, from (27), ⌃[µ
�

,2]
��

=

⇥1
⌃

��

+ ... + ⇥2
⌃

��

= 2n = P

Y Y

. Moreover, consider X ⇠
N(0

n⇥1, In), Y := f(X) =
⇥
x

3
1, ..., x

3
n

⇤
T and suppose µ

�

= X̄

and Ml

�

= M

l

X

, i = 2, ..., 6. Then, ⌃[µ
�

,3]
��

= ⇥1
⌃

��

+ ...+⇥3
⌃

��

=

15n = P

Y Y

.
This result does not imply that the mean and CM estimates

of a 2UT are equal to the ones obtained through linearization.
We can point out two reasons. First, for a 2UT, µ[µ

�

,2]
�

= µ

[X̄,2]
Y

,
whereas µ

[µ
�

,1]
�

= µ

[X̄,1]
Y

for linearization. Second, even though
both linearization and a 2UT have ⇥1

⌃
��

= ⇥1
P

Y Y

, it happens
that, from (27), ⇥2

⌃
��

and ⇥2
P

Y Y

are partially equal for a 2UT,
but not for linearization (⇥2

⌃
��

= 0).

B. Scaled Unscented Transformation
In this section, we redefine the Scaled Unscented Transfor-

mation (ScUT). This new definition is similar (not equal) to
the AuxUT of [38] (Tab II [4:6]), since the SUT of [38] (Tab II
[1:3]) cannot be applied to any previous sigma set (see Section
II-E1). Furthermore, definitions similar to the previous SUT
of [38] and to the UT of [35] (Tab I [7]) are presented at the
end of this section as particular cases of the ScUT.

Unless otherwise specified, the term Scaled Unscented
Transformation will henceforth refer to the following defini-
tion.

Definition 3 (Scaled Unscented Transformation) Consider,
for ↵ 2 [0, 1] and  2 (0, 1], the function

g (f,X,�,↵,) = f(�+↵(X��))�f(�)


+ f (�) , (27)

and the sets � := {�
i

, wm

i

, wc

i

}N
i=1 and � := {�

i

, wm

i

, wc

i

|�
i

=
g
�

f,�
i

, µ
�

,↵,↵2
�}N

i=1 and

⌃↵

��

:= ↵2
P

N

i=0 w
c

i

(�
i

� µ
�

) (�
i

� µ
�

)T ,

⌃↵

��

:= ↵
P

N

i=0 w
c

i

(�
i

� µ
�

) (�
i

� µ
�

)T , (28)

where ⌃↵

��

is the scaled sample covariance matrix of � and
⌃↵

��

is the scaled sample cross covariance of � and �. If

µ
�

= X̄ and ⌃
��

= P
XX

, then the Scaled Unscented
Transformation (ScUT) is defined by

ScUT
�

f, X̄, P
XX

,↵
�

:=
⇥

µ
�

,⌃↵

��

,⌃↵

��

⇤

.

Remark 7 Every 2thN�R is a set � of a ScUT.

Such a definition for the CCM of the ScUT cannot be found
for the scaled UT’s of the literature. Crossing covariances are
not treated in the SUT of [38] or in the AuxUT of [38]. In
the UT of [35], the CCM is defined differently and restricted
only to the symmetric set defined there (see Section II-E3).

In Section II-E2 and II-E3, it was shown that ↵ modifies the
second order terms of both ⌃↵

��

and ⌃
��

. In order to check the
influence of ↵ in the covariances of the ScUT, define ⇥l

⌃↵

��

and ⇥l

⌃↵

��

as the lth term of the Taylor Series of ⌃↵

��

and
⌃↵

��

, respectively, and consider the equations at the bottom of
the page. The ScUT scales the terms of order 3 and higher for
µ
�

and of order 2 and higher for ⌃↵

��

and ⌃↵

��

. However, if �
is symmetric, then M3

�

= [0]
n⇥2n ) ⇥3

⌃↵

��

= [0]
n⇥1 and ↵

does not modify the second order of ⌃↵

��

(cf. Section II-E3).
The next theorem gives the estimation quality of the ScUT.

Theorem 5 If ⌃
��

= P

XX

, µ

�

= X̄ and f is 2nd-order
differentiable, then µ

[µ
�

,2]
�

= Ȳ [X̄,2], ⌃
↵,[µ

�

,1]
��

= P

[X̄,1]
Y Y

and
⌃

↵,[µ
�

,1]
��

= P

[X̄,1]
XY

. Furthermore, if X and � are symmetric,
then ⌃

↵,[µ
�

,2]
��

= P

[X̄,2]
XY

.

Proof: Suppose µ

�

= X̄, ⌃
��

= P

XX

. For the first
assertion,

µ
[µ

�

,2]
�

= f (µ
�

) + 1
2!

n

P

i1,i2=1

�M2
�

�

i1,i2

@

2
f(x)

@x

(i1)
@x

(i2)

�

�

�

x=µ

�

= Ȳ [X̄,2],

which proves the first assertion. For the second assertion,

⌃
↵,[µ

�

,1]
��

=
n

P

i,j=1
(⌃

��

)
i,j

@f(x)
@x

(i)

�

�

�

x=µ

�

@f(x)
@x

(j)

�

�

�

T

x=µ

�

= P
[µ

�

,1]
Y Y

.

For the third assertion,

⌃
↵[µ

�

,1]
��

=
n

P

i=1

h

(⌃
��

)1,i , ..., (⌃��

)
n,i

i

T

@f(x)
@x

(i)

�

�

�

T

x=µ

�

= P
[X̄,1]
XY

.

For the last assertion, note that X symmetric implies M3
�

=
[0]

n⇥2n ) ⇥3
P

XY

= [0]
n⇥1 and � symmetric implies M3

�

=
[0]

n⇥2n ) ⇥3
⌃↵

��

= [0]
n⇥1.

µ
�

=f (µ
�

) +
n

P

i1,i2=1

�M2
�

�

i1,i2

@

2
f(x)

@x

(i1)
@x

(i2)

�

�

�

x=µ

�

+ ...+↵l�2
n

P

i1,...,il=1

�Ml

�

�

i1,i2⇤...⇤il
@

l

f(x)

@x

(i1)
...@x

(i
l

)

�

�

�

x=µ

�

+ ...

⇥l

⌃↵

��

=
P

l�1
j=1



↵

j+l�2

j!l!

P

n

i1,...il+j

=1

✓

�Ml+j

�

�

i1,(i2⇤...⇤i(l+j))
� �Ml

�

�

i1,(i2⇤...⇤il)

�Mj

�

�

i(l+1),(i(l+2)⇤...⇤i(l+j))

◆

 

@

l

f(x)

@x

(i1)
...@x

(i
l

)

�

�

�

x=µ

�

@

j

f(x)

@x

(i
l+1)

...@x

(i
l+j

)

�

�

�

�

T

x=µ

�

+ @

j

f(x)

@x

(i
l+1)

...@x

(i
l+j

)

�

�

�

�

x=µ

�

@

l

f(x)

@x

(i1)
...@x

(i
l

)

�

�

�

T

x=µ

�

!#

+↵

2l�2

l!l!

P

n

i1,...,i2l=1

⇣

�M2l
�

�

i1,(i2⇤...⇤i2l)
� �Ml

�

�

i1,(i2⇤...⇤il)

�Ml

�

�

i(l+1),(i(l+2)⇤...⇤i2l)

◆

@

l

f(x)

@x

(i1)
...@x

(i
l

)

�

�

�

x=µ

�

@

l

f(x)

@x

(i(l+1))
...@x

(i2l)

�

�

�

�

T

x=µ

�

⇥l

⌃↵

��

= ↵l�1 1
l!

n

P

i1,...,il=1

h

�Ml+1
�

�

1,(i1⇤...⇤il)
, ...,

�Ml+1
�

�

n,(i1⇤...⇤il)

i

T

@

l

f(x)

@x

(i1)
...@x

(i
l

)

�

�

�

T

x=µ

�
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Similar to the 2UT, the CM of the transformed rv is
estimated only up to first order. Theorem 5 gives, for the first
time, the estimation quality of the sample CCM. The next
corollary states a new result.

Corollary 6 A ScUT with sets {�
i

, w

m

i

, w

c

i

}N
i=1 and

{�
i

, w

m

i

, w

c

i

|�
i

= g(f,�
i

, µ

�

,↵,↵

2)}N
i=1 is a 2UT with

sets {�
i

, w

m

i

, w

c

i

}N
i=1 and {�

i

, w

m

i

, w

↵,c

i

, w

↵,cc

i

|�
i

=

g(f,�
i

, µ

�

,↵,↵

2)}N
i=1 where w

↵,c

i

= ↵

2
w

c

i

and w

↵,cc

i

= ↵w

c

i

are the weights to calculate the sample CM and CCM,
respectively.

Because of the way these transformations were defined,
every ScUT is a 2UT and, therefore, every result obtained
for the 2UT can also be applied to the ScUT. We proceed by
redefining the SUT of [38] and the UT of [35].

Definition 4 Let � := {�
i

, w
i

}N
i=1 be a normalized �R of X

with �
N

= X̄ , and consider the sets �0 := {�0
i

, w0
i

|�0
i

= �
N

+
↵(�

i

��
N

)}N
i=1 and �0 := {�0

i

, w0
i

|�0
i

= f(�0
i

)}N
i=1 where, for

↵ 2 (0, 1], w0
N

:= ↵�2w
N

+ 1 � ↵�2, w0
i

= ↵�2w
i

, i =
1, ..., N � 1. Define the modified sample CM and the sample
CCM of �0, respectively, as

⌃↵↵

�

0
�

0 :=
N

P

i=1
w0

i

(�0
i

� µ
�

0) (⇧)T + (1� ↵2) (�0
N

� µ
�

0) (⇧)T

and ⌃
�

0
�

0 :=
P

N

i=1 w
0
i

(�0
i

� µ
�

0) (�0
i

� µ
�

0)T . Then the Sim-
plex Scaled Unscented Transformation (SiScUT) is defined
by

SiScUT
�

f, X̄, P
XX

,↵
�

:=
⇥

µ
�

0 ,⌃↵↵

�

0
�

0 ,⌃
�

0
�

0
⇤

.

Definition 5 Let � := {�
i

, w
i

}2n+1
i=1 with �2n+1 = X̄ and

w2n+1 = �/(n + �) for ↵ 2 (0, 1],  2 R\{�n} and
� = ↵2(n + ) + n 6= 0 be a normalized HoMiSy�R of X
and consider the set �̃ := {�̃

i

, w̃m

i

, w̃c

i

, w̃cc

i

|�̃
i

= f(�
i

)}2n+1
i=1

where w̃m

2n+1 = w2n+1, w̃c

2n+1 = w2n+1 + (1 � ↵2),
w̃cc

2n+1 = w2n+1 + (1 � ↵), w̃m

i

= w̃c

i

= w̃cc

i

= w
i

,
i = 1, ..., 2n and w̃cc

i

is the weight for calculating the sample
CCM. Then the Symmetric Intrinsically Scaled Unscented
Transformation (SyInScUT) is defined by

SyInScUT
�

f, X̄, P
XX

,↵
�

:=
⇥

µ
�̃

,⌃
�̃�̃

,⌃
��̃

⇤

.

Corollary 7 Every SiScUT and every SyInScUT are ScUTs.

Proof: Let � and � be the sets of a ScUT (Definition
3) with wc

i

= wm

i

= w
i

. To prove the first part, consider
Definition 4. First, from (19), µ

�

= (1�w
N

)(1� ↵�2)�0
N

+
P

N�1
i=1 ↵�2w

i

�0
i

+ w
N

�0
N

= µ
�

0 . Second, from (28), ⌃↵

��

=
P

N�1
i=1 w0

i

�

�0
i

� µ
�

0
�� ⇧ �T + ↵�2

�

1 � ↵2
��

�0
N

� µ
�

0
�� ⇧

�

T � ↵�2
�

↵2 � 1
�2�

µ
�

0 � �0
N

�� ⇧ �T = ⌃↵↵

�

0
�

0 . Third, from
(28), ⌃↵

��

=
P

N

i=1 w
0
i

(�0
i

� µ
�

0) (�0
i

� µ
�

0)T = ⌃
�

0
�

0 . The
remaining steps of the first part are trivial.

To prove the second part, consider Definition 5 and de-
fine the set &̃ := {&̃

i

, w̃
i

|&̃
i

= �
i

}2n+1
i=1 , where w̃2n+1 :=

↵�2w2n+1 + 1 � ↵�2, w̃
i

:= ↵�2w
i

, i = 1, ..., 2n, and note
that, from Definition 4, the function �(f, X̄, P

XX

,↵) :=
⇥

µ
&̃

,⌃↵

&̃&̃

,⌃
�&̃

⇤

is a SiScUT. Then it can easily be proven that
µ
�

= µ
&̃

, ⌃
��

= ⌃↵

&̃&̃

and ⌃
��

= ⌃
�&̃

.
The SUT of [38] is incorporated in the SiScUT (Definition

4) whith the difference that now it states the restriction of

having a point located in the mean (cf. Section II-E1) and
defines the sample CCM (cf. Section II-E2). Besides, with
Corollary 7, the SiScUT follows naturally as a particular
case of the ScUT and, therefore, we also have the estimation
quality of P

Y Y

and P
XY

and the influence of ↵ on the
estimate of P

XY

(see Section II-E). Definition 5 provides
similar results for the UT of [35] which we now define as
SyInScUT. Summing up, we provide unified and consistent
new definitions for all the scaled transformations.

C. Square-root Unscented Transformation
In this Section, we state the results for the Square-Root

Unscented Transformation (SRUT). As Section II-F3 pointed
out, Definition 6 should be the first definition for a SRUT.

The key idea of a SRUT is to transform the square-root
matrix of the previous CM directly (without squaring) into
the square-root matrix of the posterior CM. For instance, one
way of doing it for ⌃Q

��

:= ⌃
��

+
p
Q
p
Q

T is by the function

cu
�

S+
�

, S�
�

,
p

Q
�

:=
q

⌃Q

��

,

where, for a set � = {�
i

, wm

i

, wc

i

}N
i=1, we define

�+:=
�

�
j,+, w

m

j,+, w
c

j,+

 

N+

j=1
= {�

i

, wm

i

, wc

i

|wc

i

� 0}N
i=1 ,

��:=
�

�
j,�, w

m

j,�, w
c

j,�
 

N�

j=1
= {�

i

, wm

i

, wc

i

|wc

i

< 0}N
i=1,

S+
�

:=



p

wc

1,+(�1,+ � µ
�

), . . . ,
q

wc

N+,+(�N+,+ � µ
�

)

�

,

S�
�

:=
h

q

kwc

1,�k (�1,� � µ
�

) , . . . ,
q

kwc

N�,�k
�

�
N�,� � µ

�

�

i

,

and
q

⌃Q

��

is calculated by the following algorithm:
1. � = tria

�⇥

S+
�

,
p
Q
⇤ 

;

2. If N� > 0,
q

⌃Q

��

= cdown
�

�, S�
�

 

; else,
q

⌃Q

��

= �.

In this way,
q

⌃Q

��

can be obtained by first updating
the Cholesky factor, and then downdating it. The former
operation can be done by means of triangularization (e.g. the
QR decomposition) S = tria{A}, A 2 Rn⇥n, where S is
lower triangular (see [6], [48]). The latter can be achieved
through S = cdown{A,B}, B 2 Rn⇥n

y , representing the
Cholesky downdating of A by B (it is the same as doing
cholupdate{A,B⇤,i,�1} [43] for i = 1, . . . , n

y

). Note, nev-
ertheless, that downdating the Cholesky factor might lead to
ill-conditioned matrices [47] (see Section II-F1). Therefore,
this procedure, which is only necessary when the �R contains
negative weights, should be avoided whenever possible. We
can, therefore, define the SRUT. For now on, consider the rv
X charactezised by the mean X̄ and square-root of the CMp
P
XX

.

Definition 6 (Square-Root Unscented Transformation)
Consider the sets � = {�

i

, w
i

} and � = {�
i

, w
i

|�
i

= f(�
i

)}
with µ

�

= X̄ and ⌃
��

=
p
P
XX

p
P
XX

T . Given a matrixp
Q, the Square-Root Unscented Transformation (SRUT) is

defined by

SRUT
⇣

f, X̄,
p
P
XX

,
p
Q
⌘

:=



µ
�

,

q

⌃Q

��

, S+
�

, S�
�

, S+
�

, S�
�

,⌃
��

�

.
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Next, we introduce the Scaled SRUT and some results
concerning this Transformation. This definition is necessary
for the Scaled SRUKF’s (Section V-B), the first one in the
literature.

Definition 7 (Scaled Square-Root UT) Consider the sets �
and � as in Definition 3 with µ

�

= X̄ and ⌃
��

=p
P
XX

p
P
XX

T . Given a matrix
p
Q, define ⌃↵Q

��

:= ⌃↵

��

+p
Q
p
Q

T . Then the Scaled Square-Root Unscented Transfor-
mation (ScSRUT) is defined by

ScSRUT
�

f, X̄,
p
P
XX

,
p
Q,↵

�

:=



µ
�

,

q

⌃↵Q

��

, S+
�

, S�
�

, S+
�

, S�
�

,⌃↵

��

�

.

Corollary 8 A ScSRUT with sets � = {�
i

, wm

i

, wc

i

}N
i=1 and

{�
i

, wm

i

, wc

i

|�
i

= g(f,�
i

, µ
�

,↵,↵2)}N
i=1 is a SRUT with the

sets � and {�
i

, wm

i

,↵2wc

i

,↵wc

i

}.

Remark 8 Every 2thN�R is a set � of a SRUT.

Finally, we state new ScSRUT results similar to the ones in
Section IV-B for the particular scaled transformations.

Definition 8 Consider the sets �0 and �0 as in Definition 4
with µ

�

0 = X̄ and ⌃
�

0
�

0 =
p
P
XX

p
P
XX

T . Given a matrixp
Q, define ⌃↵↵Q

�

0
�

0 := ⌃↵↵

�

0
�

0 +
p
Q
p
Q

T . Then the Simplex
Scaled Square-Root Unscented Transformation (SiScSRUT) is
defined by

SiScSRUT
⇣

f, X̄,
p

P
XX

,
p

Q,↵
⌘

:=


µ
�

0 ,
q

⌃↵↵Q

�

0
�

0 , S
+
�

0 , S
�
�

0 , S
+
�

0 , S
�
�

0 ,⌃
�

0
�

0

�

.

Definition 9 Consider the sets �̃ and �̃ as in Definition 5
with µ

�̃

= X̄ and ⌃
�̃�̃

=
p
P
XX

p
P
XX

T . Given a matrixp
Q, define ⌃Q

�̃�̃

:= ⌃
�̃�̃

+
p
Q
p
Q

T . Then the Symmetric
Intrinsically Scaled Square-Root Unscented Transformation
(SyInScSRUT) is defined by

SyInScSRUT
⇣

f, X̄,
p

P
XX

,
p

Q,↵
⌘

:=


µ
�̃

,
q

⌃Q

�̃�̃

, S+
�̃

, S�
�̃

, S+
�̃

, S�
�̃

,⌃
�̃�̃

�

.

Corollary 9 Every SiScSRUT is an ScSRUT and every SyIn-
ScSRUT is an ScSRUT.

V. UNSCENTED KALMAN FILTERS

In this section, we present discrete-time Unscented Kalman
Filters. These are recursive applications of the UT (Section IV)
to the discrete-time stochastic filtering problem (see Section
II) in a KF framework.

A. Unscented Kalman Filter
For the sake of clarity of presentation, we only explic-

itly describe the Unscented Kalman Filter for the system
in additive form (1). The general filter for (2) can be
similarly obtained by considering the augmented functions
fa : Rn

a ! Rn

x and ha : Rn

a ! Rn

y such that, for
x

a

k�1|k�1 :=
⇥
x̂

T

k�1|k�1, q
T

k

, r

T

k

⇤
T ,

fa(xa, k) = f(xa

(1:n
x

),1, x
a

(n
x

+1:n
x

+n

q

),1, k),

ha(xa, k) = h(xa

(1:n
x

),1, x
a

(n
x

+n

q

+1:n
a

),1, k).
(29)

Additive UKF (AdUKF): Consider (1),
1) x̂

k�1|k�1 and P̂
k�1|k�1
xx

are given.
2) Obtain the predicted statistics of the state:
h

x̂
k|k�1, P̂

k|k�1
xx,⇤

i

= UT1

⇣

f, x̂
k�1|k�1, P̂

k�1|k�1
xx

⌘

,

P̂
k|k�1
xx

= P̂
k|k�1
xx,⇤ +Q

k

.

3) Obtain the predicted statistics of the measurement:
h

ŷ
k|k�1, P̂

k|k�1
yy,⇤ , P̂

k|k�1
xy

i

= UT2

⇣

h, x̂
k|k�1, P̂

k|k�1
xx

⌘

,

P̂
k|k�1
yy

= P̂
k|k�1
yy,⇤ +R

k

.

4) Obtain the corrected statistics of the state by (7).
Given that we only consider the second order UT in this

subsection, we use the notation UT to refer to the 2UT (higher
order UKFs are considered in Section V-E). The notations
UT1 and UT2 (and, analogously, SRUT1 and SRUT2 for
the square-root filters in the next subsection) indicate that the
transformations in the prediction and correction steps do not
need to be the same. In fact, the number of sigma points can
be different, and we could even use the ScUT . The output
of UT1 (SRUT1) has only two terms meaning that only the
first two elements of the output of Definition 2 (Definition 6)
are needed in the algorithm. One should also consider that if
f (or h) is linear, then UT1 (UT2) can be substituted by the
linear Kalman Filter prediction (correction) equations.

The set �k|k�1 = {�k|k�1
i

, w
i

} is regenerated in step 3),
since it is the previous �-representation of UT2. One can
consider not doing so by propagating �k|k�1 already obtained
in step 2) (the posterior set of UT1), but, as [32] points out,
�k|k�1 would not carry information about the process noise
[cf. (3) and (4)].

B. Square-Root Unscented Kalman Filter

We now present the Square-Root Unscented Kalman Filter
(SRUKF). The main difference between this filter and other
types of UKF is the fact that the SRUKF propagate the square-
root matrix of the CM’s directly, which is computationally
more stable than squaring the propagated CM [48].

As Section II-F1 pointed out, the SRUKF’s in the literature
present three steps in which Cholesky factors are downdated:
in the calculations of the square-root matrices of the CM for
the predicted state; in the CM for the innovation; and in the
CM for the corrected state. While, in the first two cases,
downdating is only performed when negative weights exist, the
last one is always performed. Due to the fact that downdating
steps can be computationally unstable (see Section II-F1), we
derive an alternative form – which is an extension of the results
of [48] and [6] – that uses the downdating procedure only for
the negative weight components.

Define S+
�

, S�
�

, S+
�

, S�
�

as in Section IV-C and note that

P̂
k|k�1
xx

= S+
�

S+T

�

�S�
�

S�T

�

, P̂
k|k�1
yy

= S+
�

S+T

�

� S�
�

S�T

�

and P̂
k|k�1
xx

= S+
�

S+T

�

� S�
�

S�T

�

+R
k

. Therefore,

P̂
k|k
xx

=
⇥

S+
�

�G
k

S+
�

, G
k

R
⇤

[⇧]T � ⇥S�
�

�G
k

S�
�

, G
k

R
⇤

[⇧⇤T ,
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which shows that P̂
k|k
xx

can be obtained through updating
and downdating. The latter is only performed for the negative
weight cases.

The SRUKF is presented below. It is more general than the
algorithms currently in the literature, since these are restricted
to the case where only the central weight, w0, can be negative,
whereas our SRUKF does not restrict the quantity of negative
weights.

Additive SRUKF (AdSRUKF): Consider (1),

1) x̂
k�1|k�1 and

q

P̂
k�1|k�1
xx

are given.
2) Obtain the predicted statistics of the state:

h

x̂
k|k�1,

q

P̂
k|k�1
xx

i

= SRUT1

⇣

f, x̂
k�1|k�1,

q

P̂
k�1|k�1
xx

,
p
Q

k

⌘

.

3) Obtain the predicted statistics of the measurement:
h

ŷ
k|k�1,

q

P̂
k|k�1
yy

, S+
�

, S�
�

, S+
�

,S�
�

, P̂
k|k�1
xy

i

=

SRUT2

⇣

h, x̂
k|k�1,

q

P̂
k|k�1
xx

,
p
R

k

⌘

.

4) Obtain the corrected statistics of the state by:

G
k

= P̂
k|k�1
xy

q

P̂
k|k�1
yy

�T

q

P̂
k|k�1
yy

�1

,

x̂
k|k= x̂

k|k�1 +G
k

�

y
k

� ŷ
k|k�1

�

,
q

P̂
k|k
xx

= cu
�⇥

S+
�

�G
k

S+
�

⇤

,
⇥

S�
�

�G
k

S�
�

⇤

, G
k

p
R

k

�

.

C. Consistent Unscented Kalman Filter variations
In order to clarify which UKF’s and SRUKF’s in the liter-

ature are consistent, we put all filter variants for UT1 = UT2

and SRUT1 = SRUT2 in Table IV. Each filter is the resulting
variant of using the proposed AdUKF (AdSRUKF) with the
corresponding UT (SRUT) in the first column and with the
corresponding �-representation in the first row (e.g. the Min.
Sc. AdUKF, third row and fourth column, is the result of using
the AdUKF with the ScUT and the Min�R).

One should notice that consistent variants of the UKF
(SRUKF) in the literature are particular cases of the proposed
UKF (SRUKF) definitions in this work. Also, these definitions
are able to provide new filter variants (e.g. the Scaled Square-
Root Unscented Kalman Filters).

D. Computational complexity and numerical implementations
From the computational complexity point-of-view, the

UKF’s most expensive operations are the square-root matrix
operation of P̂

k�1|k�1
xx

+ Q

k

[O(n3)] and the matrix inversion
of P̂

k|k�1
yy

[O(n3
y

)], where n
y

is the dimension of the mea-
surement vector]. Hence, for the case in which n

y

 n, the
computational complexity of the UKF is O(n3), which is the
same as for the EKF [43]. From a numerical implementation
standpoint, even though the Cholesky decomposition seems
to be the most adopted method to compute the square-root
matrix of the CM for the state, some studies indicate that
other methods, such as SVD decomposition, provide better
estimation quality (see [61] for more details). Some code
implementations are available on-line (e.g. [62] and [63]).

For the SRUKF, the computational complexity is also
O(n3) due to the triangularization (tria{}), which is its

most expensive operation. One example of triangularization is
the QR decomposition, which has different implementations:
the Householder QR requires n3/3 floating points operations
(flops) for a n⇥ n matrix; the Givens QR requires 2n3 flops;
and the modified Gram-Schmidt QR requires 2n3 flops [64].
However, in terms of numerical implementation, SRUKF’s be-
have better than the non-square root forms when implemented
in a machine with poor precision [42].

E. Higher-order Unscented Kalman Filters

In this work, the AdUKF and AdSRUKF were defined only
with 2nd order UT’s. Extensions to higher orders can be done
in at least two ways. A first one is given by the following
algorithm:

lth (l > 2) order (Gaussian) Additive UKF: Consider (1),
1) x̂

k�1|k�1 and P̂

k�1|k�1
xx

are given.
2) Choose l 2 N, l > 2 and obtain the cen-

tral moments M

2
x

k�1|k�1
, ...,M

l

x

k�1|k�1
for x

k�1|k�1 ⇠
N(x̂

k�1|k�1, P̂
k�1|k�1
xx

+Q
k

).
3) Obtain the predicted statistics of the state:

h

x̂
k|k�1,P̂

k|k�1
xx

i

= lUT1

⇣

f, x̂
k�1|k�1,M

2
x

k�1|k�1
, ...,M l

x

k�1|k�1

⌘

.

4) Obtain the central moments M

2
x

k|k�1
, ...,M

l

x

k|k�1
for

x

k|k�1 ⇠ N(x̂
k|k�1, P̂

k|k�1
xx

+R

k

).
5) Obtain the predicted statistics of the measurement:
h

ŷ
k|k�1,P̂

k|k�1
yy

, P̂ k|k�1
xy

i

=

lUT2

⇣

h, x̂
k|k�1,M

2
x

k|k�1
, ...,M l

x

k|k�1

⌘

.

6) Obtain the corrected statistics of the state by (7).
This approach uses the Gaussian assumption of the Kalman

Filter to obtain the previous first l moments of the state for
each lUT . Generally, higher values of l result in a larger num-
ber of sigma-points and better state estimation (cf. Theorem
4). Note that the higher-order UKF of [41] is a particular case
of this proposed filter for the scalar case.

A second way is to propagate, at every time step, not
only the mean and the covariance matrix of the state, but
also its higher-order moments up to the chosen lth order
(a similar approach that does not use UT’s is proposed by
[65]). This method does not assume that the state follows a
Gaussian distribution at every time step and provides a better
approximation when compared to the first one, but at the cost
of increased effort in developing the recursive equations and
also of having a computationally more expensive algorithm.

VI. CONCLUSION

From the study of the state-of-the-art in Unscented esti-
mation theory, we were able to observe several important
problems (Sections II-B to II-F) concerning (1) the matching
order of the transformed covariance matrix (CM) (Sections
II-C1 and II-E2) and the transformed cross-covariance matrix
(CCM) (Sections II-C2 and II-E3) of both the Unscented

https://www.researchgate.net/publication/4039316_The_Higher_Order_Unscented_Filter?el=1_x_8&enrichId=rgreq-681cc1d8-ad9b-43d9-9c2d-b3515c37e3c6&enrichSource=Y292ZXJQYWdlOzI4NDE4NDA1MDtBUzoyOTc4NDgzMjQyODAzNDZAMTQ0ODAyMzk4MjY0OQ==
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TABLE IV
CONSISTENT UNSCENTED AND SQUARE-ROOT UNSCENTED KALMAN FILTER VARIANTS FOR UT1 = UT2 AND SRUT1 = SRUT2

a

MiSy�R (Cor. 4) HoMiSy�R (Cor. 4) Mi�R (Th. 3) RhoMi�R (Cor. 5)
UT (Def. 2) Min. Sy. AdUKF Hom. Min. Sy. AdUKF b Min. AdUKF Rho Min. AdUKF g

ScUT (Def. 3) Min. Sy. Sc. AdUKF Hom. Min. Sy. Sc. AdUKF c Min. Sc. AdUKF Rho Min. Sc. AdUKF
SiScUT (Def. 7) Min. Sy. Si. Sc. AdUKF Hom. Min. Sy. Si. Sc. AdUKF d – –

SyInScUT (Def. 5) – Sy. Intr. Sc AdUKF e – –
SRUT (Def. 6) Min. Sy. AdSRUKF Hom. Min. Sy. AdSRUKF f Min. AdSRUKF Rho Min. AdSRUKF

ScSRUT (Def. 7) Min. Sy. Sc. AdSRUKF Hom. Min. Sy. Sc. AdSRUKF Min. Sc. AdSRUKF Rho Min. Sc. AdSRUKF
SiScSRUT (Def. 8) Min. Sy. Si. Sc. AdSRUKF Hom. Min. Sy. Si. Sc. AdSRUKF – –

SyInScSRUT (Def. 9) – Sy. Intr. Sc. AdSRUKF h – –
aRhoMi�R (Rho Minimum �-representation) stands for the �-representation of [12], Def. for Definition, Cor. for Corollary, Th. for Theorem, Hom. for Homogeneous, Intr. for
Intrisically, Min. for Minimum, Sc. for Scaled, Si. for Simplex and Sy. for Symmetric. Each final variant of the filters without a footnote comment is a new consistent version.
bEquivalent to Tab III [1,1:3]. cComplete version of Tab III [3,4:6] with the set of Tab II [4:6]. dComplete version of Tab III [3,4:6] with the set of Tab II [1:3]. eEquivalent to Tab
III [5,1:3]. fEquivalent to the SRUKF of [4]. gEquivalent to Tab III [2,4:6]. hEquivalent to the SRUKF of [30].

Transformation (UT) and of the Scaled Unscented Transfor-
mation (SUT); (2) multiple UKF definitions (Section II-B1);
(3) issues with the reduced sets of [8], [9] and [34] (Sections
II-D1, II-D2 and II-D3); (4) the conservativeness of the SUT
(Section II-E1); (5) the scaling effect of the SUT on both the
transformed CM and CCM (Sections II-E2 and II-E3); and (6)
possibly ill-conditioned results in the square-root Unscented
Kalman Filters (Section II-F1).

Focusing on discrete-time dynamical systems, we propose
the solution of these problems by a systematization of the
Unscented estimation theory. By doing so, we were able to (1)
gather all the discrete Unscented Kalman Filters described in
the literature (Section II-A); (2) formally justify the symmetric
sets of sigma points (Section III-B1); (3) solve some problems
within this theory (Sections III and IV); and (4) provide new
Unscented Kalman Filters (Section V).
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