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Stochastic Event-triggered Sensor Schedule for
Remote State Estimation

Duo Han∗, Yilin Mo†, Junfeng Wu∗, Sean Weerakkody†, Bruno Sinopoli†, Ling Shi∗

Abstract—We propose an open-loop and a closed-loop stochas-
tic event-triggered sensor schedule for remote state estimation.
Both schedules overcome the essential difficulties of existing
schedules in recent literature works where, through introducing a
deterministic event-triggering mechanism, the Gaussian property
of the innovation process is destroyed which produces a chal-
lenging nonlinear filtering problem that cannot be solved unless
approximation techniques are adopted. The proposed stochastic
event-triggered sensor schedules eliminate such approximations.
Under these two schedules, the MMSE estimator and its estima-
tion error covariance matrix at the remote estimator are given in
a closed-form. Simulation studies demonstrate that the proposed
schedules have better performance than periodic ones with the
same sensor-to-estimator communication rate.

I. INTRODUCTION

Networked control systems (NCSs) have attracted much
research interest in the last decade. Due to the advanced
technology in communication, computation and embedded
systems, NCSs are widely used in aerospace, health care,
manufacturing, public transportation, etc [1]. State estimation
problem is frequently encountered in these applications [2].
The traditional approach to monitor the system state is to
sample and send the signals periodically. New sampling and
scheduling rules for wireless sensors, however, need to be
developed for the following three reasons:

1) The importance of each measurement is not equal. For
example, a period of more fluctuating signal generally
requires more sampling and scheduling efforts than
another period of flat signal does.

2) Unlike the estimation center which has sufficient re-
sources, the wireless sensors in most circumstances are
powered by small batteries which are difficult to replace.
Thus a sensor should allocate its energy smartly.

3) The channel bandwidth shared by a large mount of
sensors may be limited in some cases [3], [4], [5], [6],
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where not all sensors are able to communicate with the
remote estimator all the time.

A typical class of problems is to find the optimal offline
sensor schedule in terms of the estimation error convariance
under different resource constraints. Yang et al. [7] studied the
scheduling problem over a finite time horizon under limited
communication resources. They have proved that the opti-
mal deterministic offline sensor schedule should allocate the
limited transmissions as uniformly as possible over the time
horizon. Shi et al. [8] considered the two-sensor scheduling
problem under bandwidth constraint and proposed an optimal
offline schedule, which is periodic, to minimize the average
error covariance. Ren et al. [9] further considered the effect
of the packets dropout in the energy-constrained scheduling
problem. They constructed an optimal periodic schedule and
provided a sufficient condition under which the estimation
is stable. Trimpe and D’Andrea [10], [11] proposed a trans-
mission policy based on whether the measurement prediction
variance exceeds a tolerable threshold and concluded that
the sending sequence can be computed offline. Each of the
aforementioned solutions, which can be determined before
the system runs, utilizes the prior information of its system
parameters.

Despite the advantage of low computation capacity re-
quirement and simple implementation, offline methods work
inefficiently. To further improve the estimation performance,
event-based approaches are extensively investigated. A sensor
governed by an event-based strategy samples or sends a
measurement only when a certain event occurs. The pioneering
work of Astrom and Bernhardsson [12] showed that Lebesgue
sampling can give better performance for some systems. Imer
et al. [13] studied the problem of optimizing the estimation
performance with limited measurements of the state of scalar
i.i.d. process and proposed a stochastic solution. Cogill et
al. [14] proposed an algorithm to compute a suboptimal
schedule balancing the tradeoff between the communication
rate and estimation error. Li et al. [15] presented an event-
triggered approach to minimize the mean squared estimation
error where the observer monitors a vector linear system.
Marck and Sijs [16] proposed a sampling method in which an
event is triggered relying on the reduction of the estimators
uncertainty and estimation error. An experiment [17] tested on
a cube balancing on one of its edges showed that the number
of communicated measurements required for stabilizing the
system can be dramatically reduced under an event-based
communication protocol. Rabi et al. [18] studied adaptive
sampling for a Markov state process with the assumption
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Fig. 1. Event-triggered sensor scheduling diagram for remote state estimation

of the perfect channel and state measurements. Weimer et
al. [19] considered a distributed event-triggered estimation
problem. They proposed a global event-triggered policy to
determine when sensors transmit measurements to the central
estimator using a sensor-to-estimator communication channel
and when sensors received other sensors measurements using
an estimator-to-sensor communication channel.

Another line of research is to find the optimal estimator for
a specified event-based approach. To satisfy the requirement of
one bit per transmission, Ribeiro et al. [20] derived an approxi-
mate Minimum Mean Squared Error (MMSE) estimator based
on the binary indicator bit, which is determined by the sign of
a measurement. Sijs et al. [21] designed a stochastic state esti-
mator suitable for any event-sampling strategy. Wu et al. [22]
proposed a deterministic event-triggered scheduler (DET-KF)
which achieves desired tradeoff between communication rate
and estimation quality. The pre-defined threshold and the l∞
norm of the normalized covariance of the innovation vector
is compared, based on which a scheduling decision is made.
The drawback of [20], [21], [22] is that the defined event
destroys the Gaussian properties of the innovation process and
makes the estimation problem computationally intractable. To
facilitate the computation, they assumed the prior conditioned
distribution of the system state is Gaussian and proposed an
approximate MMSE estimator. The fact that only approximate
MMSE estimators can be found motivates us to design a new
event-triggered mechanism, under which the tradeoff between
communication rate and estimation quality is desirable, and
the corresponding exact MMSE estimator can be obtained.

In this work, we consider the remote estimation problem in
Fig. 1. We focus on the design of decision making policy
and assume an ideal channel, i.e., with no packet delay
and dropout, but with finite bandwidth. Two cases for the
estimation problem are studied. When feedback is available,1

i.e., the closed-loop system in Fig.1, the event is defined based
on the local observations and feedback information. Otherwise,
in the open-loop system, the event is defined based on the
local observations only. To our best knowledge, the design
framework is novel. The main contributions of our work are
summarized as follows.

1) We propose a general stochastic decision rule and sug-
gest two practical forms of the event-triggered schedule
in open-loop and closed-loop systems. The deterministic

1Due to the power asymmetry, the estimator or the base station is able to
render some feedback information to the local sensor with high reliability. A
practical example is remote state estimation based on IEEE 802.15.4/ZigBee
protocol [23], in which the sensor is the network device and the estimator is
the coordinator.

event-based approaches in [22], [24] can be put into our
framework.

2) Under the proposed event-triggered schedule, the deriva-
tion of the exact MMSE estimator for each case is no
longer an intractable nonlinear estimation problem. We
derive the exact MMSE estimator for each case, which
is in a simple recursive form and easy to analyze.

3) Stability analysis of the two MMSE estimators has been
conducted. In particular, we show that for the closed-
loop case, there is no critical value on the communica-
tion rate beyond which the estimator is unstable.

4) For both cases, we give upper and lower bounds of the
expectation of the prediction estimation error covariance.
We also derive the closed-form expression of the average
communication rate for the open-loop case and provide
upper and lower bounds of the average communication
rate for the closed-loop case.

5) We formulate an optimization problem to illustrate how
a parameter satisfying the desired tradeoff between the
communication rate and the estimation quality can be
obtained.

The remainder of the paper is organized as follows. Section
II formulates the remote estimation problem and proposes the
stochastic event-triggered schedules. Section III introduces the
corresponding MMSE estimator design for each case. Section
IV presents the analysis results on the communication rate and
the estimation performance. Section V shows how to design
the event parameter. Section VI presents some simulation
results. Conclusion and Appendix are given in the end.

Notation: Sn+ and Sn++ are the sets of n× n positive semi-
definite and positive definite matrices. When X ∈ Sn+, we
simply write X ≥ 0 (or X > 0 if X ∈ Sn++). N (µ,Σ) denotes
Gaussian distribution with mean µ and covariance matrix Σ.
Pr(·) denotes the probability of a random event. E[·] denotes
the mathematical expectation. E[·|·] denotes the conditional ex-
pectation. f ◦ g(x) denotes the function composition f(g(x)).

II. PROBLEM SETUP

Consider the following linear system:

xk+1 = Axk + wk, (1)
yk = Cxk + vk, (2)

where xk ∈ Rn is the state vector, yk ∈ Rm is the
sensor measurement, wk ∈ Rn and vk ∈ Rm are mutually
uncorrelated white Gaussian noises with covariances Q > 0
and R > 0, respectively. The initial state x0 is zero-mean
Gaussian with covariance matrix Σ0 > 0, and is uncorrelated
with wk and vk for all k ≥ 0. (A,C) and (A,Q) are detectable
and stabilizable, respectively.

After collecting the observation yk, the sensor decides to
send it to the remote estimator or not. Let γk be the decision
variable: γk = 1 indicates that yk is sent and γk = 0 otherwise.

We denote the information set of the estimator at time k as:

Ik , {γ0, . . . , γk, γ0y0, . . . , γkyk}, (3)
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with I−1 , ∅. Let us further define

x̂−k , E[xk|Ik−1], ŷ−k , E[yk|Ik−1],

e−k , xk − x̂−k , P−k , E[e−k e
−
k

′

|Ik−1],

x̂k , E[xk|Ik], ek , xk − x̂k,
Pk , E[eke

′

k|Ik]. (4)

The estimates x̂−k and x̂k are called the a priori and a
posteriori MMSE estimate, respectively. Further define the
measurement innovation as

zk , yk − ŷ−k . (5)

Recall from the standard Kalman filter [25], i.e., γk = 1 for
all k, x̂k and Pk are computed recursively as

x̂−k = Ax̂k−1, (6)

P−k = APk−1A
′ +Q, (7)

Kk = P−k C
′[CP−k C

′ +R]−1, (8)

x̂k = x̂−k +Kk(yk − Cx̂−k ), (9)

Pk = (I −KkC)P−k , (10)

where the recursion starts from x̂0 = 0 and P0 = Σ0.

Remark 1. For standard Kalman filter, it is well-known that
xk conditioned on Ik (or Ik−1) is Gaussian. Therefore, x̂k and
Pk (or x̂−k , P

−
k ) are sufficient to characterize the conditional

distribution of xk, which further enables the derivation of
the optimal filter. The Gaussian property holds for any offline
sensor schedule. For a deterministic event-triggering scheme
(the threshold is pre-defined and time-invariant), however,
the conditional distribution of xk is not necessarily Gaus-
sian [22], which renders the optimal estimator design problem
intractable.

In this paper, we assume that the sensor follows a stochastic
decision rule. To be more specific, at every time step k,
the sensor generates an i.i.d. random variable ζk, which is
uniformly distributed over [0, 1]. The sensor then compares
ζk with a function ϕ(yk, ŷ

−
k ), where ϕ(yk, ŷ

−
k ) : Rn ×Rn →

[0, 1]. The sensor transmits if and only if ζk > ϕ(yk, ŷ
−
k ). In

other words,

γk =

{
0, ζk ≤ ϕ(yk, ŷ

−
k )

1, ζk > ϕ(yk, ŷ
−
k )

. (11)

Remark 2. Since ζk is uniformly distributed, one can interpret
ϕ(yk, ŷ

−
k ) as the probability of idle and 1−ϕ(yk, ŷ

−
k ) as the

probability of transmitting for the sensor. It is worth noticing
that the deterministic decision rule proposed by Wu et al. [22]
can be put into this framework by setting the co-domain of ϕ
to the set {0, 1}.

In this paper, we propose the following two choices of the
function ϕ:

1) Open-Loop: We assume that ϕ only depends on the
current measurement yk. We choose ϕ(yk, ŷ

−
k ) = µ(yk),

where the function µ(y) is defined as:

µ(y) , exp

(
−1

2
y′Y y

)
, (12)

with Y ∈ Sm++.
2) Closed-Loop: We assume that the sensor receives a feed-

back ŷ−k from the estimator before making the decision.
Therefore, the sensor can compute the innovation zk =
yk − ŷ−k . As a result, we choose ϕ(yk, ŷ

−
k ) = ν(zk),

where ν(z) is defined as:

ν(z) , exp

(
−1

2
z′Zz

)
, (13)

with Z ∈ Sm++

Note that µ (ν) is very similar to the probability density
function (pdf) of a Gaussian random variable (only missing
the coefficient). The choices of these two general forms are
not ad hoc but with intrinsic motivations and reasons.

1) If yk (zk) is small, then with a large probability the
sensor will be in the idle state. On the other hand, if
yk (zk) is large, then the sensor will be more likely
to send yk. As a consequence, even if the estimator
does not receive yk, it can still perform a measurement
update step, as yk is more likely to be small. This is the
main advantage over an offline sensor schedule, where
no measurement update will be performed when yk is
dropped.

2) The similarity of µ (ν) and the pdf of a Gaussian
random variable will play a key role in the derivation
of the optimal MMSE estimator. This design together
with the random variable ζk will avoid the nonlinearity
introduced by the truncated Gaussian prior conditional
distribution of the system state.

3) The parameter Y (Z) introduces one degree of freedom
of system design to balance the tradeoff between the
communication rate and the estimation performance.

We aim to give answers to the following questions in the rest
of this paper.

1) Given the stochastic event-triggered scheduler (11), (12)
and (11), (13), what are the MMSE estimators respec-
tively?

2) Are the two MMSE estimators stable?
3) What is the average communication rate and the average

estimation error covariance?
4) How should Y (or Z) be chosen to satisfy different

design goals?

III. MMSE ESTIMATOR DESIGN

A. Open-Loop Stochastic Event-Triggered Scheduling

We first consider the MMSE estimator for the open-loop
case, which is given by the following theorem:

Theorem 1. (OLSET-KF) Consider the remote state estima-
tion in Fig. 1 with the open-loop event-triggered scheduler
(11)-(12). Then xk conditioned on Ik−1 is Gaussian dis-
tributed with mean x̂−k and covariance P−k , and xk condi-
tioned on Ik is Gaussian distributed with mean x̂k and co-
variance Pk, where x̂−k , x̂k and Pk, P−k satisfy the following
recursive equations:
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Time update:

x̂−k = Ax̂k−1, (14)

P−k = APk−1A
′ +Q. (15)

Measurement update:

x̂k = (I −KkC)x̂−k + γkKkyk, (16)

Pk = P−k −KkCP
−
k , (17)

where

Kk = P−k C
′ [CP−k C ′ +R+ (1− γk)Y −1

]−1
, (18)

with initial condition

x̂−0 = 0, P−0 = Σ0. (19)

Before we present the proof for Theorem 1, we need
the following result, the proof of which is reported in the
appendix.

Lemma 1. Let Φ > 0 partitioned as

Φ =

[
Φxx Φxy
Φ′xy Φyy

]
, (20)

where Φxx ∈ Rn×n, Φxy ∈ Rn×m and Φyy ∈ Rm×m. The
following equation holds

Φ−1 +

[
0 0
0 Y

]
= Θ−1, (21)

where
Θ =

[
Θxx Θxy

Θ′xy Θyy

]
, (22)

and

Θxx = Φxx − Φxy(Φyy + Y −1)−1Φ′xy, (23)

Θxy = Φxy(I + ΦyyY )−1, (24)

Θyy = (Φ−1yy + Y )−1. (25)

Proof of Theorem 1: We prove the theorem by induction.
Since I−1 = ∅, x0 is Gaussian and (19) holds. We first
consider the measurement update step. Assume that xk condi-
tioned on Ik−1 is Gaussian with mean x̂−k and covariance P−k .
We consider two cases depending on whether the estimator
receives yk.

1) γk = 0:
If γk = 0, then the estimator does not receive yk.
Consider the joint conditional pdf of xk and yk,

f(xk, yk|Ik) = f(xk, yk|γk = 0, Ik−1)

=
Pr(γk = 0|xk, yk, Ik)f(xk, yk|Ik−1)

Pr(γk = 0|Ik−1)

=
Pr(γk = 0|yk = y)f(xk, yk = y|Ik−1)

Pr(γk = 0|Ik−1)

(26)

The second equality follows from the Bayes’ theorem
and the last one holds since γk is conditionally inde-
pendent with (Ik−1, xk) given yk. Let us define the
covariance of [x′k, y

′
k]′ given Ik−1 as

Φk ,

[
P−k PkC

′

CP−k CP−k C
′ +R

]
(27)

From (12),

f(xk, yk|Ik) = αk exp(−1

2
θk), (28)

where

αk =
1

Pr(γk = 0|Ik−1)
√

det(Φk)(2π)m+n
(29)

and

θk =

[
xk − x̂−k
yk − ŷ−k

]′
Φ−1k

[
xk − x̂−k
yk − ŷ−k

]
+ y′kY yk. (30)

Manipulating (30) and by Lemma 1, one has

θk =

[
xk − x̄k
yk − ȳk

]′
Θ−1k

[
xk − x̄k
yk − ȳk

]
+ ck, (31)

where

x̄k = x̂−k − P
−
k C

′(CP−k C
′ +R+ Y −1)−1ŷ−k , (32)

ȳk = [I + (CPC ′ +R)Y ]
−1
ŷ−k , (33)

ck = (ŷ−k )′(CP−k C
′ +R+ Y −1)−1ŷ−k , (34)

and
Θk =

[
Θxx,k Θxy,k

Θ′xy,k Θyy,k

]
, (35)

with

Θxx,k = P−k − P
−
k C

′(CP−k C
′ +R+ Y −1)−1CP−k ,

(36)

Θxy,k = P−k C
′ [I + (CP−k C

′ +R)Y
]−1

, (37)

Θyy,k =
[
(CP−k C

′ +R)−1 + Y
]−1

. (38)

Thus,

f(xk,yk|Ik) = αk exp
(
−ck

2

)
× exp

(
−1

2

[
xk − x̄k
yk − ȳk

]′
Θ−1k

[
xk − x̄k
yk − ȳk

])
.

(39)

Since f(xk, yk|Ik) is a pdf,∫
Rn

∫
Rm

f(xk, yk|Ik)dxkdyk = 1, (40)

which implies that

αk exp
(
−ck

2

)
=

1√
det(Θk)(2π)n+m

. (41)

As a result, xk, yk are jointly Gaussian given Ik, which
implies that xk is conditionally Gaussian with mean x̄k
and covariance Θxx,k. Therefore, (16) and (17) hold
when γk = 0.

2) γk = 1:
If γk = 1, then the estimator receives yk. Hence

f(xk|Ik) = f(xk|γk = 1, yk = y, Ik−1)

=
Pr(γk = 1|xk, yk = y, Ik−1)f(xk|yk = y, Ik−1)

Pr(γk = 1|yk = y, Ik−1)

=
Pr(γk = 1|yk = y)f(xk|yk = y, Ik−1)

Pr(γk = 1|yk = y)

= f(xk|yk = y, Ik−1).
(42)
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The second equality is due to Bayes’ theorem and the
third equality uses the conditional independence between
γk and (Ik−1, xk) given yk. Since yk = Cxk + vk
and xk, vk are conditionally independently Gaussian
distributed, xk and yk are conditionally jointly Gaussian
which implies that f(xk|Ik) is Gaussian. Following the
standard Kalman filtering [25],

f(xk|Ik) ∼ N (x̂−k +Kk(yk − Cx̂−k ), P−k −KkCP
−
k ).
(43)

Finally we consider the time update. Assume that xk
conditioned on Ik is Gaussian distributed with mean x̂k and
covariance Pk.

f(xk+1|Ik) = f(Axk + wk|Ik). (44)

Since xk and wk are conditionally mutually independent
Gaussian, we have

f(xk+1|Ik) ∼ N (Ax̂k, APkA
′ +Q), (45)

which completes the proof.
Comparing (14)-(18) with the standard Kalman filtering

update equations (6)-(10), one notes that the difference lies
in the measurement update when γk = 0. The posterior error
covariance recursion is updated with the same form of Kalman
gain as that of standard Kalman filter but with an enlarged
measurement noise covariance R + Y −1. Furthermore, the
posterior estimate no longer equals to the prior estimate like
(13) in [26] but a scaled prior estimate with a coefficient
depending on the modified Kalman gain. The larger noise
covariance is induced by the uncertainty brought by the
stochastic event. Such an uncertainty, however, successfully
eliminates the need of Gaussian approximation as in [20], [21],
[22], and leads to a simple and exact solution of the MMSE
estimator.

B. Closed-Loop Stochastic Event-Triggered Scheduling

In this section we discuss the closed-loop case, where the
estimator feeds ŷ−k back to the sensor. The MMSE estimator
incorporating the event-triggering mechanism (11) and (13) is
given by the following theorem.

Theorem 2. (CLSET-KF) Consider the remote state estimation
in Fig.1 with the closed-loop event-triggered scheduler (11)
and (13). Then xk conditioned on Ik−1 is Gaussian distributed
with mean x̂−k and covariance P−k , and xk conditioned on
Ik is Gaussian distributed with mean x̂k and covariance
Pk, where x̂−k , x̂k and Pk, P−k satisfy the following recursive
equations:

Time update:

x̂−k = Ax̂k−1, (46)

P−k = APk−1A
′ +Q. (47)

Measurement update:

x̂k = x̂−k + γkKkzk, (48)

Pk = P−k −KkCP
−
k , (49)

where

Kk = P−k C
′ [CP−k C ′ +R+ (1− γk)Z−1

]−1
, (50)

with initial condition

x̂−0 = 0, P−0 = Σ0. (51)

Proof: Theorem 2 can be proved by substituting yk into
zk in the proof of Theorem 1 and is omitted.

Note that the error covariance recursion (49)-(50) also keep
the same form as the standard Kalman filter but with a
modified Kalman gain when γk = 0. Since the event uses the
zero-mean zk instead of yk, the optimal posterior estimate is
the prior estimate itself compared with a scaled prior estimate
in OLSET-KF.

IV. PERFORMANCE ANALYSIS

The main goal of the proposed scheduler is to reduce
the frequency of communication between the sensor and the
estimator in a smart manner. In this section, we study the
average communication rate and the estimation performance
(P−k ) given an OLSET-KF or a CLSET-KF. The expected
sensor-to-estimator communication rate is defined as

γ , lim sup
T→∞

1

T

T∑
k=0

E[γk], (52)

where γ can be used in a wide range of applications, just name
a few, to obtain

1) the duty cycle of the sensor in a slow-varying environ-
ment,

2) the bandwidth required by the intermittent data stream,
3) the extended lifetime of a battery-powered sensor.

Since we adopt a stochastic decision rule to determine γk, i.e.,
the sequence {γk}∞0 is random, the MMSE estimator iteration
is stochastic. Thus only statistical properties of P−k can be
obtained. In this section, we study the mean stability of the
two MMSE estimators and provide an upper and lower bound
on limk→∞ E[P−k ]. For notational simplicity, we define some
matrix functions.

Definition 1. Define the following matrix functions:

gW (X) , AXA′ +Q−AXC ′(CXC ′ +W )−1CXA′,

ΓW (X) ,
[
A(X + C ′W−1C)−1A′ +Q

]−1
,

where X > 0 and W > 0. We further define

g0W (X) = X, gk+1
W (X) = gW (gkW (X)),

Γ0
W (X) = X, Γk+1

W (X) = ΓW (ΓkW (X)).

By Theorem 1, for OLSET-KF,

P−k+1 = gR+(1−γk)Y −1(P−k ).

Similarly for CLSET-KF,

P−k+1 = gR+(1−γk)Z−1(P−k ).

Furthermore, by matrix inversion lemma,[
ΓW (X−1)

]−1
= gW (X).
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The proof of the following important properties of g,Γ can be
found in [27].

Proposition 1. gW (X),ΓW (X) are monotonically increasing
with respect to X . Moreover, then there exists a unique
positive-definite X∗ such that:

X∗ = gW (X∗), X
−1
∗ = ΓW (X−1∗ ). (53)

Furthermore, for all X ∈ Sn++,

lim
k→∞

gkW (X) = X∗, lim
k→∞

ΓkW (X) = X−1∗ . (54)

A. Open-Loop Schedule

We now consider the communication rate of the open-loop
schedule. In this subsection, we assume that the system (1)
is stable2. For stable systems, define Σ as the solution of the
following Lyapunov equation

Σ = AΣA′ +Q, (55)

and define Π as
Π , CΣC ′ +R. (56)

One can verify that

lim
k→∞

Cov(xk) = Σ, lim
k→∞

Cov(yk) = Π.

As a result, we assume the system is already in the steady
state, which implies that

Cov(xk) = Σ, Cov(yk) = Π.

We are now ready to derive the communication rate for the
open-loop schedule, which is given by the following theorem.

Theorem 3. Consider system (1) with event-triggered sched-
uler (11)-(12). If the system is stable, i.e., ρ(A) < 1, then the
communication rate γ is given by

γ = 1− 1√
det(I + ΠY )

. (57)

Proof: By the linearity of the system, yk is Gaussian
distributed with zero mean. From (12), we know that

Pr(γk = 0) = Pr

(
ζk ≤ exp

(
−1

2
y′kY yk

))
= E

[
exp

(
−1

2
y′kY yk

)]
=

∫
Rm

exp
(
− 1

2y
′
k(Π−1 + Y )yk

)√
det(Π)(2π)m

dyk

=
1√

det(I + ΠY )
.

Hence,
γ = 1− 1√

det(I + ΠY )
.

We further characterize the sample path of the packet arrival
process {γk}, the proof of which is reported in the appendix.

2If the system is unstable, then yk will diverge, which implies that the
event-trigger will always be triggered.

Theorem 4. The following equality almost surely holds

lim
N→

1

N

N−1∑
k=0

γk
a.s.
= γ. (58)

Furthermore, for any integer l ≥ 0, define event of l sequential
packet drops to be

Ek,l , {γk = 0, . . . , γk+l−1 = 0},

and the event of l sequential packet arrivals to be

Ek,l , {γk = 1, . . . , γk+l−1 = 1}.

Then almost surely Ek,l and Ek,l happen infinitely often.

Remark 3. (58) implies that for almost every sample path, the
average communication rate over time is indeed the expected
communication rate γ.

Since {γk} is a stochastic process, P−k is also stochastic.
The following theorem characterizes the properties of the
sample path of P−k , the proof of which is reported in the
appendix.

Theorem 5. Consider a stable system (1) with open-loop
event-based scheduler (11), (12). The following statements
hold:

1) There exists an M ∈ Sn++, such that for all k, P−k is
uniformly bounded by M .

2) For any ε > 0, there exists an N , such that for all
k ≥ N , the following inequalities hold

X0 − εI ≤ P−k ≤ Xol + εI. (59)

where X0 is the unique solution of

X = gR(X), (60)

and Xol is the unique solution of

X = gR+Y −1(X). (61)

3) For any ε > 0, almost surely the following inequalities
hold infinitely many k’s

P−k ≥ Xol − εI, (62)

P−k ≤ X0 + εI. (63)

The first statement in Theorem 5 indicates that P−k is
uniformly bounded and hence stable, regardless of the packet
arrival process {γk} and Y . The inherent stability of the
OLSET-KF with no restrict on Y is of great significance since
Y can be adjusted to achieve arbitrarily small communication
rate. For the deterministic event-triggered scheduler proposed
in [24], there exists critical threshold for the communication
rate, only above which the mean stability can be guaranteed.
In other words, a minimum transmission rate has to be ensured
for stabilizing the expected error covariance, which limits the
scope of the design. Furthermore, the boundedness of the mean
does not imply the boundedness of the sample path. Hence, for
a given sample path, it is possible that an arbitrary large P−k
occurs. The nice stability property of our proposed scheduler
extends its use when very limited transmission is requested.



7

The second and third statements in Theorem 5 imply that
P−k is oscillating be X0 and Xol. Hence, X0 and Xol can be
seen as the best and worst-case performance of OLSET-KF
respectively. We now characterize the expected performance
given by E[P−k ].

Theorem 6. Consider a stable system (1) with the OLSET-KF.
E[P−k ] is asymptotically bounded by

Xol ≤ lim
k→∞

E[P−k ] ≤ X, (64)

where Xol is the unique positive-definite solution to

gR1
(X) = X (65)

with

R1 =
(
γR−1 + (1− γ)(R+ Y −1)−1

)−1
. (66)

Proof: The proof of the upper bound is trivial by Theo-
rem 5. To derive the lower bound, let us define

Sk , P−1k , S−k ,
(
P−k
)−1

.

By matrix inversion lemma,

Sk = S−k + γkC
′(R+ Y −1)−1C + (1− γk)C ′R−1C. (67)

Hence

E[Sk] = E[S−k ] + C ′R−11 C. (68)

On the other hand,

S−k+1 = (AS−1k A′ +Q)−1

= Q−1 −Q−1A(Sk +AQ−1A)−1AQ−1.
(69)

By the convexity (see [28]) of the function X−1, S−k+1

is concave with respect to Sk. By Jensen’s inequality, the
following inequality holds:

E[S−k+1] ≤ (A(E[Sk])−1A′ +Q)−1. (70)

Hence

E[S−k+1] ≤ ΓR1
(E[S−k ]). (71)

Based on the monotonicity of ΓR1
(X),

E[S−k ] ≤ ΓR1(E[S−k−1]) ≤ · · · ≤ ΓkR1
(Σ−10 ).

Therefore,

E[P−k ] = E[(S−k )−1] ≥ (E[S−k ])−1 ≥ (ΓkR1
(Σ−10 ))−1.

By Proposition 1, as k → ∞, ΓkR1
(X) converges to X−1ol ,

which implies that

lim
k→∞

E[P−k ] ≥ Xol.

B. Closed-Loop Schedule

Now we consider the average communication rate for the
closed-loop case. Note that unlike the open-loop case there
is no assumption on the system matrix A. However, the
innovation zk depends on the packet arrival process {γk},
while for OLSET-KF, yk is independent of {γk}. As a result,
the distribution of ζk is more complicated and therefore the
analysis for CLSET-KF is more difficult.

Let the asymptotic upper and lower bounds of P−k to be
Xcl, X0 respectively. Xcl can be obtained by setting each
γk = 0 in (48) and thus Xcl is the unique solution to

gR+Z−1(X) = X. (72)

X0 can be obtained by setting each γk = 1 in (48) and thus
satisfies (60).

Now we give the upper bound and lower bound of γ,
described by the following theorem.

Theorem 7. Consider system (1) with the event-triggered
scheduler (11) and (13). The communication rate γ is upper
bounded by γ, where

γ = 1− 1√
det(I + (CXclC ′ +R)Z)

, (73)

and γ is lower bounded by γ where

γ = 1− 1√
det(I + (CX0C ′ +R)Z)

. (74)

Proof: Similar to the proof of Theorem 3, we have

Pr(γk = 1|Ik−1) = 1− 1√
det(I + (CP−k C

′ +R)Z)
. (75)

Substitute Xc and X0 into (75) to obtain γ and γ.
We now characterize the estimation error covariance P−k .

Theorem 8. Consider a system (1) with the CLSET-KF.
There exists an M ∈ Sn++, such that P−k ≤ M , for all k.
Furthermore, E[P−k ] is asymptotically bounded by

Xcl ≤ lim
k→∞

E[P−k ] ≤ Xcl, (76)

where Xcl is the unique positive-definite solution to

gR3
(X) = X (77)

with
R3 =

(
γR−1 + (1− γ)(R+ Z−1)−1

)−1
. (78)

The proof is similar to the open-loop case and is omitted.

Remark 4. Note that the covariance of zk is smaller than the
covariance of yk. Thus, with the same communication rate,
the matrix Z for the closed-loop schedule is larger than Y for
the open-loop schedule. As a result, the closed-loop schedule
achieves better performance compared with the open-loop
schedule. An open-loop schedule, however, does not require
feedbacks from the estimator and hence is easier to implement.
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V. DESIGN OF EVENT PARAMETER

For different practical purposes, one may want to find a
Y (or Z) to optimize the estimation performance subject to a
certain communication rate, or to minimize the communication
rate subject to some performance requirement.

We first focus on OLSET-KF. For a scalar system, one may
obtain a scalar parameter Y from (57) to satisfy a specific
average error covariance requirement. The communication rate
γ is then uniquely determined, i.e., the average communication
rate is a 1-to-1 mapping to the average error covariance. The
case of vector-state systems, however, is dramatically different.
For instance, a constraint on error covariance corresponds to
a set of Y and thus different γ, which we try to minimize to
save bandwidth and sensor power. Moreover, different choices
of performance metric such as Frobenius norm of average
error covariance or trace of peak error covariance serve a
wide range of design purposes, which yields many different
optimization problems. In particular, the worst-case estimation
error covariance, i.e., Xol, may be of primary concern for
safety-critical systems. We study such a problem here:

Problem 9.

min
Y >0

γ (79)

s.t. Xol < ∆0 (80)

where ∆0 ∈ Sn++ is a matrix-valued bound.
When the measurement yk is a scalar, i.e., C ∈ R1×n,

minimizing γ in (57) is equivalent to minimizing ΠY . When
the measurement is a vector, minimizing γ is troublesome
because (57) is log-concave with Y . Hence we have to find a
convex upper bound of γ. The following lemma is useful for
relaxing the objective function.

Lemma 2. Given γ in (57) and Π ∈ Sn++, Y ∈ Sn++, the
following inequality holds,

1− (1 + tr(ΠY ))−
1
2 < γ < 1− exp(−1

2
tr(ΠY )).

The proof is given in the appendix. From Lemma 2, min γ
is relaxed into min 1 − exp(−tr(ΠY )/2), or equivalently,
min tr(ΠY ). Problem 9 is then relaxed to be

Problem 10.

min
Y >0

tr(ΠY ) (81)

s.t. Xol < ∆0 (82)

The following result is used to find an optimal solution to
the relaxed optimization problem.

Theorem 11. The optimal Y ∗ that satisfies the optimization
Problem 10 can be found by solving the following convex

optimization problem:

min
Y >0

tr(ΠY )

s.t.Q−1 − S + C ′R−1C Q−1A C ′R−1

A′Q−1 A′Q−1A+ S 0
R−1C 0 Y +R−1

 > 0,

[
S I
I ∆0

]
> 0, Y > 0.

Proof: To prove the theorem, we need to show that Xol <
∆0 holds if and only if the above LMIs hold. Note that Xol <
∆0 is equivalent to the statement: There exists 0 < X < ∆0

such that

gR+Y −1(X) < X, Y > 0, (83)

due to the monotonicity of g in X and the convergence of g to
the fixed point Xol. Taking inverse of both sides of (83) and
letting S = X−1, we have the following equivalent statement:

S > ∆−10 , Y > 0, (84)

(AS−1A′ +Q)−1 − S + C ′(R+ Y −1)−1C > 0. (85)

Apply the matrix inversion lemma to the inequality (85), and
by the Schur complement condition for its positive definite-
ness, (85) together with A′Q−1A+ S > 0 is equivalent to[
Q−1 − S + C ′(R+ Y −1)−1C Q−1A

A′Q−1 A′Q−1A+ S

]
> 0. (86)

Following the same steps, (86) and Y+R−1 > 0 are equivalent
toQ−1 − S + C ′R−1C Q−1A C ′R−1

A′Q−1 A′Q−1A+ S 0
R−1C 0 Y +R−1

 > 0.

(87)

Combining (84) and (87), we can conclude the proof.
Let the true optimal solution to Problem 9 be γopt, and Y ∗

be the solution to Problem 10. Then it is easy to show the
following inequality holds

1− 1√
1 + tr(ΠY ∗)

≤ γopt ≤ 1− 1√
det(I + ΠY ∗)

. (88)

Define the optimality gap κ as

κ ,

(
1− 1√

det(I + ΠY ∗)

)
− γopt. (89)

By (88),

κ ≤ 1√
1 + tr(ΠY ∗)

− 1√
det(I + ΠY ∗)

.

Hence, we know how good the approximation is when we
solve Problem 10 for tr(ΠY ).

Remark 5. Suppose we replace the constraint Xol ≤ ∆0

by a general constraint f(Xol) ≤ 0. If the function f(X) is
monotonically increasing and convex, such as tr(X), then it
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Fig. 2. The asymptotic upper bound and lower bounds of E[P−k ] of the
open-loop event-based schedule.

could solve in a similar fashion. To be specific, the constraints
f(Xol) ≤ 0 is equivalent to

Xol ≤ ∆0, f(∆0) ≤ 0.

and hence solved using the same LMI method proposed in
Theorem 11.

The design procedure for the CLSET-KF is similar except
for using the upper bound of γ instead of γ.

VI. SIMULATION EXAMPLES

A. Performance of OLSET-KF and CLSET-KF

First consider a stable system

A =

[
0.8 0
0 0.95

]
, C =

[
1 1

]
, Q =

[
1 0
0 1

]
, R = 1.

with the OLSET-KF. Fig. 2 shows the upper and lower bounds
of E[P−k ]. Similarly, Fig. 3 shows the simulation for an
unstable system

A =

[
1.001 0

0 0.95

]
, C =

[
1 1

]
, Q =

[
1 0
0 1

]
, R = 1

with the CLSET-KF. The bounds for both cases are tighter
when γ is larger.

To compare the performance of the open-loop scheduler and
closed-loop scheduler, we consider a scalar stable system with
parameters A = 0.8, C = 1, Q = 1, R = 1. For reference
we also list another two offline schedulers, i.e., random and
periodic schedulers. The results are shown in Fig. 4, from
which one can see that both open-loop event-based scheduler
and closed-loop event-based scheduler outperform the offline
schedulers. Moreover, the closed-loop event-based scheduler
performs better than the open-loop one since more information
is accessible at the sensor, which is discussed in Remark 4.

B. Design of Event Parameter

Optimization problems like Problem 9 are often encountered
when one designs an OLSET-KF to obtain a desirable tradeoff
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Fig. 3. The asymptotic upper bound and lower bound of E[P−k ] of the
closed-loop event-based schedule.
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Fig. 4. limk→∞ E[P−k ] under four scheduling strategies versus communi-
cation rate γ

between the communication rate and the estimation quality.
Consider a stable system

A =

[
0.8 1
0 0.95

]
, C =

[
0.5 0.3
0 1.4

]
, Q =

[
1 0
0 1

]
, R =

[
1 0
0 1

]
.

Consider Problem 9 with the constraint

Xol < $I,

where $ is a constant such that $I ≥ P . Note that

P =

[
1.6089 0.7075
0.7075 2.1838

]
is the unique positive-definite solution to X = gR(X). By
varying $, we can obtain the suboptimal solution following
Theorem 11 shown in the upper part of Fig. 5. We also plot
the upper bound of the optimality gap κ in the lower part,
from which we can see that the suboptimal solution is close
to the true optimal solution.

C. Comparison between CLSET-KF and DET-KF

We consider a target tracking problem [29] where a sensor
is deployed to track the state xk which consists of the position,
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Fig. 5. The suboptimal solution to Problem 9 under different constraints.
The matrix-valued bound is in the form of $I .

speed and acceleration of the target. The system dynamics is
given by [29],

xk+1 =

1 T T 2

0 1 T
0 0 1

xk + uk,

where T is the sampling period and uk is the additive Gaussian
noise with the covariance

2ασ2
m

T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

 ,
where σ2

m is the variance of the target acceleration and α
is the reciprocal of the maneuver time constant. Assume the
sensor periodically measures the target position, speed and
acceleration. The observation model is

yk =

1 0 0
0 1 0
0 0 1

xk + vk.

The variance of the additive Gaussian observation noise is
R = I3×3. The system parameters are set to T = 1s, α =
0.01, σ2

m = 5. In the first experiment, we assume the the
transmission bandwidth is quite sufficient and the communi-
cation rate cannot exceed 0.65. The CLSET-KF is used for the
tracking task with Z = 0.52×I3×3 and for comparison the de-
terministic event-triggered scheduler (DET-KF) in [22] is also
used with the threshold being 1.60, where the parameters are
carefully designed to satisfy the communication rate limitation.
A Monte Carlo simulation with 10000 runs for k = 1, . . . , 100
shows the estimation performance represented by the variance
of the target position error, P11 of the CLSET-KF and DET-KF.
Fig. 6 reveals that the empirical P11 of the CLSET-KF, which
precisely described by the theoretical results, is smaller than
that of the DET-KF. In the second experiment, we assume that
the communication rate is limited to 0.25 due to the severely
scarce resources. The CLSET-KF with Z = 0.047 × I3×3
and the DET-KF with the threshold 4.30 are used. Fig. 7
clearly shows that the CLSET-KF recursions in Theorem 2 still
exactly characterize the empirical estimation error covariance
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time
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Fig. 6. Variance of the target position error. The target is tracked by the
CLSET-KF (left) and DET-KF (right) with the average communication rate
being 0.65.
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Fig. 7. Variance of the target position error. The target is tracked by the
CLSET-KF (left) and DET-KF (right) with the average communication rate
is 0.25.

evolution and thus provide a reliable estimate of the state.
On the contrary, the theoretical error covariance given by the
DET-KF cannot match the empirical error covariance which
means that the approximate MMSE estimator is invalid and
the approximate measurement update need to be re-examined.

Remark 6. As shown in the previous sections, the merit of
our stochastic event-triggered scheduler is the preservation
of Gaussian properties of measurement update when no mea-
surements arrive. For the deterministic event-based schedule
in [22] and [24], a Gaussian distribution of the predicted
density is assumed to solve the intractable nonlinear filtering
problem heuristically. This approximation only works well in
the circumstance that the transmission rate is high. When
measurements are missing consecutively for a long time, the
Gaussian assumption is no longer valid and therefore the
approximate MMSE estimator cannot be used.

VII. CONCLUSION

This paper presents two stochastic event-triggered schedul-
ing schemes for remote estimation and derives the exact
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MMSE estimator under each schedule, i.e., OLSET-KF and
CLSET-KF. The stochastic nature of the proposed schedules
preserves the Gaussian property of the innovation process
and thus produces a simple linear filtering problem compared
to the previous works involving complicated nonlinear and
approximate estimation. The average sensor-to-estimator com-
munication rate and the expected prediction error covariance
are investigated for the two filters. Based on the analytical per-
formance results and the proposed algorithm, one can design
a suboptimal stochastic event to minimize the communication
rate under the constraint on the estimation quality. Optimal
design of event parameter Y (or Z) satisfying different design
goals is an interesting topic and is left as a future work. The
simulation results indicate the two schedules effectively reduce
the estimation error covariance compared with the offline ones
under the same communication rate. By testing CLSET-KF
and DET-KF in the target tracking model, we show the ad-
vantage of the stochastic event-triggering mechanism over the
deterministic one. Future work also includes multiple sensors
event-based scheduling and searching for tighter asymptotic
bounds of E[P−k ].

APPENDIX

Proof of Lemma 1: Define matrix ∆ as

∆ , Φ−1 =

[
∆xx ∆xy

∆′xy ∆yy

]
.

Hence

Θ =

[
∆xx ∆xy

∆′xy ∆yy + Y

]−1
.

By matrix inversion lemma, the following equality holds:

Φ−1yy = ∆yy −∆xy∆−1xx∆′xy,

Θ−1yy = ∆yy + Y −∆xy∆−1xx∆′xy.

Therefore,

Θyy = (∆yy + Y −∆xy∆−1xx∆′xy)−1 = (Φ−1yy + Y )−1.

Moreover, we have

∆xxΦxy + ∆xyΦyy = ∆xxΘxy + ∆xyΘyy = 0,

which implies that

Θxy = −∆−1xx∆xyΘyy = ΦxyΦ−1yy Θyy = Φxy(I + ΦyyY )−1.

Finally,

Θxx =
[
∆xx −∆xy(∆yy + Y )−1∆′xy

]−1
= ∆−1xx + ∆−1xx∆xy(∆yy + Y −∆′xy∆−1xx∆xy)−1∆′xy∆−1xx

= Φxx − ΦxyΦ−1yy Φ′xy + ΦxyΦ−1yy (Φ−1yy + Y )−1Φ−1yy Φ′xy.

Since

(Φ−1yy + Y )−1 = Φyy − Φyy(Φyy + Y −1)−1Φyy,

we have

Θxx = Φxx − ΦxyΦ−1yy Φ′xy

+ ΦxyΦ−1yy Φ′xy − Φxy(Φyy + Y −1)−1Φ′xy

= Φxx − Φxy(Φyy + Y −1)−1Φ′xy,

which finishes the proof.
Proof of Theorem 4: Define ξk , [x′k, y

′
k, ζk]′ and ξ ,

(ξ0, ξ1, . . . ) as the infinite sequence of ξk. It is easy to see
that ξk is Markov. Let P (ξ, F ) , P (ξ1 ∈ F |ξ0 = ξ) be the
transition probability of the Markov process. Define T k to be
the (left) shift operator, i.e.,

T k : (ξ0, ξ1 . . . )→ (ξk, ξk+1, . . . ).

Let π be the probability measure of ξk. Since we assume that
the system is in steady state, π is stationary. Moreover, since
A is stable, it is easy to verify that the Lyapunov equation
(55) admits a unique solution, which implies that π is unique.

Define Pπ be the probability measure of ξ generated by π
and the transition probability P (ξ, F ). By Theorem 3.8 in [30],
Pπ is ergodic with respect to the shift operator T k. Meanwhile,
by definition

γk = Iζk>exp(−y′kY yk/2),

where I is the indicator function. Hence, by Birkhoff’s Ergodic
Theorem, the following equality holds almost surely

lim
N→∞

1

N

N−1∑
k=0

γk
a.s.
= EIζ0>exp(−y′0Y y0/2) = γ,

Now consider the probability of event E0,l occurring, we have

P (γ0 = · · · = γl−1 = 0)

= E
l−1∏
i=0

P (γi = 0|y0, . . . , yl−1)

= E exp

(
−1

2

l∑
i=1

y′iY yi

)
=

1√
det(I + ΠlYl)

,

where Πl is the covariance of [y′0, . . . , y
′
l−1]′ and Yl =

diag(Y, . . . , Y ) ∈ Rml×ml. Thus, the probability that l se-
quential packet drops is non-zero. By Ergodic Theorem, almost
surely the following equality holds

lim
N→∞

1

N

N−1∑
k=0

IEk,l

a.s.
= (det(I + ΠlYl))

−1/2 > 0,

which implies that Ek,l happens infinitely often. Similarly one
can prove that Ek,l happens infinitely often.

Proof of Theorem 5:
1) Let us define

Uk = gkR+Y −1(Σ0).

Clearly, P−0 = U0 = Σ0. Assume that P−k ≤ Uk, then

P−k+1 ≤ gR+Y −1(P−k ) ≤ gR+Y −1(Uk) = Uk+1,

where we use the fact that gW is monotonically increas-
ing for all W and gR(X) ≤ gR+Y −1(X) for all X .
Hence, by induction, P−k ≤ Uk for all k.
Now, by Proposition 1, Uk converges to Xol and hence
there exists M , such that for all k,

P−k ≤ Uk ≤M.
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2) Since Uk converges to Xol, for any ε, there exists an
N , such that for all k ≥ N ,

P−k ≤ Uk ≤ Xol + εI.

The other inequality can be proved similarly.
3) For any ε, let l > 0 satisfies the following inequality

glR+Y −1(0) ≥ Xol − εI.

Since the left-hand side converges to Xol when l→∞,
we could always find such an l. As a result, suppose the
event Ek,l happens, then

P−k+l = glR+Y −1(P−k ) ≥ glR+Y −1(0) ≥ Xol − εI.

By Theorem 4, P−k ≥ Xol−εI happens infinitely often.
The other inequality can be proved similarly.

Proof of Lemma 2: Note that in (57)

det(Im + ΠY ) = det(Im + U ′UY ) = det(Im + UY U ′),

where U is upper triangular with positive diagonal entries
obtained by Cholesky decomposition. The second equality is
by Sylvester’s determinant theorem. To prove the inequalities,
it is equivalent to show that

1 + tr(UY U ′) < det(Im + UY U ′) < exp((tr(UY U ′))).
(90)

For the first inequality,

det(Im+UY U ′) =

n∏
i=1

(1 + λi)

= 1 + tr(UY U ′) +
∑
i 6=j

λiλj + · · ·+
n∏
i=1

λi

> 1 + tr(UY U ′),

where λi’s are the positive eigenvalues of UY U ′. Since
UY U ′ > 0, the inequality is strict. Now we prove the second
inequality in (90):

det(Im + UY U ′) = exp

(
n∑
i=1

ln(1 + λi)

)
< exp(tr(UY U ′)),

where the inequality is due to ln(1 + λi) < λi.
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