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On the Problem of Minimum Asymptotic Exit

Rate for Stochastically Perturbed

Multi-Channel Dynamical Systems

Getachew K. Befekadu, and Panos J. Antsaklis,

Abstract

We consider the problem of minimizing the asymptotic exit rate with which the controlled-diffusion

process of a stochastically perturbed multi-channel dynamical system exits from a given bounded open

domain. In particular, for a class of admissible bounded linear feedback operators, we establish a

connection between the asymptotic exit rate with which sucha controlled-diffusion process exits from the

given domain and the asymptotic behavior (i.e., a probabilistic characterization) of the principal eigenvalue

of the infinitesimal generator, which corresponds to the stochastically perturbed dynamical system, with

zero boundary conditions on the given domain. Finally, we briefly remark on the implication of our

result for evaluating the performance of the associated deterministic multi-channel dynamical system,

when such a dynamical system is composed with a set of (sub)-optimal admissible linear feedback

operators.
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I. INTRODUCTION

In this brief paper, we consider the problem of minimizing the asymptotic exit rate with which the

controlled-diffusion processxǫ(t) exits from a given bounded open domain pertaining to the following

stochastically perturbed multi-channel dynamical system

dxǫ(t) = Axǫ(t)dt+
∑m

i=1
Biui(t)dt+

√
ǫσ(xǫ(t))dW (t), xǫ(0) = x0, (1)

where

- A ∈ R
d×d, Bi ∈ R

d×ri , ǫ is a small positive number (which represents the level of random

perturbation in the system),

- σ : Rd → R
d×d is Lipschitz with the least eigenvalue ofσ(·)σT (·) uniformly bounded away from

zero, i.e.,

σ(x)σT (x) ≥ κId×d, ∀x ∈ R
d,

for someκ > 0,

- W (·) is a d-dimensional standard Wiener process,

- xǫ(·) ∈ X ⊆ R
d is the state trajectory of the system,

- ui(·) is a Ui-valued measurable control process to theith-channel (i.e., an admissible control from

the measurable setUi ⊂ R
ri) such that for allt > s, W (t) −W (s) is independent ofui(ν) for

ν ≤ s and

E

∫ t1

0
|u(t)|2dt <∞, ∀t1 ≥ 0,

whereu(·) , (u1(·), u2(·), . . . , um(·)) ∈ ∏m
i=1 Ui.

Let D ⊂ R
d be a bounded open domain with smooth boundary (i.e.,∂D is a manifold of classC2).

Moreover, denote byC0T ([0, T ],R
d) the space of all continuous functionsϕ(t), t ∈ [0, T ], with range

in R
d; and, in this space, we define the following metric

ρ0T (ϕ,ψ) = sup
t∈[0, T ]

∣
∣
∣ϕ(t)− ψ(t)

∣
∣
∣, (2)

when ϕ(t), ψ(t) belong toC0T ([0, T ],R
d). If Φ is a subset of the spaceC0T ([0, T ],R

d), then we

define

d0T (ψ,Φ) = sup
ϕ∈Φ

ρ0T (ψ(t), ϕ(t)). (3)
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In what follows, we consider a particular class of admissible controlsui(·) ∈ Ui of the form ui(t) =
(
Kix

ǫ
)
(t), ∀t ≥ 0, whereKi, for i = 1, 2, . . . ,m, is a real, continuousri × d matrix function such

that

K ⊆
{

(
K1,K2, . . . ,Km

)

︸ ︷︷ ︸

,K

∈
∏m

i=1
Ki[X ,Ui]

∣
∣
∣
∣
φ
(
t; 0, x0, (Kx0)(t)

)
∈ Ω,

∀t ≥ 0, ∀x0 ∈ Ω

}

, (4)

whereKi[X ,Ui] is a closed subspace of bounded linear feedback operators from X to Ui andΩ is a

bounded open set inD ∪ ∂D that contains the origin0. Moreover,φ
(
t; 0, x0, (Kx0)(t)

)
is the unique

solution for

ẋ0(t) = Ax0(t) +
∑m

i=1
Bi

(
Kix

0
)
(t), x0(0) = x0 ∈ Ω, (5)

that corresponds to the deterministic multi-channel dynamical system, when such a dynamical system is

composed with a certainm-tuple of admissible linear feedback operatorsK ∈ K .

Note that the infinitesimal generator pertaining to the controlled-diffusion processxǫ(t) of Equation (1),

whenui(t) =
(
Kix

ǫ
)
(t), for t ≥ 0 and i = 1, 2, . . . ,m, is given by

LK
ǫ (·)(x) =

〈

▽(·),
(

Ax+
(
B,K

)
x
)〉

+
ǫ

2
tr
{

σ(x)σT (x)▽2 (·)
}

, (6)

where
(
B,K

)
x(·) =

∑m
i=1Bi

(
Kix

)
(·) for all t ≥ 0.

Let τ ǫD be the first exit-time for the controlled-diffusion processxǫ(t) from the domainD, i.e.,

τ ǫD = inf
{
t > 0

∣
∣ xǫ(t) ∈ ∂D

}
, (7)

which also depends on them-tuple of linear feedback operatorsK ∈ K and, more precisely, on the

behavior of the solutions to the deterministic dynamical system of Equation (5). Moreover, let us denote

by λKǫ the principal eigenvalue of the infinitesimal generator−LK
ǫ with zero boundary conditions on∂D

which is given by

λKǫ = − lim sup
T→∞

1

T
logPK

ǫ

{
τ ǫD > T

}
, (8)

where the probabilityPK
ǫ

{
·
}

is conditioned on the initial pointx0 ∈ D as well as on the class of

admissible linear feedback operatorsK .
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Next, let us introduce the following definition (i.e., the maximum closed invariant set for the deterministic

dynamical system under the action of the class of linear feedback operatorsK ) which is useful in the

following section.

Definition 1: A set ΛK
D ⊂ D ∪ ∂D is called the maximum closed invariant set for the deterministic

dynamical system of Equation (5) (under the action of them-tuple of linear feedback operatorsK ∈ K ),

if any setΩ ⊂ D ∪ ∂D, for someK ∈ K , satisfying the property

φ
(
t; 0, x0, (Kx0)(t)

)
∈ Ω, ∀t ≥ 0, ∀x0 ∈ Ω (9)

is a subset ofΛK
D.

In Section II, we provide an estimate for the asymptotic exitrate with which the controlled-diffusion

processxǫ(t) exits from the domainD. In particular, we minimize the following quantity

λKǫ = − lim sup
T→∞

1

T
logPK

ǫ

{
τ ǫD > T

}
, (10)

with respect to the admissible controlsui(·) ∈ Ui of the formui(t) =
(
Kix

ǫ
)
(t), for t ≥ 0 and for all

i ∈ {1, 2, . . . m}. Note that if the domainD contains an equilibrium point for the deterministic dynamical

system of Equation (5), when such a dynamical system is composed with them-tuple of linear feedback

operatorsK ∈ K . Then, the principal eigenvalueλKǫ of the infinitesimal generator−LK
ǫ with zero

boundary conditions on∂D is equal toλKǫ = ǫ−1r(K) + o(ǫ−1) as ǫ → 0 (e.g., see [1], [2] or [3]). On

the other hand, if the maximum closed invariant set for the deterministic dynamical system under the

action of them-tuple of linear feedback operatorsK ∈ K is nonempty. Then, the following asymptotic

condition also holds true

− lim
ǫ→0

lim sup
T→∞

1

T
log PK

ǫ

{
τ ǫD > T

}
<∞, x0 ∈ D. (11)

Remark 1:Note that such an asymptotic behavior of1
T
log PK

ǫ

{
τ ǫD > T

}
as ǫ → 0 and T → ∞,

determines whether the dynamical system of Equation (5) hasa maximum closed invariant set inD∪∂D
or not (see [4, Theorem 2.1]).

Moreover, the principal eigenvalueλKǫ turns out to be the boundary value between thoseR < r(K) for

which E
K
ǫ

{
exp(ǫ−1Rτ ǫD)

}
< ∞ and thoseR > r(K) for which E

K
ǫ

{
exp(ǫ−1Rτ ǫD)

}
= ∞, wherer(K)

is given by the following

r(K) = lim sup
T→∞

inf
ϕ(t)∈C0T ([0,T ],Rd)

ϕ(0)=x0

1

T

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D ∪ ∂D, ∀t ∈ [0, T ]

}

. (12)
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In general, such an asymptotic analysis involves minimizing the following action functional

SK
0T (ϕ(t)) =

1

2

∫ T

0

∥
∥
∥
∥

dϕ(t)

dt
−
(

Aϕ(t) +
(
B,K

)
ϕ(t)

)
∥
∥
∥
∥

2

dt, (13)

where
∥
∥
∥
∥

dϕ(t)

dt
−
(

Aϕ(t) +
(
B,K

)
ϕ(t)

)
∥
∥
∥
∥

2

=

[
dϕ(t)

dt
−
(

Aϕ(t) +
(
B,K

)
ϕ(t)

)]T

×
(

σ(ϕ(t))σT (ϕ(t))
)−1

[
dϕ(t)

dt
−
(

Aϕ(t) +
(
B,K

)
ϕ(t)

)]

, (14)

with
(
B,K

)
ϕ(t) =

∑m
i=1Bi

(
Kiϕ

)
(t) andϕ(t) ∈ C0T ([0, T ],R

d) is absolutely continuous.

Note that estimating the asymptotic exit rate with which thecontrolled-diffusion processxǫ(t) exits

from the domainD is related to a singularly perturbed eigenvalue problem. For example, the asymptotic

behavior for the principal eigenvalue corresponding to thefollowing eigenvalue problem

−LK
ǫ υ

K
(ǫ,x0)

= λKǫ υ
K
(ǫ,x0)

in D

υK(ǫ,x0)
= 0 on ∂D






, (15)

whereυK(ǫ,x0)
∈W 2,p

loc ∩C(D ∪ ∂D), for p > 2, with υK(ǫ,x0)
> 0 onD, has been well studied in the past

(e.g., see [3] or [5] in the context of an asymptotic behaviorfor the principal eigenfunction; and see [6]

or [7] in the context of an asymptotic behavior for the equilibrium density). Specifically, the author in

[6] has also provided additional results in connection withthe asymptotic behavior of the equilibrium

density, when the latter (i.e., the asymptotic behavior of the equilibrium density) is associated with the

boundary exit problem from the domain of attraction with an exponentially stable critical point for the

stochastically perturbed dynamical system (e.g., see [8] or [9]).

Before concluding this section, it is worth mentioning that, some interesting studies on the asymptotic

behavior of dynamical systems with small random perturbations have been reported in control theory

literature (to mention a few, e.g., see [10], [11] or [12] in the context of stochastic control approach to

large deviation problems – based on the Ventcel-Freidlin estimates [1] (cf. [13, Chapter 14] or [14]); and

see also [15] in the context of jump phenomena in nonlinear dynamical systems).

II. M AIN RESULTS

In this section, we present our main result – where we establish a connection between the asymptotic

exit rate with which the controlled-diffusion processxǫ(t) exits from the domainD and the asymptotic
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behavior of the principal eigenvalue of the infinitesimal generator−LK
ǫ with zero boundary conditions

on ∂D.

In what follows, we state the following lemmas that will be useful for proving our main results (see

[1, Theorem 1.1, Theorem 1.2 and Lemma 9.1] or [16]; and see [13, pp. 332–340] for additional

discussions).

Lemma 1: For anyα > 0, δ > 0 andγ > 0, there exists anǫ0 > 0 such that

P
K
ǫ

{

ρ0T
(
xǫ(t), ϕ(t)

)
< δ

}

≥ exp
{

−ǫ−1
(
SK
0T (ϕ(t)) + γ

)}

, ∀ǫ ∈ (0, ǫ0), (16)

whereϕ(t) is any function inC0T ([0, T ],R
d) for which SK

0T (ϕ(t)) < α andϕ(0) = x0.

Lemma 2: For anyα > 0, δ > 0 andγ > 0, there exists anǫ0 > 0 such that

P
K
ǫ

{

d0T
(
xǫ(t),Φx0,α

)
≥ δ

}

≤ exp
{

−ǫ−1
(
α− γ

)}

, ∀ǫ ∈ (0, ǫ0), (17)

where

Φx0,α =
{

ϕ(t) ∈ C0T ([0, T ],R
d)

∣
∣
∣ϕ(0) = x0 andSK

0T (ϕ(t)) < α
}

. (18)

Lemma 3: Let D+δ denote aδ-neighborhood ofD and letD−δ denote the set of points inD at a

distance greater thanδ from the boundary∂D. Then, for sufficiently smallδ > 0 and for anyK ∈ K ,

the following estimates

inf
ϕ(t)∈C0T ([0,T ],Rd)

ϕ(0)=x0

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D+δ ∪ ∂D+δ, ∀t ∈ [0, T ]

}

, (19)

and

inf
ϕ(t)∈C0T ([0,T ],Rd)

ϕ(0)=x0

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D−δ ∪ ∂D−δ, ∀t ∈ [0, T ]

}

, (20)

can be made arbitrarily close to each other. Furthermore, the same holds for

inf
ϕ(t)∈C0T ([0,T ],Rd)
ϕ(0)=x, ϕ(T )=y

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D±δ ∪ ∂D±δ, ∀t ∈ [0, T ]

}

, (21)

uniformly for anyx, y ∈ D−δ.

The following proposition provides an estimate for the principal eigenvalueλKǫ of the infinitesimal

generator−LK
ǫ with zero boundary conditions on∂D. Note that such an estimate for the principal

eigenvalue is apparently related to the asymptotic exit rate with which the controlled-diffusion process
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xǫ(t) exits from the domainD – when the dynamical system of Equation (1) is composed with the

m-tuple of linear feedback operatorsK ∈ K .

Proposition 1: Suppose that the maximum closed invariant set for the deterministic dynamical system

of Equation (5), under the action of them-tuple of linear feedback operatorsK ∈ K , is nonempty. Then,

the principal eigenvalueλKǫ of the infinitesimal generator−LK
ǫ with zero boundary conditions on∂D

satisfies

λKǫ = ǫ−1r(K) + o(ǫ−1) as ǫ→ 0, (22)

where

r(K) = lim sup
T→∞

inf
ϕ(t)∈C0T ([0,T ],Rd)

ϕ(0)=x0

1

T

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D ∪ ∂D, ∀t ∈ [0, T ]

}

. (23)

Proof: Suppose thatr(K), for a certainm-tuple of linear feedback operatorsK ∈ K , exists.1 Then,

using Lemma 3, one can show thatr(K) also satisfies the following

r(K) = sup
x,y∈D

{

lim sup
T→∞

inf
ϕ(t)∈C0T ([0,T ],Rd)
ϕ(0)=x, ϕ(T )=y

1

T

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D ∪ ∂D, ∀t ∈ [0, T ]

}}

. (24)

Next, let us show that, for sufficiently smallǫ > 0, Eǫ
x0

{
exp(ǫ−1Rτ ǫD)

}
tends to infinity, whenR > r(K).

If we choose a positiveκ which is smaller than(R − r(K))/3 so that

sup
x,y∈D

inf
ϕ(t)∈C0T ([0,T ],Rd)
ϕ(0)=x, ϕ(T )=y

1

T

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D ∪ ∂D, ∀t ∈ [0, T ]

}

< r(K) + κ, (25)

and, for sufficiently smallδ > 0,

inf
ϕ(t)∈C0T ([0,T ],Rd)
ϕ(0)=x, ϕ(T )=y

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D−δ ∪ ∂D−δ, ∀t ∈ [0, T ]

}

< T
(
r(K) + 2κ

)
, (26)

for all x, y ∈ D−δ. Then, if we further letα = T
(
r(K) + 2κ

)
andγ = Tκ, from Lemma 1, there exits

an ǫ0 > 0 such that

SK
0T (ϕ(t)) ≤ T

(
r(K) + 2κ

)
, ϕ(t) ∈ D−δ ∪ ∂D−δ,∀t ∈ [0, T ], (27)

1Note that the existence of such a limit forr(K) can be easily established (e.g., see [1]).
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for any x, y ∈ D−δ; and, moreover, we have the following probability estimate

P
ǫ
x

{

τ ǫD−δ
> T, xǫ(τD−δ

) ∈ D−δ

}

≥ P
ǫ
x

{

ρ0T
(
xǫ(t), ϕ(t)

)
< δ

}

,

≥ exp
(
−ǫ−1

(
SK
0T (ϕ(t)) + γ

))
,

≥ exp
(
−ǫ−1T

(
r(K) + 3κ

))
, ∀ǫ ∈ (0, ǫ0), (28)

whereϕ(T ) ∈ D−2δ.

Let us define the following random events

An =
{

τ ǫD−δ
> nT, xǫ(nT ) ∈ D−δ

}

, (29)

for n ∈ N+ ∪ {0}. Then, from the strong Markov property, we have

P
ǫ
x

{
An

}
≥ E

ǫ
xχAn−1

P
ǫ
x(n−1)T

{
A1

}
,

≥ P
ǫ
x

{
An−1

}
inf

y∈D−δ

P
ǫ
y

{
A1

}
,

≥ exp
(
−ǫ−1nT

(
r(K) + 3κ

))
∀ǫ ∈ (0, ǫ0). (30)

Note that, for an arbitraryn, we have the following

E
ǫ
x

{
exp

(
ǫ−1Rτ ǫD−δ

)}
≥ exp

(
ǫ−1RnT

)
P
ǫ
x

{
τ ǫD−δ

> nT
}
,

≥ exp
(
−ǫ−1nT

(
R− r(K)− 3κ

))
, ∀ǫ ∈ (0, ǫ0), (31)

which tends to infinity asn→ ∞, i.e.,Eǫ
x

{
exp

(
ǫ−1Rτ ǫD−δ

)}
= ∞.

On the other hand, let us show that ifR < r(K), then, for sufficiently smallǫ > 0, Eǫ
x

{
exp

(
ǫ−1Rτ ǫD−δ

)}

<∞. For κ < (R− r(K))/3, let us chooseδ so that

inf
ϕ(t)∈C0T ([0,T ],Rd)

ϕ(0)=x0

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D+δ ∪ ∂D+δ, ∀t ∈ [0, T ]

}

> T
(
r(K)− 2κ

)
. (32)

From Lemma 2, withα = T
(
r(K)−2κ

)
andγTκ, there exists anǫ0 > 0 such that the distance between

the set of functionsψ(t), for 0 ≤ t ≤ T , entirely lying in D and any of the setsΦx0,α is at least a

distanceδ; and, hence, we have the following probability estimate

P
ǫ
x

{

τ ǫD > T
}

≤ P
ǫ
x

{

d0T
(
xǫ(t),Φx0,α

)
≥ δ

}

,

≤ exp
(
−ǫ−1T

(
r(K)− 3κ

))
, ∀ǫ ∈ (0, ǫ0), (33)

for any x ∈ D.
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Then, using the Markov property, we have the following

P
ǫ
x

{

τ ǫD > nT
}

≤ exp
(
−ǫ−1nT

(
r(K)− 3κ

))
, ∀ǫ ∈ (0, ǫ0), (34)

and

E
ǫ
x

{
exp

(
ǫ−1Rτ ǫD

)}
≤

∑∞

n=0
exp

(
ǫ−1R(n+ 1)T

)
P
ǫ
x

{
nT < τ ǫD ≤ (n+ 1)T

}
,

≤
∑∞

n=0
exp

(
ǫ−1R(n+ 1)T

)
P
ǫ
x

{
τ ǫD > nT

}
,

≤
∑∞

n=0
exp

(
ǫ−1RT

)
exp

(
−ǫ−1nT

(
R− r(K) + 3κ

))
, ∀ǫ ∈ (0, ǫ0), (35)

which converges to a finite value, i.e.,Eǫ
x

{
exp

(
ǫ−1Rτ ǫD

)}
< ∞. Hence,r(K) is a boundary for which

E
ǫ
x

{
exp(ǫ−1r(K)τ ǫD)

}
is finite. Then, from Equation (33) (cf. Equation(28)), we have

− 1

T
log Pǫ

x

{

τ ǫD > T
}

≤ ǫ−1
(
r(K)− 3κ

)
, ∀ǫ ∈ (0, ǫ0), (36)

for any x ∈ D, where the left side tends to the principal eigenvalueλKǫ asT → ∞. This completes the

proof.

Remark 2:The above proposition states that the principal eigenvalueλKǫ of the infinitesimal generator

−LK
ǫ with zero boundary conditions on∂D is equal toλKǫ = ǫ−1r(K) + o(ǫ−1) as ǫ → 0 (cf.

Equation (36) and Equation (34)). Furthermore, the principal eigenvalue is exactly equal to the boundary

value between those positiveR < r(K) for which E
ǫ
x

{
exp(ǫ−1Rτ ǫD)

}
< ∞ and thoseR > r(K) for

which E
ǫ
x

{
exp(ǫ−1Rτ ǫD)

}
= ∞ for any x ∈ D.

III. F URTHER REMARKS

In this section, we further comment on the implication of ourmain result – when one is also interested

in either evaluating the performance of a certain admissible linear feedback operatorŝK ∈ K (or finding

a set of (sub)-optimal admissible linear feedback operators
{
K∗

}

ν
∈ K for the deterministic dynamical

system of Equation (5)); while minimizing the asymptotic exit rate with which the controlled-diffusion

processxǫ(t) exits from the given domainD.

Note that a closer look at Proposition 1 suggests an optimization problem that links between the minimum

asymptotic exit rater(K∗) for the controlled-diffusion processxǫ(t) and a certainm-tuple of (sub)-optimal

admissible linear feedback operatorsK∗ = (K∗
1,K∗

2, . . .K∗
m) ∈ K which corresponds to the deterministic
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dynamical system of Equation (5). Namely, if the statement in the above proposition holds true, then

there exists at least onem-tuple of linear feedback operatorsK∗ ∈ K such that

K∗ ∈ argmin
K∈K

{

lim sup
T→∞

inf
ϕ(t)∈C0T ([0,T ],Rd)

ϕ(0)=x0

1

T

{

SK
0T (ϕ(t))

∣
∣
∣ϕ(t) ∈ D ∪ ∂D,∀t ∈ [0, T ]

}}

. (37)

Moreover, if such a solution exists, then the admissible control u∗i (·) =
(
K∗

i x
ǫ
)
(·) ∈ Ui, ∀t ≥ 0, with

K∗
i ∈ Ki[X ,Ui], for i = 1, 2, . . . ,m, is essentially a maximizing measurable selector of the following

Hamilton-Jacobi-Bellman equation related to an optimal control problem

maxu
{
Lǫ υ

∗
(ǫ,x0)

(x, u) + λ∗ υ∗(ǫ,x0)
(x)

}
, ∀x ∈ D

υ∗(ǫ,x0)
(x) = 0, ∀x ∈ ∂D






, (38)

where

Lǫ(·)(x, u) =
〈

▽(·),
(

Ax+
∑m

i=1
Biui

)〉

+
ǫ

2
tr
{

σ(x)σT (x)▽2 (·)
}

,

υ∗(ǫ,x0)
∈ C2(D) ∩ C(D ∪ ∂D), with υ∗(ǫ,x0)

> 0 in D, andu(·) = (u1(·), u2(·), . . . , um(·)) ∈ ∏m
i=1 Ui

(e.g., see [17, Theorem 1.4(a)] for additional discussions; and cf. [18] or [19]).

Remark 3:Note that ifu∗(·) is the maximizing measurable selector forargmax
{
Lǫυ

∗
(ǫ,x0)

(x, ·)
}

, x ∈ D,

then the principal eigenvalue is given by

λK
∗

ǫ = − lim sup
T→∞

1

T
logPK∗

ǫ

{
τ ǫD > T

}
,

where the probability distributionPK∗

ǫ

{
·
}

is conditioned with respect to the admissible controlu∗ and

the initial pointx0 ∈ D. Furthermore, iflimǫ→0 λ
K∗

ǫ <∞, for somex0 ∈ D, then the maximum closed

invariant setΛK∗

D ⊂ D ∪ ∂D for the deterministic dynamical system (under the action ofthem-tuple of

linear feedback operatorsK∗ ∈ K ) is nonempty (cf. Remark 1).

Remark 4:Finally, it is worth remarking that Proposition 1 is useful for selecting the most appropriate

m-tuple of admissible linear feedback operators from the set
{
K∗

}

ν
∈ K that confines the controlled-

diffusion processxǫ(t) to the prescribed domainD for a longer duration.
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