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On the Problem of Minimum Asymptotic EXxit
Rate for Stochastically Perturbed

Multi-Channel Dynamical Systems

Getachew K. Befekadu, and Panos J. Antsaklis,

Abstract

We consider the problem of minimizing the asymptotic exieraith which the controlled-diffusion
process of a stochastically perturbed multi-channel dyoainsystem exits from a given bounded open
domain. In particular, for a class of admissible bounde@&dmfeedback operators, we establish a
connection between the asymptotic exit rate with which sucbntrolled-diffusion process exits from the
given domain and the asymptotic behavior (i.e., a prokstlulcharacterization) of the principal eigenvalue
of the infinitesimal generator, which corresponds to thetsdstically perturbed dynamical system, with
zero boundary conditions on the given domain. Finally, wiefly remark on the implication of our
result for evaluating the performance of the associatedragtistic multi-channel dynamical system,
when such a dynamical system is composed with a set of (qubjral admissible linear feedback

operators.
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. INTRODUCTION

In this brief paper, we consider the problem of minimizing thsymptotic exit rate with which the
controlled-diffusion process<(t) exits from a given bounded open domain pertaining to theotig

stochastically perturbed multi-channel dynamical system
dxt(t) = Ax(t)dt + Zﬂil Biui(t)dt + eo(z())dW (t), x°(0) = o, 1)

where

- A e R™ B, € R ¢is a small positive number (which represents the level otloam
perturbation in the system),
- 0: R? — R¥4 s Lipschitz with the least eigenvalue of-)o”'(-) uniformly bounded away from

zero, i.e.,
o(z)ol (z) > klgeq, Vo eRY

for somex > 0,

- W(.) is ad-dimensional standard Wiener process,

- 2¢(-) € X C R? is the state trajectory of the system,

- u;(+) is a U;-valued measurable control process to itiechannel (i.e., an admissible control from
the measurable sét; C R") such that for allt > s, W (t) — W (s) is independent of;(v) for

v <sand
ty
E/ lu(t)?dt < oo, Vt; >0,
0

whereu(-) £ (u1(-),ua(), ..., um(-)) € [T, Us.

Let D ¢ R? be a bounded open domain with smooth boundary @&, is a manifold of clas<C?).
Moreover, denote by’or([0,7],R¢) the space of all continuous functioggt), ¢ € [0, T, with range

in R%; and, in this space, we define the following metric

: (2)

por (@, ) = sup |p(t) — (1)
tel0, T

when o(t), (t) belong to Cor([0,T],RY). If ® is a subset of the spad€r([0,T],R%), then we

define

dor (¢, ®) = ilég por (Y (t), (1)) 3)



In what follows, we consider a particular class of admigsibbntrolsu;(-) € U; of the formu;(t) =
(ICia:G)(t), vt > 0, where/C;, for i = 1,2,...,m, is a real, continuous; x d matrix function such
that

H - {(K17,C27---7,Cm) € H:il f%/Z[X7uZ] ¢(t707$0,(lcx0)(t)) € Q7

L

Vvt > 0, VSL'()GQ}, (4)

where 7;[X,U;] is a closed subspace of bounded linear feedback operators ¥ to ¢; and) is a
bounded open set iy U 0D that contains the origitd. Moreover,¢(t; 0, zg, (Kz%)(t)) is the unique

solution for

i0(t) = Az°(t) + Zizl Bi(Kix®) (), 2°(0) = 20 € Q, (5)
that corresponds to the deterministic multi-channel dyinahsystem, when such a dynamical system is

composed with a certaim-tuple of admissible linear feedback operatfirs 7.

Note that the infinitesimal generator pertaining to the oaletd-diffusion process<(t) of Equation [(1),

whenu;(t) = (K;z%)(t), for t > 0 andi = 1,2,...,m, is given by
KN z) = (o € T 2.
LEO@) = (v0), (42 + (B.K)z) ) + 5 tr{o (@) (@) 7* ()}, (6)
where (B, K)z(-) = > | Bi(K;z)(-) for all ¢ > 0.
Let 77, be the first exit-time for the controlled-diffusion processt) from the domainD, i.e.,
7h = inf{t > 0|2%(t) € dD}, (7)

which also depends on the-tuple of linear feedback operatois € % and, more precisely, on the
behavior of the solutions to the deterministic dynamicaitesn of Equation (5). Moreover, let us denote
by AX the principal eigenvalue of the infinitesimal generatat® with zero boundary conditions anD
which is given by

1
NS = —limsup — log PN {7, > T}, ®)
T—o00 T

where the probabilitwf{-} is conditioned on the initial pointy € D as well as on the class of

admissible linear feedback operators.



Next, let us introduce the following definition (i.e., the xiraum closed invariant set for the deterministic
dynamical system under the action of the class of linearldaekl operators#”) which is useful in the

following section.

Definition 1: A set A%, ¢ D U D is called the maximum closed invariant set for the deterstimi
dynamical system of Equationl (5) (under the action ofithxuple of linear feedback operatotse 7),
if any setQ2 C D U 0D, for somek € %, satisfying the property

¢(t;0,$0, (IC:UO)(t)) €N, Vit >0, VYoo e Q 9)

is a subset of\s.

In Section[dl, we provide an estimate for the asymptotic eate with which the controlled-diffusion

processee(t) exits from the domairD. In particular, we minimize the following quantity

1
A = —limsup = logIP’f{TED > T}, (10)
T—o0 T

with respect to the admissible contrals() € ; of the formu,(t) = (K;z)(t), for t > 0 and for all

i € {1,2,...m}. Note that if the domairD contains an equilibrium point for the deterministic dyneahi
system of Equatiori{5), when such a dynamical system is ceatpwith them-tuple of linear feedback
operatorsk € .#. Then, the principal eigenvalu®®™ of the infinitesimal generator-£* with zero
boundary conditions 08D is equal toA* = ¢~ 17(K) + o(e™!) ase — 0 (e.g., see[[1],[[2] or[3]). On
the other hand, if the maximum closed invariant set for thtemeinistic dynamical system under the
action of them-tuple of linear feedback operatofs € %" is nonempty. Then, the following asymptotic

condition also holds true

1
— lim limsup — log]P’iC{TE > T} < 00, xg € D. (11)

e—0 7 0 T

Remark 1:Note that such an asymptotic behavior %ﬂog]P’f{rg > T} ase - 0andT — oo,
determines whether the dynamical system of Equalkibn (5phaaximum closed invariant set inUdD

or not (seell4, Theorem 2.1]).

Moreover, the principal eigenvalue® turns out to be the boundary value between thBse r(K) for
which EX {exp(e ' R7§,))} < oo and thoseR > r(K) for which EX{exp(e"'R7§,)} = oo, wherer(K)
is given by the following

r(K) = limsup inf l{S(’]CT((,D(t)) ‘ p(t) e DUOD, Vt € [O,T]}. (12)

T—oo @(t)€Cor([0,T],R?) T'
©(0)=z0



In general, such an asymptotic analysis involves miningiztme following action functional
2

T
Sse) =3 [ |2 - (460 + (B.K)90) | a, (19
where
2 T
1262 — (apt0) + (8.1 <>) - [d*‘)—@—(wm (B.5)4(0)]
<(oteon” () |22 - (a6 + (B.1)00) . (14)
with (B, K)e(t) = >, Bi(Kip)(t) andp(t) € Cor([0,T], Rd) is absolutely continuous.

Note that estimating the asymptotic exit rate with which tuntrolled-diffusion process*(t) exits
from the domainD is related to a singularly perturbed eigenvalue problem.example, the asymptotic

behavior for the principal eigenvalue corresponding toftilowing eigenvalue problem

’C .
Ve zo) = = A7 (E z0) in D 7 (15)
véﬁ vy =0 oOn 9D
wherev( 0) e W, e C(DuUdD), for p > 2, with vﬁ o) > 0 on D, has been well studied in the past

_ﬁK

(e.g., seel[3] or [5] in the context of an asymptotic behafdorthe principal eigenfunction; and see€ [6]
or [7] in the context of an asymptotic behavior for the eduilim density). Specifically, the author in
[6] has also provided additional results in connection with asymptotic behavior of the equilibrium
density, when the latter (i.e., the asymptotic behaviorhef ¢quilibrium density) is associated with the
boundary exit problem from the domain of attraction with apanentially stable critical point for the

stochastically perturbed dynamical system (e.qg., see {§9]d.

Before concluding this section, it is worth mentioning {hedme interesting studies on the asymptotic
behavior of dynamical systems with small random pertudmatihave been reported in control theory
literature (to mention a few, e.g., see[10],][11] brl[12] iretcontext of stochastic control approach to
large deviation problems — based on the Ventcel-Freidlimedes [1] (cf. [13, Chapter 14] or [14]); and

see also[[15] in the context of jump phenomena in nonlineaadycal systems).

Il. MAIN RESULTS

In this section, we present our main result — where we estalaliconnection between the asymptotic

exit rate with which the controlled-diffusion proces¥t) exits from the domairD and the asymptotic



behavior of the principal eigenvalue of the infinitesimahgeator—L£* with zero boundary conditions

ondD.

In what follows, we state the following lemmas that will beetid for proving our main results (see
[1, Theorem 1.1, Theorem 1.2 and Lemma 9.1] lor! [16]; and 582 |pp. 332-340] for additional

discussions).

Lemma 1: For anya > 0, 6 > 0 and~ > 0, there exists amy > 0 such that

PE{ por (2(1), (1) < 8} = exp{ =7 (S57((1) +7) } Ve € (0,c0), (16)

where(t) is any function inCor ([0, 7], R?) for which S}.((t)) < a and¢(0) = .
Lemma 2: For anya > 0, § > 0 and~ > 0, there exists amy > 0 such that

PE{dOT(xe(t),CI)xma) > 5} < eXp{—e_l(a — 7)}, Ve € (0,¢p), a7

where
Dypa = {0(t) € Cor((0,T),RY) | 9(0) = w0 and Sl (¢ () < a }. (18)

Lemma 3: Let D, s denote aj-neighborhood ofD and let D_s denote the set of points i at a
distance greater thahfrom the boundandD. Then, for sufficiently smalé > 0 and for anyk € %,

the following estimates

i SE (o(t t) € DisUdDs, Ve [0,T] ¢, 19
®V)=Zo

and
inf SN (o(t t)e D_sUdD_s, Yt € [0,T] ¢, 20
et {stie) | olt) € s UOD_s, i € 0,71} (20)
©(0)=z0o
can be made arbitrarily close to each other. Furthermoeeséme holds for

©(t)€Cor ([0,T],R?)
0(0)=z, p(T)=y

uniformly for anyz,y € D_s.

i { St (00 o) € Das LoD, i€ .11, (21)

The following proposition provides an estimate for the piral eigenvalue\® of the infinitesimal
generator—£X with zero boundary conditions o D. Note that such an estimate for the principal

eigenvalue is apparently related to the asymptotic exé véith which the controlled-diffusion process



x¢(t) exits from the domainD — when the dynamical system of Equatidn (1) is composed hi¢h t

m-tuple of linear feedback operatofs € 7.

Proposition 1: Suppose that the maximum closed invariant set for the detestic dynamical system
of Equation[(5), under the action of the-tuple of linear feedback operatokse %", is nonempty. Then,

the principal eigenvalua’ of the infinitesimal generator£* with zero boundary conditions of\D

satisfies
M= e 1r(K)+0(e7!) as e—0, (22)
where
1
r(K) = limsu inf — 2 SK(o(t t) e DUAD, Vt € O,T}. 23
() = tim sup @(t)ec(og)(m,T]’Rd)T{ (o) | (0 0.7) 23)
w\U)=Zo

Proof: Suppose that(K), for a certainm-tuple of linear feedback operatokse 7, existﬂ Then,
using Lemmad3, one can show thdiC) also satisfies the following
1
r(K) = sup < limsu inf — 5K t t)e DUOD, Vt e O,T} . 24
() m,yepD{ mswp it Sl o) 0.7] } 24
(0)=z, p(T)=y
Next, let us show that, for sufficiently smalt> 0, ES {exp(e ' R7§,)} tends to infinity, wherk > r(K).
If we choose a positiver which is smaller tharfR — r(K))/3 so that
1
su inf — 25K (o(t t)e DUID, Vt € 0,T}<T‘IC + s, 25
s it S e 071} < ) @5)
(0)=z, p(T)=y
and, for sufficiently smalb > 0,
inf Sor(p(t t) € D_sUdD_5, Vte [0,T] ¢ < T(r(K)+25), 26
et ASSo0) | w0 € DsuoD_s DI} <TI0+ 2. (26
(0)=z, p(T)=y

for all z,y € D_s. Then, if we further letx = T'(r(K) + 2>c) and~y = T'», from Lemmal, there exits

an ey > 0 such that

Shr((t)) < T(r(K)+2x), ¢(t) € D_sUdD_s,Vt € [0,T], (27)

!Note that the existence of such a limit fofC) can be easily established (e.g., ee [1]).



for anyx,y € D_s; and, moreover, we have the following probability estimate
P {7h, > T, 2% ,) € Dos} > P por (), o) < 5,
> exp(—¢ " (Shr(e(1) +)),
> exp(—e_lT(r(lC) + 3%)), Ve € (0,¢p), (28)

wherep(T") € D_y;s.

Let us define the following random events
A, = {T;,fé > nT, 2¢(nT) € D_(;}, (29)
for n € Ny U {0}. Then, from the strong Markov property, we have
PL{An} > Esva,  P5 ,, {Au),
> Po{ A} inf P {Ai},
> exp(—e 'nT(r(K) +35)) Ve € (0,€). (30)
Note that, for an arbitrary,, we have the following
E;{exp(e_lRTB%)} > exp(e_anT)IP’;{TB% >nT},
> eXp(—e_lnT(R —7(K)—=3x)), Vee (0,¢), (31)
which tends to infinity as. — oo, i.e., B {exp(e ' R7f, ) }= oc.

On the other hand, let us show thatfif< r(K), then, for sufficiently smakt > 0, ES {exp(e'R7f, )}
< o00. For» < (R —r(K))/3, let us choosé so that

inf SK(o(t t) € Dys UdDLs, Yt [0,T]p > T (r(K) — 25). 32

et S5 00) |00 € DisUODLs, e DI S TE00 - 2. (@)
©(0)=z0o

From LemmaZR, withn = T(r(IC) — 2%) and~T s, there exists a\ly > 0 such that the distance between

the set of functions)(t), for 0 < t < T, entirely lying in D and any of the set®,, . is at least a

distanced; and, hence, we have the following probability estimate
P;{Tg > T} < P;{dOT(xf(t), Bry) > 5},
< exp(—e_lT(r(lC) —3x%)), Vee (0,¢), (33)

for anyx € D.



Then, using the Markov property, we have the following
]P;{Tg > nT} < exp(—e InT(r(K) - 3x)), Vee (0,¢), (34)
and
ES {exp(e 'RTH)} < Z Jexp(e R+ DT)PL{nT < 7§ < (n+ 1T},
< Z exp “'R(n+ 1)T)PL{r, > nT},
< ano exp(e *RT)exp(—e 'nT(R — r(K) + 35)), Ve € (0,&),  (35)
which converges to a finite value, i.&¢ {exp(¢ ' R7})) } < co. Hence,r(K) is a boundary for which
ES {exp(e~'r(K)r5,)} is finite. Then, from Equatiori(33) (cf. Equatibn(28)), wevba
s log {7 > T} < e (1)~ 3), Ve e (0,c0), (36)
for any z € D, where the left side tends to the principal eigenvalfleasT — oc. This completes the

proof. |

Remark 2: The above proposition states that the principal eigenvafuef the infinitesimal generator
— LK with zero boundary conditions oflD is equal to\* = ¢~ !r(K) + o(e7!) ase — 0 (cf.
Equation [(36) and Equatioh (34)). Furthermore, the prialcgigenvalue is exactly equal to the boundary
value between those positiie < r(K) for which E¢{exp(e ' R7§,)} < oo and thoseR > r(K) for

which ES {exp(e ' R7§))} = oo for anyz € D.

Ill. FURTHER REMARKS

In this section, we further comment on the implication of owain result — when one is also interested
in either evaluating the performance of a certain admisdibkar feedback operatoks € .# (or finding

a set of (sub)-optimal admissible linear feedback opesa{(lﬁ*}y € ¢ for the deterministic dynamical
system of Equatior((5)); while minimizing the asymptotiateate with which the controlled-diffusion

processze(t) exits from the given domaid.

Note that a closer look at Propositioh 1 suggests an opttiniz@roblem that links between the minimum
asymptotic exit rate (X*) for the controlled-diffusion process(¢) and a certaimn-tuple of (sub)-optimal

admissible linear feedback operatdrs = (K7, K5, ... K,) € 2 which corresponds to the deterministic
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dynamical system of Equation](5). Namely, if the statementhie above proposition holds true, then

there exists at least one-tuple of linear feedback operatoks* € % such that

1
K* € arg min{ lim su inf 216K ((t e DUID.VEe O,T} . 37
Icge% { T—>oop ga(t)ec&)T)([o,T},Rd) T{ OT((‘D( )) ‘ (‘0( ) [ ] } (37)
pU)=xo

Moreover, if such a solution exists, then the admissibletrodn.?(-) = (K;z) () € U;, ¥Vt > 0, with
ICr e X, U], for i = 1,2,...,m, is essentially a maximizing measurable selector of thiowahg

Hamilton-Jacobi-Bellman equation related to an optimaitaa problem

maxy { L Ua’xo)(:n,u) + A" vzkem)(:n)}, Ve € D
v, (x) =0, VxedD

E7$0)

(38)

where

m €
L)) = (v0), (A2 + D" Baus) )+ 5 tr{o(@)e" (@) 2 ()},
€ C*(D)NC(DUOD), with vi_, v > 01in D, andu() = (u1(-),u2(), ..., um(") € [T Ui
(e.g., seel[17, Theorem 1.4(a)] for additional discussiansl cf. [18] or [19]).

*
Y(e,a0)

Remark 3:Note that ifu*(-) is the maximizing measurable selector fog maX{ﬁeva SU())(:L" )}z €D,
then the principal eigenvalue is given by

. 1 .
PR —limsupf log PX {H > T},

€
T—o00

where the probability distributiorﬁ”f*{-} is conditioned with respect to the admissible conttbland
the initial pointzy € D. Furthermore, iflim,_,q /\f* < 00, for somezxy € D, then the maximum closed
invariant setA’S” ¢ D U aD for the deterministic dynamical system (under the actiothefm-tuple of

linear feedback operatois* € #") is nonempty (cf. Remark] 1).

Remark 4:Finally, it is worth remarking that Proposition 1 is usefaol fselecting the most appropriate
m-tuple of admissible linear feedback operators from the{ﬁt}y € . that confines the controlled-

diffusion processc¢(t) to the prescribed domaif for a longer duration.
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