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Team-triggered coordination for real-time

control of networked cyber-physical systems

Cameron Nowzari Jorge Ceéxd

Abstract

This paper studies the real-time implementation of digteld controllers on networked cyber-
physical systems. We build on the strengths of event- arfetrggered control to synthesize a unified
approach, termed team-triggered, where agents make @entsone another about their future states
and are responsible for warning each other if they laterd#etn break them. The information provided
by these promises allows individual agents to autonomaddtedule information requests in the future
and sets the basis for maintaining desired levels of pediooa at lower implementation cost. We
establish provably correct guarantees for the distribateategies that result from the proposed approach
and examine their robustness against delays, packet dnogdscommunication noise. The results are

illustrated in simulations of a multi-agent formation cartproblem.

I. INTRODUCTION

A growing body of work studies the design and real-time impdatation of distributed
controllers to ensure the efficient and robust operation eifvarked cyber-physical systems.
In multi-agent scenarios, energy consumption is corrdlatgh the rate at which sensors take
samples, processors recompute control inputs, actuaoalsiare transmitted, and receivers are
left on listening for potential incoming signals. Perfongithese tasks periodically is costly,
might lead to inefficient implementations, or face hard ptaisconstraints. To address these
issues, the goal of triggered control is to identify cridethat allow agents to tune the imple-

mentation of controllers and sampling schemes to the eierualf the task at hand and the
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desired level of performance. In event-triggered contiwé, focus is on detecting events during
the network execution that are relevant from the point ofwdd task completion and should
trigger specific agent actions. In self-triggered conttbe emphasis is instead on developing
tests that rely only on current information available toiwdlal agents to schedule future
actions. Event-triggered strategies generally resultess Isamples or controller updates but,
when executed over networked systems, may be costly to mgsie because of the need for
continuous availability of the information required to ckehe triggers. Self-triggered strategies
are more easily amenable to distributed implementationrésuilt in conservative executions
because of the over-approximation by individual agentsuabiee state of the environment and
the network. These strategies might be also beneficial inastes where leaving receivers on
to listen to potential messages is costly. Our objectivehia paper is to build on the strengths
of event- and self-triggered control to synthesize a unifipgroach for controlling networked
systems in real time that combines the best of both worlds.

Literature review: The need for systems integration and the importance of imgdthe gap
between computing, communication, and control in the stidgyber-physical systems cannot
be overemphasized![3],/[4]. Real-time controller implemaéion is an area of extensive research
including periodic [[5], [[6], event-triggered][7],.[8].J[9]10], and self-triggered [11]/ [12][ [13]
procedures. Our approach shares with these works the aimdihgg computation and decision
making for less communication, sensor, or actuator effdntlevstill guaranteeing a desired
level of performance. Of particular relevance to this pagoer works that study self- and event-
triggered implementations of controllers for networketheyphysical systems. The predominant
paradigm is that of a single plant that is stabilized throagthecentralized triggered controller
over a sensor-actuator network, see é.g. [14], [15], [1é\vé¥ works have considered scenarios
where multiple plants or agents together are the subjedteobverall control design. Exceptions
include consensus via event-triggered![17],/ [18]. [19] elf-giggered control[[17],[[20], ren-
dezvousl[211], model predictive control [22], and modeldzhsvent-triggered contral [23], [24].
The event-triggered controller designed [in][17] for a dé@dized system with multiple plants
requires agents to have continuous information about ethehrs) states. The works in [17], [25]
implement self-triggered communication schemes to perfdistributed control where agents
assume worst-case conditions for other agents when dgowdiren new information should be

obtained. Distributed strategies based on event-trighesexmunication and control are explored
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in [26], where each agent has an a priori computed local ésterance and once it violates it, the
agent broadcasts its updated state to its neighbors. The eaemt-triggered approach is taken
in [27] to implement gradient control laws that achieve rdistted optimization. The works [23],
[28], [29] are closer in spirit to the ideas presented hardéhé interconnected system considered
in [23], each subsystem helps neighboring subsystems bytonioig their estimates and ensuring
that they stay within some performance bounds. The approagiires different subsystems to
have synchronized estimates of one another even thoughdthept communicate at all times.
In [28], [29], agents do not have continuous availability information from neighbors and
instead decide when to broadcast new information to them.

Statement of contributionsWWe propose a novel scheme for the real-time control of net-
worked cyber-physical systems that combines ideas fromtewand self-triggered control. Our
approach is based on agents making promises to one anothdrthbir future states and being
responsible for warning each other if they later decide wakrthem. This is reminiscent of
event-triggered implementations. Promises can be braad) fight state trajectories to loose
descriptions of reachability sets. With the informatiooyded by promises, individual agents
can autonomously determine when in the future fresh inftionawill be needed to maintain a
desired level of performance. This is reminiscent of sajfgered implementations. The benefits
of the proposed scheme are threefold. First, because of/#ilalaility of the promises, agents do
not require continuous state information about neighkarepntrast to event-triggered strategies
implemented over distributed systems that require theimootis availability of the information
necessary to check the relevant triggers. Second, becduke extra information provided by
promises about what other agents plan to do, agents canalfgneait longer periods of time
before requesting new information and operate more effigi¢ghan if only worst-case scenarios
are assumed, as is done in self-triggered control. Lessalbvammunication is beneficial in
reducing the total network load and decreasing chances mimemication delays or packet
drops due to network congestion. Lastly, we provide thémakguarantees for the correctness
and performance of team-triggered strategies implemented distributed networked systems.
Our technical approach makes use of set-valued analysajamce sets, and Lyapunov stability.
We also show that, in the presence of physical sources of amd under the assumption that
1-bit messages can be sent reliably with negligible delag,team-triggered approach can be

slightly modified to be robust to delays, packet drops, amdroanication noise. Interestingly, the
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self-triggered approach can be seen as a particular casee deam-triggered approach where
promises among agents simply consist of their reachabsiéis (and hence do not actually
constrain their state). We illustrate the convergence abdstness results through simulation in
a multi-agent formation control problem, paying speciaémiion to the implementation costs
and the role of the tightness of promises in the algorithnigperance.

Organization: Sectiori Il lays out the problem of interest. Secfion Il Hyigeviews current
real-time implementation approaches based on agent tsg@ection IV presents the team-
triggered approach for networked cyber-physical syst&astion$ V and V| analyze the correct-
ness and robustness, respectively, of team-triggeretégiea. Simulations illustrate our results
in SectionVIl. Finally, Sectiof VIl gathers our conclus®and ideas for future work.

Notation: We letR, R, andZ-, denote the sets of real, nonnegative real, and nonnegative
integer numbers, respectively. The two-norm of a vectdf ig,. Givenx € R? andd € R,
B(z,d) denotes the closed ball centeredratith radiusé. For A; € R™ <" withi € {1,..., N},
we denote byliag (A, ..., Ay) € R™*" the block-diagonal matrix wittd; through Ay on the
diagonal, wheren = S m, andn = Y.V | n;. Given a setS, we denote byS| its cardinality.
We let P¢(S), respectivelyP®(S), denote the collection of compact, respectively, compadt a
connected, subsets 6f The Hausdorff distance betweéh, S, C R? is

d(S1, 5) = max{sup il [lo=yllz, sup inf lz = yll2}-
The Hausdorff distance is a metric on the set of all non-encptyipact subsets @&?. Given
two bounded set-valued functiods, C, € C°(I C R;P¢(R?)), its distance is

dfunc(Cla CQ) = sup dH(Cl (t), Cg(t)) (1)

tel
An undirected graply = (V, E) is a pair consisting of a set of verticés= {1,..., N} and
a set of edge€’ C V x V such that if(:,j) € E, then(j,i) € E. The set of neighbors of a
vertexi is N'(i) = {j € V | (i,5) € E}. Givenv € [[L, R™, we letviy = (vi, {v;}jens))
denote the components ofthat correspond to vertexand its neighbors itg.

[I. NETWORK MODELING AND PROBLEM STATEMENT

We consider a distributed control problem carried out overuareliable wireless network.

ConsiderN agents whose communication topology is described by arrectdd graphg. The
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fact that(i, j) belongs toF models the ability of agentsand;j to communicate with one another.
The agents can communicate with are its neighbo¥§:) in G. The state ofi € {1,..., N},
denotedz;, belongs to a closed sét; C R". The network stater = (x4,...,zy) therefore
belongs toX = []\, &;. According to the discussion above, agértan access’,; when it
communicates with its neighbors. By assumption, each agestaccess to its own state at all

times. We consider linear dynamics for each {1,..., N},
@i = fi(wi, i) = Aixi + Biug, (2)

with A, € R%*"™ B, ¢ R"*™i andwu; € U;. Here,U; C R™ is a closed set of allowable

controls for agent. We assume the existence okafe-modecontrolleru$': X; — U;,
Ail’i + Bluff(xl) = 0, for all X; € )C‘Z',

i.e., a controller able to keep ageid state fixed. The existence of a safe-mode controller for a
general controlled system may seem restrictive, but thest many cases, including nonlinear
systems, that admit one, such as single integrators or leshigth unicycle dynamics. Letting

u=(uy,...,uy) EU = HiNzlui, the dynamics can be described by
T = Ax + Bu, (3)

with A = diag (Ay,..., Ay) € R™" and B = diag (B, ..., By) € R™™, wheren = S n;,
and m = Ef\il m;. We refer to the team of agents with communication topolggynd
dynamics|(B), where each agent has a safe-mode controllexcess to its own state at all times,
as anetworked cyber-physical systeffhe goal is to drive the agents’ states to some desired
closed set of configuration3 C X and ensure that it stays there. Depending on hois defined,
this objective can capture different coordination tasks)uding deployment, rendezvous, and
formation control. The goal of the paper is not to design tbetller that achieves this but
rather synthesize efficient strategies for the real-timplémentation of a given controller.

Given the agent dynamics, the communication grédpband the seD, our starting point is the
availability of a control law that drives the system asyntiptdly to D. Formally, we assume

that a continuous map* : X — U and a continuously differentiable functidn : X — R,
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bounded from below exist such that is the set of minimizers oV and, for allx ¢ D,

V.V(x) (Ajx; + Biui(z)) <0, ie{l,...,N}, (4a)
N
> ViV(x) (Az; + B (x)) < 0. (4b)
i=1

We assume that both the control law and the gradienVV" are distributed oveg. By this we
mean that, for eache {1,..., N}, theith component of each of these objects only depends on
z'y,, rather than on the full network state For simplicity, and with a slight abuse of notation,
we write uf(z},) € U; and V,;V(z,) € R™ to emphasize this fact when convenient. This
property has the important consequence that ageah compute these quantities with the exact

information it can obtain through communication Gn

Remark II.1 (Assumption on non-negative contribution of eaxh agent to task comple-
tion) Note that [4b) simply states th&t is a Lyapunov function for the closed-loop system.
Instead, [(4a) is a more restrictive assumption that esdbnttates that each agent does not
individually contribute in a negative way to the evolutiohtbe Lyapunov function. This latter
assumption can in turn be relaxed|[14] by selecting parammete. . ., an € R with ZiNzl a; =0
(note that somey; would be positive and others negative) and specifying atsthat, for each

i € {l,...,N}, the left-hand side of (4a) should be less than or equal; t&A\long these lines,
one could envision the design of distributed mechanismytauahically adjust these parameters,

but we do not go into details here for space reasons. °

From an implementation viewpoint, the controlierrequires continuous agent-to-agent com-
munication and continuous updates of the actuator sigmadding it unfeasible for practical
scenarios. In the following section we develop a self-teiggl communication and control

strategy to address the issue of selecting time instantsformation sharing.

[Il. SELF-TRIGGERED COMMUNICATION AND CONTROL

This section provides an overview of the self-triggered oamication and control approach
to solve the problem described in Sectioh II. In doing so, \g® @ntroduce several concepts
that play an important role in our discussion later. The gandea is to guarantee that the time

derivative of the Lyapunov functiof” along the trajectories of the networked cyber-physical
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system|[(B) is less than or equalGaat all times, even when the information used by the agents
is inexact.

To model the case that agents do not have perfect informabont each other at all times, we
let each agente {1, ..., N} keep an estimatg, of the state of each of its neighbaiss N (i).
Sincei always has access to its own stat&;(t) = (zi(t), {Z}(t)}jen)) is the information
available to agent at timet. Since agents do not have access to exact information ameds

they cannot implement the controllet exactly, but instead use the feedback law

() = ui (@ (t)-

We are now interested in designing a triggering method shahagent can decide whef'(¢)
needs to be updated. Lgis be the last time at which all agents have received informétiom

their neighbors. Then, the timge, at which the estimates should be updated is when

d

N
Ev(x(tnext)) = Z viv(x(tnext)) (Aixi(tnext) + Biufelf(tlast)) =0. (5)

Unfortunately, [(b) requires global information and canmhet checked in a distributed way.
Instead, one can define a local event that defines when a sigelet: < {1,..., N} should

update its information as any time that
ViV (x(t)) (Ai(t) + Biug®(t)) = 0. (6)

As long as each agentan ensure the local eveqt (6) has not yet occurred, it isagteed thaf{(5)
has not yet occurred either. The problem with this approadhat each agente {1,..., N}
needs to have continuous access to information about tteaftéts neighbors\V (z) in order to
evaluateV,V (z) = V,V (') and check conditiori{6). The self-triggered approach resadhis
requirement on continuous availability of information bgving each agent employ instead the
possibly inexact information about the state of their nbiis. The notion of reachability set
plays a key role in achieving this. Givene X, the reachable sebf points under[(2) starting

from y in s seconds is,
Ri(s,y) = {z € & | Ju; : [0, 5] — U; such thatz = ey +/ e Biuy(1)dr ).
0

Using this notion, if agents have exact knowledge about thachics and control sets of
its neighboring agents (but not their controllers), eacknagcan construct, each time state

information is received, sets that are guaranteed to comit@ir neighbors’ states.

August 12, 2018 DRAFT



Definition 11l.1 (Guaranteed sets) If [, is the time at which agentreceives state information

z;(ths) from its neighborj € N (i), then theguaranteed seis given by
X; (tv tliastv Lj (tlias ) - Rj (t - Iiasb ZLj (tlias ) - Xj? (7)
and is guaranteed to contain(t) for ¢ > ¢/

We let X (t) = X(t, tias, 7 (ths)) When the starting state; (¢,s) and timetj,, do not need
to be emphasized. We denote B (t) = (z;(t), {X}(t)}ens)) the information available to

agent:; at timet.

Remark 111.2 (Computing reachable sets) Finding the guaranteed or reachable sgts (7) can
be in general computationally expensive. A common approamhsists of computing over-
approximations to the actual reachable set via convex goég or ellipsoids. There exist efficient
algorithms to calculate and store these for various clas$esystems, see e.g/, [30],_[31].
Furthermore, agents can deal with situations where theyaldhave exact knowledge about
the dynamics of their neighbors (so that the guaranteedcsetsot be computed exactly) by

employing over-approximations of the actual guaranteésl se °

With the guaranteed sets in place, we can now provide a tashtlows agents to determine
when they should update their current information and obrgignals. At timet/,,, agenti
computes the next timé,,, > ti.., to acquire information via

sup ViV (yn) (Aii(thex) + Bitt?® (thex)) = 0. (8)
yn EX )y (thext)

By (4d) and the fact thak’ (t},s) = {z;(tls)}, at timetf,g,

sup ViV (yn) (Aii(tias) + Bitg™ (thas)) = ViV (2 (tast) (Aii(tlas) + Bitis™ (tag)) < 0.
N EXy (Hasy)
If all agents use this triggering criterion for updatingarhation, it is guaranteed thggﬂ/(x(t)) <
0 at all times because, for eacte {1,..., N}, the true state:;(t) is guaranteed to be iX)(t)
for all j € N(i) andt >t}

The condition [(B) is appealing because it can be evaluatedglent: with the information
it possesses at timg,. Once determined, agentschedules that, at tim&,,, it will request
updated information from its neighbors. We referitg, — ti., as theself-triggered request time

for agent:. Due to the conservative way in whiefy,, is determined, it is possible théf,, = ¢/
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for somei, which would mean that instantaneous information updateshacessary (note that
this cannot happen for alle {1,..., N} unless the network state is already/i). This can be
dealt with by introducing a dwell time such that a minimum amof time must pass before
an agent can request new information and using the safe-cmueoller while waiting for the
new information. We do not enter into details here and déferdiscussion to Sectidn TV}C.
The problem with the self-triggered approach is that theltieg) times are often conservative
because the guaranteed sets can grow large quickly as thayeall possible trajectories of
neighboring agents. It is conceivable that improvementsbeamade from tuning the guaranteed
sets based on what neighboring agesits to do rather than what theyan do. This observation

is at the core of the team-triggered approach proposed next.

IV. TEAM-TRIGGERED COORDINATION

This section presents the team-triggered approach forehktime implementation of dis-
tributed controllers on networked cyber-physical systefie team-triggered approach incorpo-
rates the reactive nature of event-triggered approachdsaainthe same time, endows individual
agents with the autonomy characteristic of self-triggeapgroaches to determine when and
what information is needed. Agents make promises to theghhers about their future states
and inform them if these promises are violated later (heheecbnnection with event-triggered
control). With the extra information provided by the avhildy of the promises, each agent
computes the next time that an update is required and reqgurstmation from their neighbors
accordingly to guarantee the monotonicity of the LyapunavwcfionV introduced in Sectionlll

(hence the connection with self-triggered control).

A. Promises

A promisecan be either a time-varying set of states (state promisejoatrols (control

promise) that an agent sends to another agent.

Definition IV.1 (State promises and rules)A state promisehat agentj € {1,..., N} makes
to agent; at timet is a set-valued, continuous (with respect to the Hausdasthdce) function
Xi[t] € C°([t,00); P*(X;)). A state promise ruldor agentj € {1,..., N} generated at time
t is a continuous (with respect to the distanég, defined in [(1)) map of the form?; :
€° ([t,00); Tiewyog BE(H)) = €° ([t 00) B ().
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The notationX[t](¢') conveys the promise;(t') € X[t](t') that agentj makes at time to
agenti about timet’ > t. A state promise rule is simply a way of generating state gsem
This means that if agentmust send information to agentt timet, it sends the state promise
Xi[t] = R?(XX/[']|[t,oo))- We require that, in the absence of communication delay®serin the
state measurements, the promises generated by a rule lapeofberty that\;[¢](t) = {z;(t)}.
For simplicity, when the time at which a promise is receivea ot relevant, we use the notation
X;?[-], or simpIij. All promise information available to agentc {1,..., N} at some time
tis given by X [fj0) = (ifeoe) { X [ioe) ien) € C° <[t7 0); [Lienmugy PCC(X;J)- To
extract information from this about a specific timle we useX}[-](¢') or simply X}/(t') =
(i (), AX[1() Yen) € [Tjenayug P(X;). The generality of the above definitions allow
promise sets to be arbitrarily complex but we restrict oweseto promise sets that can be

described with a finite number of parameters.

Remark IV.2 (Example promise and rule) Alternative to directly sending state promises,
agents can share their promises based on their controlrrétha their state. The notation
U:[t](t') conveys the promise;(t') € Uj[t](t') that agentj makes at time to agenti about
time ¢ > ¢. Given the dynamics of ageritand stater;(¢) at timet, agenti can compute the

state promise fot’ > t,

X;[t] (t)y ={z € X; | u, : [t,t'] = U; with u;(s) € U;[t](s) for s € [t, 1] 9)

tl
such thatr = e~ (t) + / =" B, (1)dr}.
t

As an example, giveni € {1,..., N}, a continuous control law; : [ T;c ;i) (i) = Uj,
andd; > 0, the ball-radius control promise ruldor agent; generated at time is

RP(X [ ittoe)) (1) = Blug(X3:(1)),0;) Ny ' >t (10)
Note that this promise is a ball of radidsin the control spacé/; centered at the control signal
used at time. Depending on whethey; is constant or changes with time, we refer to it as the
static or dynamic ball-radius rule, respectively. The pismrcan be sent with three parameters,

the stater;(¢) when the promise was sent, the control actignX?}(¢)) at that time, and the

radiusd; of the ball. The state promise can then be generated Using (9) °

Promises allow agents to predict the evolution of their hieays more accurately, which

directly affects the network behavior. In general, tighbmises correspond to agents having
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good information about their neighbors, which at the sameetmay result in an increased
communication effort (since the promises cannot be keploiog periods of time). On the other
hand, loose promises correspond to agents having to useagonservative controls due to the
lack of information, while at the same time potentially lgeimble to operate for longer periods
of time without communicating (because promises are ndated).

The availability of promises equips agents with set-valuddrmation models about the state
of other agents. This fact makes it necessary to addres®fimitidn of distributed controllers that
operate on sets, rather than points. We discuss this indd¢éBfiBl. The additional information
that promises represent is beneficial to the agents becadsereases the amount of uncertainty
when making action plans. Sectibn IV-C discusses this imibdfinally, these advantages rely
on the assumption that promises hold throughout the ewsiuths the state of the network
changes and the level of task completion evolves, agentstrdegide to break former promises

and make new ones. We examine this in Sedfion 1V-D.

B. Controllers on set-valued information models

Here we discuss the type of controllers that the team-treggyeapproach relies on. The
underlying idea is that, since agents possess set-valtmdiation about the state of other agents
through promises, controllers themselves should be debneskts, rather than on points. There
are different ways of designing controllers that operatih wet-valued information depending on
the type of system, its dynamics, or the desired task, see[84). For the problem of interest
here, we offer the following possible goals. One may be éstd in simply decreasing the
value of a Lyapunov function as fast as possible, at the dostone communication or sensing.
Alternatively, one may be interested in choosing the stabd controller such that the amount
of required information is minimal at a cost of slower comgesice time. We consider continuous

.....

that satisfy
V.V (x) (A + B ({2})) <0, ie{l,... N}, (11a)
N
> ViV(z) (Awi + Bt ({x})) < 0. (11b)

In other words, if exact, singleton-valued information isidable to the agents, then the con-

troller u** guarantees the monotonic evolution of the Lyapunov fundtioWe assume that™ is
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distributed over the communication graghAs before, this means that for eack {1,..., N},
the ith component;;* can be computed with information if[; .;,¢;y P(X;) rather than in
the full space[ ],y P(4)).

Controllers of the above form can be derived from the avditgbof the controller u* :
X — U introduced in Sectioflll. Specifically, let : H;V:l P(X;) — X be a continuous
map that is distributed ove¥ and satisfies, for eache {1,..., N}, that £;(Y) € Y; for each
Y e Hj.vzl Pe°(X;) and E;({y}) = y; for eachy € X. Essentially, what the map does for each

agent is select a point from the set-valued information ihpbssesses. Now, define
(V) =u"(E(Y)). (12)

Note that this controller satisfies (11a) ahd (11b) becatissatisfies[(da) and_(4b).

Example 1V.3 (Controller definition with the ball-radius pr omise rules) Here we construct
a controlleru** using [12) for the case when promises are generated acgdalihe ball-radius
control rule described in Remaltk 1V.2. To do so, note thasisufficient to define the map
E: H;.Vzl P(X;) — X only for tuples of sets of the form given ihl(9), where the esponding
control promise is defined bj/ (1L0). With the notation of Rekfla2] recall that the promise that
an agentj sends at time is conveyed through three parametéys v;,d;), the statey; = z;(¢)
when the promise was sent, the control actigr= u;(X3-(t)) at that time, and the radius of

the ball. We can then define thgh component of the map as
tl
Ej(Xa[t)(t), .., Xn[t)(t) = M0y, + / e Bjuydr,
t

which is guaranteed to be iX;[t|(#') for ¢ > t. This specification amounts to each agent
calculating the evolution of its neighborse N (i) as if they were using a zero-order hold

control. °

C. Self-triggered information updates

Here we discuss how agents use the promises received froen afjents to generate self-
triggered information requests in the future. Ligt, be some time at which agentreceives
updated information (i.e., promises) from its neighborsitiUthe next time information is

obtained, agent has access to the collection of functio, describing its neighbors’ state
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and can compute its evolution under the controll&r via

; . t . .
x;i(t) = eAi(t_t'Zasl)xi(tfast) +/ eAi(t_T)Biu;k* (Xy(r)dr, t> tiaer (13)

Hast
Note that this evolution of agent can be viewed as a promise that it makes to itself, i.e.,
XI(t) = {z;(t)}. With this in place,i can schedule the next timg,,, at which it will need
updated information from its neighbors by computing the sixaase time evolution of along
its trajectory among all the possible evolutions of its héigrs given the information contained
in their promises. Formally, we define, fofy € J[,c o PC(X)),

LVER(Yy) = sup ViV (ynx) (Aiyi + Biui™(Yn)) s (14)

YNEY N

wherey; is the element ofj,, corresponding ta. Then, the trigger for when agehnheeds new
information from its neighbors is similar t@1(8), where wewnase the promise sets instead of
the guaranteed sets. Specifically, the critical time at tvlmormation is requested is given by
th o = max{tlhy + Tyser t*}, WhereTyser > 0 is an a priori chosen parameter that we discuss

below andt* is implicitly defined by
t" = min{t > tipq | L;V(X (1)) = 0} (15)

This ensures that fot € [t t*), agenti is guaranteed to be contributing positively to the
desired task. We refer ), — ti.; @s the self-triggered request time. The paraméjgg; > 0
is the self-triggered dwell timeWe introduce it because, in general, it is possible that ¢/,
implying that instantaneous communication is requirece @vell time is used to prevent this
behavior as follows. Note thaf,Vs"{(X}.(¢)) < 0 is only guaranteed while¢’ € [t.q,t"].
Therefore, in case that,, = tiq+ Tasern 1-€., if t* < tho+ Tasern agenti uses the safe-mode
control duringt’ € (t*, ti,+ Tuser] to leave its state fixed. This design ensures the monotgnicit
of the evolution ofl” along the network execution. The team-triggered contradledefined by
W) = u(Xy(t), ift <t (16)
uSl(z(t)),  if t > t¥,
for t € [thes thex) Wheret* is given by [Ib). Note that the self-triggered dwell tifigserr Only
limits the frequency at which an agentcan requestinformation from its neighbors and does
not provide guarantees on inter-event times of when its mgnsoupdated or its control is

recomputed. If a neighboring agent sends information tontageoefore this dwell time has
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expired (because that agent has broken a promise), thgetsgagent to update its memory

and potentially recompute its control law.

D. Event-triggered information updates

Agent promises may need to be broken for a variety of reagamsinstance, an agent might
receive new information from its neighbors, causing it t@amye its former plans. Another
example is given by an agent that made a promise that is nettabkeep for as long as it
anticipated. Consider an agent {1,..., N} that has sent a promisIéf [tiasy 1O @ neighboring
agent; at some timet,. If agenti ends up breaking its promise at tinte > ¢, i.€.,
z:(t*) & X! [tas] (), then it is responsible for sending a new promi§ht ... to agent; at time
tnext = Max{tast+ Tq.evens "}, WhereTy event> 0 iS @n a priori chosen parameter that we discuss
below. This implies thai must keep track of promises made to its neighbors and mathiéon
in case they are broken. Note that this mechanism is implaabEnbecause each agent only
needs information about its own state and the promises infede to determine whether the
trigger is satisfied.

The parametefy cvent> 0 is known as theevent-triggered dwell tim&Ve introduce it because,
in general, the time* — t,; between when ageritmakes and breaks a promise to an agent
might be arbitrarily small. The issue, however, is that ik tast+ T4.evers 2g€Nt; Operates under
incorrect information about agentfor ¢ € [t*, tjast + Tueveny- We deal with this by introducing
a warning message WARN that agénnust send to agentwhen it breaks its promise at time
t* < tiast+ Ty event If @gent; receives such a warning message, it redefines the proﬁjissing
the guaranteed sefg| (7) as follows,

Xo= {J Xtz)= U Rt-t.w) (17)
z € X7 [](t*) T €X][1(t*)
for t > t*, until the new message arrives at timigy = tiast + Zyeven: By definition of the

reachable set, the promis€/[|(¢) is guaranteed to contairy(t) for t > t*.

Remark IV.4 (Promise expiration times) It is also possible to set an expiration tiriig, >
Ty eventfOr the validity of promises. If this in effect and a promisemade at),g, it is only valid

for ¢ € [tiast tiast + Texp]. The expiration of the promise triggers the formulation afeav ones
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The combination of the self- and event-triggered informratipdates described above together
with the team-triggered controller®@™ as defined in[{16) gives rise to thEEAM-TRIGGERED
LAW, which is formally presented in Algorithinl 1. The self-treygd information request in
Algorithm[1 is executed by an agent anytime new informatsreceived, whether it was actively

requested by the agent, or was received from some neighlgotodiine breaking of a promise.

Algorithm 1 : TEAM-TRIGGERED LAW

(Self-trigger information update)

At any timet agenti € {1,..., N} receives new promise(sY;[t] from neighbor(s)j € N (i), agenti performs:
1: compute own control#2"™(+') for ¢’ > ¢ using [16)

2: compute own state evolutior (') for ¢’ > ¢ using [13)

3: compute first timeg* > ¢ such thatZ; V*"(X i (t*)) = 0

4: schedule information request to neighborarinx{t* — ¢, Tyseir} Seconds
(Respond to information request)
At any time¢ a neighborj € A/ (i) requests information, agenatperforms:

1: send new promis&’ [t] = RS(X ) [|j,00)) O agent;

(Event-trigger information update)
At all times ¢, agent: performs:

1: if there existsi € N (i) such thatz;(t) ¢ X7[-](t) then

2:  if agenti has sent a promise tpat some timéast € (t — Taevens t] then

3: send warning message WARN to aggrt timet

4: schedule to send new promisé [tiast + Tueven] = RS(XAr[]|[trsct Ty vensoc)) 10 BGENE N tast + T event— ¢ SECONAS
5.  else

6: send new promisé&? [t] = R3(XAr[])t,00)) to agentj at timet

7. endif

8: end if

(Respond to warning message)

At any time¢ agenti € {1,..., N} receives a warning message WARN from aggmrt N (i)

1: redefine promise set;[-](t') = ijexj[,](t)Rj(t’ —t,x;) for ¢’ >t

V. CONVERGENCE OF THE TEAMTRIGGERED LAW

Here we analyze the convergence properties ofTtheM-TRIGGERED LAW. Our first result

establishes the monotonic evolution of the Lyapunov fumcti” along the network trajectories.

Proposition V.1 Consider a networked cyber-physical system as describeSetion[Il ex-

ecuting theTEAM-TRIGGERED LAW (cf. Algorithm[1) based on a continuous controllgr :
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[Ticq, vy P(X;) — R™ that satisfieqL]) and is distributed over the communication gragh

Then, the functio’” is monotonically nonincreasing along any network trajegto

Proof: We start by noting that the time evolution Bfunder AlgorithnTl is continuous and
piecewise continuously differentiable. Moreover, at tineetinstants when the time derivative is

well-defined, one has

%V(x(t)) = Z ViV (@ (1)) (Aii(t) + BuiMt)) (18)

N
< Z sup ViV (yn) (Aizi(t) + BiuMt)) < 0.
i=1 UNEX (D)

As we justify next, the last inequality follows by design bEtTEAM-TRIGGERED LAW. For each

i€ {l,...,N}, if LV(X} (1)) <0, thenufa(t) = ui*(X} (t)) (cf. (X8)). In this case the

corresponding summand @f(18) is exadly/s"( X}/ (¢)), as defined ir(14). I£, V(X }(¢)) >

0, thenu!®Mt) = u$'(z;(t)), for which the corresponding summand bf](18) is exa6tly m
The next result characterizes the convergence propeftiesum-triggered coordination strate-

gies.

Proposition V.2 Consider a networked cyber-physical system as describeSeation Il exe-
cuting theTEAM-TRIGGERED LAW (cf. Algorithm[1) with dwell time§y sei; Tg.event > 0 based
over the communication gragh Then, any bounded network trajectory with uniformly bceohd

promises asymptotically approaches the desired/set

The requirements of uniformly bounded promises in Propmsi¥.2 means that there exists
a compact set that contains all promise sets. Note that shaiiomatically guaranteed if the
network state space is compact. Alternatively, if the sdtallowable controls are bounded,
a bounded network trajectory with expiration times for prees implemented as outlined in
Remark[1V.4 would result in uniformly bounded promises. fehare two main challenges in
proving Proposition VI2, which we discuss next.

The first challenge is that agents operate asynchronouslyaigents receive and send infor-
mation, and update their control laws possibly at differémies. To model asynchronism, we
use a procedure called analytic synchronization, see [83). [et the time schedule of agent

i be given byT* = {t},ti,...}, wheret, corresponds to théth time that agent receives
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information from one or more of its neighbors (the time salled™ is not known a priori by
the agent). Note that this information can be received beaxatequests it itself, or a neighbor
sends it toi because an event is triggered. Analytic synchronizatiomphki consists of merging

together the individual time schedules into a global timieesiule7 = {t,, 1, ...} by setting
T - U,f\ilTZ

Note that more than one agent may receive information at amngdimet € 7. This synchro-
nization is done for analysis purposes only. For convemewe identifyZ-, with 7 via ¢ — t,.
The second challenge is that a strategy resulting from thendiggered approach has a
discontinuous dependence on the network state and the agemises. More precisely, the
information possessed by any given agent are trajectofie®ts for each of their neighbors,

i.e., promises. For convenience, we denote by

N
S=]]S» where

i=1

S, = C° (R; PE(X,) % - - X P(X_1) X A X P(Xy) X - - X IP’CC(XN)),

the space that the state of the entire network lives in. Nwdé this set allows us to capture the
fact that each agenthas perfect information about itself, as described in $adfi Although
agents only have information about their neighbors, thevalspace considers agents having
promise information about all other agents to facilitate #malysis. This is only done to allow
for a simpler technical presentation, and does not impaztvdlidity of the arguments made

here. The information possessed by all agents of the netatosiome time is collected in
(X [ iooys - - XV o)) € S,

where X[ to00) = (Xi[Jjjtoc)s - - -» Xi[Jjitoc)) € Si- Here,[] is shorthand notation to denote
the fact that promises might have been made at differentstirearlier thant. The TEAM-
TRIGGERED LAW corresponds to a discontinuous map of the fdfmx Z>, — S x Zx(. This
fact makes it difficult to use standard stability methodsralgze the convergence properties of
the network. Our approach to this problem consists of dejimirdiscrete-time set-valued map
M : S xZsy = S x Z>y, whose trajectories contain the trajectories of fE&AM-TRIGGERED

LAW. Although this ‘over-approximation procedure’ enlarghe et of trajectories to consider,
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the gained benefit is that of having a set-valued map wittablgtcontinuity properties that is
amenable to set-valued stability analysis. We descriteithdetail next.

We start by defining the set-valued map. Let (Z,¢) € S x Z>,. We define thg NV + 1)th
component of all the elements i (Z, /) to be/ + 1. Theith component of the elements in
M(Z,¢) is given by one of following possibilities. The first possilyi models the case when
agent:; does not receive any information from its neighbors. In tase, theth component of

the elements inV/(Z, ¢) is simply theith component ofZ,

<Z:7i|[t£+1,oo)7 Tt Z}VI[thrl,OO)) ) (19)

The second possibility models the case when agemas received information (including a

WARN message) from at least one neighbor: tttecomponent of the elements W (Z, /) is

(nl\[tg+1,oo)7 R Y]if\[tg+1,oo)) ) (20)

where each agent has access to its own state at all times,

(2

t
Yi(t) = ettt 78t ) +/ A Bt Y dr, > ey, (21a)
totq

(here, with a slight abuse of notation, we ug&™to denote the controller evaluated¥at) and,

Zj’nn x if 7 does not receive information from
+1,00
Y troe) = Wi ooy’ if 7 receives a warning message frgm (21b)

RS(Z3\11,,,.00)),  Otherwise

for j # i, whereW;(t) = U

t >ty as a result of the warning message.

)Xj.(t,zi) corresponds to the redefined promikel (17) for

ZiEZ; (tog1

We emphasize two properties of the set-valued méapFirst, any trajectory of th@eAm-
TRIGGERED LAW is also a trajectory of the non-deterministic dynamicaltaysdefined by),

(Z(tesr), L+ 1) € M(Z(t,), 0).

Second, although the map defined by treaM-TRIGGERED LAW is discontinuous, the set-
valued mapM is closed, as we show next (a set-valued rfiapX = Y is closed ifx, — =,

yr — y andy, € T'(z) imply thaty € T'(z)).
Lemma V.3 (Set-valued map is closed)lhe set-valued map/ : SxZs, = S xZ>, is closed.
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Proof: To show this we appeal to the fact that a set-valued map caomdpos$ a finite
collection of continuous maps is closed [34, E1.9]. Gieh (), the setM(Z, () is finitely
comprised of all possible combinations of whether or notatesl occur for every agent pair
i,7 € {1,...,N}. In the case that an agentloes not receive any information from its neighbors,

it is trivial to show that[(IB) is continuous if¥7, ¢) becauseZ;?[t[ ) is simply the restriction
+1,00

)
of Zj.m », to the interval[t,,1,00), for eachi € {1,..., N} andj € N(i). In the case that an
agent; does receive updated information, the above argumenthstitis for agentg that did
not send information to agernt If an agent; sends a warning message to agferiﬂ/jut[ L00)
+1,00

is continuous in(Z, ¢) by continuity of the reachable sets on their starting pdinan agent;

sends a new promise to agenty’; is continuous in(Z, ¢) by definition of the function

toy1,00
Rs. Finally, one can see thé@i[tuigl is)continuous in(Z,¢) from (21a). u
We are now ready to prove PropositionV.2.

Proof of Propositiori VI2: Here we resort to the LaSalle Invariance Principle for sstied
discrete-time dynamical systems [34, Theorem 1.21].Wet= S x Zs,, which is closed and
strongly positively invariant with respect td/. A similar argument to that in the proof of
PropositionL V.1 shows that the functidi is nonincreasing along/. Combining this with
the fact that the set-valued may is closed (cf. Lemm&\3), the application of the LaSalle
Invariance Principle implies that the trajectoriesidfthat are bounded in the fir8 components

approach the largest weakly positively invariant set coetd in
S*={(Z,0) e S xZso|3Z',0+1) € M(Z,¢) such thatV (Z") =V (Z)},
={(Z,0) € S x Zso | LV™(Z}y) >0 forallie{l,...,N}}. (22)
We now restrict our attention to those trajectories Mdf that correspond to th@eam-

TRIGGERED LAW. For convenience, leloc(Z,¢) : S x Zsy — X be the map that extracts

the true position information ifZ, ¢), i.e.,
loc(Z,0) = (Z{(te),..., Zy(t)) -

Given a trajectoryy of the TEAM-TRIGGERED LAW that satisfies all the assumptions of the
statement of Propositidn V.2, the bounded evolutions aritbumly bounded promises ensure
that the trajectoryy is bounded. Then, the omega limit $&ty) is weakly positively invariant and

hence is contained i6*. Our objective is to show that, for affy’, ¢) € Q(v), we havdoc(Z, ¢) €
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D. We show this reasoning by contradiction. LEf, ¢) € Q(v) but supposdoc(Z,¢) ¢ D.
This means thatC;V"*(Z},) > 0 for all ¢ € {1,...,N}. Take any agent, by the SELF
TRIGGERED INFORMATION UPDATES agent: will request new information from neighbors in
at mostTy <o Seconds. This means there exists a state/ + ¢') € () for which agenti has
just received updated information from its neighbgrs A/ (7). Since(Z’, ¢+ (') € S*, we know
L; V(7)) > 0. We also know, since information was just updated, Zjét: loc;(Z',0+1") is
exact for allj € N (i). But, by [II&),L;VS*(Zi) < 0 becausdoc(Z’, (+ (') ¢ D. This means
that each time any agemtupdates its information, we must hafeVSUp(Zj\/) = 0. However,
by (11ID), there must exist at least one agesuch thatC,VS*(Z}/) < 0 sinceloc(Z’, (+{') ¢ D,
which yields a contradiction. Thus for the trajectorieste§ tEAM-TRIGGERED LAW, (Z,/) € S*
implies thatloc(Z, /) € D. [
Given the convergence result of Proposition]V.2, a ternmmatondition for theTEAM-
TRIGGERED LAW could be included via the implementation of a distributedoathm that
employs tokens identifying what agents are using safe-incaietrollers, see e.g.| [35]. [36].
Also, according to the proof of Proposition V.2, the actualue of the event-triggered dwell
time Ty event does not affect the convergence property of the trajectoofethe constructed
discrete-time set-valued system. However, the dwell timesdaffect the rate of convergence
of the actual continuous-time system (as a larger dwell woreesponds to more time actually

elapsing between each step of the constructed discregesystem).

Remark V.4 (Availability of a safe-mode controller) The assumption on the availability of
the safe-mode controller plays an important role in the pafoProposition(V.2 because it
provides individual agents with a way of avoiding having @atéese impact on the monotonic
evolution of the Lyapunov function. We believe this assuompican be relaxed for dynamics
that allow agents to execute maneuvers that bring them lmatketr current state. Under such
maneuvers, the Lyapunov function will not evolve monotatlic but, at any given time, will

always guarantee to be less than or equal to its current elgeme future time. We have not

pursued this approach here for simplicity and instead defler future work. °

The next result states that, under theaAM-TRIGGERED LAW with positive dwell times, the

system does not exhibit Zeno behavior.
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Lemma V.5 (No Zeno behavior) Under the assumptions of Propositibn]V.2, the network exe-

cutions do not exhibit Zeno behavior.

Proof: Due to the self-triggered dwell tim&g <o, the self-triggered information request
steps in Algorithni Il guarantee that the minimum time befareagent; asks its neighbors for
new information isTy s > 0. Similarly, due to the event-triggered dwell timg cvens agent:
will never receive more than two messages (one accountsrénipe information, the other
for the possibility of a WARN message) from a neighboin a period of 7y event> 0 Seconds.
This means that any given agent can never receive an infimiteuat of information in finite
time. When new information is received, the control law| (t&h only switch a maximum of
two times until new information is received again. Specificaf an agent: is using the normal
control law when new information is received, it may switorttie safe-mode controller at most
one time until new information is received again. If insteadagent is using the safe-mode
control controller when new information is received, it maymediately switch to the normal
control law, and then switch back to the safe-mode contr@tene time in the future before
new information is received again. The result follows frdme fact that\ (:)] is finite for each
ie{l,...,N}. [

Remark V.6 (Adaptive self-triggered dwell time) Dwell times play an important role in pre-
venting Zeno behavior. However, a constant self-triggete@ll time throughout the network
evolution might result in wasted communication effort hesmasome agents might reach a state
where their effect on the evolution of the Lyapunov functismegligible compared to others. In
such case, the former agents could implement larger dwedisj thus decreasing communication
effort, without affecting the overall performance. Nexg give an example of such an adaptive
dwell time scheme. Let be a time at which agent € {1,..., N} has just received new
information from its neighborgV'(i). Then, the agent sets its dwell time to
S s OIRCIUDITPN }
Lty WO T (K5 0) = ) S

for some a priori chosen;, A; > 0. The intuition behind this design is the following. The

Téyseﬁ(t) = max {5d (23)

value ||uj*(X/{,(t)) — uS'(z;(t)))l2 can be interpreted as a measure of how far agestfrom
reaching a point where it cannot no longer contribute pesiito the global task. As agents

are nearing this point, they are more inclined to use the saige control to stay put and hence
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do not require fresh information. Therefore, if agens close to this point but its neighbors
are not, [[2B) sets a larger self-triggered dwell time to dmicessive requests for information.
Conversely, if agent is far from this point but its neighbors are ndt, [23) sets alsawell
time to let the self-triggered request mechanism be therdyifactor in determining when new
information is needed. For ageinto implement this, in addition to current state informatand
promises, each neighbgre N (i) also needs to send the value|pf;f*(Xj\'/(t)) — uS'(2;(t)))]]2

at timet. In the case that information is not received from all newisb agent: simply uses

the last computed dwell time. Sectibn VIl illustrates thdaptive scheme in simulation. e

VI. ROBUSTNESS AGAINST UNRELIABLE COMMUNICATION

This section studies the robustness of the team-trigggppdoach in scenarios with packet
drops, delays, and communication noise. We start by intioduthe possibility of packet drops
in the network. For any given message an agent sends to armjleat, assume there is an
unknown probability) < p < 1 that the packet is dropped, and the message is never received
We also consider an unknown (possibly time-varying) comication delayA(t) < A in the
network for allt where A > 0 is known. In other words, if agent sends agent a message at
time ¢, agent; will not receive it with probabilityp or receive it at time + A(t) with probability
1 —p. We assume that small messages (i.e., 1-bit messages) camteeliably with negligible
delay. This assumption is similar to the “acknowledgmerast “permission” messages used
in other works, seé [28][ [37] and references therein. kasté also account for the possibility
of communication noise or quantization. We assume that agessamong agents are corrupted
with an error which is upper bounded by some> 0 known to the agents.

With this model, theTEAM-TRIGGERED LAW as described in Algorithinl 1 does not guarantee
convergence because the monotonic behavior of the Lyapfurmtion no longer holds. The
problem occurs when an ageptbreaks a promise to agentat some timet. If this occurs,
agent: will operate with invalid information (due to the sourcesesfor described above) and
computeL;V=""(X}/(t')) (as defined in[(14)) incorrectly faf > ¢.

Next, we discuss how thEEAM-TRIGGERED LAW can be modified in scenarios with unreliable
communication. To deal with communication noise, when aanag receives an estimated
promise)?;? from another agenf, it must be able to create a promise sqitthat contains the

actual promise that agepintended to send. We refer to this action as making a proretseadid.
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The following example shows how it can be done for the promiescribed in Rematk 1V.2.

Example VI.1 (Ball-radius promise rule with communication noise) In the scenario with
bounded communication noise, aggisends the control promise conveyed througlt), w;(X7(t)),
andg;, to agent at timet as defined in Remafk1V.2, buteceives instead; (), ;(X3/(t)), and
5;, where it knows thaliz; (t) —7;(t)l2 < @, |Ju;(X1(t)) — @3 (X1 (t))]2 < @, and|d; —d;] < 6,
given thatw andd are known a priori. To ensure that the promise agemperates with about

agent; contains the true promise made lyagenti can set

Ui(t) = B@(X3(t),0; +@ +8) ;¢ >t

J

To create the state promise from thisyould need the true state;(¢) of j at timet. However,

since only the estimaté’ (t) is available, we modify[{9) by
X;[t)(t) = Uy,eB o {z € X5 | Juy « [6,1] — U with u;(s) € Uilt](s) for s € [t, 1]
t/
such thaty = ey, —i—/ A Ba(T)dr}. e
t

We deal with the packet drops and communication delays wiming messages similar to
the ones introduced in Sectibn TV-D. Let an aggrireak its promise to agentat timet, then
agent;j sends; a new promise seK;?[t] for ¢’ > ¢t and warning message WARN. Since agéent
only receives WARN at time, the promise seX’[t] may not be available to agenfor ' > t.

If the packet is dropped, then the message never comes thrduthe packet is successfully
transmitted, thenX’[t](#') is only available fort’ > ¢ + A(t). In either case, we need a promise
setX’[-](t') for t' > t that is guaranteed to contain(t'). We do this by redefining the promise
using the reachable set, similarly {0 {17). Note that thissdoot require the agents to have
a synchronized global clock, as the timgsand¢ are both monitored by the receiving agent
7. In other words, it is not necessary for the message sent egtagto be timestamped. By
definition of reachable set, the promisg[](t') is guaranteed to contain;(t') for t' > t. If

at timet + A, agent: has still not received the promisg;[t] from j, it can send agenj a
request REQ for a new message at which pgimtould sendi a new promiseX;? [t + Al. Note
that WARN is not sent in this case because the message wasstedqurom; by i and not a

cause ofj breaking a promise td TheROBUST TEAM-TRIGGERED LAW, formally presented in

August 12, 2018 DRAFT



24

Algorithm 2 : ROBUST TEAM-TRIGGERED LAW

(Self-trigger information update)
At any timet¢ agent: € {1,..., N} receives new promise(sﬁ [t] from neighbor(s)i € N (¢), agent: performs:
1: create valid promisé(;[t] with respect taw
2. compute own control£2™(¢') for ¢’ > ¢ using [16)
: compute own state evolutior; (¢') for ¢ > ¢ using [13)
: compute first timeg* > ¢ such thatC; VS""(X i (t*)) = 0

: schedule information request to neighborsriax{t* — t, Ty seir} Seconds

3
4
5
6: while message fromj has not been receiveib
7 if current time equalg + max{t* — ¢, Tyser} + kA for k € Z>o then
8 send agenj a request REQ for new information
9 end if
10: end while
(Respond to information request)
At any timet a neighborj € N (i) requests information, agentperforms:
1: send new promis&7 [t] = R3(Xi[]|1,0)) tO agentj
(Event-trigger information update)
At all times ¢, agent: performs:
1: if there existsj € N (i) such thate;(t) ¢ Y7 [](¢) then
2: send warning message WARN to agegnt

3 if agent: has sent a promise tpat some timeiast € (t — Ty evens t| then

4: schedule to send new promidg [tiast -+ Tu.even] = R5(XAr [ (trasct Ty ovensoc)) 10 AYENT N tast + Taevent— ¢ SECONS
5 else

6 send new promis&7 [t] = R§(Xr[](,0)) to agentj

7:  endif

8: end if

(Respond to warning message)
At any timet agenti € {1,..., N} receives a warning message WARN from aggmrt A/ (7)
1: redefine promise set;[](t') = Uzgexj[_](t)Rj(t’ —t, ) for t’ >t
: while message fronj has not been receivedb
if current time equalg + kA for k € Z>, then

2
3
4: send agenj a request REQ for new information
5 end if

6

. end while

Algorithm[2, ensures the monotonic evolution of the Lyapufumction V' even in the presence
of packet drops, communication delays, and communicatomsen

The next result establishes the asymptotic correctnesgagiegs on theROBUST TEAM-
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TRIGGERED LAW. In the presence of communication noise or delays, conwesgean be

guaranteed only to a set that contains the desiredset

Corollary VI.2 Consider a networked cyber-physical system as describeseation[dl with
packet drops occurring with some unknown probabilit< p < 1, messages being delayed
by some known maximum deldy, and communication noise bounded by executing the
ROBUST TEAM-TRIGGERED LAW (cf. Algorithm[2) with dwell timedy sei, 74 event> 0 based on

-----

the communication grap§f. Let

DA@={rex| il LV*({z}x [ Uycpera®Bu) =0  (24)
xl, €B(x},,®) JENG) J J
forall i € {1,...,N}},
Then, any bounded network trajectory with uniformly bouhg®mises asymptotically converges

to D'(A,©) D D with probability 1.
Proof: We begin by noting that by equatioh_(11b), the definitibnl (IaH)d the continuity
of u**, D can be written as

D'(0,0)={z e X | ZViV(x)(A,-xi + B ({z})) > 0}.

One can see thab c D’(A,@) by noticing that, for anyr € D, @, A > 0, no matter which
JRi(A,y;). To show

that the bounded trajectories of tR@BUST TEAM-TRIGGERED LAW converge toD’, we begin

point zjy" € Bz}, ®) is taken, one hasy, € {2} X [Tjen) Yy e o
by noting that all properties af/ used in the proof of Propositidn V.2 still hold in the presenc
of packet drops, delays, and communication noise as lonkeainhe schedulé™ is unbounded

for each agent € {1,..., N}. In order for the time schedulg’ to be unbounded, each agent
must receive an infinite number of messages, @né oo. Since packet drops have probability

0 < p < 1, the probability that there is a finite number of updates for given agent over an
infinite time horizon is0. Thus, with probabilityl, there are an infinite number of information
updates for each agent. Using a similar argument to that ofrhal\V.5, one can show that the
positive dwell timesTg ser, g event > 0 €nsure that Zeno behavior does not occur, meaning that
t, — oo. Then, by the analysis in the proof of Proposition]V.2, thermed trajectories of\/

still converge toS* as defined in[(22).

August 12, 2018 DRAFT



26

For a bounded evolutiofn of theROBUST TEAM-TRIGGERED LAW, we have thaf)(vy) C S*is
weakly positively invariant. Note that, since agents mayenéave exact information about their
neighbors, we can no longer leverage properfies| (11a)[alg) (b precisely characterize().
We now show that for anyZ,¢) € Q(v), we haveloc(Z,¢) € D'. Let (Z,¢) € Q(y). This
means thatC;Vs'"*(Z},) > 0 for all i € {1,..., N}. Take any agent, by the ROBUST TEAM-
TRIGGERED LAW, agent; will request new information from neighbors in at mdgke seconds.
This means there exists a staté/, ¢ + (') € Q)(~) for which agent; has just received updated,
possibly delayed, information from its neighborss A (i). Since(Z’,¢ + ¢') € S*, we know
L;VS(Zi) > 0. We also know, since information was just updated, tAaf c {Z/'} x
[Tien) uy@(zjf,w)R(A,yj). Since (Z', ¢ + ') € S*, we know thatZ;VsW(Zi,) > 0, for all
i €{l,...,N}. This means thaloc(Z'. ¢ + ¢') C D', thusloc(Z,¢) € S* C D'. [

From the proof of Corollary_VI[2, one can see that the modifics made to the&kROBUST
TEAM-TRIGGERED LAW make the omega limit sets of its trajectories larger tharsehof the
TEAM-TRIGGERED LAW, resulting inD C D'. The setD’ depends on the Lyapunov functién
However, the difference betwedl'(A,w) and D vanishes asy and A vanish.

VIl. SIMULATIONS

In this section we present simulations of coordinationtetii@s derived from the team- and
self-triggered approaches in a planar multi-agent foromationtrol problem. Our starting point
is the distributed coordination algorithm based on grapidiy analyzed in[[38],[[39] which
makes the desired network formation locally (but not glohahsymptotically stable. In this
regard, the state space of Sectiondl corresponds to the domain of attraction of tlesicd
equilibria and, as long as the network trajectories do natdehis set, the convergence results
still hold. The local convergence result of the team-triggleapproach here is only an artifact of
the specific example and, in fact, if the assumptidns (4) atisfed globally, then the system
is globally asymptotically stabilized. The interesteddenis referred to [2] for a similar study
in a optimal networked deployment problem where the assiomgpthold globally.

Consider4 agents communicating over a graph which is only missing tigeél, 3) from the

complete graph. The agents seek to attain a rectangle fiomat side lengthsl and 2. Each
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agent has unicycle dynamics,

97; = Ui,

where0 < u; < umax = 5 and|v;| < vmax = 3 are the control inputs. The safe-mode controller is
then simply(u', v$) = 0. The distributed control law is defined as follows. Each agemputes

a goal point
pi(r) =i+ > (lw; — xll2 — dig) unit(w; — 27),
JEN (i)
whered,; is the pre-specified desired distance between agearid j, andunit(z; —z;) denotes

the unit vector in the direction of; — «,. Then, the control law is given by

u; = max {min{k[cos6; sin;]" - (p;(z) — ), umax}, 0},
vf = max {min{k(Z(p;(x) — z;) — 0;), Vmax}, —Vmax/

wherek > 0 is a design parameter. For our simulations wekset 150. This continuous control
law essentially ensures that the positigrmoves towardg? () when possible while the unicycle
rotates its orientation towards this goal. This control Ewvgures that” : (R2)N — R given by
V) =5 3 (e -l - )
(i.j)€E

is a nonincreasing function for the closed-loop system tal#ish the asymptotic convergence
to the desired formation. For the team-triggered approaehuse both static and dynamic ball-
radius promise rules. The controlle®®™ is then defined by[{16), where controllet* is given
by (I2) as described in Example IV.3. Note that although tfenahas no forward velocity when
using the safe controller, it will still rotate in place. Thtial conditions arer,(0) = (6,10)7,
22(0) = (7,3)T, 23(0) = (14,8)T, andz4(0) = (7,13)T and §;(0) = «/2 for all i. We begin by
simulating the team-triggered approach using fixed dwlés ofly seir = 0.3 andTy event= 0.003
and the static ball-radius promise of Remark 1V.2 with thensaadiusd = 1 for all agents.
Figure[1 shows the trajectories of tMEAM-TRIGGERED LAW.

To compare the team- and self-triggered approaches, wetebgaVy, the number of times

has requested new information (and thus has received a geeBsan each one of its neighbors)
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Fig. 1. Trajectories of an execution of ti&EAM-TRIGGERED LAW with fixed dwell times and promises. The initial and final

condition of each agent is denoted by an ‘x’ and an ‘0’, retipely.

and by N. the number of messagésas sent to a neighboring agent because it decided to break
its promise. The total number of messages for an executioViggm = >+, |V (i)| N + Ni.
Figure[2 compares the number of required communicationsoth Bpproaches. Remarkably,
for this specific example, the team-triggered approachestdapns the self-triggered approach
in terms of required communication without sacrificing argrfprmance in terms of time to
convergence (the latter is depicted through the evolutfche Lyapunov function in Figuriel 4(b)
below). Less overall communication has an important impactreducing network load. In
Figure[2(a), we see that very quickly all agents are requgstiformation as often as they can
(as restricted by the self-triggered dwell time), due todbeservative nature of the self-triggered
time computations. In the execution of tiEAM-TRIGGERED LAW in Figure[2(b), we see that
the agents are requesting information from one anotherftegsiently. Figurd12(c) shows that
agents were required to break a few promises early on in teeugon.

Next, we illustrate the role that the tightness of promisas bn the network performance.
With the notation of Remark 12 for the static ball-radiugde, let A = %max Note that when
A = 0, the promise generated by {10) is a singleton, i.e., an gxachise. On the other hand,
when A\ = 1, the promise generated bly {10) contains the reachable @@gsponding to no
actual commitment being made (i.e., the self-triggered@ggh). Figurél3 compares the value
of the Lyapunov function after a fixed amount of time (30 set)rand the total number of

messages se¥.,mm between agents by this time for varying tightness of promi3é&e dwell
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Fig. 2. Number of self-triggered requests made by each aigeah execution of the (a) self-triggered approach and (b)
team-triggered approach with fixed dwell times and promiBes the latter execution, (c) depicts the number of eveggéred

messages sent (broken promises) by each agent.
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Fig. 3. Plots of (a) the value of the Lyapunov function at adixiene (30 sec) and (b) the total number of messages exchanged

in the network by this time for the team-triggered approadth warying tightness of promises.

times here are fixed alyser = 0.3 and Ty event= 0.003. Note that a suitable choice of helps
greatly reduce the amount of communication compared to ¢lergggered approach\(= 1)
while maintaining a similar convergence rate.

Finally, we demonstrate the added benefits of using adampteenises and dwell times.
Figure[4(a) compares the total number of messages sent iselfriggered approach and
the team-triggered approaches with fixed promises and dinedls (FPFD), fixed promises and
adaptive dwell times (FPAD), adaptive promises and fixedlldtiaes (APFD), and adaptive
promises and dwell times (APAD). The parameters of the adapiwell time used in[(23) are
da = 0.15 andA; = 0.3. For agentj € {1,...,4}, the radiusy; of the dynamic ball-radius rule
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of RemarkIV:2 iss; () = 0.50[|u’*(X3(t)) —us'(z;(t))||2 +1075. This plot shows the advantage
of the team-triggered approach in terms of required comoatioin over the self-triggered one
and also shows the additional benefits of implementing thaptace promises and dwell time.
This is because by using the adaptive dwell time, agentslddoi wait longer periods for new
information while their neighbors are still moving. By ugithe adaptive promises, as agents near
convergence, they are able to make increasingly tightenises, which allows them to request
information from each other less frequently. As Figure 4bdws, the network performance is

not compromised despite the reduction in communication.

1000 - ‘
s00ll— _?e'f-t”g_gefed L erEb —— Self-triggered ]
ool eam-tr_lggere —— Team-triggered FPFD
N Team-triggered FPAD Team-triggered FPAD]
comm/00/} ___ Team-triggered APFD . Team-triggered APFD!
600\ ——_.Team-triggered APAD — -~ Team-triggered APAD
500 ]
400} =
300/
2007 e
100 L ” 7r,_,¢£;‘447
0=

(@) (b)

Fig. 4. Plots of (a) the total number of messages sent anché}kvolution of the Lyapunov functiol for executions of
self-triggered approach and the team-triggered apprsaectitn fixed promises and dwell times (FPFD), fixed promised an

adaptive dwell times (FPAD), adaptive promises and fixedlidiivees (APFD), and adaptive promises and dwell times (APAD

VIIl. CONCLUSIONS

We have proposed a novel approach, termed team-triggdra@dcombines ideas from event-
and self-triggered control for the implementation of disited coordination strategies for net-
worked cyber-physical systems. Our approach is based artsageking promises to each other
about their future states. If a promise is broken, this giggan event where the corresponding
agent provides a new commitment. As a result, the informasieailable to the agents is set-
valued and can be used to schedule when in the future furipdates are needed. We have
provided a formal description and analysis of team-triggecoordination strategies and have

also established robustness guarantees in scenarios \whem@unication is unreliable. The
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proposed approach opens up numerous venues for futureces@anong them, we highlight

the robustness under disturbances and sensor noise, merbgmodels for individual agents,
the design of team-triggered implementations that guaeatite invariance of a desired set in
distributed scenarios, the relaxation of the availabitifythe safe-mode control via controllers
that allow agents to execute maneuvers that bring them lwattkeir current state, relaxing the
requirement on the negative semidefiniteness of the desmvat the Lyapunov function along

the evolution of each individual agent, methods for the eysitic design of controllers that
operate on set-valued information models, understandiegirhplementation trade-offs in the
design of promise rules, analytic guarantees on the pediece improvements with respect to

self-triggered strategies, and the impact of evolving togies on the generation of promises.
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