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Team-triggered coordination for real-time

control of networked cyber-physical systems

Cameron Nowzari Jorge Cortés

Abstract

This paper studies the real-time implementation of distributed controllers on networked cyber-

physical systems. We build on the strengths of event- and self-triggered control to synthesize a unified

approach, termed team-triggered, where agents make promises to one another about their future states

and are responsible for warning each other if they later decide to break them. The information provided

by these promises allows individual agents to autonomouslyschedule information requests in the future

and sets the basis for maintaining desired levels of performance at lower implementation cost. We

establish provably correct guarantees for the distributedstrategies that result from the proposed approach

and examine their robustness against delays, packet drops,and communication noise. The results are

illustrated in simulations of a multi-agent formation control problem.

I. INTRODUCTION

A growing body of work studies the design and real-time implementation of distributed

controllers to ensure the efficient and robust operation of networked cyber-physical systems.

In multi-agent scenarios, energy consumption is correlated with the rate at which sensors take

samples, processors recompute control inputs, actuator signals are transmitted, and receivers are

left on listening for potential incoming signals. Performing these tasks periodically is costly,

might lead to inefficient implementations, or face hard physical constraints. To address these

issues, the goal of triggered control is to identify criteria that allow agents to tune the imple-

mentation of controllers and sampling schemes to the execution of the task at hand and the
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desired level of performance. In event-triggered control,the focus is on detecting events during

the network execution that are relevant from the point of view of task completion and should

trigger specific agent actions. In self-triggered control,the emphasis is instead on developing

tests that rely only on current information available to individual agents to schedule future

actions. Event-triggered strategies generally result in less samples or controller updates but,

when executed over networked systems, may be costly to implement because of the need for

continuous availability of the information required to check the triggers. Self-triggered strategies

are more easily amenable to distributed implementation butresult in conservative executions

because of the over-approximation by individual agents about the state of the environment and

the network. These strategies might be also beneficial in scenarios where leaving receivers on

to listen to potential messages is costly. Our objective in this paper is to build on the strengths

of event- and self-triggered control to synthesize a unifiedapproach for controlling networked

systems in real time that combines the best of both worlds.

Literature review: The need for systems integration and the importance of bridging the gap

between computing, communication, and control in the studyof cyber-physical systems cannot

be overemphasized [3], [4]. Real-time controller implementation is an area of extensive research

including periodic [5], [6], event-triggered [7], [8], [9], [10], and self-triggered [11], [12], [13]

procedures. Our approach shares with these works the aim of trading computation and decision

making for less communication, sensor, or actuator effort while still guaranteeing a desired

level of performance. Of particular relevance to this paperare works that study self- and event-

triggered implementations of controllers for networked cyber-physical systems. The predominant

paradigm is that of a single plant that is stabilized througha decentralized triggered controller

over a sensor-actuator network, see e.g. [14], [15], [16]. Fewer works have considered scenarios

where multiple plants or agents together are the subject of the overall control design. Exceptions

include consensus via event-triggered [17], [18], [19] or self-triggered control [17], [20], ren-

dezvous [21], model predictive control [22], and model-based event-triggered control [23], [24].

The event-triggered controller designed in [17] for a decentralized system with multiple plants

requires agents to have continuous information about each others’ states. The works in [17], [25]

implement self-triggered communication schemes to perform distributed control where agents

assume worst-case conditions for other agents when deciding when new information should be

obtained. Distributed strategies based on event-triggered communication and control are explored

August 12, 2018 DRAFT



3

in [26], where each agent has an a priori computed local errortolerance and once it violates it, the

agent broadcasts its updated state to its neighbors. The same event-triggered approach is taken

in [27] to implement gradient control laws that achieve distributed optimization. The works [23],

[28], [29] are closer in spirit to the ideas presented here. In the interconnected system considered

in [23], each subsystem helps neighboring subsystems by monitoring their estimates and ensuring

that they stay within some performance bounds. The approachrequires different subsystems to

have synchronized estimates of one another even though theydo not communicate at all times.

In [28], [29], agents do not have continuous availability ofinformation from neighbors and

instead decide when to broadcast new information to them.

Statement of contributions:We propose a novel scheme for the real-time control of net-

worked cyber-physical systems that combines ideas from event- and self-triggered control. Our

approach is based on agents making promises to one another about their future states and being

responsible for warning each other if they later decide to break them. This is reminiscent of

event-triggered implementations. Promises can be broad, from tight state trajectories to loose

descriptions of reachability sets. With the information provided by promises, individual agents

can autonomously determine when in the future fresh information will be needed to maintain a

desired level of performance. This is reminiscent of self-triggered implementations. The benefits

of the proposed scheme are threefold. First, because of the availability of the promises, agents do

not require continuous state information about neighbors,in contrast to event-triggered strategies

implemented over distributed systems that require the continuous availability of the information

necessary to check the relevant triggers. Second, because of the extra information provided by

promises about what other agents plan to do, agents can generally wait longer periods of time

before requesting new information and operate more efficiently than if only worst-case scenarios

are assumed, as is done in self-triggered control. Less overall communication is beneficial in

reducing the total network load and decreasing chances of communication delays or packet

drops due to network congestion. Lastly, we provide theoretical guarantees for the correctness

and performance of team-triggered strategies implementedover distributed networked systems.

Our technical approach makes use of set-valued analysis, invariance sets, and Lyapunov stability.

We also show that, in the presence of physical sources of error and under the assumption that

1-bit messages can be sent reliably with negligible delay, the team-triggered approach can be

slightly modified to be robust to delays, packet drops, and communication noise. Interestingly, the
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self-triggered approach can be seen as a particular case of the team-triggered approach where

promises among agents simply consist of their reachabilitysets (and hence do not actually

constrain their state). We illustrate the convergence and robustness results through simulation in

a multi-agent formation control problem, paying special attention to the implementation costs

and the role of the tightness of promises in the algorithm performance.

Organization: Section II lays out the problem of interest. Section III briefly reviews current

real-time implementation approaches based on agent triggers. Section IV presents the team-

triggered approach for networked cyber-physical systems.Sections V and VI analyze the correct-

ness and robustness, respectively, of team-triggered strategies. Simulations illustrate our results

in Section VII. Finally, Section VIII gathers our conclusions and ideas for future work.

Notation: We letR, R≥0, andZ≥0 denote the sets of real, nonnegative real, and nonnegative

integer numbers, respectively. The two-norm of a vector is‖ · ‖2. Given x ∈ R
d and δ ∈ R≥0,

B(x, δ) denotes the closed ball centered atx with radiusδ. ForAi ∈ R
mi×ni with i ∈ {1, . . . , N},

we denote bydiag (A1, . . . , AN) ∈ R
m×n the block-diagonal matrix withA1 throughAN on the

diagonal, wherem =
∑N

i=1mi andn =
∑N

i=1 ni. Given a setS, we denote by|S| its cardinality.

We let Pc(S), respectivelyPcc(S), denote the collection of compact, respectively, compact and

connected, subsets ofS. The Hausdorff distance betweenS1, S2 ⊂ R
d is

dH(S1, S2) = max{sup
x∈S1

inf
y∈S2

‖x− y‖2, sup
y∈S2

inf
x∈S1

‖x− y‖2}.

The Hausdorff distance is a metric on the set of all non-emptycompact subsets ofRd. Given

two bounded set-valued functionsC1, C2 ∈ C0(I ⊂ R;Pc(Rd)), its distance is

dfunc(C1, C2) = sup
t∈I

dH(C1(t), C2(t)). (1)

An undirected graphG = (V,E) is a pair consisting of a set of verticesV = {1, . . . , N} and

a set of edgesE ⊂ V × V such that if(i, j) ∈ E, then (j, i) ∈ E. The set of neighbors of a

vertex i is N (i) = {j ∈ V | (i, j) ∈ E}. Given v ∈
∏N

i=1R
ni , we let viN = (vi, {vj}j∈N (i))

denote the components ofv that correspond to vertexi and its neighbors inG.

II. NETWORK MODELING AND PROBLEM STATEMENT

We consider a distributed control problem carried out over an unreliable wireless network.

ConsiderN agents whose communication topology is described by an undirected graphG. The
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fact that(i, j) belongs toE models the ability of agentsi andj to communicate with one another.

The agentsi can communicate with are its neighborsN (i) in G. The state ofi ∈ {1, . . . , N},

denotedxi, belongs to a closed setXi ⊂ R
ni. The network statex = (x1, . . . , xN ) therefore

belongs toX =
∏N

i=1Xi. According to the discussion above, agenti can accessxi
N when it

communicates with its neighbors. By assumption, each agenthas access to its own state at all

times. We consider linear dynamics for eachi ∈ {1, . . . , N},

ẋi = fi(xi, ui) = Aixi +Biui, (2)

with Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , and ui ∈ Ui. Here,Ui ⊂ R
mi is a closed set of allowable

controls for agenti. We assume the existence of asafe-modecontrollerusf
i : Xi → Ui,

Aixi +Biu
sf
i (xi) = 0, for all xi ∈ Xi,

i.e., a controller able to keep agenti’s state fixed. The existence of a safe-mode controller for a

general controlled system may seem restrictive, but there exist many cases, including nonlinear

systems, that admit one, such as single integrators or vehicles with unicycle dynamics. Letting

u = (u1, . . . , uN) ∈ U =
∏N

i=1 Ui, the dynamics can be described by

ẋ = Ax+Bu, (3)

with A = diag (A1, . . . , AN) ∈ R
n×n andB = diag (B1, . . . , BN) ∈ R

n×m, wheren =
∑N

i=1 ni,

and m =
∑N

i=1mi. We refer to the team of agents with communication topologyG and

dynamics (3), where each agent has a safe-mode controller and access to its own state at all times,

as anetworked cyber-physical system. The goal is to drive the agents’ states to some desired

closed set of configurationsD ⊂ X and ensure that it stays there. Depending on howD is defined,

this objective can capture different coordination tasks, including deployment, rendezvous, and

formation control. The goal of the paper is not to design the controller that achieves this but

rather synthesize efficient strategies for the real-time implementation of a given controller.

Given the agent dynamics, the communication graphG, and the setD, our starting point is the

availability of a control law that drives the system asymptotically to D. Formally, we assume

that a continuous mapu∗ : X → U and a continuously differentiable functionV : X → R,
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bounded from below exist such thatD is the set of minimizers ofV and, for allx /∈ D,

∇iV (x) (Aixi +Biu
∗
i (x)) ≤ 0, i ∈ {1, . . . , N}, (4a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗
i (x)) < 0. (4b)

We assume that both the control lawu∗ and the gradient∇V are distributed overG. By this we

mean that, for eachi ∈ {1, . . . , N}, the ith component of each of these objects only depends on

xi
N , rather than on the full network statex. For simplicity, and with a slight abuse of notation,

we write u∗
i (x

i
N ) ∈ Ui and ∇iV (xi

N ) ∈ R
ni to emphasize this fact when convenient. This

property has the important consequence that agenti can compute these quantities with the exact

information it can obtain through communication onG.

Remark II.1 (Assumption on non-negative contribution of each agent to task comple-

tion) Note that (4b) simply states thatV is a Lyapunov function for the closed-loop system.

Instead, (4a) is a more restrictive assumption that essentially states that each agent does not

individually contribute in a negative way to the evolution of the Lyapunov function. This latter

assumption can in turn be relaxed [14] by selecting parametersα1, . . . , αN ∈ R with
∑N

i=1 αi = 0

(note that someαi would be positive and others negative) and specifying instead that, for each

i ∈ {1, . . . , N}, the left-hand side of (4a) should be less than or equal toαi. Along these lines,

one could envision the design of distributed mechanisms to dynamically adjust these parameters,

but we do not go into details here for space reasons. •

From an implementation viewpoint, the controlleru∗ requires continuous agent-to-agent com-

munication and continuous updates of the actuator signals,making it unfeasible for practical

scenarios. In the following section we develop a self-triggered communication and control

strategy to address the issue of selecting time instants forinformation sharing.

III. SELF-TRIGGERED COMMUNICATION AND CONTROL

This section provides an overview of the self-triggered communication and control approach

to solve the problem described in Section II. In doing so, we also introduce several concepts

that play an important role in our discussion later. The general idea is to guarantee that the time

derivative of the Lyapunov functionV along the trajectories of the networked cyber-physical
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system (3) is less than or equal to0 at all times, even when the information used by the agents

is inexact.

To model the case that agents do not have perfect informationabout each other at all times, we

let each agenti ∈ {1, . . . , N} keep an estimatêxi
j of the state of each of its neighborsj ∈ N (i).

Since i always has access to its own state,x̂i
N (t) = (xi(t), {x̂i

j(t)}j∈N (i)) is the information

available to agenti at timet. Since agents do not have access to exact information at all times,

they cannot implement the controlleru∗ exactly, but instead use the feedback law

uself
i (t) = u∗

i (x̂
i
N (t)).

We are now interested in designing a triggering method such that agenti can decide when̂xi
N (t)

needs to be updated. Lettlast be the last time at which all agents have received information from

their neighbors. Then, the timetnext at which the estimates should be updated is when

d

dt
V (x(tnext)) =

N∑

i=1

∇iV (x(tnext))
(
Aixi(tnext) +Biu

self
i (tlast)

)
= 0. (5)

Unfortunately, (5) requires global information and cannotbe checked in a distributed way.

Instead, one can define a local event that defines when a singleagenti ∈ {1, . . . , N} should

update its information as any time that

∇iV (x(t))
(
Aixi(t) +Biu

self
i (t)

)
= 0. (6)

As long as each agenti can ensure the local event (6) has not yet occurred, it is guaranteed that (5)

has not yet occurred either. The problem with this approach is that each agenti ∈ {1, . . . , N}

needs to have continuous access to information about the state of its neighborsN (i) in order to

evaluate∇iV (x) = ∇iV (xi
N ) and check condition (6). The self-triggered approach removes this

requirement on continuous availability of information by having each agent employ instead the

possibly inexact information about the state of their neighbors. The notion of reachability set

plays a key role in achieving this. Giveny ∈ Xi, the reachable setof points under (2) starting

from y in s seconds is,

Ri(s, y) = {z ∈ Xi | ∃ ui : [0, s] → Ui such thatz = eAisy +

∫ s

0

eAi(s−τ)Biui(τ)dτ}.

Using this notion, if agents have exact knowledge about the dynamics and control sets of

its neighboring agents (but not their controllers), each agent can construct, each time state

information is received, sets that are guaranteed to contain their neighbors’ states.
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Definition III.1 (Guaranteed sets) If tilast is the time at which agenti receives state information

xj(t
i
last) from its neighborj ∈ N (i), then theguaranteed setis given by

X
i
j(t, t

i
last, xj(t

i
last)) = Rj(t− tilast, xj(t

i
last)) ⊂ Xj , (7)

and is guaranteed to containxj(t) for t ≥ tilast.

We letXi
j(t) = X

i
j(t, t

i
last, xj(t

i
last)) when the starting statexj(t

i
last) and timetilast do not need

to be emphasized. We denote byXi
N (t) = (xi(t), {X

i
j(t)}j∈N (i)) the information available to

agenti at time t.

Remark III.2 (Computing reachable sets) Finding the guaranteed or reachable sets (7) can

be in general computationally expensive. A common approachconsists of computing over-

approximations to the actual reachable set via convex polytopes or ellipsoids. There exist efficient

algorithms to calculate and store these for various classesof systems, see e.g., [30], [31].

Furthermore, agents can deal with situations where they do not have exact knowledge about

the dynamics of their neighbors (so that the guaranteed setscannot be computed exactly) by

employing over-approximations of the actual guaranteed sets. •

With the guaranteed sets in place, we can now provide a test that allows agents to determine

when they should update their current information and control signals. At timetilast, agent i

computes the next timetinext ≥ tilast to acquire information via

sup
yN∈Xi

N (tinext)

∇iV (yN )
(
Aixi(t

i
next) +Biu

self
i (tinext)

)
= 0. (8)

By (4a) and the fact thatXi
j(t

i
last) = {xj(t

i
last)}, at timetilast,

sup
yN∈Xi

N (tilast)

∇iV (yN )
(
Aixi(t

i
last) +Biu

self
i (tilast)

)
= ∇iV (xi

N (tilast))
(
Aixi(t

i
last) +Biu

self
i (tilast)

)
≤ 0.

If all agents use this triggering criterion for updating information, it is guaranteed thatd
dt
V (x(t)) ≤

0 at all times because, for eachi ∈ {1, . . . , N}, the true statexj(t) is guaranteed to be inXi
j(t)

for all j ∈ N (i) and t ≥ tilast.

The condition (8) is appealing because it can be evaluated byagenti with the information

it possesses at timetilast. Once determined, agenti schedules that, at timetinext, it will request

updated information from its neighbors. We refer totinext− tilast as theself-triggered request time

for agenti. Due to the conservative way in whichtinext is determined, it is possible thattinext = tilast
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for somei, which would mean that instantaneous information updates are necessary (note that

this cannot happen for alli ∈ {1, . . . , N} unless the network state is already inD). This can be

dealt with by introducing a dwell time such that a minimum amount of time must pass before

an agent can request new information and using the safe-modecontroller while waiting for the

new information. We do not enter into details here and defer the discussion to Section IV-C.

The problem with the self-triggered approach is that the resulting times are often conservative

because the guaranteed sets can grow large quickly as they capture all possible trajectories of

neighboring agents. It is conceivable that improvements can be made from tuning the guaranteed

sets based on what neighboring agentsplan to do rather than what theycando. This observation

is at the core of the team-triggered approach proposed next.

IV. TEAM-TRIGGERED COORDINATION

This section presents the team-triggered approach for the real-time implementation of dis-

tributed controllers on networked cyber-physical systems. The team-triggered approach incorpo-

rates the reactive nature of event-triggered approaches and, at the same time, endows individual

agents with the autonomy characteristic of self-triggeredapproaches to determine when and

what information is needed. Agents make promises to their neighbors about their future states

and inform them if these promises are violated later (hence the connection with event-triggered

control). With the extra information provided by the availability of the promises, each agent

computes the next time that an update is required and requests information from their neighbors

accordingly to guarantee the monotonicity of the Lyapunov functionV introduced in Section II

(hence the connection with self-triggered control).

A. Promises

A promise can be either a time-varying set of states (state promise) orcontrols (control

promise) that an agent sends to another agent.

Definition IV.1 (State promises and rules)A state promisethat agentj ∈ {1, . . . , N} makes

to agenti at timet is a set-valued, continuous (with respect to the Hausdorff distance) function

X i
j[t] ∈ C0([t,∞);Pcc(Xj)). A state promise rulefor agentj ∈ {1, . . . , N} generated at time

t is a continuous (with respect to the distancedfunc defined in (1)) map of the formRs
j :

C0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)
→ C0 ([t,∞);Pcc (Xj)).
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The notationX i
j [t](t

′) conveys the promisexj(t
′) ∈ X i

j [t](t
′) that agentj makes at timet to

agenti about timet′ ≥ t. A state promise rule is simply a way of generating state promises.

This means that if agentj must send information to agenti at timet, it sends the state promise

X i
j[t] = Rs

j(X
j
N [·]|[t,∞)). We require that, in the absence of communication delays or noise in the

state measurements, the promises generated by a rule have the property thatX i
j [t](t) = {xj(t)}.

For simplicity, when the time at which a promise is received is not relevant, we use the notation

X i
j[·], or simplyX i

j . All promise information available to agenti ∈ {1, . . . , N} at some time

t is given byX i
N [·]|[t,∞) = (xi|[t,∞), {X

i
j[·]|[t,∞)}j∈N (i)) ∈ C0

(
[t,∞);

∏
j∈N (i)∪{i} P

cc(Xj)
)

. To

extract information from this about a specific timet′, we useX i
N [·](t′) or simply X i

N (t′) =

(xi(t
′), {X i

j[·](t
′)}j∈N (i)) ∈

∏
j∈N (i)∪{i} P

cc(Xj). The generality of the above definitions allow

promise sets to be arbitrarily complex but we restrict ourselves to promise sets that can be

described with a finite number of parameters.

Remark IV.2 (Example promise and rule) Alternative to directly sending state promises,

agents can share their promises based on their control rather than their state. The notation

U i
j [t](t

′) conveys the promiseuj(t
′) ∈ U i

j [t](t
′) that agentj makes at timet to agenti about

time t′ ≥ t. Given the dynamics of agentj and statexj(t) at time t, agenti can compute the

state promise fort′ ≥ t,

X i
j [t](t

′) = {z ∈ Xj | ∃ uj : [t, t
′] → Uj with uj(s) ∈ U i

j [t](s) for s ∈ [t, t′] (9)

such thatz = eAj(t′−t)xj(t) +

∫ t′

t

eAj(t′−τ)Bjuj(τ)dτ}.

As an example, givenj ∈ {1, . . . , N}, a continuous control lawuj :
∏

i∈N (j)∪{j} P
cc(Xi) → Uj ,

andδj > 0, the ball-radius control promise rulefor agentj generated at timet is

Rcb
j (X

j
N [·]|[t,∞))(t

′) = B(uj(X
j
N (t)), δj) ∩ Uj t′ ≥ t. (10)

Note that this promise is a ball of radiusδj in the control spaceUj centered at the control signal

used at timet. Depending on whetherδj is constant or changes with time, we refer to it as the

static or dynamic ball-radius rule, respectively. The promise can be sent with three parameters,

the statexj(t) when the promise was sent, the control actionuj(X
j
N (t)) at that time, and the

radiusδj of the ball. The state promise can then be generated using (9). •

Promises allow agents to predict the evolution of their neighbors more accurately, which

directly affects the network behavior. In general, tight promises correspond to agents having
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good information about their neighbors, which at the same time may result in an increased

communication effort (since the promises cannot be kept forlong periods of time). On the other

hand, loose promises correspond to agents having to use moreconservative controls due to the

lack of information, while at the same time potentially being able to operate for longer periods

of time without communicating (because promises are not violated).

The availability of promises equips agents with set-valuedinformation models about the state

of other agents. This fact makes it necessary to address the definition of distributed controllers that

operate on sets, rather than points. We discuss this in Section IV-B. The additional information

that promises represent is beneficial to the agents because it decreases the amount of uncertainty

when making action plans. Section IV-C discusses this in detail. Finally, these advantages rely

on the assumption that promises hold throughout the evolution. As the state of the network

changes and the level of task completion evolves, agents might decide to break former promises

and make new ones. We examine this in Section IV-D.

B. Controllers on set-valued information models

Here we discuss the type of controllers that the team-triggered approach relies on. The

underlying idea is that, since agents possess set-valued information about the state of other agents

through promises, controllers themselves should be definedon sets, rather than on points. There

are different ways of designing controllers that operate with set-valued information depending on

the type of system, its dynamics, or the desired task, see e.g., [32]. For the problem of interest

here, we offer the following possible goals. One may be interested in simply decreasing the

value of a Lyapunov function as fast as possible, at the cost of more communication or sensing.

Alternatively, one may be interested in choosing the stabilizing controller such that the amount

of required information is minimal at a cost of slower convergence time. We consider continuous

(with respect to the Hausdorff distance) controllers of theform u∗∗ :
∏

j∈{1,...,N} P
cc(Xj) → R

m

that satisfy

∇iV (x) (Aixi +Biu
∗∗
i ({x})) ≤ 0, i ∈ {1, . . . , N}, (11a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗∗
i ({x})) < 0. (11b)

In other words, if exact, singleton-valued information is available to the agents, then the con-

troller u∗∗ guarantees the monotonic evolution of the Lyapunov function V . We assume thatu∗∗ is
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distributed over the communication graphG. As before, this means that for eachi ∈ {1, . . . , N},

the ith componentu∗∗
i can be computed with information in

∏
j∈N (i)∪{i} P

cc(Xj) rather than in

the full space
∏

j∈{1,...,N} P
cc(Xj).

Controllers of the above form can be derived from the availability of the controller u∗ :

X → U introduced in Section II. Specifically, letE :
∏N

j=1 P
cc(Xj) → X be a continuous

map that is distributed overG and satisfies, for eachi ∈ {1, . . . , N}, thatEi(Y ) ∈ Yi for each

Y ∈
∏N

j=1 P
cc(Xj) andEi({y}) = yi for eachy ∈ X . Essentially, what the mapE does for each

agent is select a point from the set-valued information thatit possesses. Now, define

u∗∗(Y ) = u∗(E(Y )). (12)

Note that this controller satisfies (11a) and (11b) becauseu∗ satisfies (4a) and (4b).

Example IV.3 (Controller definition with the ball-radius pr omise rules) Here we construct

a controlleru∗∗ using (12) for the case when promises are generated according to the ball-radius

control rule described in Remark IV.2. To do so, note that it is sufficient to define the map

E :
∏N

j=1 P
cc(Xj) → X only for tuples of sets of the form given in (9), where the corresponding

control promise is defined by (10). With the notation of Remark IV.2, recall that the promise that

an agentj sends at timet is conveyed through three parameters(yj, vj, δj), the stateyj = xj(t)

when the promise was sent, the control actionvj = uj(X
j
N (t)) at that time, and the radiusδj of

the ball. We can then define thejth component of the mapE as

Ej(X1[t](t
′), . . . , XN [t](t

′)) = eAj(t
′−t)yj +

∫ t′

t

eAj(t
′−τ)Bjvjdτ,

which is guaranteed to be inXj[t](t
′) for t′ ≥ t. This specification amounts to each agenti

calculating the evolution of its neighborsj ∈ N (i) as if they were using a zero-order hold

control. •

C. Self-triggered information updates

Here we discuss how agents use the promises received from other agents to generate self-

triggered information requests in the future. Lettilast be some time at which agenti receives

updated information (i.e., promises) from its neighbors. Until the next time information is

obtained, agenti has access to the collection of functionsX i
N describing its neighbors’ state
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and can compute its evolution under the controlleru∗∗ via

xi(t) = eAi(t−tilast)xi(t
i
last) +

∫ t

tilast

eAi(t−τ)Biu
∗∗
i (X i

N (τ))dτ, t ≥ tilast. (13)

Note that this evolution of agenti can be viewed as a promise that it makes to itself, i.e.,

X i
i [·](t) = {xi(t)}. With this in place,i can schedule the next timetinext at which it will need

updated information from its neighbors by computing the worst-case time evolution ofV along

its trajectory among all the possible evolutions of its neighbors given the information contained

in their promises. Formally, we define, forYN ∈
∏

j∈N (i)∪{i} P
cc(Xj),

LiV
sup(YN ) = sup

yN∈YN

∇iV (yN ) (Aiyi +Biu
∗∗
i (YN )) , (14)

whereyi is the element ofyN corresponding toi. Then, the trigger for when agenti needs new

information from its neighbors is similar to (8), where we now use the promise sets instead of

the guaranteed sets. Specifically, the critical time at which information is requested is given by

tinext = max{tilast + Td,self, t
∗}, whereTd,self > 0 is an a priori chosen parameter that we discuss

below andt∗ is implicitly defined by

t∗ = min{t ≥ tilast | LiV
sup(X i

N (t)) = 0}. (15)

This ensures that fort ∈ [tilast, t
∗), agenti is guaranteed to be contributing positively to the

desired task. We refer totinext− tilast as the self-triggered request time. The parameterTd,self > 0

is theself-triggered dwell time. We introduce it because, in general, it is possible thatt∗ = tilast,

implying that instantaneous communication is required. The dwell time is used to prevent this

behavior as follows. Note thatLiV
sup(X i

N (t′)) ≤ 0 is only guaranteed whilet′ ∈ [tilast, t
∗].

Therefore, in case thattinext = tilast + Td,self, i.e., if t∗ ≤ tilast + Td,self, agenti uses the safe-mode

control duringt′ ∈ (t∗, tilast+Td,self] to leave its state fixed. This design ensures the monotonicity

of the evolution ofV along the network execution. The team-triggered controller is defined by

uteam
i (t) =




u∗∗
i (X i

N (t)), if t ≤ t∗,

usf
i (xi(t)), if t > t∗,

(16)

for t ∈ [tilast, t
i
next), wheret∗ is given by (15). Note that the self-triggered dwell timeTd,self only

limits the frequency at which an agenti can requestinformation from its neighbors and does

not provide guarantees on inter-event times of when its memory is updated or its control is

recomputed. If a neighboring agent sends information to agent i before this dwell time has

August 12, 2018 DRAFT



14

expired (because that agent has broken a promise), this triggers agenti to update its memory

and potentially recompute its control law.

D. Event-triggered information updates

Agent promises may need to be broken for a variety of reasons.For instance, an agent might

receive new information from its neighbors, causing it to change its former plans. Another

example is given by an agent that made a promise that is not able to keep for as long as it

anticipated. Consider an agenti ∈ {1, . . . , N} that has sent a promiseXj
i [tlast] to a neighboring

agent j at some timetlast. If agent i ends up breaking its promise at timet∗ ≥ tlast, i.e.,

xi(t
∗) /∈ Xj

i [tlast](t
∗), then it is responsible for sending a new promiseXj

i [tnext] to agentj at time

tnext = max{tlast+ Td,event, t
∗}, whereTd,event> 0 is an a priori chosen parameter that we discuss

below. This implies thati must keep track of promises made to its neighbors and monitorthem

in case they are broken. Note that this mechanism is implementable because each agent only

needs information about its own state and the promises it hasmade to determine whether the

trigger is satisfied.

The parameterTd,event> 0 is known as theevent-triggered dwell time. We introduce it because,

in general, the timet∗ − tlast between when agenti makes and breaks a promise to an agentj

might be arbitrarily small. The issue, however, is that ift∗ < tlast+Td,event, agentj operates under

incorrect information about agenti for t ∈ [t∗, tlast + Td,event). We deal with this by introducing

a warning message WARN that agenti must send to agentj when it breaks its promise at time

t∗ < tlast+Td,event. If agentj receives such a warning message, it redefines the promiseXj
i using

the guaranteed sets (7) as follows,

Xj
i [·](t) =

⋃

xi∈X
j
i
[·](t∗)

X
j
i (t, xi) =

⋃

xi∈X
j
i
[·](t∗)

Ri(t− t∗, xi) (17)

for t ≥ t∗, until the new message arrives at timetnext = tlast + Td,event. By definition of the

reachable set, the promiseXj
i [·](t) is guaranteed to containxi(t) for t ≥ t∗.

Remark IV.4 (Promise expiration times) It is also possible to set an expiration timeTexp >

Td,event for the validity of promises. If this in effect and a promise is made attlast, it is only valid

for t ∈ [tlast, tlast+ Texp]. The expiration of the promise triggers the formulation of anew one.•
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The combination of the self- and event-triggered information updates described above together

with the team-triggered controlleruteam as defined in (16) gives rise to theTEAM-TRIGGERED

LAW , which is formally presented in Algorithm 1. The self-triggered information request in

Algorithm 1 is executed by an agent anytime new information is received, whether it was actively

requested by the agent, or was received from some neighbor due to the breaking of a promise.

Algorithm 1 : TEAM-TRIGGERED LAW

(Self-trigger information update)

At any time t agenti ∈ {1, . . . , N} receives new promise(s)Xi
j [t] from neighbor(s)j ∈ N (i), agenti performs:

1: compute own controluteam
i (t′) for t′ ≥ t using (16)

2: compute own state evolutionxi(t
′) for t′ ≥ t using (13)

3: compute first timet∗ ≥ t such thatLiV
sup(Xi

N (t∗)) = 0

4: schedule information request to neighbors inmax{t∗ − t, Td,self} seconds

(Respond to information request)

At any time t a neighborj ∈ N (i) requests information, agenti performs:

1: send new promiseXj
i [t] = Rs

i(X
i
N [·][t,∞)) to agentj

(Event-trigger information update)

At all times t, agenti performs:

1: if there existsj ∈ N (i) such thatxi(t) /∈ Xj
i [·](t) then

2: if agenti has sent a promise toj at some timetlast ∈ (t− Td,event, t] then

3: send warning message WARN to agentj at time t

4: schedule to send new promiseXj
i [tlast + Td,event] = Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to agentj in tlast + Td,event− t seconds

5: else

6: send new promiseXj
i [t] = Rs

i(X
i
N [·]|[t,∞)) to agentj at time t

7: end if

8: end if

(Respond to warning message)

At any time t agenti ∈ {1, . . . , N} receives a warning message WARN from agentj ∈ N (i)

1: redefine promise setXi
j [·](t

′) = ∪xj∈Xi
j
[·](t)Rj(t

′ − t, xj) for t′ ≥ t

V. CONVERGENCE OF THE TEAM-TRIGGERED LAW

Here we analyze the convergence properties of theTEAM-TRIGGERED LAW. Our first result

establishes the monotonic evolution of the Lyapunov function V along the network trajectories.

Proposition V.1 Consider a networked cyber-physical system as described inSection II ex-

ecuting theTEAM-TRIGGERED LAW (cf. Algorithm 1) based on a continuous controlleru∗∗ :
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∏
j∈{1,...,N} P

cc(Xj) → R
m that satisfies(11) and is distributed over the communication graphG.

Then, the functionV is monotonically nonincreasing along any network trajectory.

Proof: We start by noting that the time evolution ofV under Algorithm 1 is continuous and

piecewise continuously differentiable. Moreover, at the time instants when the time derivative is

well-defined, one has

d

dt
V (x(t)) =

N∑

i=1

∇iV (xi
N (t)) (Aixi(t) +Biu

team
i (t)) (18)

≤
N∑

i=1

sup
yN∈Xi

N (t)

∇iV (yN ) (Aixi(t) +Biu
team
i (t)) ≤ 0.

As we justify next, the last inequality follows by design of theTEAM-TRIGGERED LAW. For each

i ∈ {1, . . . , N}, if LiV
sup(X i

N (t)) ≤ 0, thenuteam
i (t) = u∗∗

i (X i
N (t)) (cf. (16)). In this case the

corresponding summand of (18) is exactlyLiV
sup(X i

N (t)), as defined in (14). IfLiV
sup(X i

N (t)) >

0, thenuteam
i (t) = usf

i (xi(t)), for which the corresponding summand of (18) is exactly0.

The next result characterizes the convergence properties of team-triggered coordination strate-

gies.

Proposition V.2 Consider a networked cyber-physical system as described inSection II exe-

cuting theTEAM-TRIGGERED LAW (cf. Algorithm 1) with dwell timesTd,self, Td,event> 0 based

on a continuous controlleru∗∗ :
∏

j∈{1,...,N} P
cc(Xj) → R

m that satisfies(11) and is distributed

over the communication graphG. Then, any bounded network trajectory with uniformly bounded

promises asymptotically approaches the desired setD.

The requirements of uniformly bounded promises in Proposition V.2 means that there exists

a compact set that contains all promise sets. Note that this is automatically guaranteed if the

network state space is compact. Alternatively, if the sets of allowable controls are bounded,

a bounded network trajectory with expiration times for promises implemented as outlined in

Remark IV.4 would result in uniformly bounded promises. There are two main challenges in

proving Proposition V.2, which we discuss next.

The first challenge is that agents operate asynchronously, i.e., agents receive and send infor-

mation, and update their control laws possibly at differenttimes. To model asynchronism, we

use a procedure called analytic synchronization, see e.g. [33]. Let the time schedule of agent

i be given byT i = {ti0, t
i
1, . . . }, where tiℓ corresponds to theℓth time that agenti receives
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information from one or more of its neighbors (the time schedule T i is not known a priori by

the agent). Note that this information can be received because i requests it itself, or a neighbor

sends it toi because an event is triggered. Analytic synchronization simply consists of merging

together the individual time schedules into a global time scheduleT = {t0, t1, . . . } by setting

T = ∪N
i=1T

i.

Note that more than one agent may receive information at any given timet ∈ T . This synchro-

nization is done for analysis purposes only. For convenience, we identifyZ≥0 with T via ℓ 7→ tℓ.

The second challenge is that a strategy resulting from the team-triggered approach has a

discontinuous dependence on the network state and the agentpromises. More precisely, the

information possessed by any given agent are trajectories of sets for each of their neighbors,

i.e., promises. For convenience, we denote by

S =
N∏

i=1

Si, where

Si = C0
(
R;Pcc(X1)× · · · × P

cc(Xi−1)×Xi × P
cc(Xi+1)× · · · × P

cc(XN )
)
,

the space that the state of the entire network lives in. Note that this set allows us to capture the

fact that each agenti has perfect information about itself, as described in Section II. Although

agents only have information about their neighbors, the above space considers agents having

promise information about all other agents to facilitate the analysis. This is only done to allow

for a simpler technical presentation, and does not impact the validity of the arguments made

here. The information possessed by all agents of the networkat some timet is collected in

(
X1[·]|[t,∞), . . . , X

N [·]|[t,∞)

)
∈ S,

whereX i[·]|[t,∞) =
(
X i

1[·]|[t,∞), . . . , X
i
N [·]|[t,∞)

)
∈ Si. Here, [·] is shorthand notation to denote

the fact that promises might have been made at different times, earlier thant. The TEAM-

TRIGGERED LAW corresponds to a discontinuous map of the formS × Z≥0 → S × Z≥0. This

fact makes it difficult to use standard stability methods to analyze the convergence properties of

the network. Our approach to this problem consists of defining a discrete-time set-valued map

M : S × Z≥0 ⇒ S × Z≥0 whose trajectories contain the trajectories of theTEAM-TRIGGERED

LAW . Although this ‘over-approximation procedure’ enlarges the set of trajectories to consider,
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the gained benefit is that of having a set-valued map with suitable continuity properties that is

amenable to set-valued stability analysis. We describe this in detail next.

We start by defining the set-valued mapM . Let (Z, ℓ) ∈ S × Z≥0. We define the(N + 1)th

component of all the elements inM(Z, ℓ) to be ℓ + 1. The ith component of the elements in

M(Z, ℓ) is given by one of following possibilities. The first possibility models the case when

agenti does not receive any information from its neighbors. In thiscase, theith component of

the elements inM(Z, ℓ) is simply theith component ofZ,
(
Z i

1|[tℓ+1,∞), . . . , Z
i
N |[tℓ+1,∞)

)
, (19)

The second possibility models the case when agenti has received information (including a

WARN message) from at least one neighbor: theith component of the elements inM(Z, ℓ) is
(
Y i
1 |[tℓ+1,∞), . . . , Y

i
N |[tℓ+1,∞)

)
, (20)

where each agent has access to its own state at all times,

Y i
i (t) = eAi(t−tℓ+1)Z i

i(tℓ+1) +

∫ t

tℓ+1

eAi(t−τ)Biu
team
i (τ)dτ, t ≥ tℓ+1, (21a)

(here, with a slight abuse of notation, we useuteam to denote the controller evaluated atY i) and,

Y i
j |[tℓ+1,∞)

=





Z i
j |[tℓ+1,∞)

, if i does not receive information fromj,

W i
j |[tℓ+1,∞)

, if i receives a warning message fromj,

Rs
j(Z

j
N |[tℓ+1,∞)), otherwise,

(21b)

for j 6= i, whereW i
j (t) =

⋃
zi∈Zi

j(tℓ+1)
X

i
j(t, zi) corresponds to the redefined promise (17) for

t ≥ tℓ+1 as a result of the warning message.

We emphasize two properties of the set-valued mapM . First, any trajectory of theTEAM-

TRIGGERED LAW is also a trajectory of the non-deterministic dynamical system defined byM ,

(Z(tℓ+1), ℓ+ 1) ∈ M(Z(tℓ), ℓ).

Second, although the map defined by theTEAM-TRIGGERED LAW is discontinuous, the set-

valued mapM is closed, as we show next (a set-valued mapT : X ⇒ Y is closed ifxk → x,

yk → y andyk ∈ T (xk) imply that y ∈ T (x)).

Lemma V.3 (Set-valued map is closed)The set-valued mapM : S×Z≥0 ⇒ S×Z≥0 is closed.
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Proof: To show this we appeal to the fact that a set-valued map composed of a finite

collection of continuous maps is closed [34, E1.9]. Given(Z, ℓ), the setM(Z, ℓ) is finitely

comprised of all possible combinations of whether or not updates occur for every agent pair

i, j ∈ {1, . . . , N}. In the case that an agenti does not receive any information from its neighbors,

it is trivial to show that (19) is continuous in(Z, ℓ) becauseZ i
j [tℓ+1,∞)

is simply the restriction

of Z i
j [tℓ,∞)

to the interval[tℓ+1,∞), for eachi ∈ {1, . . . , N} and j ∈ N (i). In the case that an

agenti does receive updated information, the above argument stillholds for agentsj that did

not send information to agenti. If an agentj sends a warning message to agenti, W i
j |[tℓ+1,∞)

is continuous in(Z, ℓ) by continuity of the reachable sets on their starting point.If an agentj

sends a new promise to agenti, Y i
j |[tℓ+1,∞)

is continuous in(Z, ℓ) by definition of the function

Rs
j . Finally, one can see thatY i

i |[tℓ+1,∞) is continuous in(Z, ℓ) from (21a).

We are now ready to prove Proposition V.2.

Proof of Proposition V.2:Here we resort to the LaSalle Invariance Principle for set-valued

discrete-time dynamical systems [34, Theorem 1.21]. LetW = S × Z≥0, which is closed and

strongly positively invariant with respect toM . A similar argument to that in the proof of

Proposition V.1 shows that the functionV is nonincreasing alongM . Combining this with

the fact that the set-valued mapM is closed (cf. Lemma V.3), the application of the LaSalle

Invariance Principle implies that the trajectories ofM that are bounded in the firstN components

approach the largest weakly positively invariant set contained in

S∗ = {(Z, ℓ) ∈ S × Z≥0 | ∃(Z
′, ℓ+ 1) ∈ M(Z, ℓ) such thatV (Z ′) = V (Z)},

= {(Z, ℓ) ∈ S × Z≥0 | LiV
sup(Z i

N ) ≥ 0 for all i ∈ {1, . . . , N}}. (22)

We now restrict our attention to those trajectories ofM that correspond to theTEAM-

TRIGGERED LAW. For convenience, letloc(Z, ℓ) : S × Z≥0 → X be the map that extracts

the true position information in(Z, ℓ), i.e.,

loc(Z, ℓ) =
(
Z1

1(tℓ), . . . , Z
N
N (tℓ)

)
.

Given a trajectoryγ of the TEAM-TRIGGERED LAW that satisfies all the assumptions of the

statement of Proposition V.2, the bounded evolutions and uniformly bounded promises ensure

that the trajectoryγ is bounded. Then, the omega limit setΩ(γ) is weakly positively invariant and

hence is contained inS∗. Our objective is to show that, for any(Z, ℓ) ∈ Ω(γ), we haveloc(Z, ℓ) ∈

August 12, 2018 DRAFT



20

D. We show this reasoning by contradiction. Let(Z, ℓ) ∈ Ω(γ) but supposeloc(Z, ℓ) /∈ D.

This means thatLiV
sup(Z i

N ) ≥ 0 for all i ∈ {1, . . . , N}. Take any agenti, by the SELF-

TRIGGERED INFORMATION UPDATES, agenti will request new information from neighbors in

at mostTd,self seconds. This means there exists a state(Z ′, ℓ+ ℓ′) ∈ Ω(γ) for which agenti has

just received updated information from its neighborsj ∈ N (i). Since(Z ′, ℓ+ ℓ′) ∈ S∗, we know

LiV
sup(Z i

N
′
) ≥ 0. We also know, since information was just updated, thatZ i

j

′
= locj(Z

′, ℓ+ℓ′) is

exact for allj ∈ N (i). But, by (11a),LiV
sup(Z i

N
′
) ≤ 0 becauseloc(Z ′, ℓ+ ℓ′) /∈ D. This means

that each time any agenti updates its information, we must haveLiV
sup(Z i

N
′
) = 0. However,

by (11b), there must exist at least one agenti such thatLiV
sup(Z i

N
′
) < 0 sinceloc(Z ′, ℓ+ℓ′) /∈ D,

which yields a contradiction. Thus for the trajectories of theTEAM-TRIGGERED LAW, (Z, ℓ) ∈ S∗

implies thatloc(Z, ℓ) ∈ D.

Given the convergence result of Proposition V.2, a termination condition for theTEAM-

TRIGGERED LAW could be included via the implementation of a distributed algorithm that

employs tokens identifying what agents are using safe-model controllers, see e.g., [35], [36].

Also, according to the proof of Proposition V.2, the actual value of the event-triggered dwell

time Td,event does not affect the convergence property of the trajectories of the constructed

discrete-time set-valued system. However, the dwell time does affect the rate of convergence

of the actual continuous-time system (as a larger dwell timecorresponds to more time actually

elapsing between each step of the constructed discrete-time system).

Remark V.4 (Availability of a safe-mode controller) The assumption on the availability of

the safe-mode controller plays an important role in the proof of Proposition V.2 because it

provides individual agents with a way of avoiding having a negative impact on the monotonic

evolution of the Lyapunov function. We believe this assumption can be relaxed for dynamics

that allow agents to execute maneuvers that bring them back to their current state. Under such

maneuvers, the Lyapunov function will not evolve monotonically but, at any given time, will

always guarantee to be less than or equal to its current valueat some future time. We have not

pursued this approach here for simplicity and instead deferit for future work. •

The next result states that, under theTEAM-TRIGGERED LAW with positive dwell times, the

system does not exhibit Zeno behavior.

August 12, 2018 DRAFT



21

Lemma V.5 (No Zeno behavior) Under the assumptions of Proposition V.2, the network exe-

cutions do not exhibit Zeno behavior.

Proof: Due to the self-triggered dwell timeTd,self, the self-triggered information request

steps in Algorithm 1 guarantee that the minimum time before an agenti asks its neighbors for

new information isTd,self > 0. Similarly, due to the event-triggered dwell timeTd,event, agenti

will never receive more than two messages (one accounts for promise information, the other

for the possibility of a WARN message) from a neighborj in a period ofTd,event> 0 seconds.

This means that any given agent can never receive an infinite amount of information in finite

time. When new information is received, the control law (16)can only switch a maximum of

two times until new information is received again. Specifically, if an agenti is using the normal

control law when new information is received, it may switch to the safe-mode controller at most

one time until new information is received again. If insteadan agenti is using the safe-mode

control controller when new information is received, it mayimmediately switch to the normal

control law, and then switch back to the safe-mode controller some time in the future before

new information is received again. The result follows from the fact that|N (i)| is finite for each

i ∈ {1, . . . , N}.

Remark V.6 (Adaptive self-triggered dwell time) Dwell times play an important role in pre-

venting Zeno behavior. However, a constant self-triggereddwell time throughout the network

evolution might result in wasted communication effort because some agents might reach a state

where their effect on the evolution of the Lyapunov functionis negligible compared to others. In

such case, the former agents could implement larger dwell times, thus decreasing communication

effort, without affecting the overall performance. Next, we give an example of such an adaptive

dwell time scheme. Lett be a time at which agenti ∈ {1, . . . , N} has just received new

information from its neighborsN (i). Then, the agent sets its dwell time to

T i
d,self(t) = max

{
δd

∑

j∈N (i)

1

|N (i)|

‖u∗∗
j (Xj

N (t))− usf
j (xj(t)))‖2

‖u∗∗
i (X i

N (t))− usf
i (xi(t))‖2

,∆d

}
, (23)

for some a priori chosenδd, ∆d > 0. The intuition behind this design is the following. The

value‖u∗∗
j (Xj

N (t)) − usf
j (xj(t)))‖2 can be interpreted as a measure of how far agentj is from

reaching a point where it cannot no longer contribute positively to the global task. As agents

are nearing this point, they are more inclined to use the safemode control to stay put and hence
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do not require fresh information. Therefore, if agenti is close to this point but its neighbors

are not, (23) sets a larger self-triggered dwell time to avoid excessive requests for information.

Conversely, if agenti is far from this point but its neighbors are not, (23) sets a small dwell

time to let the self-triggered request mechanism be the driving factor in determining when new

information is needed. For agenti to implement this, in addition to current state informationand

promises, each neighborj ∈ N (i) also needs to send the value of‖u∗∗
j (Xj

N (t))− usf
j (xj(t)))‖2

at time t. In the case that information is not received from all neighbors, agenti simply uses

the last computed dwell time. Section VII illustrates this adaptive scheme in simulation. •

VI. ROBUSTNESS AGAINST UNRELIABLE COMMUNICATION

This section studies the robustness of the team-triggered approach in scenarios with packet

drops, delays, and communication noise. We start by introducing the possibility of packet drops

in the network. For any given message an agent sends to another agent, assume there is an

unknown probability0 ≤ p < 1 that the packet is dropped, and the message is never received.

We also consider an unknown (possibly time-varying) communication delay∆(t) ≤ ∆̄ in the

network for all t where∆̄ ≥ 0 is known. In other words, if agentj sends agenti a message at

time t, agenti will not receive it with probabilityp or receive it at timet+∆(t) with probability

1− p. We assume that small messages (i.e., 1-bit messages) can besent reliably with negligible

delay. This assumption is similar to the “acknowledgments”and “permission” messages used

in other works, see [28], [37] and references therein. Lastly, we also account for the possibility

of communication noise or quantization. We assume that messages among agents are corrupted

with an error which is upper bounded by someω̄ ≥ 0 known to the agents.

With this model, theTEAM-TRIGGERED LAW as described in Algorithm 1 does not guarantee

convergence because the monotonic behavior of the Lyapunovfunction no longer holds. The

problem occurs when an agentj breaks a promise to agenti at some timet. If this occurs,

agenti will operate with invalid information (due to the sources oferror described above) and

computeLiV
sup(X i

N (t′)) (as defined in (14)) incorrectly fort′ ≥ t.

Next, we discuss how theTEAM-TRIGGERED LAW can be modified in scenarios with unreliable

communication. To deal with communication noise, when an agent i receives an estimated

promiseX̂ i
j from another agentj, it must be able to create a promise setX i

j that contains the

actual promise that agentj intended to send. We refer to this action as making a promise set valid.
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The following example shows how it can be done for the promises described in Remark IV.2.

Example VI.1 (Ball-radius promise rule with communication noise) In the scenario with

bounded communication noise, agentj sends the control promise conveyed throughxj(t), uj(X
j
N (t)),

andδj , to agenti at timet as defined in Remark IV.2, buti receives instead̂xj(t), ûj(X
j
N (t)), and

δ̂j , where it knows that‖xj(t)− x̂j(t)‖2 ≤ ω̄, ‖uj(X
j
N (t))− ûj(X

j
N (t))‖2 ≤ ω̄, and|δj− δ̂j | ≤ δ̄,

given thatω̄ and δ̄ are known a priori. To ensure that the promise agenti operates with about

agentj contains the true promise made byj, agenti can set

U i
j [t](t

′) = B(ûi
j(X

j
N (t)), δ̂j + ω̄ + δ̄) ∩ Uj t′ ≥ t.

To create the state promise from this,i would need the true statexj(t) of j at timet. However,

since only the estimatêxi
j(t) is available, we modify (9) by

X i
j [t](t

′) = ∪yj∈B(x̂i
j(t),ω̄)

{z ∈ Xj | ∃ uj : [t, t
′] → Uj with uj(s) ∈ U i

j [t](s) for s ∈ [t, t′]

such thatz = eAj(t′−t)yj +

∫ t′

t

eAj(t′−τ)Bjuj(τ)dτ}. •

We deal with the packet drops and communication delays with warning messages similar to

the ones introduced in Section IV-D. Let an agentj break its promise to agenti at timet, then

agentj sendsi a new promise setX i
j[t] for t′ ≥ t and warning message WARN. Since agenti

only receives WARN at timet, the promise setX i
j[t] may not be available to agenti for t′ ≥ t.

If the packet is dropped, then the message never comes through, if the packet is successfully

transmitted, thenX i
j [t](t

′) is only available fort′ ≥ t+∆(t). In either case, we need a promise

setX i
j [·](t

′) for t′ ≥ t that is guaranteed to containxj(t
′). We do this by redefining the promise

using the reachable set, similarly to (17). Note that this does not require the agents to have

a synchronized global clock, as the timest′ and t are both monitored by the receiving agent

i. In other words, it is not necessary for the message sent by agent j to be timestamped. By

definition of reachable set, the promiseX i
j [·](t

′) is guaranteed to containxj(t
′) for t′ ≥ t. If

at time t + ∆̄, agenti has still not received the promiseX i
j [t] from j, it can send agentj a

request REQ for a new message at which pointj would sendi a new promiseX i
j [t+ ∆̄]. Note

that WARN is not sent in this case because the message was requested fromj by i and not a

cause ofj breaking a promise toi. TheROBUST TEAM-TRIGGERED LAW, formally presented in
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Algorithm 2 : ROBUST TEAM-TRIGGERED LAW

(Self-trigger information update)

At any time t agenti ∈ {1, . . . , N} receives new promise(s)̂Xi
j [t] from neighbor(s)j ∈ N (i), agenti performs:

1: create valid promiseXi
j [t] with respect toω̄

2: compute own controluteam
i (t′) for t′ ≥ t using (16)

3: compute own state evolutionxi(t
′) for t′ ≥ t using (13)

4: compute first timet∗ ≥ t such thatLiV
sup(Xi

N (t∗)) = 0

5: schedule information request to neighbors inmax{t∗ − t, Td,self} seconds

6: while message fromj has not been receiveddo

7: if current time equalst+max{t∗ − t, Td,self}+ k∆̄ for k ∈ Z≥0 then

8: send agentj a request REQ for new information

9: end if

10: end while

(Respond to information request)

At any time t a neighborj ∈ N (i) requests information, agenti performs:

1: send new promiseY j
i [t] = Rs

i(X
i
N [·]|[t,∞)) to agentj

(Event-trigger information update)

At all times t, agenti performs:

1: if there existsj ∈ N (i) such thatxi(t) /∈ Y j
i [·](t) then

2: send warning message WARN to agentj

3: if agenti has sent a promise toj at some timetlast ∈ (t− Td,event, t] then

4: schedule to send new promiseY j
i [tlast + Td,event] = Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to agentj in tlast + Td,event− t seconds

5: else

6: send new promiseY j
i [t] = Rs

i(X
i
N [·]|[t,∞)) to agentj

7: end if

8: end if

(Respond to warning message)

At any time t agenti ∈ {1, . . . , N} receives a warning message WARN from agentj ∈ N (i)

1: redefine promise setXi
j [·](t

′) = ∪x0

j
∈Xi

j
[·](t)Rj(t

′ − t, x0
j) for t′ ≥ t

2: while message fromj has not been receiveddo

3: if current time equalst+ k∆̄ for k ∈ Z≥0 then

4: send agentj a request REQ for new information

5: end if

6: end while

Algorithm 2, ensures the monotonic evolution of the Lyapunov functionV even in the presence

of packet drops, communication delays, and communication noise.

The next result establishes the asymptotic correctness guarantees on theROBUST TEAM-
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TRIGGERED LAW. In the presence of communication noise or delays, convergence can be

guaranteed only to a set that contains the desired setD.

Corollary VI.2 Consider a networked cyber-physical system as described inSection II with

packet drops occurring with some unknown probability0 ≤ p < 1, messages being delayed

by some known maximum delaȳ∆, and communication noise bounded byω̄, executing the

ROBUST TEAM-TRIGGERED LAW (cf. Algorithm 2) with dwell timesTd,self, Td,event> 0 based on

a continuous controlleru∗∗ :
∏

j∈{1,...,N} P
cc(Xj) → R

m that satisfies(11) and is distributed over

the communication graphG. Let

D′(∆̄, ω̄) = {x ∈ X | inf
xi
N

′
∈B(xi

N ,ω̄)
LiV

sup
(
{xi} ×

∏

j∈N (i)

∪yj∈B(xi
j

′
,ω̄)Rj(∆̄, yj)

)
≥ 0 (24)

for all i ∈ {1, . . . , N}},

Then, any bounded network trajectory with uniformly bounded promises asymptotically converges

to D′(∆̄, ω̄) ⊃ D with probability 1.

Proof: We begin by noting that by equation (11b), the definition (14), and the continuity

of u∗∗, D can be written as

D′(0, 0) = {x ∈ X |
N∑

i=1

∇iV (x)(Aixi +Biu
∗∗
i ({xi

N})) ≥ 0}.

One can see thatD ⊂ D′(∆̄, ω̄) by noticing that, for anyx ∈ D, ω̄, ∆̄ ≥ 0, no matter which

point xi
N

′
∈ B(xi

N , ω̄) is taken, one hasxi
N ∈ {xi} ×

∏
j∈N (i) ∪yj∈B(xi

j

′
,ω̄)Rj(∆̄, yj). To show

that the bounded trajectories of theROBUST TEAM-TRIGGERED LAW converge toD′, we begin

by noting that all properties ofM used in the proof of Proposition V.2 still hold in the presence

of packet drops, delays, and communication noise as long as the time scheduleT i is unbounded

for each agenti ∈ {1, . . . , N}. In order for the time scheduleT i to be unbounded, each agenti

must receive an infinite number of messages, andtiℓ → ∞. Since packet drops have probability

0 ≤ p < 1, the probability that there is a finite number of updates for any given agenti over an

infinite time horizon is0. Thus, with probability1, there are an infinite number of information

updates for each agent. Using a similar argument to that of Lemma V.5, one can show that the

positive dwell timesTd,self, Td,event> 0 ensure that Zeno behavior does not occur, meaning that

tiℓ → ∞. Then, by the analysis in the proof of Proposition V.2, the bounded trajectories ofM

still converge toS∗ as defined in (22).
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For a bounded evolutionγ of theROBUST TEAM-TRIGGERED LAW, we have thatΩ(γ) ⊂ S∗ is

weakly positively invariant. Note that, since agents may never have exact information about their

neighbors, we can no longer leverage properties (11a) and (11b) to precisely characterizeΩ(γ).

We now show that for any(Z, ℓ) ∈ Ω(γ), we haveloc(Z, ℓ) ∈ D′. Let (Z, ℓ) ∈ Ω(γ). This

means thatLiV
sup(Z i

N ) ≥ 0 for all i ∈ {1, . . . , N}. Take any agenti, by the ROBUST TEAM-

TRIGGERED LAW, agenti will request new information from neighbors in at mostTd,self seconds.

This means there exists a state(Z ′, ℓ+ ℓ′) ∈ Ω(γ) for which agenti has just received updated,

possibly delayed, information from its neighborsj ∈ N (i). Since(Z ′, ℓ + ℓ′) ∈ S∗, we know

LiV
sup(Z i

N
′
) ≥ 0. We also know, since information was just updated, thatZ i

N
′
⊂ {Z i

i

′
} ×

∏
j∈N (i) ∪yj∈B(zi

j

′
,ω̄)R(∆̄, yj). Since(Z ′, ℓ + ℓ′) ∈ S∗, we know thatLiV

sup(Z i
N

′
) ≥ 0, for all

i ∈ {1, . . . , N}. This means thatloc(Z ′, ℓ+ ℓ′) ⊂ D′, thus loc(Z, ℓ) ∈ S∗ ⊂ D′.

From the proof of Corollary VI.2, one can see that the modifications made to theROBUST

TEAM-TRIGGERED LAW make the omega limit sets of its trajectories larger than those of the

TEAM-TRIGGERED LAW, resulting inD ⊂ D′. The setD′ depends on the Lyapunov functionV .

However, the difference betweenD′(∆̄, ω̄) andD vanishes as̄ω and ∆̄ vanish.

VII. SIMULATIONS

In this section we present simulations of coordination strategies derived from the team- and

self-triggered approaches in a planar multi-agent formation control problem. Our starting point

is the distributed coordination algorithm based on graph rigidity analyzed in [38], [39] which

makes the desired network formation locally (but not globally) asymptotically stable. In this

regard, the state spaceX of Section II corresponds to the domain of attraction of the desired

equilibria and, as long as the network trajectories do not leave this set, the convergence results

still hold. The local convergence result of the team-triggered approach here is only an artifact of

the specific example and, in fact, if the assumptions (4) are satisfied globally, then the system

is globally asymptotically stabilized. The interested reader is referred to [2] for a similar study

in a optimal networked deployment problem where the assumptions hold globally.

Consider4 agents communicating over a graph which is only missing the edge(1, 3) from the

complete graph. The agents seek to attain a rectangle formation of side lengths1 and 2. Each
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agent has unicycle dynamics,

ẋi = ui


cos θi
sin θi




θ̇i = vi,

where0 ≤ ui ≤ umax = 5 and|vi| ≤ vmax = 3 are the control inputs. The safe-mode controller is

then simply(usf
i , v

sf
i ) ≡ 0. The distributed control law is defined as follows. Each agent computes

a goal point

p∗i (x) = xi +
∑

j∈N (i)

(‖xj − xi‖2 − dij) unit(xj − xi),

wheredij is the pre-specified desired distance between agentsi andj, andunit(xj −xi) denotes

the unit vector in the direction ofxj − xi. Then, the control law is given by

u∗
i = max

{
min{k[cos θi sin θi]

T · (p∗i (x)− xi), umax}, 0
}
,

v∗i = max {min{k(∠(p∗i (x)− xi)− θi), vmax},−vmax} ,

wherek > 0 is a design parameter. For our simulations we setk = 150. This continuous control

law essentially ensures that the positionxi moves towardsp∗i (x) when possible while the unicycle

rotates its orientation towards this goal. This control lawensures thatV : (R2)
N
→ R≥0 given by

V (x) =
1

2

∑

(i,j)∈E

(
‖xj − xi‖

2
2 − d2ij

)2
,

is a nonincreasing function for the closed-loop system to establish the asymptotic convergence

to the desired formation. For the team-triggered approach,we use both static and dynamic ball-

radius promise rules. The controlleruteam is then defined by (16), where controlleru∗∗ is given

by (12) as described in Example IV.3. Note that although the agent has no forward velocity when

using the safe controller, it will still rotate in place. Theinitial conditions arex1(0) = (6, 10)T ,

x2(0) = (7, 3)T , x3(0) = (14, 8)T , andx4(0) = (7, 13)T andθi(0) = π/2 for all i. We begin by

simulating the team-triggered approach using fixed dwell times ofTd,self = 0.3 andTd,event= 0.003

and the static ball-radius promise of Remark IV.2 with the same radiusδ = 1 for all agents.

Figure 1 shows the trajectories of theTEAM-TRIGGERED LAW.

To compare the team- and self-triggered approaches, we denote byN i
S the number of timesi

has requested new information (and thus has received a message from each one of its neighbors)
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Fig. 1. Trajectories of an execution of theTEAM-TRIGGERED LAW with fixed dwell times and promises. The initial and final

condition of each agent is denoted by an ‘x’ and an ‘o’, respectively.

and byN i
E the number of messagesi has sent to a neighboring agent because it decided to break

its promise. The total number of messages for an execution isNcomm =
∑4

i=1 |N (i)|N i
S +N i

E .

Figure 2 compares the number of required communications in both approaches. Remarkably,

for this specific example, the team-triggered approach outperforms the self-triggered approach

in terms of required communication without sacrificing any performance in terms of time to

convergence (the latter is depicted through the evolution of the Lyapunov function in Figure 4(b)

below). Less overall communication has an important impacton reducing network load. In

Figure 2(a), we see that very quickly all agents are requesting information as often as they can

(as restricted by the self-triggered dwell time), due to theconservative nature of the self-triggered

time computations. In the execution of theTEAM-TRIGGERED LAW in Figure 2(b), we see that

the agents are requesting information from one another lessfrequently. Figure 2(c) shows that

agents were required to break a few promises early on in the execution.

Next, we illustrate the role that the tightness of promises has on the network performance.

With the notation of Remark IV.2 for the static ball-radius rule, let λ = δ
2umax

. Note that when

λ = 0, the promise generated by (10) is a singleton, i.e., an exactpromise. On the other hand,

when λ = 1, the promise generated by (10) contains the reachable set, corresponding to no

actual commitment being made (i.e., the self-triggered approach). Figure 3 compares the value

of the Lyapunov function after a fixed amount of time (30 seconds) and the total number of

messages sentNcomm between agents by this time for varying tightness of promises. The dwell
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Fig. 3. Plots of (a) the value of the Lyapunov function at a fixed time (30 sec) and (b) the total number of messages exchanged

in the network by this time for the team-triggered approach with varying tightness of promisesλ.

times here are fixed atTd,self = 0.3 andTd,event= 0.003. Note that a suitable choice ofλ helps

greatly reduce the amount of communication compared to the self-triggered approach (λ = 1)

while maintaining a similar convergence rate.

Finally, we demonstrate the added benefits of using adaptivepromises and dwell times.

Figure 4(a) compares the total number of messages sent in theself-triggered approach and

the team-triggered approaches with fixed promises and dwelltimes (FPFD), fixed promises and

adaptive dwell times (FPAD), adaptive promises and fixed dwell times (APFD), and adaptive

promises and dwell times (APAD). The parameters of the adaptive dwell time used in (23) are

δd = 0.15 and∆d = 0.3. For agentj ∈ {1, . . . , 4}, the radiusδj of the dynamic ball-radius rule
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of Remark IV.2 isδj(t) = 0.50‖u∗∗
j (Xj

N (t))−usf
j (xj(t))‖2+10−6. This plot shows the advantage

of the team-triggered approach in terms of required communication over the self-triggered one

and also shows the additional benefits of implementing the adaptive promises and dwell time.

This is because by using the adaptive dwell time, agents decide to wait longer periods for new

information while their neighbors are still moving. By using the adaptive promises, as agents near

convergence, they are able to make increasingly tighter promises, which allows them to request

information from each other less frequently. As Figure 4(b)shows, the network performance is

not compromised despite the reduction in communication.
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Fig. 4. Plots of (a) the total number of messages sent and (b) the evolution of the Lyapunov functionV for executions of

self-triggered approach and the team-triggered approaches with fixed promises and dwell times (FPFD), fixed promises and

adaptive dwell times (FPAD), adaptive promises and fixed dwell times (APFD), and adaptive promises and dwell times (APAD).

VIII. C ONCLUSIONS

We have proposed a novel approach, termed team-triggered, that combines ideas from event-

and self-triggered control for the implementation of distributed coordination strategies for net-

worked cyber-physical systems. Our approach is based on agents making promises to each other

about their future states. If a promise is broken, this triggers an event where the corresponding

agent provides a new commitment. As a result, the information available to the agents is set-

valued and can be used to schedule when in the future further updates are needed. We have

provided a formal description and analysis of team-triggered coordination strategies and have

also established robustness guarantees in scenarios wherecommunication is unreliable. The
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proposed approach opens up numerous venues for future research. Among them, we highlight

the robustness under disturbances and sensor noise, more general models for individual agents,

the design of team-triggered implementations that guarantee the invariance of a desired set in

distributed scenarios, the relaxation of the availabilityof the safe-mode control via controllers

that allow agents to execute maneuvers that bring them back to their current state, relaxing the

requirement on the negative semidefiniteness of the derivative of the Lyapunov function along

the evolution of each individual agent, methods for the systematic design of controllers that

operate on set-valued information models, understanding the implementation trade-offs in the

design of promise rules, analytic guarantees on the performance improvements with respect to

self-triggered strategies, and the impact of evolving topologies on the generation of promises.
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