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Abstract

This note is concerned with stability analysis of integral delay systems with multiple delays. To
study this problem, the well-known Jensen inequality is generalized to the case of multiple terms by
introducing an individual slack weighting matrix for each term, which can be optimized to reduce the
conservatism. With the help of the multiple Jensen inequalities and by developing a novel linearizing
technique, two novel Lyapunov functional based approaches are established to obtain sufficient stability
conditions expressed by linear matrix inequalities (LMIs). It is shown that these new conditions are
always less conservative than the existing ones. Moreover, by the positive operator theory, a single LMI
based condition and a spectral radius based condition are obtained based on an existing sufficient stability
condition expressed by coupled LMIs. A numerical example illustrates the effectiveness of the proposed
approaches.

Keywords: Stability of integral delay systems, Multiple Jensen inequality, Linearization technique,
Positive operator theory, Spectral radius

1 Introduction

An integral delay system (IDS) in the form of x (t) =
∫ 0

−τ
F (s)x (t+ s) ds, where F (s) is a matrix function

with bounded variation, has many important applications in the study of time-delay systems (see, for ex-
ample, [3], [8, 20] and [21]). In Hale’s book [8] this class of IDSs were named as D operators, which were
also treated as generalized difference equations there, and their stability is necessary for the stability of the
associated neutral time-delay systems. This class of IDSs also come from the model reduction approach for
stability analysis of time-delay systems, which are frequently named as the additional dynamics (see [6] and
[10]) and their stability is necessary for the stability of the transformed time-delay systems. This class of
IDSs are very closely related with the predictor feedback control of linear systems with input delays, for
example,

• In [7], the author proved that the numerical implementation of the predictor feedback for linear systems
with input delays is safe only if an IDS is exponentially stable.

• In [14] it is shown that the stability of this class of IDSs is necessary for the robust stability of linear
systems with input delay by the well-known predictor feedback.

• In [19] we have shown that an input delayed linear system by the so-called pseudo-predictor feedback
is exponentially stable if and only if an IDS is exponentially stable.

Stability analysis of IDSs can be traced back at least to Cruz and Hale [2], Henry [9] and Melvin [17], in the
study of the stability of neutral time-delay systems [8]. When the right hand side of the IDS only contains
terms at some time points, a general theory was build in [1]. This class of IDSs have received renewed interest
in recent years. A general stability theorem was build in [15] and was later applied on different forms of
IDSs (see [13], [16], [18], and the references therein). In the paper [4] stability conditions are derived for IDS
with matrix discrete-continuous measures.
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In this note we also study stability analysis of this class of IDSs in which F (s) is a piecewise constant

matrix function, namely, the system can be expressed as x (t) =
∑N

i=1Ai

∫ 0

−τi
x (t+ s) ds where Ai and

τi are constants (τi can be unknown, time-varying, yet bounded). This class of IDSs with multiple time
delays have been investigated in [16] with the help of the well-known discrete-time and continuous-time
Jensen inequalities. In this note, by recognizing that the jointed usage of the conventional discrete-time and

continuous-time Jensen inequalities requires that all the integration terms
∫ 0

−τi
xT (t+ s)AT

i QAix (t+ s) ds
share the same weighting matrix Q, we first establish a so-called multiple Jensen inequality, by which as
well as some novel Lyapunov functionals and a new linearization technique, every individual integration
term possesses a different weighting matrix, which can introduce more weighting matrices that will be
optimized to reduce the conservatism of the corresponding sufficient stability conditions. Indeed, it is shown
in both theory and by numerical examples that the stability conditions obtained by the multiple Jensen
inequalities are always less conservative than that obtained by the jointed usage of the conventional discrete-
time and continuous-time Jensen inequalities. Another contribution of this note is that, with the help of
the positive operator theory, we are able to establish an equivalent linear matrix inequality (LMI) based
stability condition involving only one constraint and one decision matrix and an equivalent spectral radius
based stability condition of some existing stability conditions that are expressed by a set of coupled LMIs.
These two equivalent stability conditions are appealing in both theory and in computation.

The remaining of this note is organized as follows. The problem formulation and some preliminaries are
given in Section 2. In Section 3, two kinds of LMIs based sufficient conditions are established with the help
of the multiple Jensen inequalities, some novel Lyapunov functionals and a new linearization technique. A
spectral radius based stability condition and a single LMI based stability condition are then established in
Section 4 in which a comparison of the proposed approaches and the existing one will also be carried out. A
numerical example is worked out in Section 5 to illustrate the effectiveness of the proposed approaches and
finally Section 6 concludes the note.

2 Problem Formulation and Preliminaries

Consider the following integral delay system (IDS) with multiple delays

x (t) =

N
∑

i=1

Ai

∫ 0

−τi

x (t+ s) ds, (1)

where Ai ∈ Rn×n, i ∈ I [1, N ] , {1, 2, . . . , N}, are given matrices and τi, i ∈ I [1, N ] , are given scalars and
are such that

0 < τi ≤ τ , max
i∈I[1,N ]

{τi}, i ∈ I [1, N ] . (2)

Let ϕ ∈ Cn,τ be an initial condition for (1) and x (t) = x (t, ϕ) , ∀t ≥ 0 be the corresponding solu-
tion of (1) satisfying x (t) = ϕ (t) , ∀t ∈ [−τ, 0). Here Cn,τ denotes the Banach space of continuous vec-
tor functions mapping the interval [−τ, 0] into Rn with the topology of uniform convergence. We say
that the IDS (1) is exponentially stable if there exist two positive constants α and β such that ‖x (t)‖ ≤
α sups∈[−τ,0) ‖ϕ (s)‖ e−βt, ∀t ≥ 0.

The IDS (1) arises when some transformations are made on differential-difference systems [16]. In this note
we are concerned with the stability analysis of the IDS (1). By choosing some suitable Lyapunov functionals
and developing a new linearization technique for handling nonlinear matrix inequalities, we will establish two
classes of LMIs based sufficient conditions guaranteeing the exponential stability of the IDS (1). Moreover,
with the help of the positive operator theory, we will also provide a spectral radius based sufficient stability
condition. The relationships among these different sufficient conditions are also revealed. Our results improve
those in [16]. Both theoretical analysis and numerical examples will demonstrate that the obtained results
are always less conservative and more efficient than the existing ones especially those in [16].

The following general Lyapunov stability theorem for the IDS (1) will be used later in this note.

Lemma 1 [16] The IDS (1) is exponentially stable if there exists a differentiable functional V : Cn,τ → R

2



and three positive constants αi, i = 1, 2, 3, such that

α1

∫ 0

−τ

‖x (t+ θ)‖
2
dθ ≤ V (xt) ≤ α2

∫ 0

−τ

‖x (t+ θ)‖
2
dθ, (3)

V̇ (xt) ≤ −α3

∫ 0

−τ

‖x (t+ θ)‖
2
dθ. (4)

At the end of this section, we give the following technical lemma which is helpful for the linearization of
nonlinear matrix inequalities in the sequel.

Lemma 2 Let S ∈ Rn×n and Q ∈ Rn×n be two positive definite matrices. Then Q < S−1 if and only if
there exists a matrix R ∈ Rn×n such that

RTQR+ S −
(

R+RT
)

< 0. (5)

The same statements hold true if “<” in the above two inequalities are replaced by “≤”.

Proof. It follows from (5) that R is nonsingular. Since (R− S)
T
S−1 (R − S) ≥ 0, namely,

−RTS−1R ≤ S −
(

R+RT
)

, (6)

we have from (5) that

Q < −R−T(S − (R +RT))R−1≤R−TRTS−1RR−1 = S−1. (7)

On the other hand, if Q < S−1 is satisfied, then (5) is satisfied by choosing R = S.

3 The Multiple Jensen Inequality Based Stability Conditions

3.1 The Multiple Jensen Inequality

We first recall the following well-known Jensen inequality.

Lemma 3 [5] For any positive definite matrix Q > 0, a positive number τ > 0, and a vector valued function
ω : [−τ, 0] → Rn such that the integrals in the following are well-defined, then

(∫ 0

−τ

ω (s) ds

)T

Q

(∫ 0

−τ

ω (s) ds

)

≤ τ

∫ 0

−τ

ωT (s)Qω (s) ds. (8)

Moreover, for a series of vectors ξi ∈ Rn, i ∈ I [1, N ] , there holds

(

N
∑

i=1

ξi

)T

Q

(

N
∑

i=1

ξi

)

≤ N

N
∑

i=1

ξTi Qξi. (9)

Inequalities (8) and (9) are respectively known as the continuous-time Jensen inequality and the discrete-time
Jensen inequality, which have been widely used in the literature for the stability analysis and stabilization
of time-delay systems (see [5] and the references that have cited it). By using these two inequalities jointly
we get the following corollary.

Corollary 1 Let τi ≥ 0, i ∈ I [1, N ] , be N given nonnegative scalars. Assume that ωi : [−τi, 0] → Rn, i ∈
I [1, N ] , are such that the integrals in the following are well-defined, then

(

N
∑

i=1

xi

)T

Q

(

N
∑

i=1

xi

)

≤ N

N
∑

i=1

τi

∫ 0

−τi

ωT
i (s)Qωi (s) ds, (10)

where xi =
∫ 0

−τi
ωi (s) ds, i ∈ I [1, N ] .

3



We notice that all the N integrations
∫ 0

−τi
ωT
i (s)Qωi (s) ds, i ∈ I [1, N ] , on the right hand side of (10) share

the same weighting matrix Q, which is clearly very restrictive. To reduce the possible conservatism, we
introduce the following multiple Jensen inequality.

Lemma 4 Let Qi ∈ Rn×n, i ∈ I [1, N ] , be N given positive definite matrices and τi > 0, i ∈ I [1, N ] , be N

given scalars. Assume that the vector functions ωi : [−τi, 0] → Rn, i ∈ I [1, N ] , are such that the integrals in
the following are well-defined, then

(

N
∑

i=1

xi

)T

Q−1

(

N
∑

i=1

xi

)

≤

N
∑

i=1

∫ 0

−τi

ωT
i (s) τiQ

−1
i ωi (s) ds, (11)

where xi =
∫ 0

−τi
ωi (s) ds, i ∈ I [1, N ] and Q =

∑N

i=1Qi. Moreover, for a series of vectors ξi ∈ Rn, i ∈ I [1, N ] ,
there holds

(

N
∑

i=1

ξi

)T(
N
∑

i=1

Qi

)−1(
N
∑

i=1

ξi

)

≤

N
∑

i=1

ξTi Q
−1
i ξi. (12)

Proof. Notice that, for any i ∈ I [1, N ] , by a Schur complement, there holds
[

ωT
i (s) τiQ

−1
i ωi (s) ωT

i (s)
ωi (s)

1
τi
Qi

]

≥ 0, i ∈ I [1, N ] . (13)

Taking integration on both sides of the above inequality gives
[

∫ 0

−τi
ωT
i (s) τiQ

−1
i ωi (s) ds

∫ 0

−τi
ωT
i (s) ds

∫ 0

−τi
ωi (s) ds Qi

]

≥ 0, (14)

where i ∈ I [1, N ] , which implies








N
∑

i=1

∫ 0

−τi
ωT
i (s) τiQ

−1
i ωi (s) ds

N
∑

i=1

∫ 0

−τi
ωT
i (s) ds

N
∑

i=1

∫ 0

−τi
ωi (s) ds

N
∑

i=1

Qi









≥ 0. (15)

By a Schur complement again, (15) is equivalent to (11). Finally, the inequality in (12) can be proven in a
similar way.

Now every integration
∫ 0

−τi
ωT
i (s)Qiωi (s) ds, i ∈ I [1, N ] , on the right hand side of (11) is weighted by

an individual weighting matrix Qi, i ∈ I [1, N ] , which can introduce more decision variables that can be
optimized to reduce the conservatism of the resulting conditions. The multiple Jensen inequalities (11) and
(12) are clearly less conservative than the inequalities in (10) and (9) since the later ones can be obtained
immediately by setting Qi = Q−1, i ∈ I [1, N ] , in the former ones.

By applying the Jensen inequality (10) in Corollary 1 and choosing the following Lyapunov functional

V (xt) =

∫ t

t−τ

xT (s)Px (s) ds

+
N
∑

i=1

∫ 0

−τi

(s+ τi)x
T (t+ s)Qix (t+ s) ds, (16)

the following result was obtained in [16].

Lemma 5 [16] The IDS (1) is exponentially stable if there exist N + 1 positive definite matrices P,Qi ∈
Rn×n, i ∈ I [1, N ] , such that the following coupled LMIs are satisfied

NτiA
T
i



P +

N
∑

j=1

τjQj



Ai −Qi < 0, i ∈ I [1, N ] . (17)

In the next two subsections, we will show how to use the multiple Jensen inequality (11) to improve the
above result.
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3.2 The First Sufficient Stability Condition

In this subsection we present a new sufficient condition for the exponential stability of the IDS (1) by applying
the multiple Jensen inequality (11) and choosing a similar Lyapunov functional as (16).

Theorem 1 Consider the IDS (1). Then

1. It is exponentially stable if there exist 2N positive definite matrices Si, Qi ∈ Rn×n, i ∈ I [1, N ] , such
that the following nonlinear matrix inequalities are satisfied

τ2i A
T
i Q

−1
i Ai − Si < 0, i ∈ I [1, N ] , (18)

N
∑

i=1

Si <

(

N
∑

i=1

Qi

)−1

. (19)

2. The nonlinear matrix inequalities in (18)–(19) are solvable if and only if there exist 2N positive definite
matrices Si, Qi ∈ Rn×n, i ∈ I [1, N ] , and a matrix R ∈ Rn×n such that the following LMIs are satisfied

n
∑

i=1

Qi +
n
∑

i=1

Si −
(

RT +R
)

< 0, (20)

[

−Si τiA
T
i R

τiR
TAi −Qi

]

< 0, i ∈ I [1, N ] . (21)

Proof. Proof of Item 1. The inequality in (19) implies that there exists a positive definite matrix P > 0
such that P ≤ εIn for some sufficiently small number ε > 0 and such that

P +

N
∑

i=1

Si <

(

N
∑

i=1

Qi

)−1

, i ∈ I [1, N ] . (22)

Consider the following Lyapunov functional

V (xt) =

∫ t

t−τ

xT (s)Px (s) ds

+
N
∑

i=1

∫ 0

−τi

(

s

τi
+ 1

)

xT (t+ s)Six (t+ s) ds, (23)

which is in the form of (16) that was used in [16]. The time-derivative of V (xt) satisfies

V̇ (xt) ≤ xT (t)

(

P +

N
∑

i=1

Si

)

x (t)−

N
∑

i=1

yi

≤ xT (t)

(

N
∑

i=1

Qi

)−1

x (t)−

N
∑

i=1

yi

≤

N
∑

i=1

∫ 0

−τi

xT (t+ s) τiA
T
i Q

−1
i Aix (t+ s) ds−

N
∑

i=1

yi

=
N
∑

i=1

1

τi

∫ 0

−τi

xT (t+ s)
(

τ2i A
T
i Q

−1
i Ai − Si

)

x (t+ s) ds

≤ −γ

∫ 0

−τ

‖x (t+ s)‖
2
ds, (24)

where yi = 1
τi

∫ 0

−τi
xT (t+ s)Six (t+ s) ds, γ > 0 is some constant and we have used the multiple Jensen

inequality (11) and the nonlinear matrix inequalities (18). Hence, it follows from Lemma 1 that the IDS (1)
is exponentially stable.

5



Proof of Item 2. Let S =
∑N

i=1Sj and Q =
∑N

i=1Qj . Then (19) is equivalent to Q < S−1, which, by Lemma
2, is satisfied if and only if there exists an R ∈ Rn×n such that

RTQR+ S −
(

RT +R
)

< 0. (25)

On the other hand, by the Schur complement, the inequalities in (18) are satisfied if and only if

[

−Si τiA
T
i

τiAi −Qi

]

< 0, i ∈ I [1, N ] , (26)

which, by a congruence transformation, are equivalent to

[

−Si τiA
T
i R

τiR
TAi −RTQiR

]

< 0, i ∈ I [1, N ] . (27)

It is clear that (25) and (27) are respectively equivalent to (20) and (21) by a substitution RTQiR → Qi, i ∈
I [1, N ] (and thus RTQR → Q). The proof is finished.

3.3 The Second Sufficient Stability Condition

With the help of the multiple Jensen inequality (11), we further present in this subsection a new sufficient
condition for the exponential stability of the IDS (1) with an alternative Lyapunov functional, which may
possess some advantages over (16) and (23).

Theorem 2 Consider the IDS (1). Then

1. It is exponentially stable if there exist N positive definite matrices Qi ∈ Rn×n, i ∈ I [1, N ] , such that
the following nonlinear matrix inequality is satisfied

N
∑

i=1

τ2i A
T
i Q

−1
i Ai −

(

n
∑

i=1

Qi

)−1

< 0. (28)

2. The nonlinear matrix inequality (28) is solvable if and only if there exist N positive definite matrices
Qi ∈ Rn×n, i ∈ I [1, N ] , such that the following LMI is satisfied

N
∑

i=1







τ1A1

...
τNAN






Qi







τ1A1

...
τNAN







T

−







Q1

. . .

QN






< 0. (29)

Proof. Proof of Item 1. Let Q =
∑N

i=1Qj. Then it follows from (28) that there exist two sufficiently small
numbers δ > 0 and ε > 0 such that

N
∑

i=1

(

τ2i A
T
i Q

−1
i Ai + τiδIn

)

−Q−1 ≤ −εQ−1. (30)

Let Ri > 0, i ∈ I [1, N ] , be such that

N
∑

i=1

Ri , R = Q−1 =

(

N
∑

i=1

Qi

)−1

, (31)

and consider an associated nonnegative functional

V1 (xt) =
N
∑

i=1

∫ t

t−τi

xT (s)Rix (s) ds, (32)

6



whose time-derivative is given by

V̇1 (xt) = xT (t)

(

N
∑

i=1

Ri

)

x (t)−

N
∑

i=1

yi

= xT (t)

(

N
∑

i=1

Qi

)−1

x (t)−

N
∑

i=1

yi

≤
N
∑

i=1

∫ 0

−τi

τix
T (t+ s)AT

i Q
−1
i Aix (t+ s) ds−

N
∑

i=1

yi, (33)

where yi = x (t− τi)
T
Rix (t− τi) , and we have used the IDS (1) and the multiple Jensen inequality (11).

Choose another nonnegative functional

V2 (xt) =

N
∑

i=1

∫ τi

0

∫ t

t−s

xT (l)
(

τiA
T
i Q

−1
i Ai + δIn

)

x (l) dlds, (34)

whose time-derivative can be evaluated as

V̇2 (xt) =

N
∑

i=1

xT (t)
(

τ2i A
T
i Q

−1
i Ai + δτiIn

)

x (t)

−

N
∑

i=1

∫ 0

−τi

xT (t+ s)
(

τiA
T
i Q

−1
i Ai + δIn

)

x (t+ s) ds. (35)

Hence, it follows from (33) and (35) that

V̇1 (xt) + V̇2 (xt)

≤ xT (t)

N
∑

i=1

(

τ2i A
T
i Q

−1
i Ai + δτiIn

)

x (t)−

N
∑

i=1

yi − µ

≤ (1− ε)xT (t)Q−1x (t)−
N
∑

i=1

yi − µ

≤ (1− ε)

N
∑

i=1

(

xT (t)Rix (t)− x (t− τi)
T
Rix (t− τi)

)

− µ

= (1− ε) V̇1 (xt)− δ

N
∑

i=1

∫ 0

−τi

‖x (t+ s)‖
2
ds, (36)

where µ = δ
N
∑

i=1

∫ 0

−τi
‖x (t+ s)‖

2
ds and we have used (30). Therefore

V̇ (xt) , εV̇1 (xt) + V̇2 (xt) ≤ −δ

∫ 0

−τ

‖x (t+ s)‖
2
ds. (37)

Finally, it is trivial to show that V (xt) satisfies (3). The conclusion then follows from Lemma 1.

Proof of Item 2. By a Schur complement, the LMI in (29) is satisfied if and only if












−Q τ1QAT
1 · · · τNQAT

N

τ1A1Q −Q1

...
. . .

τNANQ −QN













< 0. (38)

By using a Schur complement again, the inequality (38) can be equivalently transformed into

−Q+
N
∑

i=1

τ2i QAT
i Q

−1
i AiQ < 0, (39)

7



which is further equivalent to (28). The proof is finished.

At the end of this section, we will show that the stability condition (29) has a very interesting relationship
with the stability condition of the following IDS

x (t) =
N
∑

i=1

Aix (t− τi) , (40)

which was originally studied in [1] by using a Lyapunov functional approach, where Ai ∈ Rn×n, i ∈ I [1, N ] ,
are given matrices and τi, i ∈ I [1, N ] , are given scalars and are such that 0 < τ1 < · · · < τN .

Lemma 6 [1] The IDS (40) is exponentially stable independent of the delays τi, i ∈ I [1, N ] , if there exist
N positive definite matrix Qi ∈ Rn×n, i ∈ I [1, N ] , such that the following LMI is satisfied

N
∑

i=1







A1

...
AN






Qi







A1

...
AN







T

−







Q1

. . .

QN






< 0. (41)

Proof. By recognizing the characteristic polynomial of the IDS (40) (see Eq. (3.7) in [1]), it is not hard to
see that it is exponentially stable if and only if the following IDS

x (t) =

N
∑

i=1

AT
i x (t− τi) , (42)

is. Then by the results in Section 4 in [1], the IDS (42) is exponentially stable independent of the delays
τi, i ∈ I [1, N ] , if there exist N positive definite matrices Xi, i ∈ I [1, N ] , such that the following LMI is
satisfied (see inequality (4.6) in [1])











Π1 −A1X1A
T
2 · · · −A1X1A

T
N

−A2X1A
T
1 Π2 · · · −A2X1A

T
N

...
...

. . .
...

−ANX1A
T
1 −ANX1A

T
2 · · · XN −ANX1A

T
N











> 0, (43)

where Πi = Xi −AiX1A
T
i −Xi+1, i ∈ I [1, N − 1]. As the above LMI implies Xi > Xi+1, i ∈ I [1, N − 1] , we

can let QN = XN and Qi = Xi −Xi+1 > 0, i ∈ I [1, N − 1] . Then the LMI in (43) can be exactly rewritten
as (41).

It is very interesting to notice that the LMI (29) and the LMI (41) possess the very similar structures and
the only difference is that the former LMI is delay dependent and the later one is not. This similarity may
help us to understand the stability of these two classes of IDSs (1) and (40)

4 A Spectral Radius Based Condition and A Comparison

4.1 A Spectral Radius Based Stability Condition

In this subsection, we will present a spectral radius based sufficient condition for the exponential stability of
the IDS (1) based on Lemma 5, as indicated by the following theorem.

Theorem 3 The following statements are equivalent.

A. There exist N + 1 positive definite matrices P,Qi ∈ Rn×n, i ∈ I [1, N ] , such that the coupled LMIs in
(17) are satisfied.
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B. There exist N positive definite matrices Qi ∈ Rn×n, i ∈ I [1, N ] , such that the following coupled LMIs
are satisfied

Nτ2i A
T
i





N
∑

j=1

Qj



Ai −Qi < 0, i ∈ I [1, N ] . (44)

C. The following condition is met, where ρ (A) denotes the spectral radius of a square matrix A :

ρ

(

N
∑

i=1

τ2i Ai ⊗ Ai

)

<
1

N
. (45)

D. There exists a positive definite matrix Q ∈ Rn×n such that the following LMI is satisfied

N
∑

i=1

Nτ2i A
T
i QAi −Q < 0. (46)

Proof. Proof of A⇔B. It is clear that the LMIs in (17) are satisfied if we choose P = εIn with ε being
sufficiently small and the following coupled LMIs

NτiA
T
i





N
∑

j=1

τjQj



Ai −Qi < 0, i ∈ I [1, N ] , (47)

are satisfied. The converse is obvious. Finally, the LMIs (47) are equivalent to (44) by the substitution
τiQi → Qi, i ∈ I [1, N ] .

Proof of B⇔C. Let Sn×n
+ = (S1, S2, · · · , SN) where Si ∈ Sn×n

+ , {S : S = ST > 0}. Then

L (Q) =



Nτ21A
T
1

N
∑

j=1

QjA1, · · · , Nτ2NAT
N

N
∑

j=1

QjAN



 , (48)

where Q = (Q1, · · · , QN) ∈ Sn×n
+ , is a linear positive operator (see Definition 1 in [11]). Consequently, the

inequalities in (44) are satisfied if and only if there exists a Q ∈ Sn×n
+ such that

L (Q)−Q < 0, (49)

where P < 0 means −P ∈ Sn×n
+ . Then by Lemma 1 in [12], the inequality in (49) has a solution Q ∈ Sn×n

+

if and only if ρ (L ) < 1. However, similar to (10)-(11) in [11], we can show that ρ (L ) = ρ
(

NAT
)

= ρ (NA)
with

A =











τ21A
T
1 ⊗AT

1 τ21A
T
1 ⊗AT

1 · · · τ21A
T
1 ⊗AT

1

τ22A
T
2 ⊗AT

2 τ22A
T
2 ⊗AT

2 · · · τ22A
T
2 ⊗AT

2
...

...
. . .

...
τ2NAT

N ⊗AT
N τ2NAT

N ⊗AT
N · · · τ2NAT

N ⊗AT
N











.

Hence the LMIs in (44) are solvable if and only if

ρ (A) <
1

N
. (50)

Now notice that we can write A = BC where

B =







τ21A
T
1 ⊗AT

1
...

τ2NAT
N ⊗AT

N






, C =

[

In2 In2 · · · In2

]

. (51)

On the other hand, for any two matrices X and Y with appropriate dimensions, we have ρ (XY ) = ρ (Y X) .
Hence

ρ (A) = ρ (BC) = ρ (CB) = ρ

(

N
∑

i=1

τ2i A
T
i ⊗AT

i

)

, (52)
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by which the inequality in (50) is exactly the one in (45).

Proof of C⇔D. The proof is quite similar to the proof of B⇔C by utilizing the linear positive operator

F (Q) =

N
∑

i=1

Nτ2i A
T
i QAi, (53)

where Q ∈ Sn×n
+ . The proof is finished.

Item C of Theorem 3 implies an interesting spectral radius based sufficient condition for testing the stability
of the IDS (1), as highlighted in the following corollary.

Corollary 2 The IDS (1) is exponentially stable if the spectral radius condition (45) is satisfied. Particu-
larly, if N = 1, the IDS (1) is exponentially stable if ρ (A1) <

1
τ1
.

Remark 1 If N = 1, by Proposition 2 in [16], the IDS (1) is exponentially stable if ‖A1‖ < 1
τ1
, which is

more conservative than ρ (A1) <
1
τ1

since ρ (A1) ≤ ‖A1‖ for any matrix A1.

Corollary 3 The IDS (1) is exponentially stable if there exist N scalars αi ∈ (0, 1) , i ∈ I [1, N ] such that
∑N

i=1 αi = 1 and

ρ

(

N
∑

i=1

τ2i
αi

Ai ⊗Ai

)

< 1. (54)

Proof. According to the proof of Theorem 3, (54) is satisfied if and only if there exists a Q > 0 such that

N
∑

i=1

τ2i
αi

AT
i QAi −Q < 0. (55)

Hence the inequality (28) is satisfied with Qi = αiQ. The result then follows from Theorem 2.

Clearly, the spectral condition (54) reduces to (45) if we set αi =
1
N
, i ∈ I [1, N ] .

4.2 A Comparison of Different Sufficient Conditions

With the help of Theorem 3, we are able to make a comparison among these different stability conditions in
Lemma 5, Theorem 1 and Theorem 2.

Proposition 1 The following statements are true.

1. If the set of LMIs (17) (or (44)) are solvable, then the set of LMIs in (20)–(21) are also solvable,
namely, Theorem 1 is always less conservative than Lemma 5.

2. The set of LMIs in (20)–(21) are solvable if and only if the LMI in (29) is solvable. Hence Theorem
2 is equivalent to Theorem 1 and both of them are thus less conservative than Lemma 5.

Proof. Proof of Item 1. By Theorem 3, the set of LMIs (17) are solvable if and only if the set of LMIs (44)
are solvable, which implies that there exists a sufficiently small number ε > 0 such that εIn < Qi, i ∈ I [1, N ] ,
and

Nτ2i A
T
i





N
∑

j=1

Qj



Ai −Qi + εIn < 0, i ∈ I [1, N ] . (56)
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Now for every i ∈ I [1, N ] we choose

P−1
i = N

N
∑

i=1

Qi , NQ, Ri = Qi − εIn > 0, (57)

which implies
N
∑

i=1

Pi =

N
∑

i=1

1

N
Q−1 = Q−1. (58)

Then it follows from (56) that, for all i ∈ I [1, N ],

τ2i A
T
i P

−1
i Ai −Ri = Nτ2i A

T
i QAi −Qi + εIn < 0, (59)

and it follows from (58) that

N
∑

i=1

Ri =

N
∑

i=1

(Qi − εIn) = Q −NεIn < Q =

(

N
∑

i=1

Pi

)−1

. (60)

Clearly, (59) and (60) are respectively in the form of (18)–(19).

Proof of Item 2. Assume that (18)–(19) are feasible. Summing the N nonlinear matrix inequalities in (18)
on both sides gives

N
∑

i=1

τ2i A
T
i Q

−1
i Ai −

N
∑

i=1

Si < 0, (61)

which, by using the nonlinear matrix inequality (19), implies

N
∑

i=1

τ2i A
T
i Q

−1
i Ai <

(

N
∑

i=1

Qi

)−1

, (62)

which is just in the form of (28) and is further equivalent to (29).

Now assume that (28) is feasible. Denote

Ω =
1

2N





(

N
∑

i=1

Qi

)−1

−

N
∑

i=1

τ2i A
T
i Q

−1
i Ai



 , (63)

and let
Si = τ2i A

T
i Q

−1
i Ai +Ω > 0, i ∈ I [1, N ] . (64)

It follows that (18) is satisfied. Now, by (28), we have

N
∑

i=1

Si =
1

2





(

N
∑

i=1

Qi

)−1

+

N
∑

i=1

τ2i A
T
i Q

−1
i Ai



 <

(

N
∑

i=1

Qi

)−1

which implies that (19) is satisfied. The proof is finished.

This proposition demonstrates in theory that the multiple Jensen inequality (11) used in the proofs of
Theorems 1 and 2 can indeed reduce the conservatism of the resulting stability conditions.

Remark 2 Though Theorems 1 and 2 are equivalent by Proposition 1, Theorem 2 obtained by the novel
Lyapunov functionals (32) and (34) possesses an advantage over Theorem 1. To see this, we notice that the
total row size (denoted by Φ) and the total number of scalar decision variables (denoted by Ψ) in the LMIs
of Theorems 1 and 2 are, respectively, given by

{

ΦTh.1 = n+ 2n, ΨTh.1 = n (n+ 1)N + n2,

ΦTh.2 = nN, ΨTh.2 =
n(n+1)

2 N.
(65)

It is well known that the computational complexity of an LMI is bounded by µΦΨ3 where µ is a constant
(see [22]). Hence the computation complexity of the LMIs in Theorem 2 is significantly lower than that in
Theorem 1.
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Combining Lemma 6, Proposition 1 and Theorem 3 gives the following corollary.

Corollary 4 The IDS (40) is exponentially stable independent of the delays τi, i ∈ I [1, N ] , if ρ
(

∑N
i=1Ai ⊗Ai

)

<

1
N
.

Table 1: The maximal allowable τ2 by using different approaches

LMI (29) LMIs (17) LMI (46) Condition (45)
τ1 = 0.4 0.0317 infeasible infeasible infeasible
τ1 = 0.3 0.1146 0.0474 0.0474 0.0474
τ1 = 0.2 0.2418 0.1527 0.1527 0.1527
τ1 = 0.1 0.4882 0.3414 0.3414 0.3414

5 A Numerical Example

We consider an IDS in the form of (1) with two delays, namely,

x (t) = A1

∫ 0

−τ1

x (t+ s) ds+A2

∫ 0

−τ2

x (t+ s) ds, (66)

where

A1 =

[

−4 1
−13 2

]

, A2 =

[

0 −1
1 0

]

. (67)

If A2 = 0, this system has been studied in [16]. It is shown there that the LMIs in Lemma 5 are feasible if
and only if 0 ≤ τ1 ≤ 0.4473 = τ∗1 . On the other hand, direct computation gives ρ (τ∗1A1) = 0.9999, which
clearly validates Corollary 2.

For a fixed τ1, the maximal value of τ2 such that the LMI in (29), the LMIs in (17), the LMI in (46), and
the spectral condition (45) are feasible can be respectively computed by a bisection method. The results
are recorded in Table 1. From this table we can observe that Theorem 2 is always less conservative than
Lemma 5 established in [16], which indicates that our approach based on the multiple Jensen inequality
can considerably reduce the conservatism in the stability analysis of this class of IDSs. Moreover, the LMIs
(17), the LMI (46) and the spectral condition (45) lead to the same result, which validates Theorem 3. We
mention that the results obtained by Theorem 1 are the same as that by Theorem 2. However, from the
computational point of view, Theorem 3 is recommended to use in practice as it only involves one constraint
and a single decision variable.

To illustrate Corollary 3, let τ1 = 0.4 and τ2 = 0.02. From Table 1 we can see that (45) is not satisfied. Since
‖A1‖ ≫ ‖A2‖ , we may let the weighting factor 1

α1

of (τ1A1)⊗ (τ1A1) be small enough so that the spectral

radius of the resulting matrix
∑2

i=1
1
αi

(τiAi) ⊗ (τiAi) is less than one. Indeed, if we choose α1 = 0.9 and

α2 = 0.1 we can compute ρ(
∑2

i=1
1
αi

(τiAi)⊗ (τiAi)) = 0.9783, which implies the asymptotic stability of IDS
(66) in this case.

We finally mention that the conclusions obtained in the above have been approved by many other randomly
chosen numerical examples that are not included here to save spaces.

6 Conclusion

This note has studied the stability analysis of a class of integral delay systems (IDSs) with multiple delays,
which have wide applications in the stability analysis of time-delay systems, especially for neutral time-
delay systems. By generalizing the well-known Jensen inequality to the case with multiple terms through
introducing multiple weighting matrices, two Lyapunov functional based approaches have been established
to yield set of sufficient stability conditions. Moreover, it is shown by the positive operator theory that
the obtained new conditions are always less conservative than the existing ones and a spectral radius based
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sufficient condition is obtained simultaneously. A numerical example has demonstrated the effectiveness of
the established approaches.
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