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Non-Asymptotic Kernel-based Parametric
Estimation of Continuous-time Linear Systems

Gilberto Pin, Andrea Assalone, Marco Lovera, and Thomassinar

Abstract—In this paper, a novel framework to address the unknown initialization variablesiii) the re-initialized partial
problem of parametric estimation for continuous-time linear moments method, that consists in the input-output signals
time-invariant dynamic systems is dealt with. The proposed e finjte-length time windows, in sampling the integralsd
me.th.odollogy. enta!ls the design of sunable.k.ernels of non- finally i f ina th . di te timg
anticipative linear integral operators thus obtaining estmators Ina _y In pertorming e_regressml_’l overa |scre_e |meese.
showing, in the ideal case, “non-asymptotic” (e, “finite-time") ~ Making the overall estimator an inherently hybrid dynarica
convergence. The analysis of the properties of the kernelsugr-  system.
anteeing such a convergence behaviour is addressed and a Bbv  |n the context of CT identification, asymptotic convergence
class of admissible kernel functions is introduced. The opators properties can be proved and several algorithms have been

induced by the proposed kernels admit implementable i(e., devised t id d f in t fi ent
finite-dimensional and internally stable) state-space rdaations. evised (o provide good periormance in terms or transien

Extensive numerical results are reported to show the effesteness behaviour of the estimates (see, for example, the important
of the proposed methodology. Comparisons with some existn work [3] and the references cited therein). However, in or-

continuous-time estimators are addressed as well and indits on  der to achieve estimates characterized by fast convergence

the possible bias affecting the estimates are provided. properties, it is usually necessary to augment the vector of
decision variables with the unknown initial conditions bét

. INTRODUCTION unmeasured states. The main drawback of this technique is

In many engineering applications the direct estimatiomeftrelated to numerical issues in estimating the initial hiude

parameters of a Continuous-Time (CT) model from sampléaéluesthas time gct>es on. it is sh that the desi f

input-output data is an important problem for which several n the present paper, It 1S snown that the design ot an

methods and tools have been developed so far. internally stabledynamic _est|mator - charqcterlzed by very
Among the various techniques proposed in the literature f t convergence properties — can be carried out by suitably

CT parameter identification of linear dynamical systemx;:,(seS aping th? ke_rnel of a non.-anticipativellinear intggraﬂarep
for example, [1], [2], [3], [4], [5], [6], the contributed wome ator, thus yielding a stable linear dynamic system implemen
P 0tﬁtion. Namely, by transforming the measurable input-outp

[7] and the recent special issue [8]), two main families of s of K i tom th h iatel
methods can be identified depending on the approach u%éqpas of an unknown finear system hrough appropriately-

to overcome the unavailability of the time-derivatives bét esigned Volterra integral operators, it is possible toawbt

. . ) . g . auxiliary signals that can be used in place of the unmeakurab
Input-output signalst) State Variable Filtering (SVF) and) derivati\);esgto obtain the rapid converp ence in terms of Hta d
integral methods (IMs). P 9

The SVF approach - not dealt with in this paper - consis émp'es .Of the esFima_ltes of the system’; parameters. Syeh S
in filtering the system’s inputs and outputs in order to abtafog?jt_i S|grl1)al denl\/e_\tt_lvestrc]:an be n;lal?jelilndepende?ttf_rd:h,!;!lnl
prefiltered time-derivatives in the bandwidth of interest thagor'l lflonst_ y e>_i_p;10| N9 fi}/ﬁ?-ca © otn-as_y?p OdICb rK
may be exploited, in place of the unavailable derivatives N ) func 'ons. The Use of Voiterra operalors induce y NKs
the signals, to estimate the model parameters. Instead, If\ﬂfether with a suitable augmentation strategy, allowsotmf

are closely related to the proposed methodology and th@\inear algebraic system that can be solved for the unknown
have quite a long history in the field of continuous-tim& rameters under suitable excitation conditions on thatinp

systems identification. Among integral techniques, we lfec utput signals. _In th_'s connegn_o_n, a significant contndi_mmf

i) the Modulating Function (MF) method, which relies on théije paper con_5|st_s in the definition and the gharacteraﬂo
repeated integration of input-output signals over finéegfth the class ofBivariate pausal Non-Asymptotic Ke.rneqq-
intervals to minimize the effect of unknown initial conditis NKS). Th_e operators induced b_y the .B.C'NKS y|e!d a non-
asymptotic" estimator that admits a finite-dimensionaletim

on the estimatesji) the linear integral filter method, in ing i tat lizati ith Fpa—
which the initial conditions must be considered expli(;itlyv‘”‘rymg Ineéar state-space realization with guaranteeeria

b ting the dimension of the decisi ith LIy
y augmenting the dimension of the decision space wi The paper is organized as follows. In the next section

G. Pin is with Electrolux Professional S.p.A, Pordenonealylt the CT identification problem dealt with is stated and some
Design and Control of Mechatronical Systems at the JohaKeeger Uni- |p Secti y||| h P . . ; 9 p . .
versity, Linz, Austria( Andr ea. Assal one@ ku. at ) ; M. Loverais " eCtIOI’_l , the main properties o non-anticipative é[ltd_ -
with the Dip. di Scienze e Tecnologie Aerospaziali, Pofifeo di Milano, ~asymptotic Volterra operators are illustrated, whereaSen-
Electrical and Electronic Engineering at the Imperial €g London, UK id ificati i0. Section V id he ch L
and also with the Dept. of Engineering and Architecture atlthniversity of identification Scena”p- ection V provides t e Charaz&ion
Trieste, ltaly(t . pari sini @mail.com. of the BC-NK mentioned above, and Section VI addresses



the asymptotic analysis of the identification techniqueally, the results conceived within the Fredholm operator theory.
Section VII reports extensive simulation results and campdn particular, we will use the Fredholm kernel extension to
isons showing the effectiveness of the proposed techniquecharacterize the kernel of composed Volterra operators (se
the Appendix).
A signal is defined as a generic function of time

Consider the following SISO CT syste8),: u(t) : t — uyg, up € R, such thatu(-) € £3,(Rso). Further-

n—1 m—1 more, given two scalarg, bR, with a < b, let us denote

t) = Z aiyD(t) + Z bru® (t), Vt € Rsg (1) by ujap)(-) andu(,(-) the restriction of a signalu(-) to

= = the closed intervala, b] and to the left-open intervala, b],

respectively. Then, we have the following:

Il. PROBLEM STATEMENT AND PRELIMINARIES

where y@(0) = ¢, i € {0,...,n — 1} and u®(0) = finit c lized -
uék), ke {0,....m — 1}, with m € Zso, n € Zso, Definition 2.1 (Weak (generalized) Derivative)et

m < n. The values of the constant parameterse R, i € () € Lioe(R>0). We say thau () is aweak derivativeof
{0,...,n—1} andb, € R, k € {0,...,m —1} are unknown. u(") if

The only measurable signals agét) and u(t), while their ¢ d ¢ )

time-derivatives are not assumed to be available. Our tibgec / () (EMT)) dr = _/O ut(T)@(T)dr, Vi € R>o
consists in estimating the system’s parametgrand b;, by o

suitably processing the input and output signa(s andy(t). for all ¢ & C, with $(0) = (1) = 0.

In the following, for the reader’s convenience, some basic We denote the-th order generalized derivative as$” (-),
concepts of linear integral operators’ algebra (see [9]thed i € Z>o. Moreover, given a kernel functioi'(-,-) € HS in
references therein) and realization theory (for exammégrr two variables, thé-th order weak derivative oK™ with respect
to [10] and [11]) are recalled. More specifically, we considéo the second argument will be denoted B, i € Z.
transformations acting on the Hilbert spa¢g (R>o) of Finally, the notion of BIBO stability for an integral opeoat
locally square-integrable functions with domailk-, and is introduced.

range R (i.e, =(-) € £} (R>0) ¢ (z(-):R>0—R) A Definition 2.2 (BIBO Stability):A bounded linear operator

(/p |z(t)[Pdt < oo, ¥compact B C Rxo).  The notation 7 e B(£2 (Rs), £2,,(Rso)) is said BIBO-stable if:
B(L} . .(R>o), ﬁloc(R>0)) will be used to denote the set

of all the bounded linear operators’ : £? (Rso) — ’[Tx](t)‘ < 00, Vt € Rsg,
L3 (R>o). Given a functionu(-) : Rso — R, with
u € ElOC(R>O) the image function through a linear operator 2 () € Lioo(Rz0) : {[a(7)| < 00, ¥7 € Rx0} -
T € B(L£},.(R>0), L3 .(R>o)) is denoted asT'u, and its  In the case of a Volterra operatéfx, BIBO stability is
value at timet € R is denoted a$l"u](¢). equivalent to the following property of the kernel:
In the paper, we resort to Volterra linear integral opemator ¢
Vi € B(LE . .(R>), L .(R>0)), defined as sup {/ |K(t,r)|d7-} < 00. 2
teR~o
[Viku] ( / K(t,7)u(t)dr, te€R>, Condition (2) will be used in the sequel to assess the stabili
of the operators in our setting. A kernel fulfilling (2) will
where  u(-) € £ .(R>o) and the function be called a BIBOstable kernelIn this respect, it is worth

K(,):RxR—=R is a Hibert-Schmidt #S) Kernel noting that BIBO stabilityper seis not sufficient to establish
Function \olterra operators are a special case of the motiee existence of a finite-dimensional state-space realizat

general Fredholm operators, defined as for an operator, that is, its implementability. The order of
b the realization can be determined only when an analytical
t) & / K(t,m)v(r)dr, teR, expression for the kernel is available.
with v(-) €  Lie(R), a,b € R (@ < b) and I1l. N ON-ANTICIPATIVE AND NON-ASYMPTOTIC
K(,):RxR—=R. Itis easy to show that the Fredholm VOLTERRA OPERATORS

operator specializes to the Volterra operator when we densi
t >0,a <0,b>t and the kernelK(¢,7) verifies the
condition

In this section, the concepts of causality and non-
anticipativity are addressed as they play a key role in char-
acterizing the implementability (existence of a stabletdini
K(t,7)=0, vYreR\[0,t],VteR. dimensional state-space realization for the integral atpes)

f th d methodology.
Indeed, for anyK (t,7) € HS, we can write ot the proposed methodology

K(t,r) = K(t,")H(T)H(t —7), Vt€Rx,¥7 € [a,b], A Non-anticipativity of the Volterra operator

where H(+) is the right-continuous Heaviside step-function. In  qualitative  terms, an  operator T €
The kernelK (¢, 7) is calledFredholm extensionf the Volterra  B(L?,.(R>o), £7,.(R>0)) is said to be causal (non-
kernel K(t,7). The Fredholm kernel extension can be exanticipative) if at any time > 0 (respectively,t > 0) the
ploited to specialize to Volterra operators the properéied image of a signak(-) at timet, [T'z] (¢), depends only on the



restrictionzy 4 (-) (respectivelyo4(-)). Being the \Volterra zU)(t), with j € {1,...,n — 1}. To address this issue, we
operator inherently non-anticipative, the sigfl ] (¢), for need to introduce the concept of composed (or nested) Yalter
t > 0, can be obtained as the output of a dynamic systemperators and to discuss some relevant properties.
described by the following scalar integro-differentialiatjon
t/o Let us denote by{Vy ...k, V] (:), the image function
EW(t) = K(t, t)x(t) +/ (gK(t, 7’)) x(7)dr obtained by the composition df \olterra integral operators

where 5(1)(0) =0 and €0) = & = fo Ya(T)dr. [VK o- ole(l)} = [VK {VKz [Vle(Z)}H- (4)

Clearly, ¢V(t) = £[Vika](t) is obtained by applylng the |n view of the composition property of Volterra operatorses

Leibnitz rule in derlvmg the integral. _ ~ (39) and (40) in the Appendix), it holds that the composed
The following result is useful in dealing with the applicati operator is in turn a Volterra operator with kerdgk o Ky 10

of Volterra operators to the derivatives of a signal. ...0Kjo---0Kyo0 K;, where - o - denotes the kernel-
Lemma 3.1 (Proof in Appendixfor a giveni > 0, con- composition integral (see (40) in the Appendix). The foliogy

sider a signalz(-) € L£?(Rso) that admits ai-th weak result can now be proved.

derivative inR>o and a kernel functionk'(-,-) € HS that

admits thei-th derivative (in the conventional sense) with Theorem 3.1 (Non-asymptotic Derivative Imagkgt

respect to the second argumetit,c R>,. Then: @ (.) be the i-th derivative of the signalz(-) and let
i1 N > i be an arbitrary integer. Givetv kernel functions
{VK:E(Z' } Z Yi=i =120 (1) K =31 (¢, 1) Ki(-,-),...,Kn(-,-), such that K, is d-th order non-
= asymptotic, withd > i — 1 and K; € HS, Vj € {1,..., N},
il (3) consider the composed operaias, , with kernel
+ (0)K 37D (t,0) .
70 PNZKNO-'-OKQOKl.
+(=1) [VK( y@](t), Ve Ry The image of the derivative signal”)(-) throughVp,, i.e.,
that is, the function[Vi, =] (-) is non-anticipative with [Vpyz@](+), can be obtaine_d_as_the image of the restriction
respect to the lower-order derivative(;r),...,:c(ifl)(). 0 I[o_,t](') through a non?ant|0|pat|ve operator. Indeed, there
exists an operatovz, ,, induced by the kernel
B. Non-asymptoticity conditions Ryi& -KyoKy_jo---0Ki10T;,

By exploiting (3), we now characterize the kernels for whickith 7;(-, -) defined recursively by
the transformed signalVx 2] (-) is independent from the o
initial values of the signal and of its derivatives. The daling Ty(t,7) = (K oT;” ) (t,7) + K;(t, 7)1 (7, 7)
definition characterizes the kernels yielding non-asyitipto Vie{2,... i}, V(1) eR: (5)
\olterra operators.

. o N
Definition 3.1 ¢-th Order Non-Asymptotic Kernel): with the initialization 71 = K, such that

Consider a kerneK (-, -) satisfying the assumptions posed in v 0] ¢
the statement of Lemma 3.1; if, for a givérn> 1, the kernel [ Py } ()
verifies the supplementary condition = Ry ,i(t, t)z(t) — Rn,i(t,0)z(0) — [V,o) z](t). (6)

RN,??
KWD(#,0)=0, VteRsg, Vje{0,...,i—1},

then, it is called an-th order non-asymptotic kernel. . ) ) .
Proof: First, by integrating by parts, the innermost

Lem‘ma 3.2 (Non-asymptoticity)f a kernel K(-,-) is at operator in the right-hand side of (4) can be decomposed as
least i-th order non-asymptotic, then the image func-

tion of 2()(-) at time ¢, [Vxz¥] (), depends only on LVPN,CC(i):| (t) = {VKN [VK2 (h Vi ) 2~ D])H()
the instantaneous_ values of the lower-order derivative (7)
(@(t),2M(t),...,20=D(t)) and on the restrictiong (1), wherez; (t) 2 Ki(t,t)z(—1(t) — Ky (t,0)z~1(0). Now,
but not on the initial states(0), :C(l)(O), o 7x(i_l)(O). 0  consider the composed kernel

The proof of Lemma 3.2 follows immediately from
Lemma 3.1 and is therefore omitted.

Up to now, a candidate class of kernels has been charabtained by (5) (recall that
terized which allows to remove the influence of the unknowR’; o K(l) _f Ko(t O')K( )(o— 7)do, see also the
initial derivatives from the transformed 5|gnof1VK:c ﬂ (t). Append|x) By the non-asymptoticity property of;:
However, beyond depending on the current valfe) and K,(¢,0) = 0,Vt € R>q, and in view of (5) and (7) we get
its past time-behaviour, such a signal depends also on the un _ _
measurable instantaneous values of the lower-order diggga [Vey 2] = [VKN T {VKs [VT2(—I(%1))}H t). (8

To(t,7) = —(Ky 0 K)(t, 1) + Ka(t, 7) K1 (7, 7)



Integrating by parts, the innermost operator in (8) can lwehere the auxiliary signals in (10) can be obtained as the
decomposed as image of measurable signalg(-) and u(-) through non-

. _ - anticipative operators, that is, fgre {0,...,n},
[VPNI(Z)] - [VKN e [VKg (;C2 + [VTu):z:(z 2)])H (t),
_ ’ _ ry,3(t) = B (8 )y (t) = Buv,5(t,0)y(0) = [V y](1)
wherezy(t) 2 —Ty(t, 1)z =2 (t) + Ta(t,0)2~2)(0). Since 7

thei-th order non-asymptoticity condition is implicitly in gla  @nd, forj € {0,...,m — 1},
when considering the kernd;(-,), then, by (5), we have . ) p (¢ 1vu() — Ry (£, 0)u(0) — [V, u(t).

T5(t,0) = 0,Vt € Rxy, i.e, alsoT(-,-) is non-asymptotic. Ry
Thus, we can write Finally, by introducing the true parameter vector
Ve, o@] () = [Vicw -+« [Vica Vi (=22 | ). 0" 2 [ao,. .. an—1,b0, .. by_1]",
Integrating again by parts, the innermost operator can B8d the vector of auxiliary signals
decomposed as () 2 [y (s Pyt (OB Pum (O]
[VPNW)} () = [VKN o [VM (#3 + [VT§1>$(i_3)})}} ’ equation (10) can be rewritten in a compact form as
wherezs(t) £ —T5(t, 1)z =3 (¢) + T5(¢,0)2=%)(0). Due to 2T (10" =1, n(t), tERsg. (11)

the fact that the kernek (-, -) is at leasti — 1-th order non-
asymptotic, ther¥;(¢,0) = 0,Vj € 1,...,¢ — 1. By iterating
this line of reasoning, we finally get

Now, assuming that all the operators in our formulation
admit a stable realization, we need to collect a suitableb@rm
of equations like (11) in order to form a well-posed algebrai

[Vp, 2] () = {VKN e {VKI.+1 [VTi(—x(l))]” () system, to be solved in the unknown parameters. Several
= Ruv,i(t,0)z(t) — Ry,i(t,0)2(0) — [V 2] (1), approaches can be used to obtain the needed set of corstraint
' ' Ny As usual in the CT identification framework, a suitable numbe
thus ending the proof. m of constraints can be formed by sampling the signals in (10)-

Remark 3.1 (Implications)in Theorem 3.1, the existence(11) at different time-instants and in collecting the data f
of a composed Volterra integral operator has been shovinatch regression.
namely Ve, = Vi, ..ok, that, fed by thei—th derivative In order to emphasize the generality of the proposed
2 (-) of a signal, produces an image signal, $&_=(V] (-), methodology, we still have not assigned explicit analytic
which, in turn, can be expressed, in the most general casegkpressions to the kernel&;,..., Ky and to Ry, j €
terms of the sole restrictianyy ;(-) and that, in any case, does), . .., n, which are needed to compute the auxiliary signals.
not depend on the initial conditions of the hidden derivegiv The problem of selecting a class of non-asymptotic kernels
Assume now thatz()(-) is not measurable whilex(-) is vyielding stable finite-dimensional state-space realirstiis
available; then, thanks to (6), the sigrfal, z(V] (-) can be addressed in the following.
obtained by applying a non-anticipative operator (see {®))
().
©) V. BIVARIATE CAUSAL NON-ASYMPTOTIC KERNELS
IV. NON-ASYMPTOTIC KERNELS FOR PARAMETER In this section, the main contribution of this paper is
ESTIMATION presented by introducing a novel class of non-asymptotic
In the context of the parameter estimation problem formgausal kernels with guaranteed stability properties tHatva
lated in Section I, consider (1) which relates the unknowne application of Theorem 3.1 to construct auxiliary signa
parameters with the time-derivatives of the signals) and yielding the unavailable input-output time-derivativ@s. this
y(-). In the sequel, the results presented in the previogad, let us first introduce the following definition.
section are exploited to overcome the unavailability ohaig Definition 5.1 ¢-th Order BC-NK): A kernel K (-, ) € HS

denvlayves (hidden |ntgrnal _states of the system) in ()5t that satisfies the assumptions given in Lemma 3.1 and that,
obtainingnon-asymptotic estimate$ the unknown parameters ) , o .
for a giveni > 1, also verifies the conditions

by means ofcausal filtering
Let us select an integeN > n and apply the \olterra K(j)(ao) —0, K(-j)(t,t) -0,
operatoVp, = Vi, o...ok, (With kernels taken as in Theorem Vi € Ron Vi 0 1 12
3.1) to both sides of (1) thus obtaining €R>0, ¥j €10,...,i—1} (12)
n—1 is calledi-th Order Bivariate (strict) Causal Non-Asymptotic
Ve y™I() = ailVeyy( Z be[Vpy u®](-). (9) (BC-NK) kernel.
=0 It is worth noting that, owing to Lemma 3.1, if a kern@j;
In view of (6), (9) can be rewritten as verifies both the conditions stated in (12), then the image of
a derivative signak(” can be expressed as

Tyn(t) = ; airyqi(t) + Z brruk(t), Vt € R>o,  (10) [VPNx(i)} (t) = (~1) [VPS')I} t).



On the other hand, a kernély verifying (12) is not easy to then, [Vcw,sz:(i)] admits the following N +1)-th dimensional
obtain by means of the kernel composition integral, asiwedi state-space realization:

in the statement of Theorem 3.1. 1) ) )
& () =Cy Nyt )z(t) —wii;(t), i=1,....,.N+1
_ _ _ _ . N+1
Therefore, in the paper we devise the following analytical Ve va®] () = Z &i4(0),
j=1

form for a kernelPy = C,, n(t, 7). Specifically, we propose

the following bivariate function as a BC-NK that we exploit ' (16)

later on to design a stable non-asymptotic continuous-tingth & ;(0) =0,...,& nv41(0) = 0. As|e 7" f,, np; ()] <

parametric estimator: oo, Vj € {1,..., N+1}, (i.e, all the time-varying terms affine

N N to the z(¢)-injection are bounded), and since the system is
Con(t,7) 2 e @l (1—e7vT) {1 — @l diagonal withw > 0, then (16) is a BIBO-stable time-varying
(13) linear system.

wherew € R is a tuning parameter (see Sections VI and Moreover, there exist finite scalafg ; € R-o such that

VIl). The non-asymptoticity, causality and stability ches (e=<i* f, v, ;(t)) — B;; for t — oco. This implies that

teristics of the BC-NK given by (13) are provided in thehe time-varying system (16), far — oo, tends to a stable

following lemma. linear time-invariant system in which the(t)-injection is
never suppressed. Thanks to (16), the extended auxiligmaki
vector z.(¢), which embeds both the signaigt) and r, ,

needed to form the constraint (11):
Lemma 5.1 (Kernel Characterizatiodi, n(¢,7)): The

bivariate kernelC,, v(t,7) is BIBO-stable andN-th order Ze(t) = [ry,0()s - s Ty () Tuo(t)s - - o Tum—1(1)],
BC-NK. Moreover, all the kernel derivative[éﬁ)N(t, 7), with  with .
i €{0,...,N — 1}, are BIBO-stable. O ryi = Vo, xy] i€ {0,...,n},

rui = [V, yu'?],i€{0,...,m—1},

Proof: First, we prove that the kemél, v (¢,7) is @aN-  can be obtained as the output of an overall= (n + m +

th order BC-NK. Indeed, all the non-anticipativity condits 1) - 1)- dimensional linear time-varying dynamical system,
up to the N-th order are met by the factarl — e “")". described as:

The causality conditions up to th€-th order are met by the ) —
third factor(1—e~“(*~7))N. The BIBO-stability ofC'" (t,7)  Guya, : { ﬁ ( t()t):_HGgégt) + B, (Oy(t) + Bu(t)ult)

is implied by the fact that eaclie (=)@  with i € ‘ S (17)
{0,...,N — 1}, is BIBO-stable and the following terms areyjith ¢(0) = 0 and wheret € R"« is the overall state-vector;

bounded{1 em@(=)N| < 1, ¥r:0 <7 <t and their moreover, the other quantities in (17) are
derivatives up to th€ N — 1)-th order are bounded too. B
G{ :blockdlag (G‘,7 . ’G) c R™ XnE’

Now, we describe how the image of the derivative sziag(—w,...,—w(N+1))GR(N+1)X(N+1),
2 (-) through the operatoic, ., i.e, [V, z@] = S
(—1)'[V,@ «] can be obtained as the output of a BIBO- Ey(t) =[Eo(t) --- En(t) |0 --- 0] €R",

w,N . . . . . . n
stable finite-dimensional time-varying linear systemsktithe E,(t)=[0 --- 0| Eo(t) -+ En_1(t)]" €R",
i-th derivative of the BC-NK (13) with respect to the second

i Conjin(tst)
argument can be expressed as:
Mo Ei(t) = : e RV, (18)
CONtT) = eIt f, npis(7) ) (14) Co,Nji,N+1(t 1)
j=1 and
where f, nvji;(-) are univariate functions ofr. Let H¢ = blockdiag (17,-+-,17) € R |

A P —wi . . .
Coo nij (£, 7) = (=1)"e™ 7" f, )i ;(7); then, by the linearity \here1 T denotes a row vector of ones with + 1) elements.
of the Volterra operator, it follows that

g : ps VI. ASYMPTOTIC ANALYSIS OF THE KERNEL-BASED
[VC%N“T( () = (-1) [Vij)Nx](t) - 2; Ve i) (6) CONTINUOUS TIME MODEL IDENTIFICATION ALGORITHM
=
(15) In the following, the analysis of the asymptotic properties
Moreover, letting & ;(t) = [Vo, ,.,2] (t), with i € of the proposed identification algorithm is addressed. To th
{0,...,n}, j € {1,...,N + 1}, and taking into account that, purpose, the so-called hybrid framework of continuousetim
Vt € R>o, we have model identification (see [7]) is assumeik., the system
Cyonjig(£,0) = 0 generating the data is assumed to be a continuous-timayline

it , time-invariant system, while the noise model is defined in
&Cw,NH,j(tﬂ—) =—wj e " fi, Nii(T) discrete-time.



Consider the continuous-time linear time-invariant input = 0,...,m — 1, where
output system

G =diag—w,...,~w(N+1)] and H=11,...,1].
n—1 m—1
M (t) = Z a;z D (t) + Z biu (), (19) For the purpose of an asymptotic analysis, the time-varying
=0 i—0 matricesE;(t) can be replaced with their asymptotic values,
corresponding to (1), and introduce the following assuamti SO in the following the constant matrices
Assumption 1ithe system (19) is asymptotically stable. E; = lim E;(t) (26)
Assumption 2:The inputu is a quasi stationary, piece-wise . ) ] t._foo ] ] ]
constant, deterministic sequence. are considered in the definition of the filters in equatior®) (2

and (25). Note that, in view of the definitions of the kernels

Consider now a dataset consisting Af input-output mea- <™ \<7 ; _ L
giving rise to the time-varying vectois; (t), the limits in (26)

surements associated with the sampling instants ¢y + kT,

k=0,..., K —1 (uniform sampling is assumed, for the sak&@'® well-define_d. )
of simplicity), defined as follows In the following, we denote by;(s) the transfer function

associated with the state space quadr@eE;, H,0). For
y(k) = 2(ty) +e(k), u(k) =u(ty), the purpose of the following analysis it is interesting tanpo
Rt and exploit the particular structure of the filteFs(s):
indeed, ass is diagonal and the definition of the output matrix
H implies that the output of each filter is simply given by the
sum of its states, one can conclude that

wheree(k) represents (output) measurement noise. Then,
following further assumptions are in place.

Assumption 3:the process is a stationary zero mean white
process noise with second moments given by

N+1
E [e(i)e" ()] = Redi Fi(s)= Y Fij(s), 27)
whered;; is the Kronecker delta. _ =1
Assumption 4:The inputu is uncorrelated with noise. with B
Assumption 5:Instantaneous sampling, in the sense of [12], Fij(s) = lG_7 j=1...,N+1, (28)
is assumedie., sampling is assumed to be “fast” with respect S -
to the dynamics of interest. whereG; = —jw, j = 1,..., N + 1 and wherek;; denotes
To deal with deterministic and stochastic signals in #ejth element of vectoE;.
compact manner, the following operator is defined Finally, as the hybrid framework of continuous-time identi
X fication has been assumed, for the sake of implementation,
E[]= lim iZEH a discretised version of the above defined continuous-time
K—oo K filters has to be derived. By using,g, the backward Euler

transformation, the discrete-time counterparts of #e(s)

whereE [-] is the expectation operator. For two signal$) fiters can be derived as

qnd b(t), the cross-covariance matrix is denoted Rg, =
E [a(t)b(t)T]. Then, the proposed identification algorithm, ()
aims at estimating the parameter vector '

zEqi;
:Fi’(s)|52(zfl)/(Tz) :Z_iG’;j’ ]:17,N+1

0= [ao,al,...,an_l,bo,bl,...,bm_l]T = [0501] where _ EZT 1
. . . . Ed,ij =—L ) Gd,j i E—— (29)

on the basis of the available data by solving the linear - 1-G,T 1-G,T
regression problem so that

— " N+1

ryn=2 0 (20)
Fi(z) = Y Fj(2).
where put
Z=[ry0s s Tym—1>Tu0s- s Tum—1] = [z;,zgr (21) Therefore, in discrete-time, the variables appearing i@ th

i ) , . _regressions (20) and in (21) can be defined as
andr, ;,r, ; are given by the outputs of a suitably discretised

version of the filter bank in equation (16), to be defined in the ryi(k) = Fi(z)y(k),i=0,...,n,

following. Note that the state space representation of trer fi N .

bank in (16) can be broken down to a setrof- 1 filters for rui(k) = Fi(z)u(k),i =0,...,m—1.

the outputy Finally, in the definition ofr, ; it is convenient to highlight the
: _ . . deterministic part, resulting from the filtering ef%) and the
€i(t) = G&.(t) + Ei(t)y(t) (22) stochastic part, resulting from the filtering @fk), as follows:
Ty,i (t) = HSy,i (t), (23)

) ) ryi(k) =ryi(k) +ei(k),i=0,...,n,
1=0,...,n, andm filters for the inputu
. where r; (k) = Fi(z)z(k),i = 0,...,n and e;(k) =
Euilt) = G&uit) + Ei(t)u(t) (24)  Fy(2)e(k),i=0,...,n.Similarly,z, in (21) can be expressed
rui(t) = HE, (1), (25) asz, = z, + z., with obvious definitions ok, andz..



On the basis of the above definitions, our aim is to establisind
an expression for the bias of the estimatefofomputed by
solving the discrete-time regression. In this respect,tfier R Ze
purpose of parameter bias analysis, it is convenient toesspr {O
the linear regression (20) as

} =Eleoen €16n - €p_16, 0---0].

Hence, to evaluate the bias on the estimated param-
Tym =727 6 eters, we have to computei.,., = Eleoe,), ¢ =

0 0 0,...,n. To this purpose, note that, by definitidblege,] =
= [z, +2. 2] {gﬂ =lz; 2] [gz] +2,0,. (30) E[(Fo(z)e)(Fy(2z)e)], which, in view of (27), becomes
Left-multiplying by z equation (30) and lettingz, , = N+1 N+1
[z, z.], we obtain E[(Fo(2)e)(Fy(2)e)] = E (Z €0j)(z eq) | s
j=1 I=1
Ze Ze
ZyuTyn = vauzluo - |:0:| T — [0] €n where (see (28)) eoj(k) £ Foj (z)e(k) =

TaaT 0 [Eq0;/(1 = Gajz Y)e(k), or, equivalently, eq;(k) =
n [zoe] (2] ]|+ [zggzez szeze 0] 0. (81) Gajeoj(k— 1)+ Eyoje(k — 1), and similarly forey.
‘ It follows that the covarianceR. ., = El[eq;(k)eq (k)]

Letting R = Elzzury,] and Ry, = E [z,42,,] corresponds to the covariance between two first order AR

and applying thek ] operator to both sides of (31), afterprocesses forced by the same white noise input, so that
some algebra, we get

ZyuTax,n Zyu

Eq0jEqq
(Revryn ~Rp, 1 )= (Re R, 100, (32) Reasea = T2 GoyGiay (39)
{0}6" [0} and, in turn,
Therefore, from (32), it follows immediately that, in the I B 0B
. . _ U q
absence of measurement noise, the regression reduces to Rege, = 2; 12: mRe,
R, .. . =Ry .0. (33) =

which can be used in (34) to quantify the bias in the estimate
of 8*. These results on the asymptotic expression of the bias

When noise is taken into account, the resulting estimate%?n be used to quantify the performance of the proposed

necessarily affected by bias if a least squares solutiomef t entification aIgorlthm N many respects. In partlc_ulaneo
linear regression problem in (32) is considered. While this expects the asymptotic bias to depend on the sampling aiterv

a known fact in the continuous-time identification literatu _Tﬂand on éhe Lllter ptirametle_ttn. Ipt;h's conr][eztlorl,_ thte
which has led to the development of sophisticated instruaen’ ' UCeNCE OfL andw on the quality of the computed estimates

variable algorithms for bias elimination (see.g, [7] and IS an?lylzsedFln th? fo_quzwng, fotrhglt\j/en ve:jlues (N.m _the
the references therein), it is interesting to pursue the/ab(#eme (13). Focusing initially on the dependencelgmn view

analysis further, exploiting the above derived expression qf the_ expressions_ in (29) for the parameters of the discrete
the discrete-time counterparts of the filters (23) and (25} ¢ filters 3 (2), it follows that

More precisely, lettingf* the true value of the unknown _ E;;T T 1 1
parameter vector (corresponding to the solution of theaiois Eaij = 1-G;T 17T Ga,j = 1-G,;T 17T

free regression (33)) and denoting wit® = 6 — 6* the bias that inin t £ tHB-d q | btai
in the computed noisy estimate, from (32) and (33) we getSO al, again In terms o -dependence only, we obtain

_ _ T2 1
-1 o ~ . ~
E[A6] = [Rzz)u +R|:Ze:|] [_R|:Ze} ) _R|:Ze} 6°]. (34) EqojEqq ~ = T)Q, Ga,iGa; ~ = T)2 .
0 0 0 Substituting the above relationships fat,;E4, and

G4,;Ga, in (35) one can see that the scalar covariances have

The noise-dependent covariance functions in (34) can Ek@ following dependence oft:

further analysed by noting that Eao;Eaq T2 1
Re ieqr — . : e ™
R _ [E[zezl] © ¢ ] — GajGay (1-T7T)21-1/(1-T)2
z.| | 0 0f’ T ()
0 T2
where, in turn, which clearly becomes smaller and smaller for decreasing
o2 ene cne values of T'. Also, in view of the structure of the bias
- 0 0Tt e T0BR expression in (34), we conclude th&{A@] decreases a¥
E[zez, | =E : : : J decreases (recall that is given, as mentioned above). Note
€0en-1 €1€n—1 ... €24 that this conclusion is in agreement with the simulationultss



presented in Section VII, from which this effect is apparent
For the sake of generality, a complete expression for the oos|
covarianceR,,,,, is reported, in which the dependence on & oo 8
w is made explicit, by substituting expressions #y; and © oo 7

G; in (29) (the derivation is omitted for brevity): ootk [
R L2 (—11wT + 18w?T? + 6) o1 ¢ s & s s 1 s 9w
Zc€ = ——1w .
ety 4 (14 3wT)2(34+2wT) (24 wT)(1 + wT) .
ConcerningR,,.,, . it is worth noting that: o005

« for a given value otv, the covariance vanishes (linearly) o« onl
for decreasing values df (in agreement with (36) and = .|
with the numerical evaluation shown in Fig. 1).

« For a given value off’, the covariance is a function of
w, again as depicted in Fig. 1.

Finally, as a simple example of application of the abov'g LR iR ( sed with &) as funct f

H H H : 1g. 1. z, an Zeenp normalised with respect <) as functions o
analysis, the Covarlanc_dg“ze and R_zeen_' which appear in the kernel parameten and of the sampling perio@’.
the numerator of the bias expression in (34) are computed,
for the case ofn = 1 and N = 2. The kernel (13) is used
conS|der|r_1g increasing valu_eScofra_ngmg fromO.litgo 10 ind 45 = —408, a5 — —416 andas = —1600. y(-) is the output
three choices for the sampling peri@d namelyl0~°s,107 s .

5 ) o . . of the system affected by an output measurement npj&e,
and10~°s. The results are summarised in Fig. 1, in which the . : L : :

. : While u(-) is the measured forcing input signal.
dependence of the two covariances (normalised to the nois ¢ imulation in the BC-NK f K th
varianceR,) onw andT is depicted. As can be clearly seen 0 carry out a simufation n the i ramework, the
alue of N = 5 is used in the implementation of the BC-

from the figure, the analysis confirms the numerical results i
g y K kernel (13). The kernel parameter is set tow = 1.

Section VIl as far as the effect @f is concerned: botR ,, and A tioned in R K61 Ivsi ing the best
R.,.., become negligible with respect 1. for decreasing’; S Mentioned in kemark 5.1 an analysis concerning € bes
choice of this tuning parameter is out of the scope of the pape

in particular, for very small values df, the result becomesH i the followi les. diff t valuesToh
almost insensitive to the value af. Furthermore, as far as' orcven N INETONOWING examples, difierent value re

the dependence om is concerned, the results in the ﬁgureconsmered. ) - )
indicate that smaller values of appear to be more suitable '€ procedure for constructing the auxiliary signals gener
to minimize the bias induced by the time-discretization. ~ &tion system by BC-NK I§e)rnels (depicted in Fig. 2) consists
Remark 6.1:It is worth noting that the choice af and7'is I taking the derivatives’,’y (¢,7), i € {1,2,3,4,5} of the
critical both in terms of bias (as well as on the bias/varean&C-NK (13), then in identifying the termé, vy, ;, with j €
tradeoff) and in terms of transient behavior. In particular {1,2,3,4,5,6} (see (14) and (15)), and finally in computing
is important to underline that the tuning of the algorithr¥w.(; (% t) to form theE;(t) matrices (see (18)) needed for
cannot be based on the sole bias analysis but has to take e implementation of the auxiliary signal generation ejyst
account the impact of such choices on the variance of tHe.y—z (S€€ (17)).
estimates. Indeed, during transient operation the mimitiis ~ The initial conditions for system (37) have been set to
of the mean square error could be a more relevant requiremefft) = 1, z(Y(0) = 10 andz®(0) = 2 (0) = 0, while the
than unbiasedness. A detailed investigation on this inaport forcing input has been chosen as a combination of sinusoidal
aspect, however, is out of the scope of the present pagegnals:

Nevertheless, in the next _section, for given value_&;oaﬁnd w(t)=10sin(5t) + 6.sin(20¢) + 3 sin(8t) + sin(2¢) + 7sin(4t)
N, the effects of the choice of the sampling peri@dwill

-0.02

~0.025 L L L I I
0 1 2 3 4 5 6 7 8 9 10
®

be evaluated also in the context of comparative analysis wit +9sin(12t).
other techniques and the numerical results will confirm #e kThe sampling period is set a& = 1 - 10~*s and the
conclusion of this section.e., that bias becomes negligible foradditive output measurement noigg(-) is simulated as a
fast sampling applications. uniformly distributed random signal taking values in the
interval [—0.5,0.5], corresponding to a signal-to-noise ratio
VII. SIMULATION RESULTS (SNR) SN R = 42.4152, where the SNR is defined as
Consider the benchmark proposed by Rao and Garnier in P,
[13] (see also [14] and [15]) SNR = 10log;o (F;) :
@ (1) = a12® () + azz@ (t) + azzM (t) 4+ asz(t) P, denotes the average power of the additive noise on the sys-
+b1uM (t) + boul(t), tem output é.g, the variance), while?, denotes the average
y(t) = x(t) + ny(t), power of the noise-free output fluctuations. As can be seen
(37) in Fig. 3, the BC-NK estimator shows very fast convergence
where z(0) = a0, (0) = 2V, 2@©0) = and good robustness against the output measurement noise.

:v((f), x(3>(0) = xég) andb; = —6400, b, = 1600, a; = —5, Clearly, in a noisy scenario, the bias on the estimates is



(@) Cu,n (t,7) (b) CLx (t7)

(A cPy(t,7) ()l (t.7) M cCy(t,7)

Fig. 2. Plots of the Bivariate Causal Non-Asymptotic Ker(E8) and its derivatives (see (14)), far= 0.1 and N = 5. The value ofw is different from
the one used for the simulations due to mere graphical remglesasons.

unavoidable as illustrated in Section VI. of the sampling intervall’, which is in agreement with the
analysis provided in Section VI. Compared with the HMF
technique, the BC-NK shows good robustness at decreasing
values of the SNR and of the sampling interval.

Now, the proposed BC-NK parameter estimation method Comparison with the Refined Instrumental Variable Method:
is compared with two well-known techniques from the litThe SRIVC method is a very powerful tool for the identi-
erature, namely, the State Variable Filtering (SVF) methditation and estimation of continuous-time transfer fuomti
and the Integral Method (IM). More specifically, the BC-NKmodels. It was first suggested and implemented in [16], while
algorithm is compared with the Hartley Modulating Functiothe full RIVC has been implemented more recently (see [14])
method (HMF, see.g, [7])) and with the Simplified Refined and the reader is referred to this work for more details.
Instrumental Variable one (SRIVC, seqy, [16]). The comparison with the SRIVC method has been car-

Comparison with the Hartley Modulating Function methodried out under two different scenarios. In the first one, the
An important advantage of using Hartley-based modulatirgymptotic properties of the three methods (BC-NK, HMF
functions is that the system identification problem can lkehd SRIVC) have been compared, as reported in Table I. The
equivalently posed entirely in the frequency domain whickecond scenario refers to the transient mode of behaviae Mo
makes it possible to exploit efficient DFT/FFT techniquespecifically, a simulation trial characterized byS&v R = 30
This method is well suited for digital implementation and haand a sampling interval 6f = 1-10~*s has been performed.
been included in the CONTSID toolbox ([17], [18]). The results concerning the parametgrare shown in Fig. 4

A Monte Carlo comparative analysis is carried out and then a time-window ofl5s (the results are obtained computing
results (averaged ove00 runs) are presented in Table | forthe ergodic mean values over a numbenof runs). Similar
different values of the SNR. Note that in the table, each romsults are obtained concerning parametsys:s, a4, by, and
provides an estimate of the unknown parameters for differén and they are not shown for the sake of brevity.
levels of noise and sampling intervals As can be noticed, the BC-NK technique shows, in the tran-

The table shows that the proposed technique yields accursient phase, very good results compared with SRIVC, while
estimates of the parameters in several sampling and no&RIVC shows slightly better performance asymptoticalty. |
conditions, showing a better behavior with smaller valudhis regard, the good transient behavior is a relevant featu

A. Comparative Analysis
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Fig. 3. (a)-(d): Time-behaviors of the estimates of paramset;, a2, b1, andby provided by the BC-NK estimator in noisy conditions (the einehaviors
of the estimates of parameteds and a4 are similar).

of the proposed technique and enhances in simulation theé-uture research efforts will be devoted to a deeper analysis
effectiveness of the guaranteed internal stability progenf of the delicate issue of good (even optimal) selection of the
the estimator. For the sake of completeness, in Figs. 5 andu@ing parameters and to an extensive robustness analysis.
the behaviors of the standard deviations on the whole timehis will lead to the evaluation of the proposed technique in
period and in the transient phase are shown with referencer¢al-world scenarios. Moreover, future work will also aimn a
the estimation of parameter; by the proposed method andexploring the bias/variance tradeoff, as well as the behavi

by the SRIVC technique, respectively. Similar behavioketa of the algorithm in the presence of under-modelling, both fo
place for the other parameters. the deterministic and the stochastic parts of the modetclas

VIIl. CONCLUDING REMARKS

In this work, a novel framework arising from the algebra APPENDIX
of linear integral operators has been established for the de
sign of non-asymptotic parametric estimators for contiraio
time linear dynamical systems. In particular, a new class @f
bivariate kernels has been devised allowing to get rid of
the influence of the unknown initial conditions while, at the
same time, guaranteeing the internal stability of the exttm
As a consequence, very fast convergence of the estimate t
can be achieved. The proposed estimation method has bee VK:v(i)} (t) = /K(tm):v“) (T)dr = 20"V () K(t,t)
thoroughly evaluated and compared with other techniques in 0 "
simulation on a benchmark problem available in the liteeatu — 2D (0)K (¢, 0)/ KWV, )z (r)dr. (38)
A parameter-bias analysis has also been provided. 0

Proof of Lemma 3.1

Integrating by parts, we have:
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Sampling | Method | SNR | Param. Parameters |
Interval value &
st. dew.
a1 =—-5 a2=—-408 a3 =—-416 a4 =-1600 b = —6400 b2 = 1600
20 0* -4.685 -405.135 -413.231 -1568.656 -6250.399 1493.692
oo+ 0.0005 0.1923 0.3285 3.6495 57.1571 34.9348
1.-10-% | BC-NK 30 6* -4.919 -407.179 -414.543 -1597.616 -6384.814 1585.849
oo+ 0.0000 0.0041 0.079 0.790 3.2375 5.0161
35 6* -4.957 -407.759 -415.413 -1599.539 -6394.814 1585.910
0o 0.0000 0.0027 0.0048 0.0483 0.796 0.6702
20 0~ -5.079 -408.883 -450.807 -1666.169 -6389.525 848.298
oo+ 0.0005 0.5547 173.8672 577.4829 375.3087 546.8073
1.10-3 HME 30 o* -5.008 -408.113 -419.262 -1604.249 -6398.651 1519.295
oo~ 0.0000 0.0193 4.3941 13.1635 12.1270 246.4390
35 6* -5.002 -408.036 -416.442 -1599.270 -6399.602 1582.447
oo~ 0.0000 0.0134 2.8191 8.3934 7.8879 157.4980
20 0~ -5.001 -407.811 -415.741 -1591.133 -6380.437 1561.847
oo+ 0.0001 0.0761 0.27529 2.1745 16.0868 29.7428
1-107% | SRIVC | 30 o* -5.001 -407.665 -415.549 -1602.287 -6388.085 1589.601
oo 0.0000 0.0006 0.0039 0.0246 0.3530 0.4898
35 6* -5.000 -407.968 -415.953 -1600-158 -6397.152 1598.641
0o 0.0000 0.0000 0.0020 0.0157 0.9927 0.2435%
20 0* -4.919 -406.793 -414.791 -1594.948 -6387.959 1579.771
oo+ 0.0004 0.0155 0.2131 0.6797 10.0588 12.3100
1-107* | BC-NK | 30 6* -4.976 -407.453 -415.750 -1598.907 -6398.317 1594.118
oo 0.0000 0.0006 0.0012 0.0009 0.1722 0.3065
35 6* -4.986 -407.871 -415.875 -1599.443 -6399.297 1596.7152
oo~ 0.0000 0.0018 0.0013 0.0309 0.4501 0.1142
20 0* -5.005 -408.180 -418.937 -1617.120 -6401.134 1440.808
oo+ 0.0000 0.02826 12.0170 54.754 32.2305 182.5871
1.10—4 HME 30 6* -4.995 -408.001 -413.943 -1598.309 -6401.138 1608.519
oo~ 0.0000 0.0018 0.6144 2.7075 1.7241 82.8194
35 6* -4.993 -407.967 -412.914 -1594.777 -6401.000 1641.983
oo~ 0.0000 0.0147 0.404 3.853 2.135 68.173
20 0* 4.969 407.418 416.319 1597.030 6408.718 1578.066
oo~ 0.001 0.069 3.820 9.750 8.391 54.424
1-107* | SRIVC | 30 6* 4.987 407.762 416.191 1599.706 6401.018 1597.049
oo~ 0.000 0.001 0.059 0.474 0.130 1.921
35 6* 4.999 407.972 416.182 1599.816 6400.090 1597.676
oo+ 0.000 0.001 0.072 0.058 0.202 1.218
20 0* -5.009 -407.515 -415.742 -1598.016 -6395.546 1589.910
oo 0.000 0.021 0.007 0.186 2.697 6.828
5.107° | BC-NK | 30 6* -5.003 -407.892 -415.966 -1599.553 -6399.711 1596.998
oo~ 0.000 0.018 0.002 0.048 1.114 2.609
35 6* -5.002 -407.944 -415.986 -1599.769 -6399.721 1598.333
oo+ 0.000 0.002 0.001 0.031 0.224 0.450
20 0" -5.007 -408.154 -415.087 -1599.959 -6399.602 1568.693
oo~ 0.000 0.0322 1.363 10.116 21.364 61.407
5.10° HME 30 6* -4.996 -407.999 -412.984 -1593.468 -6402.867 1643.441
oo~ 0.000 0.013 0.651 2.629 5.542 46.590
35 6* -4.993 -407.967 -412.404 -1592.121 -6401.965 1660.997
oo+ 0.000 0.005 0.228 1.712 3.605 58.242
20 0* -4.989 -407.776 -413.612 -1592.580 -6404.072 1643.590
oo~ 0.002 0.277 2.846 7.706 4.557 31.112
5.107° | SRIVC | 30 6* -5.002 -407.981 -415.761 -1599.715 -6400.839 1598.274
oo+ 0.000 0.068 0.567 1.425 1.651 2.902
35 6* -5.002 -408.051 -416.177 -1600.253 -6400.695 1598.189
oo+ 0.000 0.002 0.039 0.114 0.680 0.842

TABLE |
MEANS AND STANDARD DEVIATIONS OF THE ESTIMATED PARAMETERS CACULATED USING BC-NK, HMF AND SRIVCAPPROACHES FOR DIFFERENT
SAMPLING INTERVALS AND SNRs.
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Fig. 6. (a) Transient behavior of the estimateagf by the BC-NK estimator and (b) respective standard-denatic) Transient behavior of the estimate
of a1 by the SRIVC estimator and (d) respective standard-dewiati

The integral operator on the right-hand side of (38) can li®e Composition of Volterra operators
further split by parts:

The composition of two integral Volterra operators yields,

t
_ (1) (i-1) — _p(i=2) (1) . . 2
/o Kt m)a ™ (r)dr = 2 R (K (1) in turn, a Volterra integral operator (see [9]). The deiivat

t is non-trivial due to the necessity of considering exglycihe
+ 2z0=2(0) KW (t,0) +/ K®(t,7)2""?(r)dr.  integration over finite domains. Suppose that, and Vi,
0 are two Volterra operators induced by th&s kernelsk;, and
Proceeding by induction we obtain K, respectively. By introducing the Fredholm extension of the

Volterra kernelK,(o,7) 2 K (o, 7)H(T)H(o — 7), we get:
/ K (t,7)2® (r)dr = Z( 720D () KD (¢, 1)+

_ [VKh VKg / Kh t g (/ K O' T dT) do

_ (=39 (0 K @-D ()
2;( 1)J P(0)KY (L, 0)+ /K (t, 7)a(T)dr /Khta/K (o, 7)z(T)dTdo
=
that is, the function obtained by applying the Volterra @per _ / (Kn o K,)(t, m)a(r)dr, (39)
to thei-th derivative is non-anticipative with respect to lower- 0 g ’ ’

order derivatives. The proof is concluded by rearrangir® thhere the kernel of the composed integral operator can f thu
indexing of the summation in the above expression. obtained by théernel composition integral o -), defined as:

(Kp o Ky)(t, 1) é/ Ki(t,0)K4(o,7)do. (40)



From the causality of the \olterra operator, we ha
(Kp o Kg)(t,t) =0, vt € R>o . Moreover, if for some € N,
K$(,0) = 0,Vt € Rsg, then (K, o K,)(t,0) =0, Vt.
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