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Robust Recursive State Estimation with

Random Measurements Droppings
Tong Zhou

Abstract

A recursive state estimation procedure is derived for a linear time varying system with both parametric

uncertainties and stochastic measurement droppings. Thisestimator has a similar form as that of the

Kalman filter with intermittent observations, but its parameters should be adjusted when a plant output

measurement arrives. A new recursive form is derived for thepseudo-covariance matrix of estimation

errors, which plays important roles in analyzing its asymptotic properties. Based on a Riemannian metric

for positive definite matrices, some necessary and sufficient conditions have been obtained for the strict

contractiveness of an iteration of this recursion. It has also been proved that under some controllability

and observability conditions, as well as some weak requirements on measurement arrival probability, the

gain matrix of this recursive robust state estimator converges in probability one to a stationary distribution.

Numerical simulation results show that estimation accuracy of the suggested procedure is more robust

against parametric modelling errors than the Kalman filter.

Key Words—-intermittent measurements, networked system, recursive state estimation, robustness,

sensitivity penalization.

I. INTRODUCTION

State estimation is one of the essential issues in systems and control theory, and has attracted extensive

attentions from various fields for a long time. Major cornerstones in this field include the Winner filter,

the Kalman filter, the particle filter, the set-membership filter, etc. While the developed state estimators

have numerous distinguished forms in their appearances, most of them are in essence closely related to
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least squares estimations, and some of them can even be regarded as its extensions to various different

situations, such as multiple-input multiple-output systems, systems disturbed by non-normal external

noises, etc. [6], [7], [8], [12], [11], [15], [26].

With recent significant advancements of network technologies, utility of wireless networks, internet,

etc., is strongly expected in increasing structure flexibilities and reducing infrastructure investments in

building a large scale system, and/or implementing remote monitoring, etc. To make this conception

applicable to actual engineering problems, however, various new theoretical challenges should be attacked.

For example, in a communication network, data packets carrying an observed plant output can be randomly

lost, delayed or even their original order can be changed, due to traffic conditions of the internet and/or

propagation property variations of wireless medium, etc.[23], [13], [15], [18].

Over the last decade, various efforts have been devoted to state estimations with random missing

measurements. In [23], it is proved that when a plant model isaccurate and external disturbances are

normally distributed, the Kalman filter is still optimal in the sense of mean squared errors (MSE) even

if there exist random measurement droppings, provided thatinformation is available on whether or not

the received data is a measured plant output. It has also beenproved there that for an unstable plant,

even it is both controllable and observable, the expectation of the covariance matrix of estimation errors

may become infinitely large when the probability of receiving a plant output measurement is too low.

Afterwards, it has been argued by many researchers that it may be more appropriate to investigate the

probability distribution of this covariance matrix, as events of very low probability may cause an infinite

expectation. Particularly, some upper and lower bounds have been derived in [21], [20] for the probability

of this covariance matrix being smaller than a prescribed positive definite matrix (PDM). In [17], it is

proved that under some controllability and observability conditions, the trace of this covariance matrix

follows a power decay law for an unstable plant with a diagonalizable state transition matrix. On the basis

of the contractiveness of Riccati recursions and convergence of random iterated functions, it has been

proved in [5] that this covariance matrix usually convergesto a stationary distribution that is independent

of the plant initial states, no matter the communication channel is described by a Bernoulli process, a

Markov chain or a semi-Markov chain. In [13], it is proved that when the observation arrival is modeled

by a Bernoulli process and the packet arrival probability approaches to 1, the covariance matrix converges

weakly to a unique invariant distribution that satisfies a moderate deviation principle with a good rate

function. In [25], [18], one-step prediction is investigated using an estimator with a prescribed structure

that tolerates both random measurement droppings and some specific kinds of parametric modelling

errors, and a recursive estimation procedure has been respectively derived through minimizing an upper
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bound of the covariance matrix of estimation errors. While the obtained estimators share a similar form

as that of the Kalman filter, a parameter should be adjusted on-line to guarantee the existence of the

inverse of a matrix, which may restrict successful implementation of the developed recursive estimation

procedure.

These investigations have clarified many important characteristics about state estimations with random

measurement arrivals, and have greatly advanced studies onanalysis and synthesis of networked systems.

But except [25], [18], plant models are assumed precisely known in almost all these investigations. In

actual engineering applications, however, model errors, which include parametric deviations from nominal

values, unmodelled dynamics, approximation errors due to plant nonlinear dynamics, etc., are usually

unavoidable. In addition, it has also been widely observed that estimation accuracies of some optimal

estimators, including the Kalman filter, may be deteriorated appreciably by modelling errors [11], [22],

[7], [9], [8], [19], [26], [27].

To make a state estimator robust against modelling errors, various approaches have been proposed,

such as theH∞ norm optimization based method, the guaranteed cost based approach, etc. Among

these approaches, the sensitivity penalization based method has some appreciated properties, such as

its similarities to the Kalman filter in estimation procedures, no requirements on verification of matrix

inequalities during estimate updates, capability of dealing with various kinds of parametric modelling

errors, etc. [27], [28]. In [16], an attempt has been made to extend this method to situations in which

random measurement dropping tolerances are required. While some results have been obtained, its success

is rather limited, noting that the developed estimation algorithm requires some ergodic conditions on the

received signal which can hardly be satisfied by a time varying system. In addition, the developed

estimation procedure has not efficiently utilized the information contained in a received signal about

whether or not it is the measurement of a plant output. Another restriction of the results in [16] is that

they are only valid for systems with a communication channeldescribed by the Bernoulli random process.

In this paper, we reinvestigate the extension of the sensitivity penalization based robust state estimation

method to systems with random measurement droppings. All the above limitations have been successfully

removed. Through introducing a new cost function, a novel recursive procedure has been derived for state

estimation with random missing measurements. This procedure also reduces to the Kalman filter when the

plant model is accurate. A new recursion formula has been established for the pseudo-covariance matrix

(PCM) of estimation errors which makes it possible to analyze asymptotic properties of the developed

robust state estimator (RSE). It has also been proved that under some controllability and observability

conditions on the nominal and adjusted system matrices, as well as some weak requirements on the
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random measurement loss process, the gain matrix of the RSE converges with probability one to a

stationary distribution that is independent of its initialvalues. Some numerical simulation results are also

provided to illustrate its characteristics in estimating states of a plant with both parametric modelling

errors and random measurement droppings.

The outline of this paper is as follows. At first, in Section II, the problem formulation is provided

and the estimation procedure is derived. Afterwards, some related properties on Riccati recursions are

introduced in Subsection III.A as preliminary results, while asymptotic characteristics of the estimator

are investigated in Subsection III.B. A numerical example is then provided in Section IV to illustrate

the effectiveness of the proposed estimator. Finally, someconcluding remarks are given in Section V

summarizing characteristics of the suggested method. An appendix is included to give proofs of some

technical results.

The following notation and symbols are adopted.|| · || stands for the Euclidean norm of a vector,

while ||x||W is a shorthand for
√
xTWx. diag{Xi|Li=1} denotes a block diagonal matrix with itsi-th

diagonal block beingXi, while col{Xi|Li=1} the vector/matrix stacked byXi|Li=1 with its i-th row block

vector/matrix beingXi.
[

Xij |i=M,j=N
i=1,j=1

]

represents a matrix withM × N blocks and itsi-th row j-th

column block matrix beingXij , while the productΦk1Φk1−1 or k1+1 · · ·Φk2 is denoted by
∏k2

j=k1Φj . The

superscriptT is used to denote the transpose of a matrix/vector, andXTWX or XWXT is sometimes

abbreviated as(⋆)TWX or XW (⋆)T , especially when the termX has a complicated expression.Det{⋆}
stands for the determinant of a matrix, whileLip{⋆} the Lipschitz constant of a function.Pr(·) is used to

denote the probability of the occurrence of a random event, while E{♯}{⋆} the mathematical expectation

of a matrix valued function (MVF)⋆ with respect to the random variable♯. The subscript♯ is usually

omitted when it is obvious.

II. T HE ROBUST STATE ESTIMATION PROCEDURE

Consider a linear time varying dynamic systemΣ with both parametric modelling errors due to

imperfect information about the plant dynamics and stochastic measurement loss due to communication

failures. Assume that its input output relations can be described by the following discrete state-space

model,

Σ :







xt+1 = At(εt)xt +Bt(εt)wt

yt = γtCt(εt)xt + vt

(1)

Here,εt is a ne dimensional vector representing parametric errors of the plant state-space model at the

time instantt, γt is a random variable characterizing successes and failuresof communications between
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the plant output measurement sensors and the state estimator. It takes the value of1 when a plant output

measurement is successfully transmitted, and the value of0 when the communication channel is out of

order. Vectorswt and vt denote respectively process noises and composite influences of measurement

errors and communication errors. It is assumed in this paperthat bothwt andvt are white and normally

distributed,E(col{wt, vt, x0}) = 0 and E
(

col{wt, vt, x0}colT{ws, vs, x0}
)

= diag{Qtδts, Rtδts, P0},

∀t, s > 0. Here,δts stands for the Kronecker delta function, andQt andRt are known positive definite

MVFs of the temporal variablet, while P0 is a known PDM. These assumptions imply that these two

external disturbances are independent of each other, and are also independent of the plant initial conditions.

Another hypothesis adopted in this paper is that all the system matricesAt(εt), Bt(εt) andCt(εt) are

time varying but known MVFs with all elements differentiable with respect to every element ofεt at

each time instant. It is also assumed throughout this paper that the state vectorxt of the dynamic system

Σ has a dimensionn, and an indicator is included in the received signalyt that reveals whether or not

it contains information about plant outputs.

In the above descriptions,At(εt), Bt(εt) andCt(εt) with εt = 0 are plant nominal system matrices.

According to the adopted hypotheses, all these matrices areassumed known. The vectorεt stands for

deviations of plant actual parameters from their nominal values, which are permitted to be time varying

and are generally unknown. In model based robust system designs or state estimations, however, some

upper magnitude bounds or stochastic properties are usually assumed available for this parametric error

vector [8], [9], [14], [11], [27]. While this kind of information is important in determining the design

parameterµt of the following Equation (2), which is also illustrated by the numerical example of Section

IV, it is not used in this paper.

The main objectives of this paper are to derive an estimate for the plant state vectorxt using the

received plant output measurementsyi|ti=0 and information about the corresponding realization ofγi|ti=0,

as well as to analyze its asymptotic statistical characteristics.

When the plant state space model for a linear time varying system is precise, a widely adopted state

estimation procedure is the Kalman filter, which can be recursively realized and have achieved extensive

success in actual engineering applications [12]. This estimation procedure, however, may sometimes not

work very satisfactorily due to modelling errors. To overcome this disadvantage, various modifications

have been suggested which make the corresponding estimation accuracy more robust against modelling

errors [9], [22], [11], [18], [25], [26], [27]. Among these modifications, one effective method is based on

sensitivity penalization, in which a cost function is constructed on the basis of least squares/likelihood

maximization interpretations for the Kalman filter and a penalization on the sensitivity of its innovation
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process to modelling errors [27], [28].

More precisely, assume that plant parameters are accurately known for the above dynamic system

Σ and there do not exist measurement droppings. These requirements are respectively equivalent to

εt ≡ 0 and γt ≡ 1. Let x̂[kal]t|t and P
[kal]
t|t represent respectively the estimate of the Kalman filter for

the plant state vectorxt based on plant output measurementsyi|ti=0 and the covariance matrix of the

corresponding estimation errors. Then,x̂
[kal]
t+1|t+1, the estimate of the plant state vector at the time instant

t + 1 based on plant output measurementsyi|t+1
i=0, can also be recursively expressed asx̂

[kal]
t+1|t+1 =

At(0)x̂
[kal]
t|t+1 +Bt(0)ŵ

[kal]
t|t+1, in which x̂

[kal]
t|t+1 and ŵ[kal]

t|t+1 stand for vectorsxt|t+1 andwt|t+1 that minimize

the cost functionJ [kal](xt|t+1, wt|t+1) = ||xt|t+1 − x̂
[kal]
t|t ||2

(P
[kal]

t|t )−1
+ ||wt|t+1||2Q−1

t

+ ||et(0, 0)||2
R−1

t+1

,

in which et(εt, εt+1) = yt+1 − Ct+1(εt+1)[At(εt)xt|t+1 + Bt(εt)wt|t+1] that is generally called the

innovation process in estimation theory when the plant model is accurate [11], [22]. Note that from

the Markov properties of the plant dynamics and the fact thatthe Kalman filter is a linear function of

plant output measurements, it can be claimed that both the plant state vector and its Kalman filter based

estimate are normally distributed. Based on these facts, itcan be further declared that the aforementioned

x̂
[kal]
t|t+1 and ŵ[kal]

t|t+1 are in fact respectively theyi|t+1
i=0 based maximum likelihood estimates ofxt andwt.

On the other hand, from the expression of the cost functionJ [kal](xt|t+1, wt|t+1), the Kalman filter can

also be interpreted as a least squares estimator [11], [22].

When εt 6≡ 0 and only nominal plant parameters are known, in order to increase robustness of the

Kalman filter against parametric modelling errors, it is suggested in [27] to add some penalties on

the sensitivity of the innovation processet(εt, εt+1) to modelling errors into this cost function. The

rationale is that deviations of this innovation process from its nominal values reflect contributions of

parametric modelling errors to prediction errors of the Kalman filter about plant outputs. Note that when

εi 6≡ 0, et(εt, εt+1) is the only factor in the cost functionJ [kal](xt|t+1, wt|t+1) that depends on system

parameters. This means that reduction of its deviations dueto modelling errors in fact also reduces the

counterpart of this cost function, and therefore increasesrobustness of the corresponding state estimator.

Noting also that accurate expression for this deviation generally has a complicated form and may make

the corresponding estimation problem mathematically intractable, it is suggested in [27] to consider its

first order approximation, that is, to linearizeet(εt, εt+1) at the origin. Specifically, the cost function

J [kal](xt|t+1, wt|t+1) is modified to

J [sen](xt|t+1, wt|t+1)=µtJ
[kal](xt|t+1, wt|t+1)+(1−µt)

ne
∑

k=1

(

∣

∣

∣

∣

∣

∣

∣

∣

∂et(εt, εt+1)

∂εt,k
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+

∣
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∣
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in which µt is a positive design parameter belonging to(0, 1] that reflects a trade-off between nominal

value of estimation accuracy and penalization on the first order approximation of deviations of the

innovation process due to parametric modelling errors.

Based on this modified cost functionJ [sen](xt|t+1, wt), a state estimation procedure is derived in [27].

It has also been proved there that except some parameter adjustments, this estimation procedure has a

similar form as that of the Kalman filter, and its estimation gain matrix also converges to a constant matrix

if some controllability and observability conditions are satisfied. Boundedness of the covariance matrix of

its estimation errors has also been established under some weak conditions like quadratic stability of the

plant and contractiveness of the parametric errors, etc. Ithas been shown that the estimation procedure

reduces to the Kalman filtering if parametric uncertaintiesdisappear [27], [28].

In this paper, the same approach is adopted to deal with the state estimations for the linear time

varying dynamic systemΣ in which both parametric uncertainties and random measurement droppings

exist. It is worthwhile to point out that although this extension has been attempted in [16], the success is

rather limited. One of the major restrictions on applicability of the obtained results is the implicit ergodic

requirement on the received plant output measurements, which is generally not satisfied by a time varying

system. Another major restriction is that in developing theestimation procedure, information about the

realization of the random processγt has not been efficiently utilized, which makes the corresponding

estimation accuracy sometimes even worse than the traditional Kalman filter that does not take either

parametric errors or random measurement loss into account.These disadvantages have been successfully

overcome in this paper through introducing another cost function which is more appropriate in dealing

with simultaneous existence of parametric uncertainties and random measurement droppings.

More precisely, assume that at the time instantt, an estimate is obtained for the plant state using

the received plant output measurementsyi|ti=0, denote it byx̂t|t. Let Pt|t represent the PCM of the

corresponding state estimation errors. Construct a cost function J(xt|t+1, wt|t+1) as follows,

J(xt|t+1, wt|t+1) =
1

2

{

µt

[

||xt|t+1 − x̂t|t||2P−1
t|t

+ ||wt|t+1||2Q−1
t

]

+ γt+1

[

µt||et(0, 0)||2R−1
t+1

+ (1− µt)×

ne
∑

k=1

(

∣

∣

∣

∣

∣

∣

∣
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∂et(εt, εt+1)
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∣
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(2)

Here, bothet(εt, εt+1) and µt have the same definitions as those in the aforementioned sensitivity

penalization based robust estimator design. Whileµt selection is an important issue in designing a robust

state estimator and depends on properties of parametric modelling errors [27], [28], it is assumed given

in this paper.
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In this cost function,γt+1 is explicitly utilized which is generally available in communications after

yt+1 is received. In fact, to make this information accessible, the only requirement is to include an

indication code in a communication channel which is usuallypossible [23], [13], [17]. On the other

hand, ifγt+1 = 1, that is, if there is no measurement loss from the system output measurement sensor to

the state estimator, this cost function is equivalent toJ [sen](xt|t+1, wt|t+1), which means that as some new

information onxt contained inyt+1 has arrived at the time instantt+ 1, its estimate should be updated

in a robust way that is not sensitive to parametric modellingerrors. If a measurement dropping happens

in communications, then,yt+1 does not contain any information about the plant output and thereforext.

In this case, as the existing estimate onxt is optimal and no new information about it arrives, there is

no need to update this estimate, which is equivalent to that the cost function does not depend on either

the nominal value ofet(εt, εt+1) or its sensitivity to parametric modelling errors. In otherwords, when

no plant output measurement is available at a time instant, the estimator can only predict the plant state

vector using the previously collected information, and this physically obvious characteristic has been

satisfactorily reflected by the above cost function. From these aspects, it appears safe to declare that

the cost functionJ(xt|t+1, wt|t+1) has simultaneously satisfied both the optimality requirements and the

robustness requirements in state estimations under simultaneous existence of parametric modelling errors

and measurement loss, and is therefore physically more reasonable than that of [16].

However, it is worthwhile to mention that in the above cost functionJ(xt|t+1, wt|t+1), the purpose to

include a penalty on the sensitivity of the innovation processet(εt, εt+1) to modelling errors is to increase

the robustness of state estimations against deviations of plant parameters from their nominal values. There

are also many important practical situations, for example,fault detection, signal segmentation, financial

market monitoring, etc., in which an estimate sensitive to actual parameter variations are more greatly

appreciated [3]. Under these situations, the above cost function, and therefore the corresponding state

estimate procedure, are no longer appropriate.

Let x̂t|t+1 and ŵt|t+1 denote the optimalxt|t+1 and wt|t+1 that minimize the above cost function

J(xt|t+1, wt|t+1). Then, according to the sensitivity penalization approachtowards robust state estimations,

anyi|t+1
i=0 based estimate of the plant state vectorxt+1, denote it bŷxt+1|t+1, can be constructed as follows,

x̂t+1|t+1 = At(0)x̂t|t+1 +Bt(0)ŵt|t+1 (3)

When there are no parametric uncertainties in the plant model, the matrixPt|t is in fact the covariance

matrix of the estimation errors of the Kalman filter. This makes it possible to explain̂xt|t+1 and ŵt|t+1

respectively as theyi|t+1
i=0 based maximum likelihood estimates ofxt andwt [11], [22], [27]. But when
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there exist modelling errors in the system matricesAt(εt), Bt(εt) andCt(εt), physical interpretations of

the matrixPt|t need further clarifications [27]. To avoid possible misunderstandings, it is called pseudo-

covariance matrix (PCM) in this paper.

Based on the above construction procedure, a recursive estimation algorithm can be derived for the

state vector of a plant with both parametric uncertainties and random measurement loss, while its proof

is deferred to the appendix.

Theorem 1. Let λt denote1−µt

µt
. Assume that bothPt|t andQt are invertible. Then, the estimate of the

state vectorxt+1 of the dynamic systemΣ based onyk|t+1
k=0 and Equations (2) and (3) has the following

recursive expression,

x̂t+1|t+1 =







At(0)x̂t|t γt+1 = 0

Ât(0)x̂t|t + Pt+1|t+1C
T
t+1(0)R

−1
t+1{yt+1 − Ct+1(0)Ât(0)x̂t|t} γt+1 = 1

(4)

Moreover, the PCMPt|t can be recursively updated as

Pt+1|t+1=











At(0)Pt|tA
T
t (0) +Bt(0)QtB

T
t (0) γt+1 = 0

{

[

At(0)P̂t|tA
T
t (0) + B̂t(0)Q̂tB̂

T
t (0)

]−1
+ CT

t+1(0)R
−1
t+1Ct+1(0)

}−1

γt+1 = 1
(5)

in which

P̂t|t = (P−1
t|t + λtS

T
t St)

−1, Q̂t =
[

Q−1
t + λtT

T
t (I + λtStPt|tS

T
t )Tt

]−1

B̂t(0) = Bt(0)− λtAt(0)P̂t|tS
T
t Tt, Ât(0) = [At(0) − B̂t(0)Q̂tT

T
t St][I − λtP̂t|tS

T
t St]

St = col











Ct+1(εt+1)
∂(At(εt))

∂εt,k
∂(Ct+1(εt+1))

∂εt+1,k
At(εt)





ne

k=1







∣

∣

∣

∣

∣
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εt = 0
εt+1 = 0

, Tt = col











Ct+1(εt+1)
∂(Bt(εt))

∂εt,k
∂(Ct+1(εt+1))

∂εt+1,k
Bt(εt)





ne

k=1







∣

∣

∣

∣

∣

∣

εt = 0
εt+1 = 0

Note that whenγt+1 = 0, the above estimator is just a one-step state predictor using nominal system

matrices. On the other hand, whenγt+1 = 1, the above estimator still has the same structure as that

of the Kalman filter, except that the nominal system matricesAt(0), Bt(0), etc., should be adjusted to

reduce sensitivity of estimation accuracy to modelling errors. The adjustment method of these matrices is

completely the same as that of the sensitivity penalizationbased RSE developed in [27] and is no longer

required if the design parameterµt is selected to be1. This means that the above recursive estimation

procedure is consistent with both RSE of [27] and the Kalman filtering with intermittent observations

(KFIO) reported in [23]. As a by-product of this investigation, another derivation of KFIO is obtained,

in which the assumption is no longer required that the covariance matrix of measurement noise tends to

infinity when a measured plant output is lost by a communication channel. This assumption is essential
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in the KFIO derivations given in [23], but does not appear very natural from an engineering point of

view.

However, Theorem 1 also makes it clear that when there exist both parametric modelling errors and

random measurement droppings, the system matrices used by the estimator depend on whether or not

yt+1 contains information about plant outputs. This makes the estimator different from KFIO, and also

makes analysis more mathematically involved about its asymptotic characteristics.

III. C ONVERGENCEANALYSIS OF THE ROBUST STATE ESTIMATOR

In evaluating performances of a state estimator, one extensively utilized metric is about its convergence.

A general belief is that if an estimator does not converge, satisfactory performance can not be anticipated.

It is now well known that for a linear time invariant system, under some controllability and observability

conditions, the gain of the Kalman filter converges to a constant matrix. This property makes it possible

to approximate the Kalman filter satisfactorily with an a constant gain observer [22], [11].

When plant output measurements are randomly received,γt of Equation (1) is a random process.

This makes the PCMPt|t, and therefore the gain matrix of the state estimator, also arandom process.

Generally, it can not be anticipated that they converge to constant matrices, but it is still theoretically and

practically interesting to see whether or not they have stationary distributions [5], [13]. Note that both

the matrixCt(0) and the matrixRt are deterministic MVFs of the temporal variablet. An interesting

and basic issue here is therefore that whether or not the matrix Pt|t converges to a stationary distribution.

Although the derived RSE has a similar structure as that of KFIO, the recursions for the PCMPt|t

have a more complicated form, as system matrices should be adjusted when a received packet contains

information about plant output. This adjustment invalidates the relatively simple relations between the

Pt|t−1s of KFIO with respectivelyγt = 1 andγt = 0 that play essential roles in establishing its asymptotic

properties [5], [13], [17]. As a matter of fact, this adjustment makes the corresponding analysis much

more mathematically involved for the RSE developed in this paper, which is abbreviated for brevity to

RSEIO in the rest of this paper, and leads to conclusions different from those of KFIO.

A. Preliminary Results for Convergence Analysis

To investigate the asymptotic properties of RSEIO, some preliminary results are required, which include

a matrix transformation, a Riemannian distance for PDMs andsome characteristics of a Hamiltonian

matrix. Some of them have already been utilized in analyzingasymptotic properties of KFIO and Kalman

filter with random coefficients [4], [5].
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Assume thatP and Q are two n × n dimensional PDMs. Letλi denote the eigenvalues of the

matrix PQ−1. The Riemannian distance between these two matrices, denote it by δ(P,Q), is defined

as δ(P,Q) =
√

∑n
i=1 log

2λi. An attractive property of this distance is its invariance under conjugacy

transformations and inversions. It is now also known that when equipped with this distance, the space of

n×n dimensional PDMs is complete. This metric, although not widely known, has been recognized very

useful for many years in studying asymptotic properties of Kalman filtering with random system matrices

[4]. Its effectiveness in studying asymptotic properties of KFIO has also been discovered recently [5].

For matricesP andΦ =
[

Φij|2i,j=1

]

with appropriate dimensions, define a Homographic transformation

Hm(Φ, P ) asHm(Φ, P ) = [Φ11P + Φ12][Φ21P + Φ22]
−1. Here, the matrixΦ21P + Φ22 is assumed

to be square and of full rank. This matrix transformation hasbeen proved very useful in solving many

theoretical problems in systems and control, such as theH∞ control problem, convergence analysis of

Riccati recursions, etc. [14], [4], [11]. An attractive property of this transformation lies in its simplicity

in representing cascade connections, which is given in the following lemma and can be obtained through

straightforward algebraic manipulations. This property plays important roles in analyzing the asymptotic

properties of the PCMPt|t.

Lemma 1.[14] Assume that matricesΦ1, Φ2 andP have compatible dimensions. Moreover, assume that

all the required matrix inverses exist. Then,Hm(Φ2, Hm(Φ1, P )) = Hm(Φ2Φ1, P ).

On the other hand, a matrixΦ = [Φij|2i,j=1] with Φij ∈ Rn×n, i, j = 1, 2, is called Hamiltonian

if it satisfiesΦTJΦ = J , in which J = [col{0, −In}, col{In, 0}]. Hamiltonian matrices are well

encountered in optimal estimation and control, and their characteristics have been extensively studied

[4], [11], [14]. Moreover, define four subsets of Hamiltonian matricesH, Hl, Hr andHlr respectively

as H =
{

Φ
∣

∣

∣
Φ = [Φij ]

2
i,j=1 , Φij ∈ Rn×n, ΦTJΦ = J, Φ11 invertible, Φ12Φ

T
11 ≥ 0, ΦT

11Φ21 ≥ 0
}

,

Hlr =
{

Φ
∣

∣ Φ ∈ H, Φ12Φ
T
11 > 0, ΦT

11Φ21 > 0
}

, Hl =
{

Φ
∣

∣ Φ ∈ H, ΦT
11Φ21 > 0

}

andHr = { Φ |
Φ ∈ H, Φ12Φ

T
11 > 0

}

. Then, from their definitions, it can be straightforwardly declared thatHl ⊂ H,

Hr ⊂ H, Hlr ⊂ H andHlr = Hr ∩Hl.

The following properties of Hamiltonian matrices are givenin [4], which are repeatedly used in the

remaining theoretical studies of this paper.

Lemma 2.[4] Assume that all the involved matrices have compatible dimensions. Then, among elements

of the setsH, Hl, Hr andHlr, and (semi-)PDMs, the following relations exist.

• if Φ1 ∈ H andΦ2 ∈ H (or Hl, or Hr, or Hlr), then, bothΦ2Φ1 andΦ1Φ2 belongs toH (or Hl, or

Hr, or Hlr);
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• Assume thatΦi =
[

Φi,pq|2p,q=1

]

∈ H, i = 1, 2, · · · ,m. Then,

–
∏1

i=mΦi ∈ Hl if and only if

Det

{

ΦT
1,11Φ1,21 +

m
∑

i=2

[(

i
∏

k=1

ΦT
k,11

)

Φi,21

(

1
∏

k=i−1

Φk,11

)]}

6= 0 (6)

–
∏1

i=mΦi ∈ Hr if and only if

Det

{

m−1
∑

i=1

[(

i+1
∏

k=m

Φk,11

)

Φi,12

(

m
∏

k=i

ΦT
k,11

)]

+Φm,12Φ
T
m,11

}

6= 0 (7)

• Assume thatΦ ∈ H. Then, for an arbitraryP ≥ 0, Hm(Φ, P ) is well defined and is at least a

semi-PDM. If in addition thatDet(P ) 6= 0, thenDet {Hm(Φ, P )} is also positive;

• Assume thatΦ ∈ Hlr. Then, for everyP ≥ 0, Hm(Φ, P ) is certainly a PDM;

• Assume thatΦ ∈ H. Then,δ {Hm(Φ, P ), Hm(Φ, Q)} ≤ δ(P,Q), wheneverP, Q > 0;

• Assume thatΦ ∈ Hl or Φ ∈ Hr. Then, for anyP, Q > 0, δ {Hm(Φ, P ), Hm(Φ, Q)} < δ(P,Q);

• Assume thatΦ ∈ Hlr. Then, there exists aρ(Φ) belonging to(0, 1), such that for allP, Q > 0,

δ {Hm(Φ, P ), Hm(Φ, Q)} ≤ ρ(Φ)δ(P,Q).

To analyze asymptotic properties of RSEIO, the following results on iterated functions governed by a

semi-Markov process are also needed, which have been successfully applied to establishing convergence

properties of KFIO [5], [2], [24].

Lemma 3.[24] Let fi(·), i = 1, 2, · · · , p, be a map from a metric space(X , ρ) to itself, andIk|∞k=1 a

semi-Markov chain taking values only from the set{ 1, 2, · · · , p }. Denote the renewal process related

to Ik|∞k=1 by (si, δi)|∞i=1, and the departure ofk from the last renewal bytk. Assume thatsi|∞i=1 is

irreducible,(Ik, tk)|∞k=1 is aperiodic, andE(δi) < ∞. If there exists an integerN ≥ 1, such that

E{Ii|Ni=1}

{

log Lip [fI1(fI2( · · · fIN (·) · · · ))]
}

< 0 (8)

Then, the recursive random walk(Ik, Xk)|∞k=1 with Xk = fIk(Xk−1) has a unique stationary distribution.

Moreover, for any initial(I0, X0), the empirical distribution tends to this stationary distribution with

probability one.

B. Convergence Analysis

To utilize the results of the previous subsection,Pt+1|t+1 should be expressed as a Homographic

transformation ofPt|t. When no information is contained inyt+1 about the plant output, RSEIO performs

a Lyapunov recursion using nominal system matrices, which makes it straightforward to establish this

expected relation. However, when the received signalyt+1 contains information about plant output,
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although the estimation is still similar to that of the Kalman filter, the relation betweenPt+1|t+1 andPt|t

is quite complicated. This means that to clarify the asymptotic characteristics of the PCMPt|t, another

recursive form is required for it under the situationγt+1 = 1.

Note that in the convergence analysis of the sensitivity penalization based RSE, a relatively compact

relation betweenPt+1|t and Pt|t−1 has been established in [28]. However, this relation is not very

convenient in deriving the required relation betweenPt+1|t+1 andPt|t. In this paper, we take a different

approach in establishing this relation, which is given in the next theorem and whose proof is deferred to

the appendix.

Theorem 2.Denote the matrixAt(0)−λtBt(0)(Q
−1
t +λtT

T
t Tt)

−1T T
t St by Ǎt and assume it is invertible.

Define matricesÃt, B̃t, C̃t+1, Q̃t and R̃t+1 respectively as follows,

Ãt = Ǎt +Bt(0)Q̌tB̃
T
t S̃

T
t S̃t, B̃t = Ǎ−1

t Bt(0), Q̃t = Q̌t + Q̌tB̃
T
t S̃

T
t S̃tB̃tQ̌t

S̃t=
√

λt

[

I + λtTtQtT
T
t

]−1/2
St, C̃t+1=





S̃tǍ
−1
t

Ct+1(0)



 , R̃t+1=





I + S̃tB̃tQ̌tB̃tS̃
T
t 0

0 Rt+1





in which Q̌t = (Q−1
t + λtT

T
t Tt)

−1. If γt+1 6= 0, then,

P−1
t+1|t+1 =

[

ÃtPt|tÃ
T
t +Bt(0)Q̃tB

T
t (0)

]−1
+ C̃T

t+1R̃
−1
t+1C̃t+1 (9)

Note that although the matrices̃At, C̃t+1, Q̃t and R̃t+1 have a complicated form, all of them are

independent of system input-output data, and can thereforebe computed off-line. This also means that

the recursion formula forPt+1|t+1 in Theorem 1 is more suitable for performing robust state estimations,

while that in Theorem 2 matches better for its asymptotic property analysis. It is also worthwhile to point

out that invertibility of the matrixǍt is not required in deriving the RSE of Theorem 1, which implies

that further efforts are still required to establish its asymptotic properties in the most general situation.

From Theorems 1 and 2, it is clear that depending on whether ornot yt+1 contains information about

plant outputs, the PCMPt+1|t+1 performs alternatively a Lyapunov recursion and a Riccati recursion.

This is very similar to that of KFIO. But as robustness has been taken into account, system matrices

in the Riccati recursion are different from those in the Lyapunov recursion. This difference significantly

complicates convergence analysis for RSEIO and makes its conclusions different from those of KFIO.

Lyapunov and Riccati equations/recursions play importantroles in system analysis and synthesis, and

their properties have been extensively studied [1], [11]. When plant measurements are missed randomly,

the alternative Lyapunov/Riccati recursion in both the KFIO and the RESIO becomes a random process,

which makes its convergence analysis much more mathematically difficult and some basic conclusions

different from their counterparts of deterministic recursions [5], [17], [21], [13], [23]. For example, in
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[23], it is proved that for an unstable system, simultaneouscontrollability and observability are no longer

sufficient for guaranteeing the boundedness of the covariance matrix of estimation errors of the KFIO.

It can also be seen in the following analysis that when plant output measurement receiving probability

is greater than0, controllability and observability areonly a sufficient condition for the convergence of

the RESIO. On the other hand, as system matrices in the Riccati recursion are different from those in

the Lyapunov recursion in RESIO, its convergence analysis is more mathematically involved than that

of KFIO.

To simplify mathematical expressions in the following discussions,At(0) andBt(0) are respectively

abbreviated toAt andBt. Moreover, assume that both the matrixAt and the matrixÃt are invertible.

Define matrixΦt+1 as

Φt+1 =



































At BtQtB
T
t A

−T
t

0 A−T
t



 γt+1 = 0





Ãt BtQ̃tB
T
t Ã

−T
t

C̃T
t+1R̃

−1
t+1C̃t+1Ãt [I + C̃T

t+1R̃
−1
t+1C̃t+1BtQ̃tB

T
t ]Ã

−T
t



 γt+1 = 1

(10)

Then, straightforward algebraic manipulations show thatΦt+1 is always a Hamiltonian matrix, and always

belongs to the setH. Moreover, the following results can be immediately obtained from Lemmas 1 and

2, as well as Theorems 1 and 2.

Corollary 1. Assume that RSEIO starts fromt = 0 with x̂0|0 andP0|0. Moreover, assume that both the

matrix At and the matrixÃt are of full rank at all the sampled time instants. Then, for anarbitrary

semi-PDMP0|0 and an arbitrary time instantt = 1, 2, · · · ,

Pt|t = Hm

(

1
∏

k=t

Φk, P0|0

)

(11)

Proof: Note thatΦk ∈ H, k = 1, 2, · · · , t. It can be declared from Lemma 2 that when both the matrix

Ak and the matrixÃk are invertible, the Homographic transformationHm (Φk, P ) is always well defined

for everyn× n dimensional semi-PDMP .

From the definition of the matrixΦk and Theorems 1 and 2, it is obvious that for everyk = 0, 1, · · · , t−
1, no matterγk+1 = 0 or γk+1 = 1, we always have that

Pk+1|k+1 = Hm

(

Φk+1, Pk|k

)

(12)

Hence, it can be claimed from Lemma 2 that whenP0|0 is a semi-PDM, all the involvedPk|ks are well

October 14, 2018 DRAFT



RESEARCH REPORT (TONG ZHOU) 36–15

defined and are at least a semi-PDM. Moreover, a repetitive utilization of Lemma 1 leads to,

Pt|t = Hm

(

Φt, Hm

(

Φt−1, · · · , Hm

(

Φ1, P0|0

)

· · ·
))

= Hm

(

ΦtΦt−1, Hm

(

Φt−2, · · · , Hm

(

Φ1, P0|0

)

· · ·
))

= · · ·

= Hm

(

1
∏

k=t

Φk, P0|0

)

(13)

This completes the proof. ✸

Similar to the proof of Corollary 1, it can also be proved thatfor every semi-PDMX, Hm(Φ1, Hm(Φ2,

· · · , Hm(Φt, X) · · · )) = Hm(
∏t

k=1Φk, X).

In the rest of this paper, in order to explicitly express the dependence of the matrixΦt on a realization

of γt, this matrix is sometimes, with a little abuse of symbols, written asΦR(t) when necessary, in which

R(t)|∞t=1 is a realization of the random processγt|∞t=1.

Having these preparations, we are ready to analyze asymptotic properties of the PCMPt|t. To perform

this analysis, it is assumed in the remaining of this sectionthat the nominal model of the plant, as well as

the first order derivatives of the innovation processet(εt, εt+1) with respect to every parametric modelling

error, do not change with the variablet. That is,At(0), Bt(0), Ct(0), Rt, Qt, St andTt are no longer

a function of the temporal variablet. Under this assumption, it is feasible to define matricesA[1], A[2],

G[1], G[2] andH [1], all of which do not depend on the variablet, respectively as

A[1] = Ãt, G[1] = BtQ̃
1/2
t , H [1] = R̃

−1/2
t+1 C̃t+1, A[2] = At, G[2] = BtQ

1/2
t

Using these symbols, it can be straightforwardly proved that BtQtB
T
t = G[2]G[2]T , BtQ̃tB

T
t =

G[1]G[1]T and C̃T
t+1R̃

−1
t+1C̃t+1 = H [1]TH [1]. On the basis of these relations and Lemmas 1 and 2, the

following conclusions are obtained on the product of matricesΦi|Ni=1 for an arbitrary positive integerN .

Their proof is given in the appendix.

Theorem 3. For a prescribed positive integerN ,
∏N

t=1Φt ∈ Hl if and only if there exists an integer

sequenceti|pi=0 satisfying0 = t0 < 1 ≤ t1 < t2 < · · · < tp ≤ N , such that the matrixOb is of full

column rank which is defined as

Ob = col







H [1], H [1]A[1](A[2])tp−tp−1−1, · · · , H [1]
p
∏

j=1

A[1](A[2])tj−tj−1−1







(14)

When the subsetHr is concerned, we have the following results. Their proof is also deferred to the

appendix.
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Theorem 4. For a prescribed positive integerN ,
∏N

t=1 Φt ∈ Hr if and only if there exists an integer

sequenceti|p+1
i=0 satisfying0 = t0 < 1 ≤ t1 < t2 < · · · < tp < tp+1 = N + 1, such that the matrixCn

defined as

Cn =

[

(A[2])t1−1Cn,0 Cn,1 (A[2])t1−1A[1]

[

Cn,2 · · ·
(

p−1
∏

s=1

(A[2])ts+1−ts−1A[1]

)

Cn,p+1

]]

(15)

is of full row rank, in which

Cn,0 =

[

G[1] A[1](A[2])t2−t1−1G[1] · · ·
(

p−1
∏

s=1

A[1](A[2])ts+1−ts−1

)

G[1]

]

Cn,i =
[

G[2] A[2]G[2] · · · (A[2])ti−ti−1−2G[2]
]

, i = 1, 2, · · · , p + 1

From these results, some sufficient conditions can be obtained for the existence of a finite positive

integerN , such that a map defined in a similar way as that of Equation (11) is strictly contractive.

Corollary 2. There exists a finite binary sequenceR[N ](t)|Nt=1 with N a finite positive integer, such that

the corresponding matricesΦR[N ](t)|Nt=1 satisfy

•
∏N

t=1 ΦR[N ](t) belongs toHl, if there exists an integerm belonging to[0, n − 1], such that the

matrix pair (A[1](A[2])m, H [1]) is observable.

•
∏N

t=1 ΦR[N ](t) belongs toHr, if one of the following conditions are satisfied.

– there exists an integerm belonging to[0, n− 1], such that the matrix pair(A[1](A[2])m, G[1])

is controllable;

– the matrix pair(A[2], G[2]) is controllable;

– there exists an integerm belonging to[0, n− 1], such that the matrix pair((A[2])mA[1], G[2])

is controllable.

•
∏N

t=1 ΦR[N ](t) belongs toHlr, if both the above observability condition and one of the above

controllability conditions are satisfied simultaneously.

Proof: Assume that there exists an integerm, such that0 ≤ m ≤ n−1 and the matrix pair(A[1](A[2])m, H [1])

is observable. DesignateN andti respectively asN = (n−1)(m−1)+1 andti = (i−1)∗ (m+1)+1,

1 ≤ i ≤ n− 1. Then,N is of a finite value. Moreover, from the observability of(A[1](A[2])m, H [1]) and

the definition of the matrixOb in Equation (14), it can be declared that the matrixOb is of full column

rank. It can therefore be claimed from Theorem 3 that
∏N

t=1 ΦR[N ](t) ∈ Hl.

Note that both the matrixA[1] and the matrixA[2] are assumed invertible. It can therefore be declared

from the definition of the matrixCn in Equation (15) that,Cn is of full row rank if any of the matrices

Cn,i, i = 0, 1, · · · , p + 1, has this property. The remaining arguments are similar to those for showing

the existence of a finite integerN such that
∏N

t=1ΦR[N ](t) ∈ Hl, and are therefore omitted.
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From the definitions of the setsHl, Hr and Hlr, it is obvious that a matrixΦ belongs toHlr if

and only if it simultaneously belongs to bothHl and Hr. On the other hand, if there exist positive

integersN∗ and N with N∗ < N such that
∏N∗

t=1 ΦR[N ](t) ∈ Hl and
∏N

t=N∗+1 ΦR[N ](t) ∈ Hr, then,

it can be claimed from Lemma 2 that
∏N

t=1 ΦR[N ](t) belongs to both the setHl and the setHr, and

therefore
∏N

t=1 ΦR[N ](t) ∈ Hlr. Similarly, if there exist positive integersN∗ andN with N∗ < N such

that
∏N∗

t=1 ΦR[N ](t) ∈ Hr and
∏N

t=N∗+1ΦR[N ](t) ∈ Hl, then,
∏N

t=1 ΦR[N ](t) also belongs to the setHlr.

The conclusions about the existence of a finite integerN such that
∏N

t=1 ΦR[N ](t) ∈ Hlr are therefore

straightforward results of those for
∏N

t=1 ΦR[N ](t) ∈ Hl and
∏N

t=1 ΦR[N ](t) ∈ Hr.

This completes the proof. ✸

In the above proof, a periodicR[N ](t)|Nt=1 is constructed to derive conditions for the existence of a

finite integerN such that
∏N

t=1 Φt belongs respectively to the setsHl, Hr andHlr. These conditions are

generally conservative but are simple to verify, noting that both controllability and observability are wildly

accepted concepts in system analysis and synthesis, and various efficient methods have been developed

to check these properties for a given dynamic system. If the matricesA[1] andA[2] have the property that

A[1]A[2] = A[2]A[1], then, less conservative results can be derived. The details are omitted due to space

considerations. These conditions are very important in investigating asymptotic properties of RSEIO,

which becomes clear in the following Theorem 5. It remains interesting to establish less conservative but

easily verifiable conditions for the existence of a finite integerN , such that the matricesOb in Equation

(14) andCn in Equation (15) are respectively of full column rank and of full row rank.

On the other hand, ifA[1] = A[2] andG[1] = G[2] are simultaneously satisfied, then, it is straightforward

to show that the matrixOb in Equation (14) is of full column rank if and only if the matrix pair(A[1], H [1])

is observable, while the matrixCn in Equation (15) is of full row rank if and only if the matrix pair

(A[1], G[1]) is controllable. This means that if the dynamic systemΣ is time invariant and its state

space model is accurate, then, the existence of a finite positive integerN such that the matrix product
∏N

t=1 Φt belongs to the setHlr is equivalent to its simultaneous controllability and observability, which

is consistent with that reported in [4], [5].

To investigate the asymptotic property of RSEIO, probability should be investigated about the existence

of strictly contractive mappings among the random MVFs defined in a similar way as that of Equation

(11). For this purpose, some symbols are introduced which are some modifications of those adopted in

[20]. Let Γ[N ] represent a finite random sequenceγt|Nt=1 with γt takes values only from the set{0, 1}.
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Let S [N ] denote the set consisting of all binary sequences of lengthN , that is,

S [N ] =

{

S[N ]
m

∣

∣

∣

∣

∣

S[N ]
m = { S[N ]

m (i)|Ni=1 }, S[N ]
m (i) ∈ {0, 1}, m =

N
∑

i=1

2i−1S[N ]
m (i)

}

Then, it is clear that the setS [N ] have exactly2N elements, and every element is a realization of the

finite random sequenceΓ[N ].

The following results are some extensions and modificationsof those of [20]. Their proof is given in

the appendix.

Lemma 4. For an arbitrary positive integerN , let S[N ]
m denote them + 1-th element of the setS [N ].

Then,

• if the stochastic sequenceγt|∞t=1 is a series of independent random variables with the Bernoulli

distribution of a constant expectation̄γ, then,

log
[

Pr

(

Γ[N ] = S[N ]
m

)]

= log(γ̄)
N
∑

i=1

S[N ]
m (i) + log(1− γ̄)

(

N −
N
∑

i=1

S[N ]
m (i)

)

(16)

• if the random sequenceγt|∞t=1 is a Markov chain with a transition probability matrix[col{α, 1 −
α}, col{1− β, β}] andPr(γ0 = 1) = γ̄, in which bothα andβ belong to(0, 1). Then,

log
[

Pr

(

Γ[N ]=S[N ]
m

)]

= (N−1)log(β)+log

(

1−α

β

)N−1
∑

k=1

S[N ]
m (k)+log

(

1

β
−1

) N
∑

k=2

S[N ]
m (k)+

log

(

αβ

(1−α)(1−β)

) N
∑

k=2

[

S[N ]
m (k)S[N ]

m (k−1)
]

+

log
{

S[N ]
m (1)+[1−2S[N ]

m (1)][β+γ̄(1−α−β)]
}

(17)

Lemma 4 makes it clear that for an identically and independently distributed (i.i.d.) Bernoulli process,

if its expectation is greater than0, then, for any positive integerN and any elementS[N ]
m of the setS [N ]

that does not take a constant value, the probability that therandom sequenceΓ[N ] has a realizationS[N ]
m

is greater than0. That is, when̄γ > 0, except the elementS[N ]
m with m = 0 or m = 2N − 1, every other

element of the setS [N ] has a positive probability to become a realization of the random sequenceΓ[N ].

On the other hand, when the random sequenceγt is described by a Markov chain, then, if0 < α, β < 1,

every element of the setS [N ] with m = 1, 2, · · · , 2N − 2, can also be realized by the random sequence

Γ[N ] with a positive probability.

Similar results can be derived for situations in which random measurement droppings are described

by other stochastic process, such as a semi-Markov chain, etc. The details are not included for space

considerations.
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From the above results, a convergence property can be established for the PCMPt|t of RSEIO. Its

proof is provided in the appendix.

Theorem 5. For the dynamic systemΣ with At(0), Ǎt and Ãt invertible, assume that there exist two

positive integersm1 andm2 such that the matrix pair(A[1](A[2])m1 , H [1]) is observable and one of the

following three conditions is satisfied,

• the matrix pair(A[1](A[2])m2 , G[1]) is controllable;

• the matrix pair((A[2])m2A[1], G[2]) is controllable;

• the matrix pair(A[2], G[2]) is controllable.

Then, the PCMPt|t of RSEIO converges to a stationary distribution with probability one that is indepen-

dent of its initial valueP0|0, provided that one of the following two conditions is satisfied by the random

measurement dropping processγt,

• At every sampled time instantt, the random dropping is an i.i.d. Bernoulli variable with a positive

expectation;

• The random dropping process can be described by a Markov chain with a transition probability

matrix [col{α, 1− α}, col{1− β, β}] and0 < α, β < 1.

The above theorem gives some sufficient conditions for the convergence of the PCMPt|t of RSEIO.

Note that for an×n dimensional matrixA, from the Hamiltonian-Cayley theorem [10], we know thatAk

with anyk ≥ n can be expressed as a linear combination ofAi, i = 0, 1, · · · , n−1. From this result and

the discussions after Corollary 2, straightforward algebraic manipulations show that if the dynamic system

Σ is time invariant and has an accurate state space model, then, simultaneous observability of the matrix

pair (A[1], H [1]) and controllability of the matrix pair(A[1], G[1]) are in fact necessary and sufficient

condition on the system matrices. These mean that the conditions of Theorem 5 reduce to those of [5],

[13] in which asymptotic properties of the covariance matrix is investigated for KFIO. However, when

there are modelling errors, observability of(A[1], H [1]) and controllability of(A[1], G[1]) or (A[2], G[2])

areonly sufficient conditions. This implies that more opportunities exist for the convergence of the PCM

Pt|t when the plant system matrices are not accurate.

Note that the gain matrix of RSEIO is equal toPt|tCt(0)R
−1
t at the time instantt whenyt contains

information about plant output, and is equal to0 in other situations. Sufficient conditions can be derived

directly from Theorem 5 for the convergence of this gain matrix. On the other hand, it is worthwhile to

point out that estimation accuracy is a very important performance index for estimators, which is usually

reflected by the covariance matrix of estimation errors. While the PCM of the RSEIO is closely related to
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the covariance matrix of its estimation errors, these two matrices are not equal to each other in general.

It is expected that through some arguments similar to those of [28], some asymptotic properties can be

established for an upper bound of the covariance matrix of estimation errors of RSEIO. This establishment,

of course, requires some assumptions on the parametric modelling errors, such as their variation intervals

and/or statistical distributions, etc. This is an interesting issue under current investigations. Due to space

considerations, detailed discussions are omitted.

Results of Theorem 5 can be easily extended to other descriptions of the random measurement dropping

process. However, this theorem only establishes existenceof a stationary distribution for the PCM matrix

Pt|t. Further efforts are still required to derive an explicit expression for this stationary distribution.

IV. A N UMERICAL EXAMPLE

To illustrate estimation performances of the developed estimation algorithm, some numerical simulation

results are reported in this section. The plant is selected to be the same as that of [16] which has the

following system matrices, initial conditions, and covariance matrices for process noises and measurement

errors, respectively.

At(εt)=





0.9802 0.0196

0 0.9802



+





0.0198

0



εt [0 5] , Bt(εt)=





1 0

0 1



 , Qt=





1.9608 0.0195

0.0195 1.9605





Ct(εt) = [1 − 1], Rt = 1, E{x0} = [1 0]T , P0 = I2

in which εt stands for a time varying parametric error that is independent of each other and has a uniform

distribution over the interval[−δ, δ]. The measurement dropping processγt is assumed to be a stationary

Bernoulli process with its expectation equal to0.8. To compare estimation accuracy of different methods,

the estimator design parameterµt is at first selected to be the same as that of [16], that is,µt ≡ 0.8.

Kalman Filter, KFIO of [23], RSE of [27], the RSE with missingmeasurements (RSEMM) developed

in [16], as well as the RSE developed in this paper (RSEIO), are utilized to estimate the plant states.

When the Kalman filter, RSE of [27] and RSEMM are utilized, every receivedyt is regarded as a plant

output measurement. Empirical MSE is used to measure estimation accuracy of these methods. More

precisely,5 × 103 numerical experiments are performed with the temporal variable t varies from0 to

5×102. Let x[j]t andx̂[j]t represent respectively the actual plant state and its estimate at the time instantt

in the j-th numerical experiment. Then, the empirical MSE of estimations at this time instant is defined

as follows
1

5× 103

5×103
∑

j=1

[x
[j]
t − x̂

[j]
t ]T [x

[j]
t − x̂

[j]
t ]
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(a) t ∈ [0, 500], δ = 1, µt ≡ 0.8 (b) t ∈ [80, 500], δ = 1, µt ≡ 0.8
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(c) t ∈ [0, 500], δ = 1, µt ≡ 0.95 (d) t ∈ [80, 500], δ = 1, µt ≡ 0.95

0 100 200 300 400 500
0

5

10

15

20

25

time

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
dB

)

80 140 200 260 320 380 440 500
21

22

23

24

25

time

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
dB

)

(e) t ∈ [0, 500], δ = 10, µt ≡ 0.8 (f) t ∈ [80, 500], δ = 10, µt ≡ 0.8

Fig. 1. Empirical Mean Square Errors of Estimations.−−✷−−: Kalman filter;−−✸−−: estimator of [23];−−X−−: estimator of [27] ;

−−△−−: estimator of [16];−−©−−: estimator of this paper.

In Figure 1a, simulation results withδ = 1 is shown. This case is completely the same as that of [16].

To make the differences among these curves clear when the temporal variablet takes a large value, in

Figure 1b, they are re-plotted for the time interval80 ≤ t ≤ 5× 102. From these simulations, it becomes

clear that when modelling errors fall into the interval[−1, 1], KFIO outperforms RSEIO. This is not a

surprise, but only means that for this numerical example, estimation accuracy of the Kalman filter is not

very sensitive to modelling errors, and in order to make a better trade-off between nominal performance
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and accuracy deteriorations, a greater value should be selected for the design parameterµt of RSEIO.

As a matter of fact, actual computations show that if this design parameter is selected to be0.95, then,

RSEIO will have a slightly higher estimation accuracy than KFIO. The corresponding results are given

in Figures 1c and 1d.

To clarify necessities to take into account of modelling errors in state estimations, as well as influences

of the design parameterµt on estimation accuracy, simulation results withδ = 10 andµt ≡ 0.8 are also

provided in Figures 1e and 1f. Results of these sub-figures clearly show that when the magnitude of

modelling errors is large, sensitivity reduction for the innovation process of the Kalman filter is really

very helpful in increasing its robustness against parametric modelling errors, and therefore improve its

estimation accuracy. It is also clear from these simulationresults that an appropriate selection of the

estimator design parameterµt heavily depends on specific descriptions of modelling errors, such as their

variation intervals, etc.

In all these computations, RSEIO has a better estimation accuracy than both RSE of [27] and RSEMM

of [16]. This result may imply that information about randommeasurement droppings is more efficiently

utilized by the estimation procedure of this paper, and the cost functionJ(xt|t+1, wt|t+1) of Equation

(2) is more physically reasonable than that adopted in [16] when information is contained inyt+1 about

whether or not it is a plant output measurement.

These simulation results also show that KFIO outperforms the traditional Kalman filter appreciably,

but in comparison with RSE of [27], accuracy improvement by RSEMM is not very significant.

In Figure 2, empirical probability density function (EPDF)is shown for every element of the PCMPt|t

at t = 5 × 102 with 4 different initial P0|0. In computing these EPDFs,5× 103 independent numerical

experiments have been performed for each situation and the Matlab fileksdensity.mis used with default

parameters in estimating the EPDF. Moreover, the magnitudebound of modelling errors and the RSEIO

design parameter are respectively selected asδ = 10 and µt ≡ 0.8. From this figure, it is clear that

although the initialP0|0s are significantly distinct from each other, the EPDFs are very close for every

element of the finalP500|500. This confirms the theoretical results on the convergence ofthe RESIO. On

the other hand, it appears that the PDF of every element of thestationary PCM is a continuous function,

which is greatly different from the conclusion about KFIO, in which it has been demonstrated in [13] that

the stationary distribution has a fractured support. Moreover, the EPDFs of the non-diagonal elements

are almost the same. This is due to the symmetry of the PCM.

It is worthwhile to point out that the comparisons of [16], inboth its theoretical analyzes and its

numerical simulations, are not appropriate, noting that in[25], a one-step recursive robust state predictor
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Fig. 2. Empirical Probability Density Function for Elements of the Pseudo-Covariance Matrix att = 500. −−X−−: P0|0 = 0.1I2;

−−©−−: P0|0 = I2; −−✷−−: P0|0 = 10I2; −−✸−−: P0|0 = 100I2.

is derived, while the problem discussed in [16] is to robustly estimate plant state using current and past

observations. In fact, from Figure 1, it is clear that estimation accuracy of RSEMM is even slightly worse

than the traditional Kalman filter, in which neither parametric errors nor random measurement droppings

are taken into account∗. However, it is declared in [16] that RSEMM is slightly better than the estimator

of [25], while [25] claims its superiority over the traditional Kalman filter in prediction accuracies. These

conclusions are apparently contradictory. Moreover, the numerical examples adopted in these two papers

are completely different. In addition, time averaging is adopted in [25] for estimation accuracy evaluations,

but [16] used ensemble averaging. These differences make the comparisons more unreasonable and the

conclusions more confusing. Regretfully, these importantthings have been overlooked by this author.

∗When the number of experiments is selected to be the same as that of [16], that is,5 × 102, consistent observations have

been found, although the corresponding computation results fluctuate more wildly.
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V. CONCLUDING REMARKS

In this paper, the sensitivity penalization based robust state estimation procedure is extended to

situations in which plant output measurements may be randomly dropped due to communication failures.

A new recursion formula has been derived for the PCM of estimation errors. Necessary and sufficient

conditions have been established for the strict contractiveness of an iteration of this recursion. It has been

proved that under some controllability and observability conditions, as well as some weak restrictions on

the arrival probability of plant output measurements, the gain matrix of the developed RSE converges with

probability one to a stationary distribution. Numerical simulations show that this RSE may outperform

the well known Kalman filter in estimation accuracy.

While some progress have been made in robust state estimations with random measurement droppings,

various important issues ask for further efforts. Among them, more general and less conservative condi-

tions for the convergence of the obtained RSE, explicit expressions for the stationary distribution of the

PCM, etc., seem essential in determining required capacityof a communication channel and selecting a

suitable estimator design parameter.

APPENDIX: PROOF OFSOME TECHNICAL RESULTS

In order to prove the theoretical results of this paper, the following results are required, which are well

known in matrix analysis and linear estimations, and can be straightforwardly proved through algebraic

manipulations [11], [10].

Lemma A1. For arbitrary matricesA, B, C, D with compatible dimensions, assume that all the involved

matrix inverses exist. Then




A B

C D



 =





I 0

CA−1 I









A 0

0 D − CA−1B









I A−1B

0 I





=





I BD−1

0 I









A−BD−1C 0

0 D









I 0

D−1C I



 (a.1)

[A+ CBD]−1 = A−1 −A−1C[B−1 +DA−1C]−1DA−1 (a.2)

A(I +BA)−1 = (I +AB)−1A (a.3)

Proof of Theorem 1: For brevity, define vectorsαt andαt0 respectively asαt = col{xt|t+1, wt|t+1}
andαt0 = col{x̂t|t, 0}. Moreover, define matrices̄Pt|t, Q̄t, B̄t(0) and Āt(0) respectively as

P̄t|t = (P−1
t|t + λtγt+1S

T
t St)

−1, Q̄t =
[

Q−1
t + λtγt+1T

T
t (I + λtγt+1StPt|tS

T
t )Tt

]−1

B̄t(0) = Bt(0) − λtγt+1At(0)P̄t|tS
T
t Tt, Āt(0) = [At(0)− λtγt+1B̄t(0)Q̄tT

T
t St][I − λtγt+1P̄t|tS

T
t St]
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Furthermore, abbreviateAt(0), Āt(0), Bt(0), B̄t(0) andCt(0) respectively asAt, Āt, Bt, B̄t andCt.

Note that for everyk ∈ {1, 2, · · · , n}, we have

∂et(εt, εt+1)

∂εt,k
= −Ct+1(εt+1)

∂At(εt)

∂εt,k
xt|t+1 −Ct+1(εt+1)

∂Bt(εt)

∂εt,k
wt|t+1 (a.4)

∂et(εt, εt+1)

∂εt+1,k
= −∂Ct+1(εt+1)

∂εt+1,k
At(εt)xt|t+1 −

∂Ct+1(εt+1)

∂εt+1,k
Bt(εt)wt|t+1 (a.5)

Then, from the definition of the cost functionJ(xt|t+1, wt|t+1), it can be straightforwardly proved that

J(αt)=
µt

2

{

(⋆)Tdiag
{

P−1
t|t , Q

−1
t

}

(αt−αt0)+γt+1(⋆)
TR−1

t+1(Ct+1[At Bt]αt−yt+1)+λtγt+1(⋆)
T ([St Tt]αt)

}

(a.6)

Therefore,

∂J(αt)

∂αt
= µt

{

diag
{

P−1
t|t , Q

−1
t

}

(αt−αt0)+γt+1(Ct+1[At Bt])
TR−1

t+1(Ct+1[At Bt]αt−yt+1)+

λtγt+1[St Tt]
T [St Tt]αt

}

= µt

{(

diag
{

P−1
t|t , Q

−1
t

}

+ λtγt+1[St Tt]
T [St Tt]+γt+1[At Bt]

TCT
t+1R

−1
t+1Ct+1[At Bt]

)

αt−

diag
{

P−1
t|t , Q

−1
t

}

αt0 − γt+1[At Bt]
TCT

t+1R
−1
t+1yt+1

}

(a.7)

Note thatJ(αt) is a convex function andµt 6= 0. It is obvious that the optimalαt, denote it byα̂t,

which minimizesJ(αt), is given by its first derivative condition. That is,

α̂t =
{

diag
{

P−1
t|t , Q

−1
t

}

+ λtγt+1[St Tt]
T [St Tt] + γt+1[At Bt]

TCT
t+1R

−1
t+1Ct+1[At Bt]

}−1
×

{

diag
{

P−1
t|t , Q

−1
t

}

αt0 + γt+1[At Bt]
TCT

t+1R
−1
t+1yt+1

}

(a.8)

On the other hand, direct algebraic manipulations show that

T T
t Tt − λtγt+1T

T
t St[P

−1
t|t + λtγt+1S

T
t St]

−1ST
t Tt = T T

t [I + λtγt+1StPt|tS
T
t ]

−1Tt (a.9)

Then, from Lemma A1 and the definitions of the matricesP̄t|t and Q̄t, the following relation can be

immediately obtained,

diag
{

P−1
t|t , Q

−1
t

}

+λtγt+1[St Tt]
T [St Tt]=





I 0

λtγt+1T
T
t StP̄t|t I









P̄−1
t|t 0

0 Q̄−1
t









I λtγt+1P̄t|tS
T
t Tt

0 I





(a.10)
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Substitute this relation into Equation (a.8), it can be further proved that

α̂t =











I 0

λtγt+1T
T
t StP̄t|t I









P̄−1
t|t 0

0 Q̄−1
t









I λtγt+1P̄t|tS
T
t Tt

0 I



+

γt+1[At Bt]
TCT

t+1R
−1
t+1Ct+1[At Bt]

}−1
{

diag
{

P−1
t|t , Q

−1
t

}

αt0 + γt+1[At Bt]
TCT

t+1R
−1
t+1yt+1

}

=





I −λtγt+1P̄t|tS
T
t Tt

0 I















P̄−1
t|t 0

0 Q̄−1
t



+ γt+1[At B̄t]
TCT

t+1R
−1
t+1Ct+1[At B̄t]







−1

×

[

col
{

I, −λtγt+1T
T
t StP̄t|t

}

P−1
t|t x̂t|t + γt+1[At B̄t]

TCT
t+1R

−1
t+1yt+1

]

(a.11)

Hence,

x̂t+1|t+1 = [At Bt]α̂t

= [At B̄t]
{

diag
{

P̄−1
t|t , Q̄

−1
t

}

+ γt+1[At B̄t]
TCT

t+1R
−1
t+1Ct+1[At B̄t]

}−1
×

{

col
{

I, −λtγt+1T
T
t StP̄t|t

}

P−1
t|t x̂t|t + γt+1[At B̄t]

TCT
t+1R

−1
t+1yt+1

}

= [At B̄t]
{

I + γt+1diag
{

P̄t|t, Q̄t

}

[At B̄t]
TCT

t+1R
−1
t+1Ct+1[At B̄t]

}−1
diag

{

P̄t|t, Q̄t

}

×
{

col
{

I, −λtγt+1T
T
t StP̄t|t

}

P−1
t|t x̂t|t + γt+1[At B̄t]

TCT
t+1R

−1
t+1yt+1

}

=
{

I + γt+1[At B̄t]diag
{

P̄t|t, Q̄t

}

[At B̄t]
TCT

t+1R
−1
t+1Ct+1

}−1
[At B̄t]diag

{

P̄t|t, Q̄t

}

×
{

col
{

I, −λtγt+1T
T
t StP̄t|t

}

P−1
t|t x̂t|t + γt+1[At B̄t]

TCT
t+1R

−1
t+1yt+1

}

=
[

I + γt+1Pt+1|tC
T
t+1R

−1
t+1Ct+1

]−1 {
Ātx̂t|t + γt+1Pt+1|tC

T
t+1R

−1
t+1yt+1

}

(a.12)

in which Pt+1|t = AtP̄t|tA
T
t + B̄tQ̄tB̄

T
t . In the derivation of the last equality of the above equation, the

relation P̄t|tP
−1
t|t = I − λtγt+1P̄t|tS

T
t St has been utilized, which is a direct result of the definition of the

matrix P̄t|t.

Therefore,

x̂t+1|t+1 = Ātx̂t|t + γt+1

[

I + γt+1Pt+1|tC
T
t+1R

−1
t+1Ct+1

]−1
Pt+1|tC

T
t+1R

−1
t+1yt+1

−γt+1

[

I + γt+1Pt+1|tC
T
t+1R

−1
t+1Ct+1

]−1
Pt+1|tC

T
t+1R

−1
t+1Ct+1Ātx̂t|t

= Ātx̂t|t + γt+1

[

P−1
t+1|t

+ γt+1C
T
t+1R

−1
t+1Ct+1

]−1
CT
t+1R

−1
t+1

{

yt+1 − Ct+1Ātx̂t|t
}

(a.13)

Comparing this recursive formula for̂xt+1|t+1 with that of the Kalman filter given in [12], [11], [22],

it is clear that the matrix[P−1
t+1|t + γt+1C

T
t+1R

−1
t+1Ct+1]

−1 plays the same role as that of the covariance

matrix of estimation errors in Kalman filtering. It is therefore reasonable to denote it byPt+1|t+1. The
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proof can now be completed by noting that ifγt+1 = 0, then Āt = At(0), B̄t = Bt(0), P̄t|t = Pt|t and

Q̄t = Qt, as well as that ifγt+1 = 1, thenĀt = Ât(0), B̄t = B̂t(0), P̄t|t = P̂t|t and Q̄t = Q̂t. ✸

Proof of Theorem 2: To simplify mathematical expressions, in this proof,At(0), Bt(0) andCt+1(0)

are again respectively abbreviated to beAt, Bt andCt+1. From the proof of Theorem 1, it is clear that

whenγt+1 = 1,

x̂t+1|t+1 = [At Bt]
{

diag
{

P−1
t|t , Q

−1
t

}

+ λt[St Tt]
T [St Tt] + [At Bt]

TCT
t+1R

−1
t+1Ct+1[At Bt]

}−1
×

{

diag
{

P−1
t|t , Q

−1
t

}

col
{

x̂t|t, 0
}

+ [At Bt]
TCT

t+1R
−1
t+1yt+1

}

(a.14)

Moreover, Theorem 1 also declares that under such a situation,

x̂t+1|t+1 = Âtx̂t|t + Pt+1|t+1C
T
t+1R

−1
t+1[yt+1 − Ct+1Âtx̂t|t] (a.15)

As Equations (a.14) and (a.15) are just two different expressions for the same state estimatex̂t+1|t+1,

the coefficient matrices respectively forx̂t|t andyt+1 should be equal to each other. A comparison of the

coefficient matrices ofyt+1 show that

Pt+1|t+1 = [At Bt]
{

diag
{

P−1
t|t , Q

−1
t

}

+ λt[St Tt]
T [St Tt] + [At Bt]

TCT
t+1R

−1
t+1Ct+1[At Bt]

}−1
[At Bt]

T

(a.16)

On the other hand, direct algebraic operations show that

λtS
T
t St − λ2

tS
T
t Tt[Q

−1
t + λtT

T
t Tt]

−1T T
t St = λtS

T
t

{

I − λtTt[I + λtQtT
T
t Tt]

−1QtT
T
t

}

St

= λtS
T
t [I + λtTtQtT

T
t ]−1St

= S̃T
t S̃t (a.17)

Then, from Lemma A1 and the definition of̌Qt, the following relation can be immediately obtained,

diag
{

P−1
t|t , Q

−1
t

}

+λt[St Tt]
T [St Tt]=





I λtS
T
t TtQ̌t

0 I









P−1
t|t + S̃T

t S̃t 0

0 Q̌−1
t









I 0

λtQ̌tT
T
t St I





(a.18)
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Substitute Equation (a.18) into Equation (a.16), we have

Pt+1|t+1 =






[At Bt]





I 0

λtQ̌tT
T
t St I





−1




















P−1
t|t +S̃T

t S̃t 0

0 Q̌−1
t



+






[At Bt]





I 0

λtQ̌tT
T
t St I





−1






T

×

CT
t+1R

−1
t+1Ct+1






[At Bt]





I 0

λtQ̌tT
T
t St I





−1
















−1




[At Bt]





I 0

λtQ̌tT
T
t St I





−1






T

= [Ǎt Bt]
{

diag
{

P−1
t|t +S̃T

t S̃t, Q̌
−1
t

}

+[Ǎt Bt]
TCT

t+1R
−1
t+1Ct+1[Ǎt Bt]

}−1
[Ǎt Bt]

T

=
{

I+[Ǎt Bt]diag
{

(P−1
t|t +S̃T

t S̃t)
−1, Q̌t

}

[Ǎt Bt]
TCT

t+1R
−1
t+1Ct+1

}−1
×

[Ǎt Bt]diag
{

(P−1
t|t +S̃T

t S̃t)
−1, Q̌t

}

[Ǎt Bt]
T

=

{

[

Ǎt(P
−1
t|t +S̃T

t S̃t)
−1ǍT

t +BtQ̌tB
T
t

]−1
+ CT

t+1Rt+1Ct+1

}−1

(a.19)

When Ǎt is invertible, from the definition of the matrix̃Bt, we have that

Ǎt(P
−1
t|t +S̃T

t S̃t)
−1ǍT

t +BtQ̌tB
T
t = Ǎt

{

(P−1
t|t +S̃T

t S̃t)
−1 + B̃tQ̌tB̃

T
t

}

ǍT
t (a.20)

Note that

{

(P−1
t|t +S̃T

t S̃t)
−1 + B̃tQ̌tB̃

T
t

}−1

=
{

I + (P−1
t|t +S̃T

t S̃t)B̃tQ̌tB̃
T
t

}−1
(P−1

t|t +S̃T
t S̃t)

=
{

B̃tQ̌tB̃
T
t + Pt|t(I + S̃T

t S̃tB̃tQ̌tB̃
T
t )
}−1

(I + Pt|tS̃
T
t S̃t)

=
{

B̃tQ̌tB̃
T
t + Pt|t(I + S̃T

t S̃tB̃tQ̌tB̃
T
t )
}−1 {

I +
[

B̃tQ̌tB̃
T
t + Pt|t(I + S̃T

t S̃tB̃tQ̌tB̃
T
t )
]

(I+

S̃T
t S̃tB̃tQ̌tB̃

T
t )

−1S̃T
t S̃t − B̃tQ̌tB̃

T
t (I + S̃T

t S̃tB̃tQ̌tB̃
T
t )

−1S̃T
t S̃t

}

= S̃T
t (I + S̃tB̃tQ̌tB̃

T
t S̃

T
t )

−1S̃t +
{

B̃t(Q̌t + Q̌tB̃
T
t S̃

T
t S̃tB̃tQ̌t)B̃

T
t + (I + B̃tQ̌tB̃

T
t S̃

T
t S̃t)Pt|t×

(I + B̃tQ̌tB̃
T
t S̃

T
t S̃t)

T
}−1

(a.21)

Substitute Equations (a.20) and (a.21) into Equation (a.19), the following recursive expression for
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Pt+1|t+1 is obtained for situations wheňAt is invertible,

P−1
t+1|t+1 = Ǎ−T

t

[

(P−1
t|t +S̃T

t S̃t)
−1 + B̃tQ̌tB̃

T
t

]−1
Ǎ−1

t + CT
t+1Rt+1Ct+1

= Ǎ−T
t

{

B̃t(Q̌t+Q̌tB̃
T
t S̃

T
t S̃tB̃tQ̌t)B̃

T
t +(I+B̃tQ̌tB̃

T
t S̃

T
t S̃t)Pt|t(I+B̃tQ̌tB̃

T
t S̃

T
t S̃t)

T
}−1

Ǎ−1
t +

Ǎ−T
t S̃T

t (I + S̃tB̃tQ̌tB̃
T
t S̃

T
t )

−1S̃tǍ
−1
t + CT

t+1Rt+1Ct+1

=
{

Bt(Q̌t+Q̌tB̃
T
t S̃

T
t S̃tB̃tQ̌t)B

T
t +(Ǎt+BtQ̌tB̃

T
t S̃

T
t S̃t)Pt|t(Ǎt+BtQ̌tB̃

T
t S̃

T
t S̃t)

T
}−1

+

(S̃tǍ
−1
t )T (I + S̃tB̃tQ̌tB̃

T
t S̃

T
t )

−1(S̃tǍ
−1
t ) + CT

t+1Rt+1Ct+1

= [ÃtPt|tÃ
T
t +BtQ̃tB

T
t ]

−1 + C̃T
t+1R̃

−1
t+1C̃t+1 (a.22)

This completes the proof. ✸

Proof of Theorem 3: Define matrixGo as

Go = ΦT
N,11ΦN,21 +

1
∑

i=N−1

[(

i
∏

k=N

ΦT
k,11

)

Φi,21

(

N
∏

k=i+1

Φk,11

)]

Then, it can be claimed from Lemma 2 that
∏N

t=1 Φt ∈ Hl if and only if Det {Go} 6= 0.

Assume that at the sampling instantst1, t2, · · · tp, with 1 ≤ t1 < t2 < · · · < tp ≤ N , γk = 1; and

at any other sampling instants between1 andN , γk = 0. Define t0 as t0 = 0. Then, according to the

definition ofΦt, the following relation is obtained,

Go=

p
∑

j=0











N
∏

k=tj+1

Φk,11





T

ΦT
tj ,11Φtj ,21





N
∏

k=tj+1

Φk,11










(a.23)

in which
∏N

k=q Φk,11 is defined to be the identity matrix ifq > N . This situation occurs whentp = N .

Note that for everytj with 1 ≤ j ≤ p,

ΦT
tj ,11Φtj ,12 = A[1]TH [1]TH [1]A[1] = (H [1]A[1])T (H [1]A[1]) (a.24)

Moreover,

N
∏

k=tj+1

Φk,11 =

tj+1−1
∏

k=tj+1

Φk,11 ×Φtj+1,11 ×
tj+2−1
∏

k=tj+1+1

Φk,11 × Φtj+2,11 × · · · ×
N
∏

k=tp+1

Φk,11

= (A[2])tj+1−tj−1A[1](A[2])tj+2−tj+1−1A[1] · · · (A[2])N−tp

=





p−1
∏

s=j

[

(A[2])ts+1−ts−1A[1]
]



 (A[2])N−tp (a.25)
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Substitute Equations (a.24) and (a.25) into Equation (a.23), the following relation is obtained,

Go =

p
∑

j=0







[⋆]T (H [1]A[1])T (H [1]A[1])









p−1
∏

s=j

[

(A[2])ts+1−ts−1A[1]
]



 (A[2])N−tp











=

p
∑

j=0







[⋆]T



H [1]A[1]





p−1
∏

s=j

[

(A[2])ts+1−ts−1A[1]
]



 (A[2])N−tp











= [⋆]T

















H [1](A[2])N−tp

H [1]A[1](A[2])tp−tp−1−1(A[2])N−tp

...

H [1]
∏p

j=1

(

A[1](A[2])tj−tj−1−1
)

(A[2])N−tp

















= (A[2]T )N−tpOT
b Ob(A

[2])N−tp (a.26)

Recall that the matrixA[2] is assumed invertible. It is obvious from the above equalitythat the

satisfaction of the inequalityDet {Go} 6= 0 is equivalent to that the matrixOb is of full column rank.

This completes the proof. ✸

Proof of Theorem 4: From Lemma 2, it can be claimed that
∏N

t=1 Φt ∈ Hr if and only if Det {Gc} 6= 0,

in which

Gc = Φ1,12Φ
T
1,11 +

N
∑

i=2

[(

i−1
∏

k=1

Φk,11

)

Φi,12

(

1
∏

k=i

ΦT
k,11

)]

Similar to the proof of Theorem 3, assume that at the samplinginstantst1, t2, · · · tp, with 1 ≤ t1 <

t2 < · · · < tp ≤ N , γk = 1; and at any other sampling instants between1 andN , γk = 0. Moreover,t0

is once again defined ast0 = 0. Furthermore, definetp+1 as tp+1 = N + 1.

Define
∏0

k=1Φk,11 as the identity matrix. It can then be easily seen that,

Gc =
N
∑

i=1





(

i−1
∏

k=1

Φk,11

)

Φi,12Φ
T
i,11

(

i−1
∏

k=1

Φk,11

)T


 (a.27)

When i ∈ {t1, t2, · · · , tp}, assume thati = tj , j = 1, 2, · · · , p. We have

Φi,12Φ
T
i,11 =

[

G[1]G[1]T (A[1])−T
]

A[1]T = G[1]G[1]T (a.28)

i−1
∏

k=1

Φk,11 =

(

t1−1
∏

k=1

Φk,11

)

Φt1,11





t2−1
∏

k=t1+1

Φk,11



Φt2,11 · · ·





tj−1
∏

k=tj−1+1

Φk,11





= (A[2])t1−1A[1](A[2])t2−t1−1A[1] · · · (A[2])tj−tj−1−1

= (A[2])t1−1
j−1
∏

s=1

[

A[1](A[2])ts+1−ts−1
]

(a.29)
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When i 6∈ {t1, t2, · · · , tp}, assume thattj−1 < i < tj , j = 1, 2, · · · , p+ 1. On the basis of Equation

(a.29), we then have

Φi,12Φ
T
i,11 =

[

G[2]G[2]T (A[2])−T
]

A[2]T = G[2]G[2]T (a.30)

i−1
∏

k=1

Φk,11 =

(tj−1−1
∏

k=1

Φk,11

)

Φtj−1,11





i−1
∏

k=tj−1+1

Φk,11





= (A[2])t1−1

(

j−2
∏

s=1

[

A[1](A[2])ts+1−ts−1
]

)

A[1](A[2])i−tj−1−1 (a.31)

When1 ≤ i < t1, direct algebraic manipulations show that

Φi,12Φ
T
i,11 =

[

G[2]G[2]T (A[2])−T
]

A[2]T = G[2]G[2]T (a.32)

i−1
∏

k=1

Φk,11 =

i−1
∏

k=1

A[2]=
(

A[2]
)i−1

(a.33)

Substitute these relations into Equation (a.27), the following equalities are obtained.

Gc =

t1−1
∑

i=1

[(

i−1
∏

k=1

Φk,11

)

Φi,12Φ
T
i,11 (⋆)

T

]

+

p+1
∑

j=2

{[(

tj−1−1
∏

k=1

Φk,11

)

Φtj−1,12Φ
T
tj−1,11 (⋆)

T

]

+

tj−1
∑

i=tj−1+1

[(

i−1
∏

k=1

Φk,11

)

Φi,12Φ
T
i,11 (⋆)

T

]







=

t1−2
∑

i=0

[

(

A[2]
)i

G[2]

]

[⋆]T + (A[2])t1−1
p+1
∑

j=2

{(

j−1
∏

s=1

[

A[1](A[2])ts+1−ts−1
]

G[1]

)

(⋆)T +

tj−1
∑

i=tj−1+1

(

A[1]
j−2
∏

s=1

[

(A[2])ts+1−ts−1A[1]
]

(A[2])i−tj−1−1G[2]

)

(⋆)T







(A[2]T )t1−1

= CoC
T
o (a.34)

Therefore, the inequalityDet {Gc} 6= 0 is satisfied, if and only if the matrixCo is of full row rank.

This completes the proof. ✸

Proof of Lemma 3: Whenγk|∞k=1 is white and has a Bernoulli distribution, we have

Pr

(

Γ[N ] = S[N ]
m

)

=

1
∏

k=N

Pr

(

γk = S[N ]
m (k)

)

=
1
∏

k=N

γ̄S
[N ]
m (k)(1− γ̄)1−S[N ]

m (k) (a.35)
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Hence,

log
[

Pr

(

Γ[N ] = S[N ]
m

)]

=

N
∑

i=1

[

S[N ]
m (k)log(γ̄) + (1− S[N ]

m (k))log(1− γ̄)
]

= log(γ̄)

N
∑

i=1

S[N ]
m (i) + log(1− γ̄)

(

N −
N
∑

i=1

S[N ]
m (i)

)

(a.36)

Whenγk|∞k=1 is a Markov chain,

Pr

(

Γ[N ] = S[N ]
m

)

=

{

2
∏

k=N

Pr

(

γk = S[N ]
m (k)

∣

∣

∣ γk−1 = S[N ]
m (k − 1)

)

}

Pr

(

γ1 = S[N ]
m (1)

)

(a.37)

Note that

Pr

(

γ1 = S[N ]
m (1)

)

=







(1− α)Pr(γ0 = 1) + βPr(γ0 = 0) S
[N ]
m (1) = 0

αPr(γ0 = 1) + (1− β)Pr(γ0 = 0) S
[N ]
m (1) = 1

(a.38)

It can therefore be concluded from the assumptionPr(γ0 = 1) = γ̄ and the fact thatPr(γ0 = 0) +

Pr(γ0 = 1) ≡ 1 that

Pr

(

γ1 = S[N ]
m (1)

)

= [1− S[N ]
m (1)] [(1− α)Pr(γ0 = 1) + βPr(γ0 = 0)] +

S[N ]
m (1) [αPr(γ0 = 1) + (1− β)Pr(γ0 = 0)]

= S[N ]
m (1)+[1−2S[N ]

m (1)][β+γ̄(1−α−β)] (a.39)

On the other hand, for an arbitraryk ∈ {2, 3, · · · , N}, it can be straightforwardly declared from the

definition of a Markov chain and the assumption0 < α, β < 1 that

Pr

(

γk = S[N ]
m (k)

∣

∣

∣ γk−1 = S[N ]
m (k − 1)

)

=































α, S
[N ]
m (k) = 1, S

[N ]
m (k − 1) = 1

1− α, S
[N ]
m (k) = 1, S

[N ]
m (k − 1) = 0

β, S
[N ]
m (k) = 0, S

[N ]
m (k − 1) = 1

1− β, S
[N ]
m (k) = 0, S

[N ]
m (k − 1) = 0

= αS[N ]
m (k)S[N ]

m (k−1)(1− α)(1−S[N ]
m (k))S[N ]

m (k−1)(1− β)S
[N ]
m (k)(1−S[N ]

m (k−1))β(1−S[N ]
m (k))(1−S[N ]

m (k−1))

= β

(

1− α

β

)S
[N ]
m (k−1)(1− β

β

)S
[N ]
m (k)(

αβ

(1− α)(1 − β)

)S
[N ]
m (k)S

[N ]
m (k−1)

(a.40)
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Substitute Equations (a.39) and (a.40) into Equation (a.37), the following relation is obtained,

log
[

Pr

(

Γ[N ]=S[N ]
m

)]

=

2
∑

k=N

log
[

Pr

(

γk = S[N ]
m (k)

∣

∣

∣
γk−1 = S[N ]

m (k − 1)
)]

+ log
[

Pr

(

γ1 = S[N ]
m (1)

)]

=

2
∑

k=N

{

log(β) + S[N ]
m (k − 1)log

(

1− α

β

)

+ S[N ]
m (k)log

(

1− β

β

)

+

S[N ]
m (k)S[N ]

m (k − 1)log

(

αβ

(1− α)(1 − β)

)}

+

log
{

S[N ]
m (1)+[1−2S[N ]

m (1)][β+γ̄(1−α−β)]
}

= (N−1)log(β)+log

(

1−α

β

)N−1
∑

k=1

S[N ]
m (k)+log

(

1

β
−1

) N
∑

k=2

S[N ]
m (k)+

log

(

αβ

(1−α)(1−β)

) N
∑

k=2

[

S[N ]
m (k)S[N ]

m (k−1)
]

+

log
{

S[N ]
m (1)+[1−2S[N ]

m (1)][β+γ̄(1−α−β)]
}

(a.41)

This completes the proof. ✸

Proof of Theorem 5: Assume that there exist two positive integersm1 andm2 such that the matrix

pairs (A[1](A[2])m1 , H [1]) and ((A[2])m2A[1], G[2]) are respectively observable and controllable. Then,

the following two matricesŌb and C̄n are respectively of full column rank and full row rank,

Ōb =

















H [1]

H [1]A[1](A[2])m1

...

H [1]
(

A[1](A[2])m1
)n−1

















, C̄n =

[

G[2] (A[2])m2A[1]G[2] · · ·
(

(A[2])m2A[1]
)n−1

G[2]

]

Define positive integersN∗ and N , as well as a finite binary sequenceR[N ] = {R[N ](t)|Nt=1},

respectively asN∗ = (n− 2)(m1 + 1) + 1, N = (n− 2)(m1 +m2 + 2) + 2, and

R[N ](t) =































0 t ∈ (1 + (j − 1)(m1 + 1), 1 + j(m1 + 1))

1 t = 1 + (j − 1)(m1 + 1)

0 t = N∗ + (j − 1)(m2 + 1) + 1

1 t ∈ (N∗ + (j − 1)(m2 + 1) + 1, N∗ + j(m2 + 1) + 1)

(a.42)

in which j = 1, 2, · · · , n − 1. Then, it can be claimed from Theorems 3 and 4 that when the finite

random sequenceΓ[N ] has the realizationR[N ], the corresponding matricesΦR[N ](t)|Nt=1 simultaneously

satisfy
∏N∗

t=1 ΦR[N ](t) ∈ Hl and
∏N

t=N∗+1 ΦR[N ](t) ∈ Hr. Hence, according to Lemma 2,
∏N

t=1 ΦR[N ](t) =
∏N∗

t=1 ΦR[N ](t)

∏N
t=N∗+1 ΦR[N ](t) belongs to bothHl andHr, and thereforeHlr. It can therefore be declared
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from Lemma 2 that with respect to this particular realization of γt|Nt=1, the corresponding matrix valued

function Hm

(

∏N
t=1 ΦR[N ](t), ⋆

)

, which is defined on the set ofn × n dimensional positive definite

matrices, is strictly contractive under the Riemannian distance defined in Equation (??). This means that

if during the time interval[1, N ], the random measurement dropping processγt|∞t=1 has this particular

realization, then,Lip

(

Hm

(

∏N
t=1 ΦR[N ](t), ⋆

))

< 1. From Lemma 1, this inequality is further equivalent

to

Lip

(

Hm

(

ΦR[N ](1),Hm

(

ΦR[N ](2), · · · ,Hm

(

ΦR[N ](N), ⋆
)

· · ·
)))

< 1 (a.43)

On the other hand, from the definition of the setS [N ], it is obvious thatR[N ] ∈ S [N ]. Hence, according

to Lemma 4, when the measurement dropping processγt|∞t=1 has an independent and identical Bernoulli

distribution with a constant positive expectation, the probability of the occurrence of this sequence is

certainly greater than0.

In addition, from Lemma 2 and the fact thatΦt ∈ H no matterγt = 1 or γt = 0, it can be declared

that for every other elementS[N ]
m of the setS [N ], the random alternative Lyapunov and Riccati recursions

corresponding to the particular realizationΓ[N ] = S
[N ]
m of the pseudo-covariance matrixPt|t in RSEIO,

satisfiesLip

(

Hm

(

∏N
t=1 ΦS[N ]

m (t), ⋆
))

≤ 1, which is further equivalent to

Lip

(

Hm

(

ΦS
[N ]
m (1),Hm

(

ΦS
[N ]
m (2), · · · ,Hm

(

ΦS
[N ]
m (N), ⋆

)

· · ·
)))

≤ 1 (a.44)

Therefore,

E{γt|Nt=1}
{logLip(Hm (Φ1,Hm (Φ2, · · · ,Hm (ΦN , ⋆) · · · )))}

= logLip

(

Hm

(

ΦR[N ](1),Hm

(

ΦR[N ](2), · · · ,Hm

(

ΦR[N ](N), ⋆
)

· · ·
)))

Pr

(

Γ[N ] = R[N ]
)

+

∑

S
[N ]
m ∈S [N ]\R[N ]

logLip

(

Hm

(

ΦS[N ]
m (1),Hm

(

ΦS[N ]
m (2), · · · ,Hm

(

ΦS[N ]
m (N), ⋆

)

· · ·
)))

Pr

(

Γ[N ] = S[N ]
m

)

< 0 (a.45)

It can therefore be declared from Lemma 3 that, if the random measurement dropping processγt|∞t=1

has an independent and identical Bernoulli distribution with a constant positive expectation, and there

exist two positive integersm1 and m2 such that the matrix pair(A[1](A[2])m1 , H [1]) is observable

and the matrix pair((A[2])m2A[1], G[2]) is controllable, then, with the increment of the variablet, the

pseudo-covariance matrixPt|t of RSEIO converges with probability one to a stationary distribution that

is independent of its initial valueP0|0.

The other situations can be proved using completely similararguments. The details are therefore

omitted.
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This completes the proof. ✸
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