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Abstract—The problem of choosing a string of actions to
optimize an objective function that is string submodular has
been considered in [1]. There it is shown that the greedy
strategy, consisting of a string of actions that only locally
maximizes the step-wise gain in the objective function, achieves
at least a (1− e

−1)-approximation to the optimal strategy. This
paper improves this approximation by introducing additional
constraints on curvature, namely,total backward curvature, total
forward curvature, and elemental forward curvature. We show that
if the objective function has total backward curvature σ, then the
greedy strategy achieves at least a1

σ
(1− e

−σ)-approximation of
the optimal strategy. If the objective function has total forward
curvature ǫ, then the greedy strategy achieves at least a(1− ǫ)-
approximation of the optimal strategy. Moreover, we consider
a generalization of the diminishing-return property by defining
the elemental forward curvature. We also introduce the notion
of string-matroid and consider the problem of maximizing the
objective function subject to a string-matroid constraint. We
investigate two applications of string submodular functions with
curvature constraints: 1) choosing a string of actions to maximize
the expected fraction of accomplished tasks; and 2) designing a
string of measurement matrices such that the information gain
is maximized.

I. I NTRODUCTION

A. Background

We consider the problem of optimally choosing a string of
actions over a finite horizon to maximize an objective function.
Let A be a set of all possible actions. At each stagei, we
choose an actionai from A. We useA = (a1, a2, . . . , ak)
to denote a string of actions taken overk consecutive stages,
whereai ∈ A for i = 1, 2, . . . , k. We useA∗ to denote the set
of all possible strings of actions (of arbitrary length, including
the empty string). Letf : A∗ → R be an objective function,
whereR denotes the real numbers. Our goal is to find a string
M ∈ A

∗, with a length|M | not larger thanK, to maximize
the objective function:

maximizef(M)
subject toM ∈ A

∗, |M | ≤ K.
(1)
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The solution to (1), which we call theoptimal strategy, can
be found using dynamic programming (see, e.g., [3]). More
specifically, this solution can be expressed withBellman’s
equations. However, the computational complexity of finding
an optimal strategy grows exponentially with respect to the
size of A and the length constraintK. On the other hand,
the greedy strategy, though suboptimal in general, is easy to
compute because at each stage, we only have to find an action
to maximize the step-wise gain in the objective function. The
question we are interested in is: How good is the greedy
strategy compared to the optimal strategy in terms of the
objective function? This question has attracted widespread
interest, which we will review in the next section.

In this paper, we extend the concept of set submodularity in
combinatorial optimization to bound the performance of the
greedy strategy with respect to that of the optimal strategy.
Moreover, we will introduce additional constraints on curva-
tures, namely, total backward curvature, total forward curva-
ture, and elemental forward curvature, to provide more refined
lower bounds on the effectiveness of the greedy strategy
relative to the optimal strategy. Therefore, the greedy strategy
serves as a good approximation to the optimal strategy. We
will investigate the relationship between the approximation
bounds for the greedy strategy and the values of the curvature
constraints. These results have many potential applications in
closed-loop control problems such as portfolio management
(see, e.g., [4]), sensor management (see, e.g., [5][6] [7]), and
influence in social networks (see, e.g., [8]).

We now provide a simple motivating example in the context
of sensor management. Suppose that there exists a target of
interest located in an area deployed with a large number of
distributed sensors, each of which can detect if the target is
located within its region of coverage. The goal is to activate
sequentially individual sensors to maximize the probability of
detection of the target. In this context, the action is to activate
a sensor at each step, and the objective function maximized
might be taken to be probability of detection, which depends
on the sequence of sensors activated. Intuitively, withoutany
prior knowledge of target location or behavior, and where
the sensors have a high probability of detection within their
individual coverage regions, activation of sensors to maximize
the total coverage area is a suitable surrogate for overall
probability of detection. If the coverage region of each sensor
remains constant over time, the total coverage area will only
depend on the set of sensors activated, and not the order in
which they are activated, in which case the problem reduces
to a special case of maximizing a monotone submodular set
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function subject to a knapsack constraint [9]. On the other
hand, if the coverage area for each sensor decays over time,
for instance because of a corrosive environment or decaying
batteries, the order in which the sensors are activated becomes
important. For example, the coverage area for sensori might
be given by Ci exp(−t/ti), where Ci denotes the initial
coverage area,ti denotes the mean lifetimes, andt = 0, 1, . . .
denotes the time index. In these cases, the problem falls within
the framework of string submodular functions developed in
this paper.

B. Related Work

Submodular set functions play an important role in combi-
natorial optimization. LetX be a ground set andg : 2X → R

be an objective function defined on the power set2X of X .
Let I be a non-empty collection of subsets ofX . Suppose
that I has thehereditaryandaugmentationproperties: 1. For
any S ⊂ T ⊂ X , T ∈ I implies thatS ∈ I; 2. For any
S, T ∈ I, if T has a larger cardinality thanS, then there
existsj ∈ T \ S such thatS ∪ {j} ∈ I. Then, we call(X, I)
a matroid [10]. The goal is to find a set inI to maximize the
objective function:

maximizeg(N)
subject toN ∈ I. (2)

Suppose thatI = {S ⊂ X : card(S) ≤ k} for a givenk,
where card(S) denotes the cardinality ofS. Then, we call
(X, I) a uniform matroid.

The main difference between (1) and (2) is that the objective
function in (1) depends on the order of elements in the
string M , while the objective function in (2) is independent
of the order of elements in the setN . To further explain
the difference, we useP(M) to denote a permutation of
a string M . Note that forM with length k, there existk!
permutations. In (1), suppose that for anyM ∈ A

∗ we have
f(M) = f(P(M)) for any P . Then, under these special
circumstances, problem (1) is equivalent to problem (2). In
other words, we can view the second problem as a special
case of the first problem. Moreover, there can be repeated
identical elements in a string, while a set does not contain
identical elements (but we note that this difference can be
bridged by allowing the notion of multisets in the formulation
of submodular set functions).

Finding the solution to (2) is NP-hard—a tractable alter-
native is to use a greedy algorithm. The greedy algorithm
starts with the empty set, and incrementally adds an element
to the current solution giving the largest gain in the objective
function. Theories for maximizing submodular set functions
and their applications have been intensively studied in recent
years [11]–[36]. The main idea is to compare the performance
of the greedy algorithm with that of the optimal solution.
Suppose that the set objective functiong is non-decreasing:
g(A) ≤ g(B) for all A ⊂ B; and g(∅) = 0 where ∅
denotes the empty set. Moreover, suppose that the function
has thediminishing-return property: For all A ⊂ B ⊂ X and
j ∈ X \B, we haveg(A∪{j})− g(A) ≥ g(B∪{j})− g(B).
Then, we say thatg is a submodular setfunction. Nemhauser

et al. [11] showed that the greedy algorithm achieves at least
a (1− e−1)-approximation for the optimal solution given that
(X, I) is a uniform matroid and the objective function is
submodular. (By this we mean that the ratio of the objective
function value of the greedy solution to that of the optimal
solution is at least(1 − e−1).) Fisheret al. [12] proved that
the greedy algorithm provides at least a1/2-approximation
of the optimal solution for a general matroid. Conforti and
Cornuéjols [13] showed that if the functiong has a total
curvaturec, where

c = max
j∈X

{

1− g(X)− g(X \ {j})
g({j})− g(∅)

}

,

then the greedy algorithm achieves at least1
c
(1 − e−c) and

1
1+c

-approximations of the optimal solution given that(X, I)
is a uniform matroid and a general matroid, respectively. Note
that c ∈ [0, 1] for a submodular set function, and ifc = 0,
then the greedy algorithm is optimal; ifc = 1, then the result
is the same as that in [11]. Vondrák [14] showed that the
continuous greedy algorithmachieves at least a1

c
(1 − e−c)-

approximation for any matroid. Wanget al. [15] provided
approximation bounds in the case where the function has an
elemental curvatureα, defined as

α = max
S⊂X,i,j∈X,i6=j

{

g(S ∪ {i, j})− g(S ∪ {i})
g(S ∪ {j})− g(S)

}

.

The notion of elemental curvature generalizes the notion
of diminishing return. These are powerful results, but are
limited in their application to optimal control problems that
are invariant to the order of actions. In most optimal control
problems, however, the objective function depends crucially
on the order of actions and therefore a new framework for op-
timizing objective functions over strings, as formulated in (1),
is needed. In this paper we do just that in developing string
submodularity. We will further describe our contributionsafter
reviewing recent results on string submodularity.

Some recent papers [1], [16]–[18] have extended the notion
of set submodularity to problem (1). Streeter and Golovin [16]
consider (1) in the context ofonline submodular optimiza-
tion (equivalent to ourstring submodular optimization) and
show that if the functionf is prefix and postfix monotone
and f has the diminishing-return property, then the greedy
strategy achieves at least a(1 − e−1)-approximation of the
optimal strategy. Golovin and Krause [17] introduce the notion
of adaptive submodularity for solving stochastic optimiza-
tion problems under partial observability. In this Bayesian
framework of adaptive submodularity, the objective function
depends on the set of selected actions; it also depends on a
sequence of random outcomes associated with these actions.
At each stage, an action is chosen based on the previous
actions and the random outcomes of these actions. It is
shown in [17] that the greedy strategy achieves at least a
(1−e−1) approximation to the expected (calculated with given
prior distributions) objective function of any set of actions.
Alaei and Malekian [18] introducesequencesubmodularity
(also equivalent to our concept of string submodularity) and
provide sufficient conditions for the greedy strategy to achieve
at least a(1 − e−1)-approximation to the optimal strategy.
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Our notion of string submodularity and weaker sufficient
conditions than those in [14] and [16], under which the greedy
strategy still achieves at least a(1−e−1)-approximation of the
optimal strategy, were first established in [1]. In contrastto
adaptive submodularity, we take a deterministic approach and
emphasize the importance of the order of actions. The main
contribution of this paper, going beyond the submodularity
bounds of [1], [16]–[18], is the introduction of several notions
of curvature of the string objective function that in turn
provide approximation bounds of the greedy strategy, which
are sharper than(1− e−1). We also provide several canonical
examples of applications, different from those consideredin
[16]–[18], that fall within our framework.

C. Relevance to Control

While setsubmodular optimization problems are somewhat
disconnected with control problems,string submodular opti-
mization problems fit right at home in the control literature.
Indeed, the problem in (1) is, in an unambiguous way, a very
general form of anoptimal controlproblem. To see this, we
rewrite the optimization problem in (1) as follows:

maximizef(a1, . . . , ak)

subject toai ∈ A, i = 1, . . . , k, k ≤ K.

Subject to the monotone assumption, this problem further
reduces to

maximizef(a1, . . . , aK)

subject toai ∈ A, i = 1, . . . ,K.

This optimization formulation encompasses many optimal
control problems that are prevalent in the control literature.
Indeed, there seems hardly any way to generalize optimal con-
trol problems any further. For example, consider the following
optimal control problem:

minimize
K
∑

k=1

gk(xk, uk)

subject toxk+1 = hk(xk, uk), k = 1, . . . ,K − 1,

where the initial statex1 is given, anduk is the control
input at time k taking values in some given feasible set.
This formulation is a rather general optimal control problem
involving arbitrary per-stage cost functiongk and state-space
modelxk+1 = hk(xk, uk). A very special case of this problem
is where the state space isRn, the feasible input set isRm,
gk(xk, uk) = x⊤

k Qxk + u⊤
k Ruk (whereQ andR are given

symmetric matrices) andhk(xk, uk) = Axk + Buk (where
A andB are appropriately sized matrices). In this case, the
problem becomes

minimize
K
∑

k=1

x⊤
k Qxk + u⊤

k Ruk

subject toxk+1 = Axk +Buk, k = 1, . . . ,K, x1 given.

This is the familiar finite-horizon, discrete-timelinear
quadratic regulator (LQR) problem, studied in the control
literature for decades. In other words, LQR is a very special
case of the problem (1).

D. Contributions

In this paper, we study the problem of maximizing sub-
modular functions defined on strings. We impose additional
constraints on curvatures, namely, total backward curvature,
total forward curvatures, and elemental forward curvature,
which will be rigorously defined in Section II. The notion of
total forward and backward curvatures is inspired by the work
of Conforti and Cornuéjols [13]. However, the forward and
backward algebraic structures are not exposed in the setting
of set functions because the objective function defined on
sets is independent of the order of elements in a set. The
notion of elemental forward curvature is inspired by the work
of Wang et al. [15]. We have exposed the forward algebraic
structure of this elemental curvature in the setting of string
functions. Moreover, the result and technical approach in [15]
are different from those in this paper. More specifically, the
work in [15] requires the objective function to be a “set
function”; that is, independent of order of elements in the set.
In our case, order is a crucial component.

In Section III, we consider the maximization problem in the
case where the strings are chosen from a uniform structure. For
this case, our results are summarized as follows. Suppose that
the string submodular functionf has total backward curvature
σ(O) with respect to the optimal strategy. Then, the greedy
strategy achieves at least a1

σ(O) (1 − e−σ(O))-approximation
of the optimal strategy. Suppose that the string submodular
function f has total forward curvatureǫ. Then, the greedy
strategy achieves at least a(1−ǫ)-approximation of the optimal
strategy. We also generalize the notion of diminishing return
by defining the elemental forward curvatureη. The greedy
strategy achieves at least a1 − (1 − 1

Kη
)K-approximation,

whereKη = (1 − ηK)/(1 − η) if η 6= 1 and Kη = K if
η = 1.

In Section IV, we consider the maximization problem in the
case where the strings are chosen from a non-uniform structure
by introducing the notion of string-matroid. Our results for
this case are as follows. Suppose that the string submodular
functionf has total backward curvatureσ(O) with respect to
the optimal strategy. Then, the greedy strategy achieves atleast
a1/(1+σ(O))-approximation. We also provide approximation
bounds for the greedy strategy when the function has total
forward curvature and elemental forward curvature.

In Section V, we consider two applications of string sub-
modular functions with curvature constraints: 1) choosing
a string of actions to maximize the expected fraction of
accomplished tasks; and 2) designing a string of measurement
matrices such that the information gain is maximized.

II. STRING SUBMODULARITY, CURVATURE, AND

STRATEGIES

A. String Submodularity

We now introduce notation (same to those in [1]) to define
string submodularity. Consider a setA of all possible actions.
At each stagei, we choose an actionai from A. Let A =
(a1, a2, . . . , ak) be a string of actions taken overk stages,
where ai ∈ A, i = 1, 2, . . . , k. Let the set of all possible
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strings of actions be

A
∗ = {(a1, a2, . . . , ak)|k = 0, 1, . . . and

ai ∈ A, i = 1, 2 . . . , k}.

Note thatk = 0 corresponds to the empty string (no action
taken), denoted by∅. For a given stringA = (a1, a2, . . . , ak),
we define itsstring lengthas k, denoted|A| = k. If M =
(am1 , am2 , . . . , amk1

) andN = (an1 , a
n
2 , . . . , a

n
k2
) are two strings

in A
∗, we sayM = N if |M | = |N | andami = ani for each

i = 1, 2, . . . , |M |. Moreover, we define stringconcatenation
as follows:

M ⊕N = (am1 , am2 , . . . , amk1
, an1 , a

n
2 , . . . , a

n
k2
).

If M andN are two strings inA∗, we writeM � N if we
haveN = M ⊕ L, for someL ∈ A

∗. In other words,M is a
prefix of N .

A function from strings to real numbers,f : A∗ → R, is
string submodularif

i. f has theprefix-monotoneproperty, i.e.,

∀M,N ∈ A
∗, f(M ⊕N) ≥ f(M).

ii. f has thediminishing-returnproperty, i.e.,

∀M � N ∈ A
∗, ∀a ∈ A,

f(M ⊕ (a)) − f(M) ≥ f(N ⊕ (a))− f(N).

In the rest of the paper, we assume thatf(∅) = 0.
Otherwise, we can replacef with the marginalized function
f − f(∅). From the prefix-monotone property, we know that
f(M) ≥ 0 for all M ∈ A

∗.
We first state an immediate result from the definition of

string submodularity.
Lemma 1:Suppose thatf is string submodular. Then, for

any stringN = (n1, n2, . . . , n|N |), we have

f(N) ≤
|N |
∑

i=1

f((ni)).

Proof: We use mathematical induction to prove this
lemma. If |N | = 1, then the result is trivial. Suppose the
claim in the lemma holds for any string with lengthk, we
wish to prove the claim for any string with lengthk + 1.
Let N = (n1, n2, . . . , nk, nk+1). By the diminishing return
property, we have

f((nk+1))− f(∅) ≥ f(N)− f((n1, . . . , nk)).

Therefore, by the assumption of the induction, we obtain

f(N) ≤ f((nk+1)) + f((n1, . . . , nk)) ≤
k+1
∑

i=1

f((ni)).

This completes the induction proof.
Moreover, it is easy to show the following with an induction

argument:

∀M � N ∈ A
∗, ∀L ∈ A

∗,

f(M ⊕ L)− f(M) ≥ f(N ⊕ L)− f(N).

B. Curvature

Submodularity in the discrete setting is analogous to con-
cavity in the continuous setting. Curvature is the degree
of this concavity. In the continuous setting, the degree of
concavity is usually captured using second-order derivatives.
In this section, we discuss several measures of curvature
to characterize the degree of submodularity, each naturally
resulting in a different submodularity performance bound.As
we will see below, curvature shares some features of second-
order derivatives (or, rather, finite differences).

We define thetotal backward curvatureof f by

σ = max
a∈A,M∈A∗

{

1− f((a)⊕M)− f(M)

f((a))− f(∅)

}

. (3)

To see how this notion of curvature is akin to a second-order
finite difference, we first rewrite (3) as

σ = max
a∈A,M∈A∗

(f((a)) − f(∅))− (f((a)⊕M)− f(M))

f((a))− f(∅)
.

Notice that this is a normalizeddifference of differences
(second-order difference), analogous to a derivative of a
derivative (second-order derivative), so that the total backward
curvature is an upper bound on the second-order difference,
over all possible actionsa and stringsM . Assuming the postfix
monotonicity and the diminishing-return property, all of the
differences above are nonnegative, corresponding to concavity
in the string setting.

Similar second-order derivative analogies apply to all the
notions of curvature discussed here, including our next defini-
tion. We define the total backward curvature off with respect
to stringM ∈ A

∗ by

σ(M) = max
N∈A∗,0<|N |≤K

{

1− f(N ⊕M)− f(M)

f(N)− f(∅)

}

, (4)

whereK is the length constraint in (1). Suppose thatf is
postfix monotone; i.e.,∀M,N ∈ A

∗, f(M ⊕ N) ≥ f(N).
Then, we haveσ ≤ 1 andf has total backward curvature at
mostσ with respect to anyM ∈ A

∗; i.e,σ(M) ≤ σ ∀M ∈ A
∗.

This fact can be shown using a simple derivation: For any
N ∈ A

∗, we have

f(N ⊕M)− f(M) =

|N |
∑

i=1

f((ni, . . . , n|N |)⊕M)− f((ni+1, . . . , n|N |)⊕M),

whereni represents theith element ofN . From the definition
of total backward curvature and Lemma 1, we obtain

f(N ⊕M)− f(M) ≥
|N |
∑

i=1

(1− σ)f((ni))

≥ (1− σ)f(N),

which implies thatσ(M) ≤ σ ≤ 1. From the diminishing-
return property, it is easy to show thatσ ≥ 0.
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Symmetrically, we define thetotal forward curvatureof f
by

ǫ = max
a∈A,M∈A∗

{

1− f(M ⊕ (a)) − f(M)

f((a))− f(∅)

}

. (5)

Moreover, we define the total forward curvature with respect
to M by

ǫ(M) = max
N∈A∗,0<|N |≤K

{

1− f(M ⊕N)− f(M)

f(N)− f(∅)

}

. (6)

If f is string submodular and has total forward curvatureǫ,
then it has total forward curvature at mostǫ with respect to
anyM ∈ A

∗; i.e., ǫ(M) ≤ ǫ ∀M ∈ A
∗. Moreover, for a string

submodular functionf , it is easy to see that for anyM , we
haveǫ(M) ≤ ǫ ≤ 1 because of the prefix monotone property
andǫ(M) ≥ 0 because of the diminishing-return property.

We define theelemental forward curvatureof the string
submodular function by

η = max
ai,aj∈A,M∈A∗

f(M ⊕ (ai)⊕ (aj))− f(M ⊕ (ai))

f(M ⊕ (aj))− f(M)
. (7)

To explain how elemental forward curvature is yet again a
form of second-order difference, let us rewrite (7) as

η = max
ai,aj∈A,M∈A∗

(f(M ⊕ (ai)⊕ (aj))− f(M))− (f(M ⊕ (ai))− f(M))

f(M ⊕ (aj))− f(M)
.

Again, notice the form of the second-order difference (nor-
malized difference of differences).

In a similar way, we define theK-elemental forward cur-
vatureas follows:

η̂ = max
ai,aj∈A,M∈A∗,|M|≤2K−2

f(M ⊕ (ai)⊕ (aj))− f(M ⊕ (ai))

f(M ⊕ (aj))− f(M)
. (8)

For a prefix monotone function, we haveη ≥ 0, and the
diminishing-return is equivalent to the conditionη ≤ 1. By
the definitions, we know that̂η ≤ η for all K.

The definitions ofσ(M), ǫ(M), andη̂ depend on the length
constraintK of the optimal control problem (1), whereasσ,
ǫ, and η are independent ofK. In other words,σ, ǫ, and η
can be treated as theuniversalupper bounds forσ(M), ǫ(M),
and η̂, respectively.

C. Strategies

We will consider the following two strategies.
1) Optimal strategy: Consider the problem (1) of finding a

string that maximizesf under the constraint that the string
length is not larger thanK. We call a solution of this problem
an optimal strategy(a term we already have used repeatedly
before). Note that because the functionf is prefix monotone, it
suffices to just find the optimal strategy subject to the stronger
constraint that the string length is equal toK. In other words,
if there exists an optimal strategy, then there exists one with
lengthK.

2) Greedy strategy: A stringGk = (a∗1, a
∗
2, . . . , a

∗
k) is called

greedyif ∀i = 1, 2, . . . , k,

a∗i = argmax
ai∈A

f((a∗1, a
∗
2, . . . , a

∗
i−1, ai))

− f((a∗1, a
∗
2, . . . , a

∗
i−1)).

Notice that the greedy strategy only maximizes the step-
wise gain in the objective function. In general, the greedy
strategy (also called the greedy string) is not an optimal
solution to (1). In this paper, we establish theorems which
state that the greedy strategy achieves at least a factor of the
performance of the optimal strategy, and therefore serves in
some sense toapproximatean optimal strategy.

III. U NIFORM STRUCTURE

Let I consist of those elements ofA∗ with maximal length
K: I = {A ∈ A

∗ : |A| ≤ K}. We call I a uniform structure.
Note that the way we define uniform structure is similar to
the way we define independent sets associated with uniform
matroids. We will investigate the case of non-uniform structure
in the next section. Now (1) can be rewritten as

maximizef(M)
subject toM ∈ I.

We first consider the relationship between the total curva-
tures and the approximation bounds for the greedy strategy.

Theorem 1:Consider a string submodular functionf . Let
O be a solution to (1). Then, any greedy stringGK satisfies

(i)

f(GK) ≥ 1

σ(O)

(

1−
(

1− σ(O)

K

)K
)

f(O)

>
1

σ(O)
(1− e−σ(O))f(O),

(ii) f(GK) ≥ (1−maxi=1,...,K−1 ǫ(Gi))f(O).

Proof: (i) For any M ∈ A
∗ and any N =

(a1, a2, . . . , a|N |) ∈ A
∗, we have

f(M ⊕N)− f(M)

=

|N |
∑

i=1

(f(M ⊕ (a1, . . . , ai))− f(M ⊕ (a1, . . . , ai−1)))

Therefore, using the prefix monotone property, there existsan
elementaj ∈ A such that

f(M ⊕ (a1, . . . , aj))− f(M ⊕ (a1, . . . , aj−1))

≥ 1

|N | (f(M ⊕N)− f(M)).

Moreover, the diminishing-return property implies that

f(M ⊕ (aj))− f(M)

≥ f(M ⊕ (a1, . . . , aj))− f(M ⊕ (a1, . . . , aj−1))

≥ 1

|N |(f(M ⊕N)− f(M)).

Now let us consider the optimization problem (1). Using
the property of the greedy strategy and the above inequality
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(substituteM = Gi−1 andN = O), for eachi = 1, 2, . . . ,K
we have

f(Gi)− f(Gi−1)

≥ 1

K
(f(Gi−1 ⊕ O)− f(Gi−1))

≥ 1

K
(f(O) − σ(O)f(Gi−1)).

Therefore, we have

f(GK) ≥ 1

K
f(O) +

(

1− σ(O)

K

)

f(GK−1)

≥ 1

K
f(O)

K−1
∑

i=0

(

1− σ(O)

K

)i

=
1

σ(O)

(

1−
(

1− σ(O)

K

)K
)

f(O).

Note that

1

σ(O)

(

1−
(

1− σ(O)

K

)K
)

→ 1

σ(O)
(1− e−σ(O))

from above asK → ∞. This achieves the desired result.
(ii) Using a similar argument to that in (i), we have

f(Gi)− f(Gi−1)

≥ 1

K
(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

K
(f(Gi−1) + (1− ǫ(Gi−1))f(O) − f(Gi−1))

=
1

K
(1− ǫ(Gi−1))f(O).

Therefore, by recursion we have

f(GK) =

K
∑

i=1

(f(Gi)− f(Gi−1))

≥
K
∑

i=1

1

K
(1− ǫ(Gi−1))f(O)

≥ 1

K
K(1− max

i=1,...,K−1
ǫ(Gi))f(O)

= (1− max
i=1,...,K−1

ǫ(Gi))f(O).

Under the framework of maximizing submodular set func-
tions, results with similar form are reported in [13]. However,
the forward and backward algebraic structures are not exposed
in [13] because the total curvature there does not depend
on the order of the elements in a set. In the setting of
maximizing string submodular functions, the above theorem
exposes the roles of forward and backward algebraic structures
in bounding the greedy strategy. To explain further, let us
state the results in a symmetric fashion. Suppose that the
diminishing-return property is stated in a backward way:
f((a) ⊕ M) − f(M) ≥ f((a) ⊕ N) − f(N) for all a ∈ A

andM,N ∈ A
∗ such thatN = (a1, . . . , ak)⊕M . Moreover,

a stringĜk = (a∗1, a
∗
2, . . . , a

∗
k) is calledbackward-greedyif

a∗i = argmax
ai∈A

f((ai, a
∗
i−1, . . . , a

∗
2, a

∗
1))

− f((a∗i−1, . . . , a
∗
1)) ∀i = 1, 2, . . . , k.

Then, we can derive bounds in the same way as Theorem 1,
and the results are symmetric.

The results in Theorem 1 implies that for a string sub-
modular function, we haveσ(O) ≥ 0. Otherwise, part (i)
of Theorem 1 would imply thatf(GK) ≥ f(O), which is
absurd. Recall that if the function is postfix monotone, then
σ(O) ≤ σ ≤ 1. From these facts and part (i) of Theorem 1,
we obtain the following result, also derived in [16].

Corollary 1: Suppose thatf is string submodular and post-
fix monotone. Then,

f(GK) ≥ (1− (1− 1

K
)K)f(O) > (1− e−1)f(O).

Another immediate result follows from the facts that
σ(O) ≤ σ andǫ(Gi) ≤ ǫ for all i.

Corollary 2: Suppose thatf is string submodular and post-
fix monotone. Then,
(i)

f(GK) ≥ 1

σ

(

1−
(

1− σ

K

)K
)

f(O)

>
1

σ
(1− e−σ)f(O),

(ii) f(GK) ≥ (1− ǫ)f(O).

We note that the bounds1
σ
(1 − e−σ) and (1 − ǫ) are

independent of the length constraintK. Therefore, the above
bounds can be treated as universal lower bounds of the greedy
strategy for all possible length constraints.

Next, we use the notion of elemental forward curvature to
generalize the diminishing-return property and we investigate
the approximation bound using the elemental forward curva-
ture.

Theorem 2:Consider a prefix monotone functionf with K-
elemental forward curvaturêη and elemental forward curvature
η. Let O be an optimal solution to (1). Suppose thatf(Gi ⊕
O) ≥ f(O) for i = 1, 2, . . . ,K − 1. Then, any greedy string
GK satisfies

f(GK) ≥ f(O)

(

1− (1− 1

Kη̂

)K
)

≥ f(O)

(

1− (1− 1

Kη

)K
)

,

whereKη̂ = (1− η̂K)/(1− η̂) if η̂ 6= 1 and Kη = K if
η̂ = 1; Kη = (1 − ηK)/(1− η) if η 6= 1 and Kη = K if
η = 1.

Proof: For any M,N ∈ A
∗ such that|M | ≤ K and

|N | ≤ K, by the definition ofK-elemental forward curvature,
there existsa ∈ A such that

f(M ⊕N)− f(M)

=

|N |
∑

i=1

(f(M ⊕ (a1, . . . , ai))− f(M ⊕ (a1, . . . , ai−1)))

≤
|N |
∑

i=1

η̂i−1(f(M ⊕ ai)− f(M))

≤ (1 + η̂ + η̂2 + . . .+ η̂|N |−1)(f(M ⊕ a)− f(M))

= Kη̂(f(M ⊕ a)− f(M)).
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Now let us consider the optimization problem (1) with
length constraintK. Using the property of the greedy strategy
and the assumptions, we have fori = 1, 2, . . . ,K,

f(Gi)− f(Gi−1)

≥ 1

Kη̂

(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

Kη̂

(f(O) − f(Gi−1)).

Therefore, by recursion, we have

f(GK) ≥ 1

Kη̂

f(O) + (1− 1

Kη̂

)f(GK−1)

≥ 1

Kη̂

f(O)

K−1
∑

i=0

(1− 1

Kη̂

)i

= f(O)

(

1− (1 − 1

Kη̂

)K
)

.

Because1− (1− 1
Kη̂

)K is decreasing as a function ofη̂ and
η̂ ≤ η by definition, we obtain

f(O)

(

1− (1− 1

Kη̂

)K
)

≥ f(O)

(

1− (1− 1

Kη

)K
)

.

Recall that̂η depends on the length constraintK, whereasη
does not. Therefore, the lower bound usingKη can be treated
as a universal lower bound of the greedy strategy.

Suppose thatf is string submodular. Then, we haveη ≤ 1.
Because1− (1 − 1

Kη
)K is decreasing as a function ofη, we

obtain the following result, which is reported in [1].
Corollary 3: Consider a string submodular functionf . Let

O be a solution to (1). Suppose thatf(Gi ⊕ O) ≥ f(O) for
i = 1, 2, . . . ,K − 1. Then, any greedy stringGK satisfies

f(GK) ≥ (1− (1 − 1

K
)K)f(O) > (1− e−1)f(O).

The second inequality in the above corollary is given by the
fact that1− (1− 1

K
)K → 1− e−1 from above, asK goes to

infinity. Next we combine the results in Theorems 1 and 2 to
yield the following result.

Proposition 1: Consider a prefix monotone functionf with
elemental forward curvatureη andK-elemental forward cur-
vatureη̂. Let O be a solution to (1). Then, any greedy string
GK satisfies

(i)

f(GK) ≥ 1

σ(O)

(

1−
(

1− σ(O)

Kη̂

)K
)

f(O)

≥ 1

σ(O)

(

1−
(

1− σ(O)

Kη

)K
)

f(O),

(ii)

f(GK) ≥ (1− max
i=1,...,K−1

ǫ(Gi))
K

Kη̂

f(O)

≥ (1− max
i=1,...,K−1

ǫ(Gi))
K

Kη

f(O).

The proof is given in Appendix A. We note that the condi-
tion in Theorem 2,f(Gi ⊕O) ≥ f(O) for i = 1, . . . ,K − 1,
is essentially captured byσ(O). In other words, even if the
conditionf(Gi ⊕O) ≥ f(O) is violated, we can still provide
approximation bound usingσ(O), which is larger than 1 in
this case.

IV. N ON-UNIFORM STRUCTURE

In the last section, we considered the case whereI is a
uniform structure. In this section, we consider the case of non-
uniform structures.

We first need the following definition. LetM =
(m1, . . . ,m|M|) and N = (n1, . . . , n|N |) be two strings in
A

∗. We write M ≺ N if there exists a sequence of strings
Li ∈ A

∗ such that

N = L1 ⊕ (m1, . . . ,mi1)⊕ L2 ⊕ (mi1+1, . . . ,mi2)⊕
. . .⊕ (mik−1+1, . . . ,m|M|)⊕ Lk+1.

In other words, we can remove some elements inN to getM .
Note that≺ is a weaker notion of dominance than� defined
earlier in Section II. In other words,M � N implies that
M ≺ N but the converse is not necessarily true.

Now we state the definition of a non-uniform structure,
analogous to the definition of independent sets in matroid
theory. A subsetI of A

∗ is called anon-uniform structure
if it satisfies the following conditions:

1. I is non-empty;
2. Hereditary: ∀M ∈ I, N ≺ M implies thatN ∈ I;
3. Augmentation: ∀M,N ∈ I and |M | < |N |, there exists

an elementx ∈ A in the stringN such thatM⊕(x) ∈ I.
By analogy with the definition of a matroid, we call the pair
(A, I) a string-matroid. We assume that there existsK such
that for allM ∈ I we have|M | ≤ K and there exists aN ∈ I
such that|N | = K. We call such a stringN a maximalstring.
We are interested in the following optimization problem:

maximizef(N)
subject toN ∈ I.

(9)

Note that if the function is prefix monotone, then the max-
imum of the function subject to a string-matroid constraint
is achieved at a maximal string in the matroid. The greedy
strategyGk = (a∗1, . . . , a

∗
k) in this case is given by

a∗i = argmax
ai∈A and(a∗

1
,...,a∗

i−1
,ai)∈I

f((a∗1, a
∗
2, . . . , a

∗
i−1, ai))

− f((a∗1, a
∗
2, . . . , a

∗
i−1)) ∀i = 1, 2, . . . , k.

Compared with (1), at each stagei, instead of choosingai
arbitrarily inA to maximize the step-wise gain in the objective
function, we also have to choose the actionai such that the
concatenated string(a∗1, . . . , a

∗
i−1, ai) is an element of the non-

uniform structureI. We first establish the following theorem.
Theorem 3:For anyN ∈ I, there exists a permutation of

N , denoted byP(N) = (n̂1, n̂2, . . . , n̂|N |), such that fori =
1, 2, . . . , |N | we have

f(Gi−1 ⊕ (n̂i))− f(Gi−1) ≤ f(Gi)− f(Gi−1).
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Proof: We prove this claim by induction oni =
|N |, |N | − 1, . . . , 1 (in descending order). Ifi = |N |, con-
sideringG|N |−1 and N , we know from the String-Matroid
Axiom 3 that there exists an element ofN , denoted bŷn|N |
(we can always permute this element to the end of the string
with a certain permutation), such thatG|N |−1 ⊕ (n̂|N |) ∈ I.
Moreover, we know that the greedy way of selectinga∗|N | gives
the largest gain in the objective function. Therefore, we obtain

f(G|N |−1 ⊕ (n̂i))− f(G|N |−1) ≤ f(G|N |)− f(G|N |−1).

Now let us assume that the claim holds for alli > i0 and
the corresponding elements are{n̂i0+1, . . . , n̂|N |}. Next we
show that the claim is true fori = i0. Let N̂i0 be the string
after we remove the elements in{n̂i0+1, . . . , n̂|N |} from the
original stringN . We know from Axiom 2 thatN̂i0 ∈ I and
that |Gi0−1| < |N̂i0 |, therefore, there exists an element from
N̂i0 , denoted bŷni0 , such thatGi0−1 ⊕ (n̂i0) ∈ I. Using the
property of the greedy strategy, we obtain

f(Gi0−1 ⊕ (n̂i0))− f(Gi0−1) ≤ f(Gi0 )− f(Gi0−1).

This concludes the induction proof.
Next we investigate the approximation bounds for the

greedy strategy using the total curvatures.
Theorem 4:Let O be an optimal strategy for (9). Suppose

thatf is a string submodular function. Then, a greedy strategy
GK satisfies

(i) f(GK) ≥ 1
1+σ(O)f(O),

(ii) f(GK) ≥ (1− ǫ(GK))f(O).

Proof: (i) By the definition of the total backward curva-
ture, we know that

f(GK ⊕O)− f(O) ≥ (1− σ(O))f(GK ).

Therefore, we have

f(O)

≤ f(GK ⊕O)− (1− σ(O))f(GK )

= f(GK)− (1− σ(O))f(GK ) + f(GK ⊕O)− f(GK).

Let O = (o1, o2, . . . , oK). By the diminishing-return property,
we have

f(GK ⊕O)− f(GK)

=

K
∑

i=1

(f(GK ⊕ (o1, . . . , oi))− f(GK ⊕ (o1, . . . , oi−1)))

≤
K
∑

i=1

(f(GK ⊕ (oi))− f(GK)).

By Theorem 3, we know that there exists a permutation ofO:
P(O) = (ô1, ô2, . . . , ô|O|) such that

f(Gi−1 ⊕ (ôi))− f(Gi−1) ≤ f(Gi)− f(Gi−1),

for i = 1, 2, . . . ,K. Therefore, by the diminishing-return
property again,

K
∑

i=1

(f(GK ⊕ (oi))− f(GK))

≤
K
∑

i=1

(f(Gi−1 ⊕ (ôi))− f(Gi−1))

≤
K
∑

i=1

(f(Gi)− f(Gi−1))

= f(GK).

From the above equations,

f(O) ≤ f(GK) + f(GK)− (1− σ(O))f(GK )

= (1 + σ(O))f(GK ),

and this achieves the desired result.
(ii) From the definition of total forward curvature, we have

f(GK ⊕O) − f(GK) ≥ (1− ǫ(GK))f(O).

From the proof of part (i), we also know thatf(GK ⊕
O) − f(GK) ≤ f(GK). Therefore, we havef(GK) ≥
(1− ǫ(GK))f(O).

The inequality in (i) above is a generalization of a result on
maximizing submodular set functions with a general matroid
constraint [12]. The submodular set counterpart involves total
curvature, whereas the string version involves totalbackward
curvature. Note that iff is postfix monotone, thenσ(O) ≤
σ ≤ 1. We now state an immediate corollary of Theorem 4.

Corollary 4: Suppose thatf is string submodular and post-
fix monotone. Then, the greedy strategy achieves at least a
1/2-approximation of the optimal strategy.

Another immediate result follows from the facts that
σ(O) ≤ σ andǫ(GK) ≤ ǫ.

Corollary 5: Suppose thatf is string submodular and post-
fix monotone. Then, we have

(i) f(GK) ≥ 1
1+σ

f(O),

(ii) f(GK) ≥ (1− ǫ)f(O).

Next we generalize the diminishing-return property using
the elemental forward curvature.

Theorem 5:Suppose thatf is a prefix monotone function
with elemental forward curvatureη andK-elemental forward
curvatureη̂. Suppose thatf(GK ⊕O) ≥ f(O). If η̂ ≤ 1, then

f(GK) ≥ 1

1 + η̂
f(O) ≥ 1

1 + η
f(O).

If η̂ > 1, then

f(GK) ≥ 1

1 + η̂2K−1
f(O) ≥ 1

1 + η2K−1
f(O).
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Proof: Let O = (o1, o2, . . . , oK). From the definition of
K-elemental forward curvature,

f(GK ⊕O) − f(GK)

=
K
∑

i=1

(f(GK ⊕ (o1, . . . , oi))− f(GK ⊕ (o1, . . . , oi−1)))

≤
K
∑

i=1

(f(GK−1 ⊕ (oi))− f(GK−1))η̂
i

≤
{

η̂
∑K

i=1(f(GK−1 ⊕ (oi))− f(GK−1)), if η̂ ≤ 1

η̂K
∑K

i=1(f(GK−1 ⊕ (oi))− f(GK−1)), if η̂ > 1.

From Theorem 3, there exists a permutationP of O:
P(O) = (ô1, . . . , ôK), such that

f(Gi−1 ⊕ (ôi))− f(Gi−1) ≤ f(Gi)− f(Gi−1),

for i = 1, . . . ,K. Moreover, by the definition ofK-elemental
forward curvature,

K
∑

i=1

(f(GK−1 ⊕ (oi))− f(GK−1))

=

K
∑

i=1

(f(GK−1 ⊕ (ôi))− f(GK−1))

≤
K
∑

i=1

η̂K−i(f(Gi−1 ⊕ (ôi))− f(Gi−1))

≤
{

∑K

i=1(f(Gi−1 ⊕ (ôi))− f(Gi−1)), if η̂ ≤ 1

η̂K−1
∑K

i=1(f(Gi−1 ⊕ (ôi))− f(Gi−1)), if η̂ > 1.

≤
{

f(GK), if η̂ ≤ 1

η̂K−1f(GK), if η̂ > 1.

Therefore, we have

f(O) ≤
{

(1 + η̂)f(GK), if η̂ ≤ 1

(1 + η̂2K−1)f(GK), if η̂ > 1.

Since η̂ ≤ η and 1
1+η̂

and 1
1+η̂2K−1 are monotone decreasing

functions ofη̂, we obtain the desired results.
This result is similar in form to that in [15]. However, the

second bound in Theorem 5 is different from that in [15]. This
is because the proof in [15] uses the fact that the value of a
set function at a set is independent of the order of elements in
the set, whereas this is not the case for a string. Recall thatthe
elemental forward curvature for a string submodular function
is not larger than 1. We obtain the following result.

Corollary 6: Suppose thatf is a string submodular function
andf(GK ⊕ O) ≥ f(O). Then, the greedy strategy achieves
at least a1/2-approximation of the optimal strategy.

Now we combine the results for total and elemental curva-
tures to get the following.

Proposition 2: Suppose thatf is a prefix monotone func-
tion with K-elemental forward curvaturêη and elemental
forward curvatureη. Then, a greedy strategyGK satisfies

(i) f(GK) ≥ 1
σ(O)+h(η̂)f(O) ≥ 1

σ(O)+h(η)f(O),

(ii) f(GK) ≥ 1−ǫ(GK)
h(η̂) f(O) ≥ 1−ǫ(GK)

h(η) f(O),

whereh(η̂) = η̂ andh(η) = η if η̂ ≤ 1; h(η̂) = η̂2K−1 and
h(η) = η2K−1 if η̂ > 1.

The proof is given in Appendix B. From these results,
we know that whenf is string submodular,̂η ∈ [0, 1] and
we must haveσ(O) + η̂ ≥ 1 and ǫ(GK) + η̂ ≥ 1. From
Theorems 1, 2, 4, and 5, we see that the performance of the
greedy strategy relative to the optimal improves as the total
forward/backward curvature or the elemental forward curva-
ture decreases to0. On the other hand, the inequalities above
indicate that this performance improvement with forward and
elemental curvature constraints cannot become arbitrarily good
simultaneously. When equality in either case holds, the greedy
strategy is optimal. A special case for this scenario is whenthe
objective function isstring-linear: f(M⊕N) = f(M)+f(N)
for all M,N ∈ A

∗, i.e., η = 1 and σ = ǫ = 0. Recall that
0 ≤ σ(O) ≤ σ, 0 ≤ ǫ(GK) ≤ ǫ, and0 ≤ η̂ ≤ η. Therefore,
we haveσ(O) = ǫ(Gk) = 0 and η̂ = 1.

Remark: The above proposition and the discussions after-
ward easily generalize to the framework of submodular set
functions.

V. A PPLICATIONS

In this section, we investigate two applications of string
submodular functions with curvature constraints. We note that
explicitly computing all the curvatures defined in the previous
sections might not always be feasible. However, as we shall see
later in this section, in some canonical example applications,
we can either compute the curvature explicitly or provide tight
bounds for the curvature, which in turn bound the performance
of the greedy strategy.

A. Strategies for Accomplishing Tasks

Consider an objective function of the following form:

f((a1, . . . , ak)) =
1

n

n
∑

i=1



1−
k
∏

j=1

(1− pji (aj))



 . (10)

We can interpret this objective function as follows. We have
n subtasks, and by choosing actionaj at stagej there is a
probabilitypji (aj) of accomplishing theith subtask. Therefore,
the objective function is the expected fraction of subtasksthat
are accomplished after performing(a1, . . . , ak). A special case
of this problem has been studied in [16], wherepji (aj) only
depends onaj the time tj invested in stagej. It is shown
there that ifpji (aj) is a non-decreasing function oftj for all
i andaj , then the greedy strategy achieves at least(1− e−1)-
approximation to the optimal strategy. We will reinvestigate
the general case (10) using the aforementioned notions of
curvature and string-matroid. Note that ifpji is independent
of j for all i; i.e., the probability of accomplishing theith
subtask by choosing an action does not depend on the stage
at which the action is chosen, then it is obvious that the
objective function does not depend on the order of actions.
In this special case, the objective function is a submodular
set function and therefore the greedy strategy achieves at least
a (1− e−1)-approximation of the optimal strategy. Moreover,
this special case is closely related to several previously studied
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problems, such as min-sum set cover [37], pipelined set
cover [38], social network influence [39], and coverage-aware
self scheduling in sensor networks [40]. In this paper, we
generalize the special case to the situation wherepji depends
on j. Applications of this generalization include designing
campaign strategy for political voting and scheduling problems
in control literature [41]. Without loss of generality, we will
consider the special case wheren = 1 (our analysis easily
generalizes to arbitraryn). In this case, we have

f((a1, . . . , ak)) = 1−
k
∏

j=1

(1 − pj(aj)).

For eacha ∈ A, we assume thatpj(a) takes values in
[L(a), U(a)], where0 < L(a) < U(a) < 1. Moreover, let

c(a) =
1− U(a)

1− L(a)
.

Obviously,c(a) ∈ (0, 1). The prefix monotone property is easy
to check: For anyM,N ∈ A

∗, the statement thatf(M⊕N) ≥
f(M) is obviously true.

1) Uniform Structure:We first consider the maximization
problem under the uniform structure constraint. We have the
following results.

Theorem 6:Let Û = maxa∈A U(a), L̂ = mina∈A L(a),
and c = mina∈A c(a). Suppose that̂L−1 − Û−1 ≤ 1. Then,
we have

i)

f(GK) ≥ 1

σ̄

(

1−
(

1− σ̄

K

)K
)

f(O),

whereσ̄ = 1−minK≤k<2K
(1−Û)k−(1−L̂)k+1

L̂
.

ii)

f(GK) ≥ (1− Û)2K−2L̂

Û
f(O).

iii) if p1(a∗1) ≥ 1−cK , wherea∗1 represent the greedy action
at stage 1, then

f(GK) ≥ f(O)

(

1− (1− 1

Kη

)K
)

≥
(

1− (1− 1

Kη̄

)K
)

,

where Kη = (1 − ηK)/(1− η) and η =

maxai,aj

(1−pi(ai))p
j(aj)

pi(aj)
; Kη̄ = (1− η̄K)/(1− η̄)

and η̄ = (1−L̂)Û

L̂
.

Proof: i) The elemental forward curvature in this case is

η = max
ai,aj

(1− pi(ai))p
j(aj)

pi(aj)
.

Then, from the definitions, we have

η ≤ (1− L̂)Û

L̂
.

Note that the function is submodular if and only ifη ≤ 1.
From the above equation, we conclude thatf is submodular
if

(1− L̂)Û

L̂
≤ 1.

Therefore, a sufficient condition forf to be a string submod-
ular function is

L̂−1 − Û−1 ≤ 1.

To apply Theorem 1, instead of calculating the total back-
ward curvature with respect to the optimal strategy, we calcu-
late the total backward curvature forK ≤ |M | < 2K:

σ̂ = max
a∈A,K≤|M|<2K

{

1− f((a)⊕M)− f(M)

f((a))− f(∅)

}

(11)

= 1− min
a∈A,K≤|M|<2K

{

f((a)⊕M)− f(M)

f((a))− f(∅)

}

. (12)

We have

f((a)⊕M)− f(M)

f((a))− f(∅)

=

∏|M|
j=1(1− pj(aj))− (1− p1(a))

∏|M|
j=1(1 − pj+1(aj))

p1(a)
.

We then provide an upper bound for the total backward
curvature for all possible combination ofpj . The minimum of
the above term is achieved atpj(aj) = Û andpj+1(aj) = L̂:

min
a∈A,K≤|M|<2K

{

f((a)⊕M)− f(M)

f((a))− f(∅)

}

≥ min
a∈A,K≤k<2K

(1− Û)k − (1− p1(a))(1 − L̂)k

p1(a)

≥ min
K≤k<2K

(1− Û)k − (1 − L̂)k+1

L̂
:= 1− σ̄.

Moreover, it is easy to verify thatσ(O) ≤ σ̄. Therefore, we can
substitute the above upper bound ofσ̄ to Theorem 1 to derive
a lower bound for the approximation of the greedy strategy.

ii) Instead of calculating the total forward curvature with
respect to the greedy strategyGi, we calculate

ǫ̂i = max
a∈A,i≤|M|<i+K

{

1− f(M ⊕ (a))− f(M)

f((a))− f(∅)

}

(13)

= 1− min
a∈A,i≤|M|<i+K

{

f(M ⊕ (a))− f(M)

f((a))− f(∅)

}

(14)

= 1− min
a∈A,i≤|M|<i+K

∏|M|
j=1(1− pj(aj))p

|M|+1(a)

p1(a)
(15)

≤ 1− (1− Û)i+K−1L̂/Û . (16)

It is easy to show thatǫ(Gi) ≤ ǫ̂i. Moreover,

max
i=1,...,K−1

ǫ(Gi) ≤ max
i=1,...,K−1

ǫ̂i ≤ 1− (1− Û)2K−2L̂/Û .

We can substitute this upper bound in Theorem 1 and get a
lower bound for the approximation of the optimal strategy that
the greedy strategy is guaranteed to achieve.

iii) We will use the results in Theorem 2, which requires
the assumption thatf(Gi ⊕O) ≤ f(O) for i = 1, . . . ,K − 1,
which can be written as (assumingGi = (a∗1, . . . , a

∗
i ) and

O = (o1, . . . , oK))

K
∏

j=1

(1 − pj(oj)) ≥
i
∏

t=1

(1 − pt(a∗t ))
K
∏

j=1

(1 − pj+i(oj)). (17)
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We know that
K
∏

j=1

(1− pj(oj)) ≥
K
∏

j=1

(1− U(oj))

and
i
∏

t=1

(1− pt(a∗t ))
K
∏

j=1

(1− pj+i(oj))

≤
K
∏

j=1

(1 − L(oj))(1− p1(a∗1)).

Therefore, a sufficient condition for (17) is

1− p1(a∗1) ≤
∏K

j=1(1− U(oj))
∏K

j=1(1 − L(oj))
=

K
∏

j=1

c(oj).

This inequality holds because of the assumption thatp1(a∗1) ≥
1 − cK . The bound simply follows from the definition of
elemental curvature.

We note that with additional side information, we can
improve the bounds in Theorem 6. For example, suppose that
(1 − Û)k/(1 − L̂)k ≥ 1− L̂ for all K ≤ k < 2K. Then, we
have

σ̄ = 1− min
K≤k<2K

(1 − Û)k − (1− L̂)k+1

L̂

= 1− (1 − Û)2K−1 − (1− L̂)2K

L̂
.

Furthermore, recall thatσ ≤ 1 if the function is postfix mono-
tone. In this case, the value ofσ̄ in part i) of Theorem 6 can be
written asσ̄ = min

{

1−minK≤k<2K
(1−Û)k−(1−L̂)k+1

L̂
, 1
}

.
2) Non-uniform Structure:The calculation for the case of

non-uniform structure uses a similar analysis. We have the
following results.

Theorem 7:Let Û = maxa∈A U(a), L̂ = mina∈A L(a),
and c = mina∈A c(a). Suppose that̂L−1 − Û−1 ≤ 1. Then,
we have

i)

f(GK) ≥ 1

1 + σ̄
f(O),

whereσ̄ = 1−minK≤k<2K
(1−Û)k−(1−L̂)k+1

L̂
.

ii)

f(GK) ≥ (1− Û)2K−1L̂

Û
f(O).

iii) if L̂ ≥ 1− 1
α
, whereα = 1+

√
5

2 is thegolden ratiothen

f(GK) ≥ f(O)

(

1− (1− 1

Kη

)K
)

≥
(

1− (1− 1

Kη̄

)K
)

,

where Kη = (1 − ηK)/(1− η) and η =

maxai,aj

(1−pi(ai))p
j(aj)

pi(aj)
; Kη̄ = (1− η̄K)/(1− η̄)

and η̄ = (1−L̂)Û

L̂
.

Proof: The proofs for parts i) and ii) are omitted. The
main idea is to apply Theorem 4 and the calculation of the
total backward curvature can be calculated in the same way
as the case of uniform structure.

iii) Now let us consider the postfix monotone property
required in Theorem 5:f(GK ⊕ O) ≥ f(O). This condition
is much weaker than that in Theorem 2, and can be rewritten
as

K
∏

j=1

(1 − pj(oj)) ≥
K
∏

t=1

(1 − pt(a∗t ))
K
∏

j=1

(1− pj+K(oj)).

A sufficient condition for the above inequality is1 − Û ≥
(1− L̂)2. Recall that the function is string submodular if

η ≤ (1− L̂)Û

L̂
≤ 1.

Therefore, we havêU ≤ 1/α and1− Û ≥ (1− L̂)2 holds.

3) Special Cases:Now let us consider the special case
wherepj(a) is non-increasing overj for eacha ∈ A. It is
easy to show that the function is string submodular. Moreover,
the elemental forward curvature is

η = max
ai,aj

(1− pi(ai))p
j(aj)

pi(aj)

≤ max
ai

(1− pi(ai))

≤ 1− L̂.

Therefore, using this upper bound of the elemental forward
curvature, we can provide a better approximation than(1 −
e−1) for the greedy strategy for the uniform matroid case. We
can also provide a good approximation for the greedy strategy
for the non-uniform matroid case.

Consider the special case wherepj(a) is non-decreasing
over j for eacha ∈ A. In this case, we have

σ(O) ≤ σ̂

= 1− min
a∈A,K≤|M|<2K

{

f((a)⊕M)− f(M)

f((a))− f(∅)

}

≤ 1−
|M|
∏

j=1

(1 − pj(aj))

≤ 1− (1 − Û)2K−1.

Therefore, we can provide a better approximation than(1 −
e−1) for the greedy strategy using this upper bound ofσ(O)
for the uniform matroid case. We can also provide a good
approximation for the greedy strategy for the non-uniform
matroid case.

B. Maximizing the Information Gain

In this part, we present an application of our results on
string submodular functions to sequential Bayesian parameter
estimation. Bayesian estimation has been studied intensively
from various perspectives [42]–[47]. This work is the first to
consider the problem from the string submodularity perspec-
tive.

Consider a signal of interestx ∈ R
N with normal prior

distributionN (µ, P0). In our example, we assume thatN = 2
for simplicity; our analysis easily generalizes to dimensions
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larger than 2. LetD denote the set of diagonal positive-
semidefinite2× 2 matrices with unit Frobenius norm:

D = {Diag(
√
e,
√
1− e) : e ∈ [0, 1]}.

At each stagei, we choose a measurement matrixAi ∈ D

to get an observationyi, which is corrupted by additive zero-
mean Gaussian noiseωi ∼ N (0, Rωiωi

):

yi = Aix+ ωi.

Let us denote the posterior distribution ofx given
(y1, y2, . . . , yk) by N (xk, Pk). The recursion for the posterior
covariancePk is given by

P−1
k = P−1

k−1 +AT
kR

−1
ωkωk

Ak

= P−1
0 +

k
∑

i=1

AT
i R

−1
ωiωi

Ai.

The entropy of the posterior distribution ofx given
(y1, y2, . . . , yk) is Hk = 1

2 log detPk + log(2πe). The infor-
mation gain given(A1, A2, . . . , Ak) is

f((A1, A2, . . . , Ak)) = H0 −Hk

=
1

2
(log detP0 − log detPk).

The objective is to choose a string of measurement matrices
subject to a length constraintK such that the information gain
is maximized.

The optimality of the greedy strategy and the measure-
ment matrix design problem are considered in [48] and
[49], respectively. Suppose that the additive noise sequence
is independent and identically distributed. Then, it is easy
to see thatf((A1, A2, . . . , Ak)) = f(P(A1, A2, . . . , Ak))
for all permutationsP . Moreover, the information gain is a
submodular set function andf(∅) = 0; see [50]. Therefore,
the greedy strategy achieves at least a(1−e−1)-approximation
of the optimal strategy.

Consider the situation where the additive noise sequence
is independent butnot identically distributed. Moreover, let
us assume thatRωiωi

= σ2
i I , whereI denotes the identity

matrix. In other words, the noise at each stage is white but the
variancesσi depend oni. The prefix monotone property is easy
to see: We always gain by adding extra (noisy) measurements.

Now we investigate the sensitivity of string submodularity
with respect to the varying noise variances.

Proposition 3: f is string submodular if and only ifσi is
monotone non-decreasing with respecti.

Proof: The sufficiency part is easy to understand: The
information gain at a later stage certainly cannot be largerthan
the information gain at an earlier stage because the measure-
mentyi becomes noisier asi increases. We show the necessity
part by contradiction. Suppose that the function is string
submodular and there existsk such thatσk ≥ σk+1. Suppose
that the posterior covariance at stagek−1 is Diag(sk−1, tk−1)

and we chooseAk = Diag(1, 0), Ak+1 = Diag(0, 1). We have

f(Ak ⊕Ak+1)− f(Ak)

=
1

2
log(1 + tkσ

−2
k+1)

=
1

2
log(1 + tk−1σ

−2
k+1)

≥ 1

2
log(1 + tk−1σ

−2
k )

= f(Ak+1)− f(∅).

This contradicts the diminishing-return property and completes
the argument.

It is easy to shoŵη ≤ η ≤ 1 if and only if the sequence of
noise variance is non-decreasing. In this case, we can compute
the elemental curvature explicitly with additional information
on how quickly the noise variance increases, which in turn
provides performance bounds (better than(1 − e−1) for uni-
form matroid case and better than1/2 for non-uniform matroid
case) for the greedy strategy.

For general cases where the noise variance sequence is
not necessarily non-decreasing, we will provide an upper
bound for theK-elemental forward curvaturêη. For sim-
plicity, let P0 = Diag(s0, t0). Without loss of generality,
we assume thats0 ≥ t0. Let M = (A1, A2, . . . , A|M|)
whereAk = Diag(

√
ek,

√
1− ek) for k = 1, . . . , |M |. Let

P|M| = Diag(s|M|, t|M|) where

s−1
0 ≤ s−1

|M| = s−1
0 +

|M|
∑

i=1

σ−2
i ei ≤ s−1

0 +

|M|
∑

i=1

σ−2
i ,

t−1
0 ≤ t−1

|M| = t−1
0 +

|M|
∑

i=1

σ−2
i (1− ei) ≤ t−1

0 +

|M|
∑

i=1

σ−2
i ,

and

s−1
|M| + t−1

|M| = s−1
0 + t−1

0 +

|M|
∑

i=1

σ−2
i .

Next we provide an upper bound for̂η.
Proposition 4: Suppose thatσi ∈ [a, b] for eachi, where

0 < a < b. Then, we have

η̂ ≤
log 1

4 (1 + s0t
−1
0 + 2s0Ka−2)(1 +

s
−1

0
+a−2

(t−1

0
+b−2)

)

log(1 + t0(1 + t0(2K − 2)a−2)−1b−2)
.

Proof: We first derive an upper bound for the numerator
in (8) (definition ofK-elemental forward curvature), which is
given by (18) on the next page.

We now derive a lower bound of the denominator in (8)
by calculating the minimum value of the denominator over all
possibleAj . It is easy to show that the minimum is achieved
at Aj = Diag(1, 0) or Aj = Diag(0, 1):

f(M ⊕ (Aj))− f(M)

≥ 1

2
min(log(1 + t|M|σ

−2
|M|+1), log(1 + s|M|σ

−2
|M|+1))

≥ 1

2
log(1 + min(s|M|σ

−2
|M|+1, t|M|σ

−2
|M|+1))

≥ 1

2
log(1 + (t−1

0 +

2K−2
∑

i=1

σ−2
i )−1 min

i=1,...,2K
σ−2
i ).
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f(M ⊕ (Ai)⊕ (Aj))− f(M ⊕ (Ai)) =
1

2
log(1 + s|M|+1σ

−2
|M|+2ej)(1 + t|M|+1σ

−2
|M|+2(1− ej))

=
1

2

(

log(s−1
|M|+1 + σ−2

|M|+2ej)(t
−1
|M|+1 + σ−2

|M|+2(1 − ej)) + log s|M|+1t|M|+1

)

≤ 1

2
(log

(

s−1
|M|+1 + σ−2

|M|+2ej + t−1
|M|+1 + σ−2

|M|+2(1 − ej)

2

)2

+max(− log(s−1
0 +

|M|+1
∑

i=1

σ−2
i )t−1

0 ,− log s−1
0 (t−1

0 +

|M|+1
∑

i=1

σ−2
i )))

=
1

2



log

(

s−1
0 + t−1

0 +
∑|M|+2

i=1 σ−2
i

2

)2

− log s−1
0 (t−1

0 +

|M|+1
∑

i=1

σ−2
i )



 (18)

=
1

2

(

log

(

1 + s0t
−1
0 + s0

∑|M|+2
i=1 σ−2

i

2

)

+ log

(

s−1
0 + t−1

0 +
∑|M|+2

i=1 σ−2
i

2(t−1
0 +

∑|M|+1
i=1 σ−2

i )

))

≤ 1

2

(

log

(

1 + s0t
−1
0 + s0

∑2K
i=1 σ

−2
i

2

)

+ log

(

1

2

(

1 +
s−1
0 +maxi=1,...,2K σ−2

i

(t−1
0 + σ−2

1 )

))

)

.

Therefore, we can derive an upper bound for theK-elemental
forward curvature as follows:

η̂ ≤
log 1

4 (1 + s0t
−1
0 + s0

∑2K
i=1 σ

−2
i )(1 +

s−1

0
+maxi=1,...,2K σ−2

i

(t−1

0
+σ

−2

1
)

)

log(1 + (t−1
0 +

∑2K−2
i=1 σ−2

i )−1 mini=1,...,2K σ−2
i )

.

Using this upper bound, we can provide an approximation
bound for the greedy strategy. We note that this upper bound
is not extremely tight in the sense that it does not increase
significantly withK only if s0 or σ−2

i are sufficiently small.
By substituting eithera or b appropriately in the inequality
above, we get the upper bound forη̂ in this proposition.

With the above lower bounds for̂η, we can use Theorem 2 to
provide a bound for the greedy strategy. We have the following
results.

Theorem 8:Suppose thatσi ∈ [a, b] for eachi, where0 <
a < b, and the following holds:

b−2

a−2 − b−2
≥ (2K − 2)2

4
t0(a

−2 + b−2) + 1.

Then, we have

f(GK) ≥ f(O)

(

1− (1− 1

Kη̄

)K
)

whereKη̂ = (1− η̄K)/(1− η̄) and

η̄ =
log 1

4 (1 + s0t
−1
0 + 2s0Ka−2)(1 +

s
−1

0
+a−2

(t−1

0
+b−2)

)

log(1 + t0(1 + t0(2K − 2)a−2)−1b−2)
.

Proof: The main idea of this proof is to apply the result
from Theorem 2. We have provided an upper bound for the
K-elemental forward curvature in Proposition 4 and we will
substitute this upper bound to derive bound for the greedy
strategy.

Let A∗ ∈ D be a greedy action. We will showf((A∗) ⊕
M) ≥ f(M) for all M with length k, where k =
K,K + 1, . . . , 2K − 2. By a mathematical induction argu-
ment, this claim leads to the sufficent condition in Theo-
rem 2: f(Gi ⊕ O) ≥ f(O) for i = 1, 2, . . . ,K − 1. Let
A∗ = Diag(

√
e∗,

√
1− e∗) and M = (A1, . . . , Ak), where

At = Diag(
√
et,

√
1− et) for all t. The inequality we need to

verify can be written as

log(1 + s0(σ
−2
1 e∗ +

k
∑

t=1

σ−2
t+1et))×

(1 + t0(σ
−2
1 (1− e∗) +

k
∑

t=1

σ−2
t+1(1− et)))

≥ log(1 + s0(
k
∑

t=1

σ−2
t et))(1 + t0(

k
∑

t=1

σ−2
t (1− et))). (19)

We first calculate the value ofe∗. It is easy to show that the
objective function after applying(A∗) achieves the maximum
when

e∗ =
1 +

t
−1

0
−s

−1

0

σ
−1

1

2
.

Becausee∗ can only take values in[0, 1], in the case where
(t−1

0 − s−1
0 )/σ−1

1 ≥ 1, the maximum is achieved ate∗ = 1.
We will present our analysis only for this case—the analysis
for the case where(t−1

0 − s−1
0 )/σ−1

1 < 1 is similar and
omitted. To show the above inequality (19), it suffices to show
that

log(1 + s0σ
−2
1 + (s0

k
∑

t=1

σ−2
t+1et))(1 + t0(

k
∑

t=1

σ−2
t+1(1− et)))

≥ log(1 + s0(

k
∑

t=1

σ−2
t et))(1 + t0(

k
∑

t=1

σ−2
t (1 − et))).
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Removing thelog on both sides of the inequality, we obtain

(1 + s0

k
∑

t=1

σ−2
t+1et)(1 + t0

k
∑

t=1

σ−2
t+1(1− et))

+ s0σ
−2
1 (1 + t0

k
∑

t=1

σ−2
t+1(1− et))

≥ (1 + s0

k
∑

t=1

σ−2
t et)(1 + t0

k
∑

t=1

σ−2
t (1− et)).

Rearranging terms, we obtain (20), whereIt = 1 if σ−2
t+1 ≤

σ−2
t and It = 0 if σ−2

t+1 > σ−2
t .

From this we obtain a sufficient condition forf((A∗) ⊕
M) ≥ f(M) to hold:

b−2

a−2 − b−2
≥ k2

4
t0(a

−2 + b−2) + 1.

The term on the right is monotone increasing with respect tok
and achieves its maximum at2K−2. The proof is completed.

VI. CONCLUSION

In this paper, we have introduced the notion of total for-
ward/backward and elemental forward curvature for functions
defined on strings. We have derived several variants of lower
performance bounds, in terms of these curvature values, forthe
greedy strategy with respect to the optimal strategy. Our results
contribute significantly to our understanding of the underlying
algebraic structure of string submodular functions. Moreover,
we have investigated two applications of string submodular
functions with curvature constraints.

APPENDIX A
PROOF OFPROPOSITION1

(i) For anyM,N ∈ A
∗ and |M | ≤ K, |N | ≤ K, we have

shown in the proof of Theorem 1 that, there existsa ∈ A such
that

f(M ⊕N)− f(M) ≤ Kη̂(f(M ⊕ (a)) − f(M)).

Now let us consider the optimization problem (1) with
length constraintK. Using the property of the greedy strategy
and the monotone property, we have

f(Gi)− f(Gi−1) ≥
1

Kη̂

(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

Kη̂

(f(O)− σ(O)f(Gi−1)).

Therefore, by recursion, we have

f(GK) ≥ 1

Kη̂

f(O) + (1− σ(O)

Kη̂

)f(GK−1)

≥ 1

Kη̂

f(O)

K−1
∑

i=0

(1 − σ(O)

Kη̂

)i

=
1

σ(O)

(

1− (1 − σ(O)

Kη̂

)K
)

f(O).

The second inequality simply follows from the facts that
1

σ(O)

(

1− (1− σ(O)
Kη̂

)K
)

is a monotone decreasing function
of η̂ and η̂ ≤ η by definition.

(ii) Using a similar argument as part (i), we have

f(Gi)− f(Gi−1)

≥ 1

Kη̂

(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

Kη̂

(f(Gi−1)− f(Gi−1) + (1− ǫ(Gi−1))f(O)).

Therefore, by recursion,

f(GK) =

K
∑

i=1

(f(Gi)− f(Gi−1))

≥
K
∑

i=1

1

Kη̂

(1− ǫ(Gi−1))f(O)

≥ K

Kη̂

(1− max
i=1,...,K−1

ǫ(Gi))f(O).

The second inequality simply follows from the facts thatK
Kη̂

is
a monotone decreasing function ofη̂ and η̂ ≤ η by definition.

APPENDIX B
PROOF OFPROPOSITION2

(i) Using the definition of total backward curvature, we have

f(GK ⊕O)− f(O) ≥ (1− σ(O))f(GK ),

which implies that

f(GK ⊕O) − f(GK) ≥ f(O)− σ(O)f(GK ).

Using a similar argument as that of Theorem 5, we know that

f(GK ⊕O)− f(GK) ≤ h(η̂)f(GK).

Therefore, we have

f(GK) ≥ 1

h(η̂) + σ(O)
f(O).

The second inequality follows fromh(η̂) ≤ h(η).
(ii) Using the definition of total forward curvature, we have

f(GK ⊕O) − f(GK) ≥ (1− ǫ(GK))f(O).

Using a similar argument as that of Theorem 5, we know that
f(GK ⊕O) − f(GK) ≤ h(η̂)f(GK). Therefore, we have

f(GK) ≥ 1− ǫ(GK)

h(η̂)
f(O).

The second inequality follows fromh(η̂) ≤ h(η).
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s0

k
∑

t=1

et(σ
−2
t+1 − σ−2

t ) + t0

k
∑

t=1

(1− et)(σ
−2
t+1 − σ−2

t ) + s0σ
−2
1 (1 + t0

k
∑

t=1

σ−2
t+1(1− et))

+ s0t0(

k
∑

t=1

σ−2
t+1et)(

k
∑

t=1

σ−2
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[14] J. Vondrák, “Submodularity and curvature: the optimal algorithm,” RIMS
Kokyuroku Bessatsu B, vol. 23, pp. 253–266, 2010.

[15] Z. Wang, W. Moran, X. Wang, and Q. Pan, “Approximation for maximiz-
ing monotone non-decreasing set functions with a greedy method,” Jour-
nal of Combinatorial Optimization, DOI: 10.1007/s10878-014-9707-3,
Jan. 2014.

[16] M. Streeter and D. Golovin, “An online algorithm for maximizing
submodular functions,” inProc. 22nd Annual Conference on Neural
Information Processing Systems, Vancouver, B.C., Canada, Dec. 2008,
pp. 1577–1584..

[17] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” Journal of
Artificial Intelligence Research, vol. 42, no. 1, pp. 427–486, Sep. 2011.

[18] S. Alaei and A. Malekian, “Maximizing sequence-submodular func-
tions and its application to online advertising,”arXiv preprint
arXiv:1009.4153, 2010.

[19] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz, “A tight linear
time (1/2)-approximation for unconstrained submodular maximization,”
in Proc. IEEE 53rd Annual Symposium on Foundations of Computer
Science, New Brunswick, NJ, Oct. 2012, pp. 649–658.

[20] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
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