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Abstract—The problem of choosing a string of actions to
optimize an objective function that is string submodular has
been considered in [[1]. There it is shown that the greedy
strategy, consisting of a string of actions that only locay
maximizes the step-wise gain in the objective function, adéves
at least a (1 — e~ ')-approximation to the optimal strategy. This
paper improves this approximation by introducing additional
constraints on curvature, namely,total backward curvature, total
forward curvature, and elemental forward curvature. We show that
if the objective function has total backward curvature o, then the
greedy strategy achieves at least %(1 — e~ 7)-approximation of
the optimal strategy. If the objective function has total faward
curvature ¢, then the greedy strategy achieves at least @l — ¢)-
approximation of the optimal strategy. Moreover, we consier
a generalization of the diminishing-return property by defining
the elemental forward curvature. We also introduce the notbn
of string-matroid and consider the problem of maximizing the
objective function subject to a string-matroid constraint. We
investigate two applications of string submodular functims with
curvature constraints: 1) choosing a string of actions to maimize
the expected fraction of accomplished tasks; and 2) designy a
string of measurement matrices such that the information g
is maximized.

I. INTRODUCTION
A. Background

The solution to[{IL), which we call theptimal strategycan
be found using dynamic programming (see, eld., [3]). More
specifically, this solution can be expressed wikliman’s
equations However, the computational complexity of finding
an optimal strategy grows exponentially with respect to the
size of A and the length constraink. On the other hand,
the greedy strategy, though suboptimal in general, is easy t
compute because at each stage, we only have to find an action
to maximize the step-wise gain in the objective functioneTh
guestion we are interested in is: How good is the greedy
strategy compared to the optimal strategy in terms of the
objective function? This question has attracted widesprea
interest, which we will review in the next section.

In this paper, we extend the concept of set submodularity in
combinatorial optimization to bound the performance of the
greedy strategy with respect to that of the optimal strategy
Moreover, we will introduce additional constraints on axv
tures, namely, total backward curvature, total forwardvaur
ture, and elemental forward curvature, to provide more eefin
lower bounds on the effectiveness of the greedy strategy
relative to the optimal strategy. Therefore, the greedstetyy
serves as a good approximation to the optimal strategy. We
will investigate the relationship between the approxiomati

We consider the problem of optimally choosing a string dfounds for the greedy strategy and the values of the cuevatur

actions over a finite horizon to maximize an objective furcti
Let A be a set of all possible actions. At each stageve
choose an actiom,; from A. We used = (a1,as9,...,ax)

constraints. These results have many potential applitaiio
closed-loop control problems such as portfolio management
(see, e.g.[14]), sensor management (see, €.d.] [5]1[6] &rll

to denote a string of actions taken oveconsecutive stages, influence in social networks (see, e.gl, [8]).

wherea; € A fori=1,2,..., k. We useA* to denote the set

of all possible strings of actions (of arbitrary length,lirding

the empty string). Letf : A* — R be an objective function,

We now provide a simple motivating example in the context
of sensor management. Suppose that there exists a target of
interest located in an area deployed with a large number of

whereR denotes the real numbers. Our goal is to find a strirdistributed sensors, each of which can detect if the taiget i

M € A*, with a length|M| not larger thank’, to maximize
the objective function:

maximize f (M)

subject toM € A*, |M| < K. (1)
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located within its region of coverage. The goal is to acévat
sequentially individual sensors to maximize the probgbdf
detection of the target. In this context, the action is tavate

a sensor at each step, and the objective function maximized
might be taken to be probability of detection, which depends
on the sequence of sensors activated. Intuitively, witteoyt
prior knowledge of target location or behavior, and where
the sensors have a high probability of detection withinrthei
individual coverage regions, activation of sensors to méze

the total coverage area is a suitable surrogate for overall
probability of detection. If the coverage region of eachssgn
remains constant over time, the total coverage area will onl
depend on the set of sensors activated, and not the order in
which they are activated, in which case the problem reduces
to a special case of maximizing a monotone submodular set
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function subject to a knapsack constraint [9]. On the othet al. [11] showed that the greedy algorithm achieves at least
hand, if the coverage area for each sensor decays over timé] — e~!)-approximation for the optimal solution given that
for instance because of a corrosive environment or decayifilj, Z) is a uniform matroid and the objective function is
batteries, the order in which the sensors are activatednbeso submodular. (By this we mean that the ratio of the objective
important. For example, the coverage area for sehsoight function value of the greedy solution to that of the optimal
be given by C;exp(—t/t;), where C; denotes the initial solution is at leastl — e~ !).) Fisheret al. [12] proved that
coverage ared, denotes the mean lifetimes, ane- 0,1,... the greedy algorithm provides at leastl A22-approximation
denotes the time index. In these cases, the problem faltérwit of the optimal solution for a general matroid. Conforti and
the framework of string submodular functions developed @ornuéjols [[13] showed that if the functiop has a total
this paper. curvaturec, where

B { Q(X)—Q(X\{j})}
B. Related Work jEX g({j}) —g(0) ’

Submodular set functions play an important role in combjpen the greedy algorithm achieves at lea¢t — e—¢) and
natorial optimization. LetX’ be a ground set angl: 2¥ — R T+_-approximations of the optimal solution given tha, Z)
be an objective function defined on the power 2&tof X. is'a uniform matroid and a general matroid, respectivelyeNo
Let Z be a non-empty collection of subsets &f. Suppose that ¢ € [0,1] for a submodular set function, and df= 0,
thatZ has thehereditaryandaugmentatiorproperties: 1. For then the greedy algorithm is optimal;df= 1, then the result
anyS ¢ T C X, T € T implies thatS € Z; 2. For any js the same as that in_[11]. Vondrak [14] showed that the
S7T S I, |f T haS a Iarger Cal’dinality thaﬂ, then there Continuous greedy a|gorithmchieves at |east é(l _ e—C)_
existsj € 1"\ S such thatS U {j} € Z. Then, we call X,Z)  gpproximation for any matroid. Wangt al. [15] provided
a matroid [10]. The goal is to find a set into maximize the zpproximation bounds in the case where the function has an

objective function: elemental curvature, defined as
maximizeg(N) 9(SU{i,j}) —g(Su{i})
. 2 = !
subject toN € 7. 2) @ SCX%%(,#J- g(SU{j}) —g(9) '

Suppose thaZ = {S C X : cardS) < k} for a givenk, The notion of elemental curvature generalizes the notion
where cardS) denotes the cardinality of. Then, we call of diminishing return. These are powerful results, but are
(X, Z) auniform matroid. limited in their application to optimal control problemsath
The main difference betweel (1) andl (2) is that the objectiaee invariant to the order of actions. In most optimal cantro
function in [1) depends on the order of elements in th&oblems, however, the objective function depends criycial
string M, while the objective function in({2) is independenbn the order of actions and therefore a new framework for op-
of the order of elements in the sé{. To further explain timizing objective functions over strings, as formulatad),
the difference, we usé’(M) to denote a permutation ofis needed. In this paper we do just that in developing string
a string M. Note that forM with length &, there existk! submodularity. We will further describe our contributicafser
permutations. In[{|1), suppose that for ahy € A* we have reviewing recent results on string submodularity.
f(M) = f(P(M)) for any P. Then, under these special Some recent papers| [1], [16]-]18] have extended the notion
circumstances, problen](1) is equivalent to probléin (2). bf set submodularity to probleril(1). Streeter and Golovij [1
other words, we can view the second problem as a speaahsider [(IL) in the context obnline submodular optimiza-
case of the first problem. Moreover, there can be repeatdsh (equivalent to ourstring submodular optimization) and
identical elements in a string, while a set does not contashow that if the functionf is prefix and postfix monotone
identical elements (but we note that this difference can b&d f has the diminishing-return property, then the greedy
bridged by allowing the notion of multisets in the formutati strategy achieves at least(a — e~!)-approximation of the
of submodular set functions). optimal strategy. Golovin and Krause [17] introduce thearot
Finding the solution to[{2) is NP-hard—a tractable altelef adaptive submodularity for solving stochastic optimiza-
native is to use a greedy algorithm. The greedy algorithtion problems under partial observability. In this Bayesia
starts with the empty set, and incrementally adds an elemém@mework of adaptive submodularity, the objective fuoiti
to the current solution giving the largest gain in the ohyect depends on the set of selected actions; it also depends on a
function. Theories for maximizing submodular set functionsequence of random outcomes associated with these actions.
and their applications have been intensively studied iemec At each stage, an action is chosen based on the previous
years [11]-]36]. The main idea is to compare the performanaetions and the random outcomes of these actions. It is
of the greedy algorithm with that of the optimal solutionshown in [17] that the greedy strategy achieves at least a
Suppose that the set objective functigris non-decreasing: (1—e~1) approximation to the expected (calculated with given
g(A) < ¢g(B) for al A c B; and g(0) = 0 where @ prior distributions) objective function of any set of acto
denotes the empty set. Moreover, suppose that the functibiaei and Malekian [[18] introducsequencesubmodularity
has thediminishing-return propertyFor all A ¢ B C X and (also equivalent to our concept of string submodularity)l an
j € X\ B, we haveg(AU{j})—g(A) > g(BU{j}) —g(B). provide sufficient conditions for the greedy strategy toiaah
Then, we say thag is asubmodular sefunction. Nemhauser at least a(1 — e~!)-approximation to the optimal strategy.



Our notion of string submodularity and weaker sufficientD. Contributions
conditions than those in [14] and [16], under which the gyeed

i I 71 - i 1 . . - . .
strategy still achieves at leas{ ¢ )-approximation of the modular functions defined on strings. We impose additional

optimgl strategy, were first established ir|. [,1]'_ In contriast constraints on curvatures, namely, total backward cureatu
adaptive submodularity, we take a deterministic approach %otal forward curvatures, and elemental forward curvature

emphgsi_ze th? irr?portance of _the k?rder (;)f :ctions. Tgelmmich will be rigorously defined in Section II. The notion of
contri Utlon, 0 t\'s Pap?r’ going beyon the su mo ularipyial forward and backward curvatures is inspired by thekwor
bounds ofl[1], [16]-{18], is the introduction of several wols ¢ conforti and Cornuéjols [13]. However, the forward and

of c%rvature Of th? stgng gbje?tl\r/]e funcgon that in tuhr_ ackward algebraic structures are not exposed in the gettin
provide approximation bounds of the greedy strategy, Whigh qet fynctions because the objective function defined on

S i [ . i
are shellrperftha(ﬂl_ c )- V\(ljgﬁalso p:cowdehseveral Ca_r(;o_n'c(?lsets is independent of the order of elements in a set. The
examples of applications, different from those considered o of elemental forward curvature is inspired by the kvor

[16]-[18], that fall within our framework. of Wang et al. [15]. We have exposed the forward algebraic
structure of this elemental curvature in the setting ofngtri
functions. Moreover, the result and technical approacAj [
While setsubmodular optimization problems are somewhafe different from those in this paper. More specificallye th
disconnected with control problemstring submodular opti- work in [15] requires the objective function to be a “set
mization problems fit right at home in the control ”teraturqunction”; that is, independent of order of elements in the s
Indeed, the problem iri{1) is, in an unambiguous way, a vely our case, order is a crucial component.
general form of aroptimal controlproblem. To see this, we |n Section I1I, we consider the maximization problem in the
rewrite the optimization problem iri](1) as follows: case where the strings are chosen from a uniform structare. F
maximize f (a1, . . ., az,) this case, our results are summarized as follows. Suppase th
the string submodular functiof has total backward curvature
o(O) with respect to the optimal strategy. Then, the greedy
Subject to the monotone assumption, this problem furthstrategy achieves at least—ax; (1 — e~7(9))-approximation
reduces to of the optimal strategy. Suppose that the string submodular
function f has total forward curvature. Then, the greedy
) strategy achieves at leastla—¢)-approximation of the optimal
subject toa; € A, i =1,..., K. strategy. We also generalize the notion of diminishing metu
This optimization formulation encompasses many optimy defining the elemental forward curvatuge The greedy
control problems that are prevalent in the control literatu Strategy achieves at leastla— (1 — K%)K—approximation,
Indeed, there seems hardly any way to generalize optimal cavhere K,, = (1 —n¥)/(1 —n) if n # 1 and K,, = K if
trol problems any further. For example, consider the foilmyv 7 = 1.

In this paper, we study the problem of maximizing sub-

C. Relevance to Control

subject toa; € A, i=1,...,k, k< K.

maximize f (a1, ..., ax)

optimal control problem: In Section 1V, we consider the maximization problem in the
K case where the strings are chosen from a non-uniform steictu
minimize ng(a?k,Uk) by introducing the notion of string-matroid. Our results fo
1 this case are as follows. Suppose that the string submodular
subject toz 1 = hy(zp,u), k=1,...,K — 1, function f has total backward curvatuegO) with respect to

o o . the optimal strategy. Then, the greedy strategy achieVeasit
where the initial stater; is given, andu;, is the control al/(140(0))-approximation. We also provide approximation
input at time k taking values in some given feasible sety,nds for the greedy strategy when the function has total
This formulation is a rather general optimal control prable ¢y ard curvature and elemental forward curvature.
involving arbitrary per-stage cost fun_cticy;; and stgte-space In Section V, we consider two applications of string sub-
modelzy.1 = h (2, ur). A very special case of this p,roglemmodular functions with curvature constraints: 1) choosing
is where the stTate spaceT]li@, the feasible input set i®™, 5 gying of actions to maximize the expected fraction of
gr(@k, uk) = ), Qg + uy Ruy (Where@ and R are given  ,.0omplished tasks; and 2) designing a string of measutemen

symmetric matrices) and (zx,ux) = Azy, + Buy (Where  payrices such that the information gain is maximized.
A and B are appropriately sized matrices). In this case, the

problem becomes
Il. STRING SUBMODULARITY, CURVATURE, AND

K

minimize Z x} Qry + u) Ruy, STRATEGIES
k=1 A. String Submodularity

subject toxy1 = Axg + Bug, k=1,..., K, z1 given

We now introduce notation (same to thoselih [1]) to define
This is the familiar finite-horizon, discrete-timdinear string submodularity. Consider a sitof all possible actions.
guadratic regulator (LQR) problem, studied in the control At each stage, we choose an action; from A. Let A =
literature for decades. In other words, LQR is a very speci@ls, aq,...,a;) be astring of actions taken ovek stages,
case of the probleni]1). wherea; € A, i = 1,2,...,k. Let the set of all possible



strings of actions be

A" ={(a1,a2,...,ax)|k=0,1,... and

a; €A, i=1,2... k}.

B. Curvature

Submodularity in the discrete setting is analogous to con-
cavity in the continuous setting. Curvature is the degree
of this concavity. In the continuous setting, the degree of

Note thatk = 0 corresponds to the empty string (no actiogoncavity is usually captured using second-order devigati

taken), denoted by. For a given stringd = (a1, as, . .., ax),

we define itsstring lengthas k, denoted|A| = k. If M =

(ai*,a3',...,a) and N = (af, a3, ..., ay,) are two strings
in A*, we sayM = N if |[M| = |N| anda!* = o for each
1 =1,2,...,|M|. Moreover, we define stringoncatenation
as follows:

. m _m m n n n
M @& N = (af",ay",...,a;,af,a3,...,az,).

If M and N are two strings inA*, we write M < N if we
have N = M & L, for someL € A*. In other words,M is a
prefix of N.

A function from strings to real numberg, : A* — R, is
string submodulaif

i. f has theprefix-monotongroperty, i.e.,
VM, N € A", f(IM& N)> f(M).
ii. f has thediminishing-returnproperty, i.e.,

VM < N € A*,Va € A,
f(M & (a)) = f(M) = f(N & (a)) = f(N).

In the rest of the paper, we assume thgts) = 0.

In this section, we discuss several measures of curvature
to characterize the degree of submodularity, each nagurall
resulting in a different submodularity performance boufs.
we will see below, curvature shares some features of second-
order derivatives (or, rather, finite differences).

We define thetotal backward curvaturef f by

{1  Jl@) @ M) - f(M)}
F(@)—fe) S

To see how this notion of curvature is akin to a second-order
finite difference, we first rewritd [3) as

0= max 3)

a€A, MEA*

g = max

a€A,MecA*
(f((a)) = f(2)) = (f((a) © M) — f(M))
f((a)) = f(2) '

Notice that this is a normalizedlifference of differences
(second-order difference), analogous to a derivative of a
derivative (second-order derivative), so that the totakiard
curvature is an upper bound on the second-order difference,
over all possible actionsand strings\/. Assuming the postfix
monotonicity and the diminishing-return property, all biet

Otherwise, we can replacg with the marginalized function differences above are nonnegative, corresponding to gapca

f — f(@). From the prefix-monotone property, we know than the string setting.

f(M) >0 for all M € A*. Similar second-order derivative analogies apply to all the
We first state an immediate result from the definition afiotions of curvature discussed here, including our nexhdefi

string submodularity. tion. We define the total backward curvaturefofvith respect
Lemma 1:Suppose thaf is string submodular. Then, forto string M € A* by

any stringN = (n1,ns,...,ny|), Wwe have

o(M) =

max —
NeA*,0<|N|<K

f(N) = f(2) ’
where K is the length constraint if(1). Suppose thatis

] o . .postfix monotone; i.eYM,N € A*, f(M & N) > f(N).
Proof: We use mathematical |r_1duc_t|(_3n to prove thi hen, we haver < 1 and f has total backward curvature at
lemma. If |[N| = 1, then the result is trivial. Suppose the

laim in the | holds f i ith length Mmosto with respectto anyf € A*;i.e,o(M) < o VM € A*.
claim in the lemma nolds tTor any strnng with 1engiy We  rp,iq fact can be shown using a simple derivation: For any
wish to prove the claim for any string with length+ 1.

AN N € A*, we have
Let N = (ni1,n2,...,nk,ngt1). By the diminishing return < W v
property, we have

f((nig1)) = f(2) = F(N) = f((n1, - - ).

Therefore, by the assumption of the induction, we obtain

|V

FN) < 3 £,

f(N®M) = f(M) =
N

> f(nis -

=1

SN @ M) = f((nig1, ..., nN)) © M),

k+1

FIN) < f((nk41) + f((na, . mp)) < Zf((m))-

wheren; represents théh element ofN. From the definition
of total backward curvature and Lemma 1, we obtain

=

This completes the induction proof. [ ]
NeM)— f(M)> 1-— i
Moreover, it is easy to show the following with an induction f(N& M) = (M) 2 ;( ?)f((n:))
argument: > (1— o) f(N),

VM < N € A*,VL € A",

which implies thato(M) < ¢ < 1. From the diminishing-
F(M@L)— f(M)> f(N&L) - f(N).

return property, it is easy to show that> 0.



Symmetrically, we define theotal forward curvatureof f 2) Greedy strategyA string Gy, = (af, a3, ..., a}) is called
by greedyif Vi =1,2,...,k,

. . _f((aylﬁaazv'-'va;‘—l))'
Moreover, we define the total forward curvature with respect

to M by Notice that the greedy strategy only maximizes the step-
wise gain in the objective function. In general, the greedy

e(M) = max {1 — f(Me&N) _f(M)}, (6) strategy (also called the greedy string) is not an optimal
NeAr,0<|N|<K F(N) = f(2) solution to [[A). In this paper, we establish theorems which

If f is string submodular and has total forward curvatgre state that the greedy strategy achieves at least a factteof t
then it has total forward curvature at mastwith respect to performance of the optimal strategy, and therefore semes i
any M € A*;i.e.,e(M) < e VM € A*. Moreover, for a string Some sense tapproximatean optimal strategy.

submodular functiory, it is easy to see that for any/, we

havee(M) < e < 1 because of the prefix monotone property I11. UNIFORM STRUCTURE

ande(M) > 0 because of the diminishing-return property. | o 1 consist of those elements f with maximal length
We define theelemental forward curvaturef the string ;. ; _ {A € A*: |A| < K}. We call I auniform structure

submodular function by Note that the way we define uniform structure is similar to
f(M @ (a;) @ (a)) — fF(M D (a;)) the way we define independent sets associated with uniform
N = max . . (M i i i _uni
ai,a; €A, MEA® J(M & (aj)) — f(M) matroids. We will investigate the case of non-uniform stuve

] ) _in the next section. Now [1) can be rewritten as
To explain how elemental forward curvature is yet again a

form of second-order difference, let us rewrité (7) as maximize f (M)

subject toM € I.

= ai.,ajIGnAa,%\(lEA* We first consider the relationship between the total curva-
(f(M @ (a;) ® (a;)) — fF(M)) — (f(M @ (a;)) — f(M)) tures and the approximation bounds for the greedy strategy.

FM @ (ay)) — f(M) : Theorem 1:Consider a string submodular functigh Let

i ) ] O be a solution to[{|1). Then, any greedy striig; satisfies
Again, notice the form of the second-order difference (nor—(i)

malized difference of differences).

In a similar way, we define thé(-elemental forward cur- 1 a(0) K
vature as follows: f(Gr) = a(0) =1 K 1(0)
P 1 Y
n ai,ajeA,MIer}ﬁﬁwgzK—z > m(l —e @) f(0),

fM @ (ai) @ (a5)) = f(M D (a:))
(M @ (aj)) = f(M)

(8) (i) f(Gk)>(1—max;—1,. x_1€(G;))f(O).
Proof: (i) For any M € A* and any N =

For a prefix monotone function, we have > 0, and the (a1,as,...,a)n|) € A%, we have
diminishing-return is equivalent to the condition< 1. By
the definitions, we know thaj < 7 for all K. f(M&N)— f(M)
The definitions o> (M), (M), and#; depend on the length |N]
constraintK of the optimal control problen{{1), whereas = (f(M®(a1,...,a;) — f(M® (a1,...,ai-1)))
¢, andn are independent of{. In other words, ¢, andn i=1
can be treated as thaiversalupper bounds fos (M), (M),  Therefore, using the prefix monotone property, there exists
and), respectively. elementa; € A such that
M & (a1,...,a;)) — f(M&(a1,...,a;—
C. suategies S a0~ S -..01-)
We will consider the following two strategies. z W(f(M ® N) — f(M)).

1) Optimal strategy Consider the probleni]1) of finding a L L
string that maximizesf under the constraint that the StringMoreover, the diminishing-retum property implies that
length is not larger thai’. We call a solution of this problem f(M @ (aj)) — f(M)
an optimal strategy(a term we already have used repeatedly N
before). Note that because the functipis prefix monotone, it = ng ® (a1, 05) = f(M & (aa,
suffices to just find the optimal strategy subject to the geon > —(f(M@®N) - f(M)).
constraint that the string length is equalka In other words, [N
if there exists an optimal strategy, then there exists orth wiNow let us consider the optimization problef] (1). Using
length K. the property of the greedy strategy and the above inequality

ey ajfl))



(substituteM = G;—; and N = O), for eachi =1,2,..., K
we have

Note that

(e ONT L
70) (1 (-2 )%@1

from above asK — oo. This achieves the desired result.
(i) Using a similar argument to that in (i), we have

670'(0))

f(Gi) = f(Gi1)
> L (1(Git ©.0) - F(Gi)
> %(f(Gzel) + (1 = €(Gi-1))f(0) = f(Gi-1))

1
= (1 = e(Gi-1))f(0).
Therefore, by recursion we have

Under the framework of maximizing submodular set funGyhere . — (
tions, results with similar form are reported in [13]. Howeyv 0= 1 IT(I _
the forward and backward algebraic structures are not o K

Then, we can derive bounds in the same way as Theorem 1,
and the results are symmetric.

The results in Theorem 1 implies that for a string sub-
modular function, we haver(O) > 0. Otherwise, part (i)
of Theorem 1 would imply thatf(Gx) > f(O), which is
absurd. Recall that if the function is postfix monotone, then
a(0) < o < 1. From these facts and part (i) of Theoréin 1,
we obtain the following result, also derived in [16].

Corollary 1: Suppose thaf is string submodular and post-
fix monotone. Then,

1

F(Gr) = (1= (1= 52))f(0) > (1 =) f(0).

Another immediate result follows from the facts that
o(0) < o ande(G;) < e for all 7.

Corollary 2: Suppose thaf is string submodular and post-
fix monotone. Then,

0
fen) = 1 (1-(1-2)") s

> (1= e)f(0),

(i) f(Gk)=(1-¢€)f(0).

We note that the boundg (1 — e™?) and (1 — ¢) are
independent of the length constraifit Therefore, the above
bounds can be treated as universal lower bounds of the greedy
strategy for all possible length constraints.

Next, we use the notion of elemental forward curvature to
generalize the diminishing-return property and we inggdt
the approximation bound using the elemental forward curva-
ture.

Theorem 2:Consider a prefix monotone functigrwith K-
elemental forward curvaturigand elemental forward curvature
n. Let O be an optimal solution td{1). Suppose thdG; ¢
0) > f(O) fori =1,2,..., K — 1. Then, any greedy string
G i satisfies

1(Gx) > 1(0) <1 —(- Kiﬁﬂ

> s0)(1-a- K%)K) ,

1—iK)/(1—7) if 7 # 1 and K, = K if
1—n®)/(1—n)if n #£1andK, = K if

$=1.

in [13] because the total curvature there does not depend pygof- For any M,N € A* such that|M| < K and

on the order of the elements in a set. In the setting ofy| < f, by the definition ofi -elemental forward curvature,
maximizing string submodular functions, the above theorefRare exists; € A such that

exposes the roles of forward and backward algebraic strestu

in bounding the greedy strategy. To explain further, let us /(M & N) — f(M)

state the results in a symmetric fashion. Suppose that the
diminishing-return property is stated in a backward way: =

f((a) @ M) — f(M) > f((a) ® N) — f(N) for all a € A
and M, N € A* such thatV = (ai,...,ax) © M. Moreover,
a stringGy, = (af, a3, ..., a}) is calledbackward-greedyf

a; = argmax f((a;,a;_q,...,a3,a7))
a; €A
— f((af_y,...,a})) Vi=1,2,... k.

IN|
S (M @ (ay, ...

i=1
| V]

< Zﬁi‘l(f(M@a» — f(M))

<A +a+a 4+ AV (F(M @ a) - F(M))
= Ky(f(M @© a) — f(M)).

ya;)) — f(M & (a1, ...,ai-1)))



Now let us consider the optimization problei (1) with The proof is given in Appendix A. We note that the condi-
length constrainf’. Using the property of the greedy strategyion in Theoreni R ,f(G; ¢ O) > f(O) fori=1,..., K — 1,

and the assumptions, we have foe 1,2,..., K, is essentially captured by(O). In other words, even if the
G G condition f(G; ® O) > f(O) is violated, we can still provide
I il) — f(Gi-1) approximation bound using(O), which is larger than 1 in
> —(f(Gimy ®0) — F(Gi1)) this case.
K
1 -
> ?(f(O) — [(Gi_1)). V. NON UNIFORM.STRUCTURE .
7 In the last section, we considered the case wheie a
Therefore, by recursion, we have uniform structure. In this section, we consider the caseonfn
1 1 uniform structures.
[(GKk) > ff(o) +(1- F)f(GK—l) We first need the following definition. LetM =
K Kt K (m1,...,mp) @ad N = (nq,...,n|y|) be two strings in
S if(O) Z(l _ i)i A*. We write M < N if there exists a sequence of strings
- K — K L; € A* such that
= (O)<1—(1—L)K> N:Ll®(m15"'7mi1)@L2®(mil+1,...,mi2)@
Kﬁ ...EB(mik71+1,...,m|M‘)®Lk+1.
Becausel — (1 — ;)" is decreasing as a function gfand | other words, we can remove some elementd/ito get .
7 < n by definition, we obtain Note that< is a weaker notion of dominance thandefined
1 g 1 g earlier in Section Il. In other words}/ < N implies that
f(0) (1 —(1=-%) ) > f(0) (1 —(1-%) ) : M < N but the converse is not necessarily true.
n n

Now we state the definition of a non-uniform structure,
analogous to the definition of independent sets in matroid
theory. A subset/ of A* is called anon-uniform structure
if it satisfies the following conditions:

1. I is non-empty;

2. Hereditary VM € I, N < M implies thatN € I;

3. AugmentationVM, N € I and |M| < |N|, there exists

an element: € A in the stringN such thatV/ @ (z) € I.

[ |
Recall that; depends on the length constraikit whereas;
does not. Therefore, the lower bound usiiig can be treated
as a universal lower bound of the greedy strategy.
Suppose thaf is string submodular. Then, we haye< 1.
Becausel — (1 — K%})K is decreasing as a function of we
obtain the following result, which is reported inl [1].
Corollary 3: Consider a string submodular functigh Let

O be a solution to[{1). Suppose thatG; @ 0) > f(O) for By analogy with the definition of a matroid, we call the pair
i=1.9 . K -1 Thén any greedy sltrinC}K satisfies (A, I) a string-matroid We assume that there exiskS such

that for all M € I we have|M| < K and there exists & € I
f(Gg)>(1—(1— l)K)f(O) > (1—e 1) f(0). such that V| = K. We call such a stringv a maximalstring.
K We are interested in the following optimization problem:

The second inequality in the above corollary is given by the
9)

fact thatl — (1 — %)% — 1 —e~! from above, ag< goes to

infinity. Next we combine the results in Theorefs 1 &hd 2 to

yield the following result. Note that if the function is prefix monotone, then the max-
Proposition 1: Consider a prefix monotone functighwith  imum of the function subject to a string-matroid constraint

elemental forward curvaturg and K -elemental forward cur- iS achieved at a maximal string in the matroid. The greedy

maximize f ()
subject toN € I.

vature7). Let O be a solution to[{1). Then, any greedy stringtrategyG = (aj, ..., aj) in this case is given by
G satisfies o= argmax  f((a]03.....0f,a)
(i) a;€A and(af,...,al_,a;)€l
. ) 1 1 SO\ < ; — f((a3,a5,...,al_1)) Vi=1,2,... k.
F(Gx) = o(0) AT K; £(0) Compared with[{ll), at each stageinstead of choosing;

X arbitrarily in A to maximize the step-wise gain in the objective
> 1 1— (1 _ U(O)) £(0) function, we also have to choose the actignsuch that the
~ o(0) K, ’ concatenated strin@s, . .., a;_;,a;) is an element of the non-

uniform structurel. We first establish the following theorem.
(ii) Theorem 3:For any N € I, there exists a permutation of
K N, denoted byP(N) = (71, fa2, . . ., 7y n)), Such that fori =
f(Gg) > (1— 0ax lﬁ(Gi))Ff(O) 1,2,...,|N| we have
i=L.... K~ i
K J(Gic1 @ (7)) — f(Gio1) < f(Gi) = f(Giz1)-



Proof: We prove this claim by induction on = for i = 1,2,..., K. Therefore, by the diminishing-return
IN|,|N| —1,...,1 (in descending order). If = |N|, con- property again,
sidering G|n|—; and N, we know from the String-Matroid
Axiom 3 that there exists an element df, denoted by v
(we can always permute this element to the end of the string
with a certain permutation), such th@ty_; © (7n)) € I.
Moreover, we know that the greedy way of selectdrlilg‘ gives
the largest gain in the objective function. Therefore, weah

(f(Gk @ (01)) — f(GK))

14>

-

N
Il
-

(f(Gi—1®(65)) — f(Gi-1))

f(G\nj=1 @ (7)) = [(Gn=1) < f(Gn)) = F(Gnj=1)- (F(G:) — f(Gi_1))

]~

Now let us assume that the claim holds for alt i; and _ }_(1GK)-
the corresponding elements afé;,1,...,7n|}. Next we
show that the claim is true far = io. Let N;, be the string From the above equations,
after we remove the elements {jo41, ..., 7y} from the
original string N. We know from Axiom 2 that\V;, € I and F(0) < f(Gk) + f(Gk) — (1 — 0(0) f(Gk)

that |G, 1| < |N;, |, therefore, there exists an element from
Ni,, denoted byn;,, such thatG;,_1 & (n;,) € I. Using the
property of the greedy strategy, we obtain

= (1+0(0))f(Gk),

and this achieves the desired result.

F(Gioo1 @ (13y)) — F(Gig1) < f(Giy) — f(Gig1)- (ii) From the definition of total forward curvature, we have
This concludes the induction proof. [ | f(Gk ®0) = f(Gk) = (1 - e(Gk)) f(O).
Next we investigate the approximation bounds for the .
greedy strategy using the total curvatures. From the proof of part (i), we also know that(Gr @
Theorem 4:Let O be an optimal strategy fof](9). Suppos ) - J;SGK) 5 f(Gk). Therefore, we havef(Gx) >
that f is a string submodular function. Then, a greedy strate %/_ E(_ K))f(_ )'_ , ) o u
Gy satisfies The inequality in (i) above is a generalization of a result on
_ . maximizing submodular set functions with a general matroid
() f(Ck) = 175757 /(0), constraint[[12]. The submodular set counterpart involegal t
ii k) > (1—¢eGg . curvature, whereas the string version involves t war
ii G G 0 h h [ ion invol batkward

curvature. Note that iff is postfix monotone, thea(O) <
o < 1. We now state an immediate corollary of Theorgm 4.

Corollary 4: Suppose thaf is string submodular and post-

Proof: (i) By the definition of the total backward curva-
ture, we know that

fix monotone. Then, the greedy strategy achieves at least a
[(Gx ®0) = 1(0) 2 (1 = o(ODS(Cr). 1/2-approximation of the gptimz?(l strategil/.
Therefore, we have Another immediate result follows from the facts that
0(0) <o ande(Gg) <.
f(0) Corollary 5: Suppose thaf is string submodular and post-
< f(Gx @ 0) — (1 — a(0) f(Cx) fix monotone. Then, we have

= f(Gk) — (1 —a(O) f(Gk) + f(Gk ® O) — f(Gk). () f(Gk)> ==£(0),
(i) f(Gk)=(1—-¢)f(O).

Next we generalize the diminishing-return property using
the elemental forward curvature.

Theorem 5:Suppose thajf is a prefix monotone function
with elemental forward curvature and K -elemental forward
curvaturerj. Suppose thaf (Gx ©0O) > f(O). If 7 < 1, then

Let O = (01,09, ...,0K). By the diminishing-return property,
we have

f(Gk ®0) - f(Gk)

I
.MN

(f(Gk @ (o1,..-,0i) — f(Gk @ (01,...,0i-1)))

=1 1
K f(GK) = ~f(0) =z ——f(0).
1+ 1+
<> (f(Gk @ (o) = f(Gi)). ! !
=1 If 7> 1, then
By Theorem 3, we know that there exists a permutatio® of 1 1
P(O) = (61,02, ...,0)0]) such that f(Gk) > mf(()) > Wf(())-

f(Gi—1 @ (6:)) — f(Gi—1) < f(Gi) — f(Gi-1),



Proof: Let O = (01,02, .. .,0x). From the definition of whereh(s) = 7 andh(n) = n if H < 1; h(7) = 7?5~ and
K-elemental forward curvature, h(n) = n?K-1if § > 1.
The proof is given in Appendix B. From these results,
f(Gx ©0) = f(Gk) we know that whenf is string submodularj € [0,1] and
we must haves(O) + 7 > 1 and e(Gg) + 7 > 1. From
(f(Gx @ (01,.-.,01) = f(Gx @ (01,---,0i-1)))  TheoremdN[1Z]4, arid 5, we see that the performance of the
greedy strategy relative to the optimal improves as the tota
forward/backward curvature or the elemental forward curva
ture decreases t@. On the other hand, the inequalities above
K L indicate that this performance improvement with forward an
Yoici (f(Gr-1®(05)) = f(Gk-1)), ifn<1 elemental curvature constraints cannot become arbijtigoidd
SR (f(Gr-1 @ (0)) — f(Gk-1)), if7>1.  simultaneously. When equality in either case holds, thedye
strategy is optimal. A special case for this scenario is wthen
objective function isstring-linear. f(M®&N) = f(M)+ f(N)
forall M,N € A*, ie.,n =1 ando = ¢ = 0. Recall that

I
.MN

N
Il
-

(f(Gr-1® (0;)) — f(Gr—1))i’

-

@
Il
A

IA
=

From Theorem 3, there exists a permutati®nof O:
P(O) = (61,...,0K), such that

F(Gio1 @ (6:) — f(Giz1) < F(Gh) — f(Gizy), 0<0(0) <o,0<¢e(Gr) <e and0 <5 < n. Therefore,
) o we haves(O) = ¢(Gi) = 0 and7 = 1.
fori=1,..., K. Moreover, by the definition of(-elemental  Remark The above proposition and the discussions after-
forward curvature, ward easily generalize to the framework of submodular set
K functions.
> (f(Gr-1©(0:) = f(Gr-1))
i=1 V. APPLICATIONS
K
_ A In this section, we investigate two applications of string
= Gg— i) — [(Gx— i X ;
;(f( k-1 ®(6:) = F(Gx-1)) submodular functions with curvature constraints. We noée t
K explicitly computing all the curvatures defined in the poais
< Z A f(Git @ (65)) — f(Giz1)) sections might not always be feasible. However, as we skall s
= later in this section, in some canonical example applicatio
K . e o we can either compute the curvature explicitly or providgati
; i— i)) — i— ) f <1 i i
< {%j}(ff 16 (0:)) Af(G 1) I 72 bounds for the curvature, which in turn bound the perforreanc
1 AE A (Gr if n>1. A. Strategies for Accomplishing Tasks
S ] g p g
Therefore. we have Consider an objective function of the following form:
. n k
(1+0)f(Gk), if <1 1 j
0) < ay,...,ag)) = — 1-— 1—pj(a; . 10
f( ) - {(1 +ﬁ2K_1)f(GK)7 if ﬁ > 1. f(( 1 k)) n ; j:1( p ( J)) ( )

Sincen < n and ﬁ and an% are monotone decreasingWe can interpret this objective function as follows. We have

functions of7), we obtain the desired results. B n subtasks, and by choosing action at stagej there is a
This result is similar in form to that ir [15]. However, theprobabilityp! (a;) of accomplishing théth subtask. Therefore,

second bound in Theoren 5 is different from that'in/ [15]. Thithe objective function is the expected fraction of subtadblas

is because the proof in_[L5] uses the fact that the value olee accomplished after performifg, . . ., ax). A special case

set function at a set is independent of the order of elementsaif this problem has been studied [n[16], wheréa;) only

the set, whereas this is not the case for a string. Recaltfieat depends oru; the timet; invested in stagg. It is shown

elemental forward curvature for a string submodular fureti there that ifp! (a;) is a non-decreasing function of for all

is not larger than 1. We obtain the following result. i anda;, then the greedy strategy achieves at l¢ast e—1)-
Corollary 6: Suppose thaf is a string submodular function approximation to the optimal strategy. We will reinvestiga

and f(Gk @© O) > f(O). Then, the greedy strategy achievethe general casd_(JL0) using the aforementioned notions of

at least al /2-approximation of the optimal strategy. curvature and string-matroid. Note thatjf is independent
Now we combine the results for total and elemental curvaf j for all i; i.e., the probability of accomplishing thih
tures to get the following. subtask by choosing an action does not depend on the stage

Proposition 2: Suppose thaf is a prefix monotone func- at which the action is chosen, then it is obvious that the
tion with K-elemental forward curvaturg and elemental objective function does not depend on the order of actions.
forward curvature;. Then, a greedy stratedyy satisfies In this special case, the objective function is a submodular

i Gr) > L r0) > 1 ’ set function and th_eref(_)re the greed)_/ strategy achievesaat |

O 1(Gx) 2 Srormm /(0) 2 sormm /(©) a (1 — e~ !)-approximation of the optimal strategy. Moreover,

(i) f(Gk) > 1_;§%K)f(0) > 1_;E%K)f(0), this special case is closely related to several previousbjied
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problems, such as min-sum set cover][37], pipelined sEherefore, a sufficient condition fof to be a string submod-
cover [38], social network influence [39], and coverage+awaular function is

self scheduling in sensor networks [40]. In this paper, we L'-U1t<1.

generalize the special case to the situation whgrdepends ) _

on j. Applications of this generalization include designing T0 apply Theoreni]l, instead of calculating the total back-
campaign strategy for political voting and scheduling jeats ward curvature with respect to the optimal strategy, wetzalc
in control literature [[41]. Without loss of generality, wellw 'ate the total backward curvature fof < [M] < 2K:

consider the special case whete= 1 (our analysis easily R f(a) ® M) — f(M)
generalizes to arbitrary). In this case, we have o= . KﬁgﬁdK{ T (@) = f@) } (11)
k . _ . f((a) & M) — f(M)
flar, . ar) = 1= T = p(ay)). =1- aeA,K@?ﬂ@K{ 7((@) — f(2) - (12
j=1
F h A | hap’(a) tak I n Ve have
or eacha € A, we assume thap’(a) takes values in
[L(a),U(a)], where0 < L(a) < U(a) < 1. Moreover, let f((;i(@)])%) ;(é()M)
a)) —
1-U ) , )
c(a) = 1_—L8 IO —(e) = (1= p @) T (1 — P+ (ay))
p'(a) '
Obviously,c(a) € (0,1). The prefix monotone property is easXN .
to check: F N € A*, the stat tthatt( M s N) > e then provide an upper bound for the total backward
.]?(]?4)6?5 obc\)/zoahns)f\j’truee. e statement thef(M &) = curvature for all possible combination pf. The minimum of

i i k() = [ Jitl(g.) = I
1) Uniform Structure: We first consider the maximizationthe above term is achieved pt(a;) = U andp’™ (¢;) = L:
problem under the uniform structure constraint. We have the f((a) ® M) — f(M)}

following results. ) aeA,Krrglllre1|<2K{ f((a)) — f(2)
Theorem 6:Let U = max,ca U(g), L

mingea L(a),

- Ik _ (1 _ 1 _ T\k
and ¢ = minges c¢(a). Suppose thal,~! — U~! < 1. Then, > min (1-U)"=(1=-pi(a)(l - L)
we have aeh,K<k<2K pl(a)
i) >  min (- U)k il U L)kJrl =1—-0
T K<k<2K L : ‘
1 g\ &K
f(Gx) = G 1= (1 - ?) 10), Moreover, it is easy to verify that(O) < &. Therefore, we can

substitute the above upper boundsofo Theorem 1 to derive

wheres = 1 — minjep gy =0 =0=D"" a lower bound for the approximation of the greedy strategy.
. = L . . "
i) i) Instead of calculating the total forward curvature with
1-[)2K-2], respect to the greedy strate@¥, we calculate
s = L= L),
v b {1 _F(M®(a) - f(M)} 13)
iii) if p'(a}) >1—cX, wherea} represent the greedy action = acA,i<|M|<it+K f((a)) = f(2)
at stage 1, then 1 um {f(M @ (a)) - f(M)} (14)
s o (1 1 . (1 1 . a€hi<|M|<i+K fl(a)) = f(2)
f( K)_f( )( _( _Fﬁ) ) = < _( _Fﬁ) )a . H'fjl‘(l—pj(aj))p'MHl(a)
=1- ‘min 1 (15)
where K, = (1-79%)/(1-7n) and n = GGAJSAM.{E::? . ria)
maxy; a; %; K; = (1-7%/01-mn) <1-(1-0) L/U. (16)
andq = % It is easy to show that(G;) < ¢, Moreover,

Proof: i) The elemental forward curvature in this case is

_ (1 —p'(a:))p’ (a)) : : ,
n= {lﬂ%}j pi(a;) . We can substitute this upper bound in Theofdm 1 and get a
' lower bound for the approximation of the optimal strateggtth
the greedy strategy is guaranteed to achieve.
(1- fL)U iii) We will use the results in Theorefm 2, which requires
n< . the assumption that(G, @ O) < f(O) fori=1,..., K —1,

o L _ _ which can be written as (assumir@®; = (af,...,a}) and
Note that the function is submodular if and onlyrf< 1. o — (01,...,0K))

From the above equation, we conclude tlfats submodular

if K , L K »
| a-bo _, [0 -p o) = [0 - @) [0 - #+ (05 @)
— =t j=1 t=1

max €(G;) < max &<1-—(1-U)*("2L/0.
i=1,..., K-1 i=1,....K—1

Then, from the definitions, we have

j=1
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We know that iii) Now let us consider the postfix monotone property

K K required in Theorerhl5f(Gx @ O) > f(O). This condition
H(l —p(0;)) > H(l —Ul(oy)) is much weaker than that in Theoréin 2, and can be rewritten
Jj=1 j=1 as
and K K
K [Ta =2 ) = [ =p' @) [T = (0)))
H H J+z j=1 t=1 =1
=1 =1 A sufficient condition for the above inequality is— U >
ﬁ )1 — pMa) (1 — L)2. Recall that the function is string submodular if
—p'(a})). )
=1 _ n < w <1.
Therefore, a sufficient condition f7) is L
K 3 ] 7\2
> (11— Therefore, we hav&/ <1/« and1 — U > (1 — L)# holds.
L ptap) < RO D) H / o,
H_j:l(l (OJ

3) Special CasesNow let us consider the special case
This inequality holds because of the assumptlonpﬁé(t’l‘) > wherep’(a) is non-increasing ovej for eacha € A. It is
1 — ¢, The bound simply follows from the definition of easy to show that the function is string submodular. Morgove

elemental curvature. m the elemental forward curvature is
We note that with additional side information, we can (1 = pi(a;)p’ (a;)
improve the bounds in Theorelm 6. For example, suppose that 7 = max i(a,)
(1-U)/(1—L)*>1~Lforall K <k < 2K. Then, we o P
have < H}fix(l - pz(ai))
1-0U)F — (1 - L)k <1-1L.
5:1_K£i<n21<( - ji( : .
T ek - Therefore, using this upper bound of the elemental forward
—1_ (1-U) — (1-1) ) curvature, we can provide a better approximation tar-
L e~ 1) for the greedy strategy for the uniform matroid case. We

Furthermore, recall that < 1 if the function is postfix mono- can also provide a good approximation for the greedy styateg
tone. In this case, the value &fin part i) of Theorenil6 can be for the non-uniform matroid case.
Fry ke P k+1 . . . . .
written asg = min £1 — ming<gear =y -a=bH"" 41 Consider the special case wheré(a) is non-decreasing
2) Non-uniform StructureThe calculation for the case ofOverj for eacha € A. In this case, we have
non-uniform structure uses a similar analysis. We have the 7(0) < 6

following results.

Theorem 7:Let U = maxaea U(a), L = minges L(a), —1_ min {f((a)@M)_f(M)}
and ¢ = mingey ¢(a). Suppose thal,~! — U~ < 1. Then, a€AK<|M|<2K fl(a)) = f(2)
we have |M] ,
) <1-JJ-p(a))
j=1
§(G1) = 1= 1(0), S1- (LD
Ry (1-0)F—(1—L)F ! Therefore, we can provide a better approximation tliar-
i) whereo =1 — ming<k<ar L ' e~1) for the greedy strategy using this upper bound-60)
1- TV2K-1], for the uniform matroid case. We can also provide a good
f(Gk) > f(0). approximation for the greedy strategy for the non-uniform
matroid case.

i) if L>1— é, wherea = is the golden ratiothen

1 1 B. Maximizing the Information Gain
i) = 7(0) (11~ —>K) > (1o o) B MamEne .
Ky Ky In this part, we present an application of our results on
where K, = (1-n%)/(1—n) and n = string submodular functions to sequential Bayesian pai@me
(1 p'(a:)p (a;). . _K _, estimation. Bayesian estimation has been studied intelysiv
maxg, q, — et Ky o= (1—-5%)/(1—17) . ) ‘ . . ;
i,04 (17L)PU(“J> o from various perspectives [42]=[47]. This work is the first t
andn = A consider the problem from the string submodularity perspec

Proof: The proofs for parts i) and ii) are omitted. Thetive.
main idea is to apply Theoreld 4 and the calculation of the Consider a signal of interest € R™ with normal prior
total backward curvature can be calculated in the same wdigtribution (1, Py). In our example, we assume thiit= 2
as the case of uniform structure. for simplicity; our analysis easily generalizes to dimensi
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larger than 2. LetD denote the set of diagonal positive-and we choosel;, = Diag(1,0), A;4+1 = Diag(0, 1). We have

semidefinite2 x 2 matrices with unit Frobenius norm: F(Ar @ Apin) — F(AR)
. 1 _
D = {Diag(ve, V1 —e) : e € [0,1]}. =3 log(1 + tkakfl)
1 _
At each stage, we choose a measurement matdx € D = §1Og(1 +tk71%f1)

to get an observatios;, which is corrupted by additive zero-
mean Gaussian noise ~ N (0, Ry,,.,; ):

Y]

1
B log(1 + tx—10%°)

= [(Ag41) — f(9).
This contradicts the diminishing-return property and ctetgs
the argument. [ ]

It is easy to show) < n < 1 if and only if the sequence of
noise variance is non-decreasing. In this case, we can dempu
the elemental curvature explicitly with additional infaation
on how quickly the noise variance increases, which in turn

yi = Az + w.

Let us denote the posterior distribution of given
(y1,92,---,yk) by N(zk, P). The recursion for the posterior
covariancePy is given by

Pk_ P 1 + ATRkaAk provides performance bounds (better tian- e~!) for uni-
form matroid case and better thas2 for non-uniform matroid
=P+ Z ATRSS, A case) for the greedy strategy.
i=1 For general cases where the noise variance sequence is

not necessarily non-decreasing, we will provide an upper
bound for the K-elemental forward curvaturg. For sim-
plicity, let P, = Diag(so,to). Without loss of generality,
we assume thaky > to. Let M = (A, As, ..., Ajy)
where A;, = Diag(y/ex, V1 —ey) for k = 1,...,|M]|. Let
f((A17A27 ce 7Ak)) = Ho — Hy, P‘M| = Diag(s‘Mht'M‘) where

1
=3 (log det Py — log det Py).

The entropy of the posterior distribution of given
(y1,Y25 .-, Yk) IS Hy = %1ogdet Py, + log(2me). The infor-
mation gain given(A;, Ao, ..., Ax) is

| M| | M|

—1
The objective is to choose a string of measurement matrices ~° =S =%+ ;Ui =S + ;Ui ’
subject to a length constraiff such that the information gain - -
is maximized. 1 1 _ 1 )
The optimality of the greedy strategy and the measure- fo" = t|M‘ d +;Ui L-e) <ty +;Ui ’
ment matrix design problem are considered [in![48] a%d
[49], respectively. Suppose that the additive noise secgien |M]
is independent and identically distributed. Then, it isyeas s|_]\/1[‘ + tﬁ\}‘ =syt Htgt+ Zo—[?
to see thatf((A1,As,...,Ar)) = f(P(A41,As,...,AL)) i
for all permutationsP. Moreover, the information gain is a Next we provide an upper bound fgr
submodular set function anfi(()) = 0; see [50]. Therefore, Proposition 4: Suppose that; € [a,b] for eachi, where
the greedy strategy achieves at leaét ac~!)-approximation 0 < a < b. Then, we have
of the optimal strategy. 1 1 so
Consider the situation where the additive noise sequence 7 < log 3(1 + 5oty +2s0Ka™)(1 + (tg_+b— 2))
is independent bunot identically distributed. Moreover, let = log(1+to(1 +to(2K —2)a=2)"1b2)
us assume thaR,,,., = 07.#, where.# denotes the identity Proof: We first derive an upper bound for the numerator
matrix. In other words, the noise at each stage is white kaut tim (8) (definition of K'-elemental forward curvature), which is
variancesr; depend ori. The prefix monotone property is easygiven by [I8) on the next page.
to see: We always gain by adding extra (noisy) measurementsWe now derive a lower bound of the denominator [ih (8)
Now we investigate the sensitivity of string submodularitpy calculating the minimum value of the denominator over all

| M] | M]

ll

with respect to the varying noise variances. possibleA;. It is easy to show that the minimum is achieved
Proposition 3: f is string submodular if and only i; is at4; = Diag(1,0) or A; = Diag(0, 1):
monotone non-decreasing with respéct f(M @ (Ay)) — f(M)
Proof: The sufficiency part is easy to understand: The 1
information gain at a later stage certainly cannot be latfgzn Z Pl in(log(1 + t\MI"'\M|+1) log(1 + SIM\C’|M\+1))
the information gain at an earlier stage because the measure _ 1
menty, becomes noisier asincreases. We show the necessity = 3 °8(1 + EICOVESHIRRUIVILVINY)
part by contradiction. Suppose that the function is string 1 2K -2
submodular and there existssuch thatr;, > ox1. Suppose > 51 g(1+ tgl + Z n2K 0[2).

that the posterior covariance at stage1 is Diag(sx—1, tk—1)
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F(M @ (Ai) @ (4;)) — f(M & (Ay)) = %bg(l + 8114107 42€5) (1 + ar 110757 o (1 — €5))

1 _ _ _ _

= 3 (10g(5|1\/11\+1 + C’|1\/21\+2€j)(t\1\}|+1 + C’|1\/21\+2(1 - ej)) + log 5|M\+1t\M|+1)
1
2

-1 -2 -1 —2 2
(log <5M|+1 + O 426t U\M|+2(1 - 63’))

2
|M|+1 |M|+1
+ max(— log(sy ! + Z Nyt —logsy t(tyt + Z
=1 i=1
_ _9\ 2 M|+1
1 1y |M\+2 : \
~3 log<‘90 Ll Z —logsy ' (ty ' + Z 0% (18)

1 1+ Sotal + 30 Z|Ml\+2 -2 SO +t 1 + Z\I\{|+2 ‘7
= 5 10g 2 K3 Z +10g ‘]Wl-i-l 5
2(ty 0 +2im1 o)

—1 2K -2 1 . 2
< 1 log L+ soty +80).i-10; +1og (1 (1 L %0 + m_alxzzl,:z,gK o; )) .
i : 2 &+

Therefore, we can derive an upper bound for ielemental  Let A* € D be a greedy action. We will shoyi((A*) @
forward curvature as follows: M) > f(M) for all M with length k, where k =
K, K +1,...,2K — 2. By a mathematical induction argu-

= » ., ment, this claim leads to the sufficent condition in Theo-
10g4(1+80t0 + 89 Zl 105 H(1 4 +“(1:j<;1;-2,2)1<0i ) rem 2: f(G; @ O) > f(O) for i = 1,2,...,K — 1. Let
e — . A* = Diag(ve*,v1—e*) and M = (Ay,...,As), where
log(1+ (tg " + 30,2 )7t ming=y, 2k 0; ") A, = Diag(y/et, /I — ;) for all t. The inequality we need to

Using this upper bound, we can provide an approximatioerify can be written as
bound for the greedy strategy. We note that this upper bound

is not extremely tight in the sense that it does not increase b

—2 % —2
significantly with K only if s, or o;"2 are sufficiently small. log(1 + so(oy "e” + z;atﬂet))x
By substituting eithem or b appropriately in the inequality !
above, we get the upper bound fiin this proposition.
g PP fo prop L (rn-e) +Zam — o)

With the above lower bounds fgt we can use Theorem 2 to
provide a bound for the greedy strategy. We have the follgwin > 150(1 + Zat e))(1 + to Zat (1—¢))). (19)
results.

Theorem 8:Suppose that; € [a, b] for eachi, where(0 <

a < b, and the following holds: We fir_st calculgte the value Qafk It is easy to show thf_;lt the
_2 9 objective function after applyingA*) achieves the maximum
b > BE-2)7, (a2 4+b7%)+1 when
-2 _p—2 — 4 0 ' —1_ -1
1+ g =59
Then, we have ot — o
(@) > F(0) (1 (1 - ) 2
HGr) = VK, Because:* can only take values if0, 1], in the case where
(tg* —sp ') /oyt > 1, the maximum is achieved at = 1.
- We will present our analysis only for this case—the analysis
where K = (1 —7")/(1—7) and for the case wherdt;! —s;')/o7! < 1 is similar and
_ _ s—lig—2 omitted. To show the above inequality {19), it suffices tovsho
log %(1 + sotg 4 2s0Ka=2)(1 + 7@%111)72)) that quality [19)

T T log(1+ to(1 + to(2K — 2)a-2)-1b-2) .

Proof: The main idea of this proof is to apply the resultlog(1 + soo; ? + (s0 Z g;flet))(1 4 to(z 0;_21(1 —et)))
from Theorem 2. We have provided an upper bound for the
K-elemental forward curvature in Proposition 4 and we will k k
substitute this upper bound to derive bound for the greedy log(1l+ so Zat e))(1 +to Zat (1 —et))).
strategy. t=1 t=1
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Removing thelog on both sides of the inequality, we obtain The second inequality simply follows from the facts that
1-(1- %)K is a monotone decreasing function

k k U(o)
(I+s0 Y ophe)d+to Y o A(1—er)) of 77 and# < n by definition.
(i) Using a similar argument as part (i), we have
k
+300f2(1+t020;_21(1—6t)) f(Gil)—f(qu)
. N 2 77 (F(Gi-1®© 0) = f(Gi-1))
n
o2 o7 31— .

P el o) > (G = 1(Gir) + (1= G (O))

n

Rearranging terms, we obtain {20), whége= 1 if a{fl < Therefore, by recursion,
o;? andl, =0 if 0,3 >0, °

K
From this we obtain a sufficient condition fgt((A*) & Gr) — G — (G
M)Zf(M) to hold: f( K) ;(f( z) f( z—l))
b2 2 S|
w2 _p-=2 - zto( +b077) + 1. 2;—77(1—6(Gi,1))f(0)
The term on the right is monotone increasing with respeét to K
and achieves its maximum 2K — 2. The proof is completed. z (- max  €(Gi)f(O)

The second inequality simply follows from the facts tlﬁt is

VI. CONCLUSION a monotone decreasing function#finds < 7 by definition.

In this paper, we have introduced the notion of total for- APPENDIX B
ward/backward and elemental forward curvature for fumstio PROOE OFPROPOSITION2
defined on strings. We have derived several variants of lower,. . _—

. (i) Using the definition of total backward curvature, we have
performance bounds, in terms of these curvature valuethdor
greedy strategy with respect to the optimal strategy. Caulte f(Gk ®0)— f(O)>(1-0(0)f(Gk),
contribute significantly to our understanding of the ungiag
algebraic structure of string submodular functions. Megzp
we have investigated two applications of string submodular f(Gk @ 0) — f(Gk) > f(O) —a(0)f(GK).
functions with curvature constraints.

which implies that

Using a similar argument as that of Theorem 5, we know that

APPENDIX A f(Gk ®0) — f(Gk) < h(1) f(Gk).
PROOF OFPROPOSITION1

(i) Forany M, N € A* and |M| < K, |N| < K, we have

Therefore, we have

1
shown in the proof of Theorem 1 that, there exists A such f(Gk) > 7f(0).
that h( ) (O)
The second inequality follows fror(#}) < h(n).
fIM & N) = f(M) < K;i(f(M & (a)) = f(M)). (i) Using the definition of total forward curvature, we have
Now let us consider the optimization problefd (1) with [(Gr @ 0) - f(Gk) > (1 —€(Gk))f(O).
length constrainf<. Using the property of the greedy strategy
and the monotone property, we have Using a similar argument as that of Theorem 5, we know that
. f(Gk ®0) — f(Gk) < h(n)f(Gk). Therefore, we have
[(Gi) = f(Gic1) > —(f(Gi-1 @ O) — f(Gi-1)) 1 —e(G
K 16 2 25 f(0)
> — O) —oc(0)f(Gi-1)). . .
- K; (F(0) =0 (0)f(Gi-1) The second inequality follows fror(#}) < h(n).
Therefore, by recursion, we have
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k

o, %) +soop 2 (1 +to Z 01;21(1 —e))

t=1
k

k k k
+s0to (D o) (Yo (1 —er)) = soto (D oy %) (Y o7 2(1 —ex))
t=1 t=1 t=1 1

k k
> s Z(Ut__fl — 07 + o Z(Ut__fl —0;7%)(1 - 1)
t=1 t=1

k

t=

(20)

k
+ 800;2(1 + to Z 0';_’_21(1 - et)) + Soto(b_4 _ a—4)(z et)(Z(l - et))

t=1
2

t=1 t=1

k
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