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Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Email: (etesami1, basar1)@illinois.edu

Abstract— In this paper, the question of expected time to
convergence is addressed for unbiased quantized consensus
on undirected connected graphs, and some strong results are
obtained. The paper first provides a tight expression for the
expected convergence time of the unbiased quantized consensus
over general but fixed networks. It is shown that the maximum
expected convergence time lies within a constant factor of
the maximum hitting time of an appropriate lazy random
walk, using the theory of harmonic functions for reversible
Markov chains. Following this, and using electric resistance
analogy of the reversible Markov chains, the paper provides
a tight upper bound for the expected convergence time to
consensus based on the parameters of the network. Moreover,
the paper identifies a precise order of the maximum expected
convergence time for some simple graphs such as line graph and
cycle. Finally, the results are extended to bound the expected
convergence time of the underlying dynamics in time-varying
networks. Modeling such dynamics as the evolution of a time
inhomogeneous Markov chain, the paper derives a tight upper
bound for expected convergence time of the dynamics using
the spectral representation of the networks. This upper bound
is significantly better than earlier results for the quantized
consensus problem over time-varying graphs.

Index Terms— Quantized consensus, convergence time,
Markov chains, random walk, time varying networks, spectral
representation.

I. INTRODUCTION

With the appearance of myriads of online social networks
and availability of huge data sets, modeling of the opinion
dynamics in a social network has gained a lot of attention
in recent years. In a distributed averaging algorithm, agents
will exchange their information and update their values
based on others’ opinions so that eventually they reach
the same outcome. Among many problems that arise in
such an application is the one of computing the average of
agents’ initial values. However, in many applications, due to
limited memory and energy, agents’ states are constrained
to be discrete quantities, which leads to finite quantization
of states. One of the models that involves such dynamics
is the gossip quantized model, where agents’ opinions are
constrained to be integer valued as it was introduced in [2]
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and [3]. The same problem without integer constraints has
been studied in many forms; see, for example, [4], [5], [6].

In general computing the average and quantized average
is known to be an important one in various contexts, such as
multi-agent coordination and distributed averaging [7], [8],
[9], e.g., when a set of robots coordinate in order to move
to the same location; information fusion in sensor networks
[10], e.g., when every sensor in a sensor network has a
different measurement of the temperature and the sensors’
common goal is to compute the average temperature; task
assignment [11], e.g., when a group of agents has to reach
a consensus on an optimal distribution of tasks, under com-
munication and assignment constraints; decentralized voting
[12], e.g., when nodes initially vote Yes or No and the goal is
to find the majority opinion; and load balancing in processor
networks, which has various applications in the operation of
computer networks [13].

It is known that, for any initial profile, the quantized
dynamics introduced in [2] will converge to the consensus
set with probability 1. It is worth to note that in the case of
discrete quantization the final state of the dynamics may or
may not be an exact consensus among the agents. Therefore,
one can generalize the definition of consensus point to a
consensus set which is a set of admissible states such that
the opinions of agents in those states are sufficiently close
to one another. However, depending on the initial profile and
the distribution of choosing the edges at each time instant,
the convergence time in expectation may vary. Studies on
the behavior of the quantized consensus algorithm based on
natural random walks and biased random walks can be found
in [14], [1], [15]. In fact, simple rule and efficient operation
time is one of the main properties of such dynamics.

In this paper, we consider the quantized consensus al-
gorithm when each edge has equal probability of being
chosen at each time step (unbiased). The convergence of
such dynamics to the set of quantized consensus points has
been shown earlier in [2]. However, an exact expression for
the expected convergence time for these dynamics based on
the topology of the network has not yet been given. In this
paper we address this issue and provide some tight bounds on
the expected convergence time based on some parameters of
the underlying graph. The best upper bound for the expected
convergence time of the randomized quantized consensus for
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fixed graphs is known to be O(n3 log n) [15], where n is the
number of the nodes in the network. However, this bound is
given for a randomized quantized consensus with a different
protocol than what we consider in this paper. In this paper,
we consider unbiased quantized consensus as was introduced
in [2] and provide a tight upper bound of O(nmD log(n))
for the expected convergence time of such dynamics over
static networks, where n, m, and D denote the number of
nodes, the number of edges and the diameter of the network,
respectively. Therefore, depending on the network topology,
this bound can be better or worse than the proposed upper
bound in [15]. However, an advantage of our analysis for the
static networks is that, it provides both tight upper bound and
lower bound within a constant factor of each other for the
maximum expected convergence time of unbiased quantized
consensus. This brings us to a conclusion that one cannot find
a better order than what it is obtained in this paper for the
maximum expected convergence speed of unbiased quantized
consensus dynamics. Therefore, for faster convergence speed
for the quantized consensus problem one must consider
protocols other than the unbiased protocol. We take it even
one step further and study the expected convergence time
of such dynamics over time varying networks. In particular,
we prove an upper bound for the expected convergence time
in the case of time-varying networks, which is significantly
tighter than the protocol given in [16] by a factor of at
least n4, where n is the number of agents involved in the
dynamics.

The paper is organized as follows: In Section II, we
review the unbiased quantized consensus dynamics and
some of its basic properties. Further, we identify some
connections between the expected convergence time and
random walks on the graphs. In Section III, we obtain our
main results related to fixed networks, providing expected
convergence time for these dynamics. Moreover, we include
some simulation results for simple but fixed graphs. In
Section IV we extend our results to time-varying networks,
and establish a polynomial upper bound for the expected
convergence time of the quantized consensus. We conclude
the paper in Section V. To ease exposition of our main
results in the main body of the paper, we relegate their
proofs as well as some important relevant results from the
theory of Markov chains and related topics to an appendix
(Appendix I). In particular we provide in Appendix I an
overview of some relevant results related to comparison
between random walks and electric networks. Finally, in
Appendix II, we present an alternative approach to study the
maximum expected convergence time of unbiased quantized
consensus for the case of simple static graphs such as line
graph and cycle.

Notations: For a vector v ∈ Rn, we let vi to be the ith
entry of v, and vT be the transpose of v. We let 1 be a
column vector with all entries equal to 1. We say that v is
stochastic if vi ≥ 0 for all i ∈ {1, 2, . . . , n} and

∑n
i=1 vi =

1. Similarly, we say that a matrix A is stochastic if each

row of A is stochastic. If both A and AT are stochastic, we
say that A is doubly stochastic. For a random walk Z with
transition probability matrix P , we let the random variable
τaz be the first time that the random walk initiated at a hits
the state z. Also, we let HZ(a, z) denote the expected time
that the random walk Z initiated at a hits z for the first
time. We take Gτaz (x) to be the expected number of visits
to x before τaz . For an undirected graph G = (V, E), we let
N(x) be the set of neighbors of x. We also let G×G = (V ×
V, E ′) be the Cartesian product of G, i.e.

(
(x, y), (r, s)

)
∈

E ′ if and only if x = r, s ∈ N(y) or y = s, r ∈ N(x).
For a graph G, we let AG be its adjacency matrix and DG
be a diagonal matrix whose diagonal entries are equal to
the degree of the nodes in the graph. Moreover, we denote
the Laplacian of this graph by LG = DG − AG . We let
R(x ↔ y) be the effective resistance between two nodes x
and y in an electric network when every edge has resistance
equal to 1. We denote by V(·) the voltage function over
an electric circuit for two distinguished nodes a and z with
V(a) = 1 and V(z) = 0, and let Vxy = V(x) − V(y).
Finally, we define the distribution of a vector v as the list
{(v1, n1), (v2, n2), . . .} in which ni is the number of entries
of v which have value vi.

II. UNBIASED QUANTIZED CONSENSUS

In this section, we describe the discrete-time quantized
consensus model for a fixed network as introduced in [2] and
postpone the analysis of time-varying networks to Section
IV.

A. Model

• There is a set of n agents, V = {1, 2, . . . , n}, which
are connected on some undirected graph G(V, E).

• Each agent has an initial value xi(0), which is a positive
integer.

• At each time instant t = 1, 2, . . ., one edge is chosen
uniformly at random among the set of all the edges E ,
and the incident nodes on the sides of this edge (let us
call them i and j) update their values according to:

xi(t+ 1) =


xi(t)− 1, if xi(t) > xj(t)

xi(t) + 1, if xi(t) < xj(t)

xi(t), if xi(t) = xj(t),

(1)

and the same holds for agent j. We refer to xi(t) as
the opinion of agent i at time t and x(t) as the opinion
profile at time t.

B. Relevant results on maximun expected convergence time

It has been shown in [2] that at each time instant t, the
Lyapunov function defined by:

V (x(t)) =

n∑
`=1

(
x`(t)−

∑n
k=1 xk(0)

n

)2

(2)

will decrease by at least 2 if a nontrivial update occurs at t.
By nontrivial update we mean that the values of the incident



nodes of the chosen edge (i, j) at time instant t differ by
at least 2, i.e. |xi(t) − xj(t)| ≥ 2. Therefore, to bound the
expected convergence time for the above algorithm, one can
think of the maximum expected time it takes for a nontrivial
update to occur. Also, using the Lyapunov function given
in (2), one can see that the number of nontrivial updates is
at most of the order of O(n). In fact it has been shown in
[2] that (L−l)2

8 n nontrivial updates are enough to guarantee
the termination of the dynamics, where L and l denote,
respectively, the maximum and minimum opinions at the
beginning of the process. Therefore, the problem reduces
to that of finding the maximum expected time it takes for a
nontrivial update to take place, which we denote by T̄ (G). In
this case the expected convergence time of the quantized con-
sensus will be upper bounded by (L−l)2

8 nT̄ (G). In this paper
we are interested in computing T̄ (G). Let T1(x(0)) be a
random variable denoting the first nontrivial averaging when
the initial profile is x(0). Through some manipulation, it is
not hard to see that T̄ (G) = maxx(0)∈X (G) T1(x(0)) where
X (G) = {x|distribution of x is {(0, 1), (1, n − 2), (2, 1)}},
i.e., X (G) is the set of all the vectors of size n in which
one entry is 0, one entry is 2, and the remaining entries
are 1. Therefore, the main issue is to find an expression for
T̄ (G) = maxx(0)∈X (G) T1(x(0)).

C. Random walk interpretation

In the above setting, we now assume that all the agents
on the graph G have value 1 except two of them which are 0
and 2. At each time instant t, one edge will be selected with
equal probability 1

m where m is the number of edges, and the
incident nodes update their values based on (1). Therefore,
we can interpret this problem in an alternative way. Consider
two walkers, let us call them 0 and 2, who start a random
walk on the vertices of the graph G whenever the selected
edge is incident to at least one of them. To see this more
clearly, let us consider a network of n nodes such that all
of the nodes have value 1 except two of them which have
values 0 and 2. Therefore, in the next update of the protocol
(1), either the selected edge is incident to neither of the
nodes with values 0 or 2, in which case there will not be
any change, or the selected edge is incident to the node with
value 0 and one of the nodes with value 1 (similarly to node
with value 2 and one of the nodes with value 1). In this case
0 and 1 on the sides of the selected edge will be swapped
(analogously, 2 and 1 on the sides of the selected edge will
be swapped). This can be viewed as a random walk that
the nodes with values 0 and 2 take to their next positions.
Therefore, T̄ (G) is equal to the maximum of the expected
time it takes for these two walkers to meet. Based on this
interpretation we have the following definition.

Definition 1. Denoting the current locations of the walkers
by x and y, if the selected edge at the next time instant is
incident to one of the walkers, e.g., {x, xi} for some xi ∈
N(x), we will move that walker from node x to node xi,
otherwise the walkers will not change their positions. We
refer to such a random walk process as the original process.

One important fact is that both of the walkers in the
original process have the same source of randomness, which
selects an edge at each time instant. Therefore, these random
walks are jointly correlated. In fact, in the Section III, we
find an explicit form for T̄ (G) for a general fixed network.

III. MAIN RESULTS FOR STATIC NETWORKS

Let us consider the original joint process for two walkers
on a finite graph, meaning that either of the walkers will
move depending on whether the selected edge is incident to
it. In order to compute T̄ (G), we introduce another process,
called virtual process, to facilitate our analysis.

We let the virtual process and the original process be the
same until the time when the walkers become each other’s
neighbors, i.e. x ∈ N(y), for some x, y ∈ V . At this time
we count the connecting edge in the virtual process twice
in our edge probability distribution. Moreover, we denote
the meeting time function of the virtual process by M(x, y)
for every two initial states x and y. Note that, in the virtual
process, as long as the walkers are not each other’s neighbors,
one edge of the network is picked, with probability 1

m and the
movement of the walkers will be precisely as in the original
process. But if the walkers are each other’s neighbors, i.e.
x ∈ N(y), the edge selection probability slightly changes. In
this case, the probability of selecting an edge P(e), e ∈ E(G)
will be as follows:

P(e)=


2
m , if e = {x, y}
1
m , if e is incident to either x or y
m−d(x)−d(y)

m(m+1−d(x)−d(y)) , if e is incident to neither x nor y,

and the walkers move depending on whether the selected
edge is incident to them or not.

Remark 1. In order to have valid transition probabilities for
the virtual process, we must have d(x)+d(y) ≤ m,∀(x, y) ∈
E(G). This condition naturally holds for all connected graphs
except the star graph and double-star graph, i.e., two star
graphs whose centers are connected to each other (Figure 2).
In these cases we have max{d(x) + d(y)| (x, y) ∈ E(G)} =
m+1. However, the maximum expected meeting time of these
two special cases can be computed precisely and directly
without using a virtual process (Lemma 7). Therefore, hence-
forth we assume that d(x) + d(y) ≤ m,∀(x, y) ∈ E(G).

Given a graph G, we choose an edge at random and
uniformly among all the set of edges at each time instance.
Let Z be the lazy random walk which is generated based
on marginal distribution of this setting. In other words, the
walker will move towards one of his neighbors with equal
probability if he is located at one of the incident vertices.
Hence, one can interpret Z as a random walk which is
generated based on marginal distribution of only one of the
walkers in the original process. It is not hard to see that Z



has the following transition probabilities:

PZ(x, y) =


1− d(x)

m , if y = x
1
m , if y ∈ N(x)

0, else.
(3)

Since the above transition matrix is doubly stochastic, π =
( 1
n ,

1
n , . . . ,

1
n )T is its stationary distribution. This results in

πiP (i, j) = πjP (j, i) ∀i, j ∈ 1, . . . , n, and hence Z is a
reversible Markov chain.

We already know [17] that every reversible Markov chain
has a hidden vertex w such that the hitting time from w to
every state is less than or equal to the hitting time from that
particular node to state w, i.e, w is a hidden vertex for Z if
HZ(w, x) ≤ HZ(x,w) ∀x.

Definition 2. Assume that w is a hidden vertex for the
reversible Markov chain Z . As in [17] and [15], we define
the potential function Φ(·, ·) : V × V → R to be

Φ(x, y) = HZ(x, y) +HZ(y, w)−HZ(w, y).

Definition 3. A function h : Ω→ R is called harmonic at a
vertex x ∈ Ω for a Markov chain with transition probability
matrix P if h(x) =

∑
y∈Ω P (x, y)h(y).

We are now in a position to start our analysis. First, we
briefly describe the stages that we will go through toward
proving the result for general static networks. As discussed
earlier, T̄ (G) is equal to the maximum expected meeting time
of the original process. Since, due to the coupling between
the random walks, computing the expected meeting time of
the original process is difficult, we approximate the original
process with the virtual process which are almost always the
same, except when the walkers are each other’s neighbors.
However, the virtual process is itself a jointly correlated
random walk. Therefore, to characterize its expected meeting
time function, i.e., M(x, y), we will show that M(x, y)
follows almost the same recursion formula as Φ(x, y). This
allows us to construct a harmonic function (Lemma 1) using
Φ(x, y) and M(x, y). We show that such a harmonic function
is zero at some boundary point, and hence, must be identical
to zero. This allows us to characterize M(x, y) based on
Φ(x, y) (Theorem 1). Furthermore, since Φ(x, y) is a func-
tion of the expected hitting time of a single lazy random walk
Z , we can find an expression for M(x, y) based on only
the expected hitting time functions of the lazy random walk
Z . Moreover, since such an expression does not involve any
coupling term, it is easy to compute it for different networks.
Finally, we show in Theorem 2 that the expected meeting
time function of the virtual process M(x, y), and that in the
original process lie within a constant factor of each other.
This establishes our tight bound for T̄ (G). We now start the
stages of our proof, with the following lemma.

Lemma 1. A function f : V ×V → R defined by f(x, y) =
1
2Φ(x, y)−M(x, y) is harmonic for the simple random walk

on G × G, i.e.

f(x, y) =
∑

(r,s)∈V×V

Q
(
(x, y), (r, s)

)
f(r, s),

where Q is the transition matrix of the simple random walk
on G × G, i.e.

Q
(
(x, y), (r, s)

)
=

{
1

d(x)+d(y) , if (r, s) ∈ NG×G(x, y)

0, else.

Proof. By the transitivity property of reversible Markov
chains, we note that Φ(x, y) is symmetric, i.e. for any hidden
vertex w,

Φ(x, y) = HZ(x, y) +HZ(y, w)−HZ(w, y)

= HZ(y, x) +HZ(x,w)−HZ(w, x) = Φ(y, x).

Therefore, we can write:

Φ(x, y) =
d(x)

d(x) + d(y)

[
HZ(x, y) +HZ(y, w)−HZ(w, y)

]
+

d(y)

d(x) + d(y)

[
HZ(y, x) +HZ(x,w)−HZ(w, x)

]
=

d(x)

d(x) + d(y)

(
HZ(y, w)−HZ(w, y)

)
+

d(y)

d(x) + d(y)

(
HZ(x,w)−HZ(w, x)

)
+
[ d(x)

d(x) + d(y)
HZ(x, y) +

d(y)

d(x) + d(y)
HZ(y, x)

]
.

(4)

Also, by expanding HZ(x, y) by one step, we get:

HZ(x, y) =
m

d(x)
+

1

d(x)

∑
j∈N(x)

HZ(j, y), (5)

and similarly by switching x and y we have:

HZ(y, x) =
m

d(y)
+

1

d(y)

∑
j∈N(y)

HZ(j, x). (6)

Using (5) and (6) in (4), we get

Φ(x, y)=
2m

d(x) + d(y)
+

d(x)

d(x)+d(y)

(
HZ(y, w)−HZ(w, y)

)
+

d(y)

d(x)+d(y)

(
HZ(x,w)−HZ(w, x)

)
+

1

d(x)+d(y)

( ∑
j∈N(x)

HZ(j, y)+
∑

j∈N(y)

HZ(j, x)
)
.

(7)

Also, from the definition of Φ(·, ·), we have Φ(j, y) =
HZ(j, y) + HZ(y, w) − HZ(w, y), ∀j ∈ N(x). By taking



summation over all j ∈ N(x) and multiplying by the factor
1

d(x)+d(y) , we arrive at

1

d(x) + d(y)

∑
j∈N(x)

Φ(j, y) =
1

d(x) + d(y)

∑
j∈N(x)

HZ(j, y)

+
d(x)

d(x) + d(y)

[
HZ(y, w)−HZ(w, y)

]
.

(8)

By the same argument, and since Φ(x, j) = HZ(j, x) +
HZ(x,w)−HZ(w, x), we have

1

d(x) + d(y)

∑
j∈N(x)

Φ(j, y) =
1

d(x) + d(y)

∑
j∈N(y)

HZ(j, x)

+
d(y)

d(x) + d(y)

[
HZ(x,w)−HZ(w, x)

]
,

(9)

Substituting (9) and (8) in (7) gives us

Φ(x, y)=
2m

d(x) + d(y)

+
1

d(x) + d(y)

(∑
j∈N(x)

Φ(j, y)+
∑

j∈N(y)

Φ(j, x)
)
. (10)

On the other hand, we note that regardless of whether
y /∈ N(x) or y ∈ N(x), the meeting time of the virtual
process is equal to

M(x, y)=(1− d(x) + d(y)

m
)
(
1+M(x, y)

)
+
∑

j∈N(x)

1

m

(
1+M(j, y)

)
+
∑

j∈N(y)

1

m

(
1+M(j, x)

)
from which by simplifying and rearranging the terms we get

M(x, y)=
m

d(x)+d(y)

+
1

d(x)+d(y)

(∑
j∈N(x)

M(j, y)+
∑

j∈N(y)

M(j, x)
)
. (11)

Let S(x, y) = Φ(x,y)
2 . From (10) it is not hard to see that

S(x, y)=
m

d(x)+d(y)

+
1

d(x)+d(y)

(∑
j∈N(x)

S(j, y)+
∑

j∈N(y)

S(j, x)
)
. (12)

We consider the simple random walk Q on the Cartesian
product graph G × G. The cover time and hitting time of
such graphs have been extensively studied in [18], [19] and
[20]. We show that the function f(x, y) = S(x, y)−M(x, y)

is harmonic on G × G for the transition matrix Q. In fact,

f(x, y) =
1

d(x) + d(y)

∑
j∈N(x)

(
S(j, y)−M(j, y)

)
+

1

d(x) + d(y)

∑
j∈N(y)

(
S(j, x)−M(j, x)

)
=

1

d(x) + d(y)

( ∑
j∈N(x)

f(j, y) +
∑

j∈N(y)

f(x, j)
)

=
∑

(r,s)∈V×V

Q
(
(x, y), (r, s)

)
f(r, s).

This completes the proof.

Now we are ready to characterize the expected meeting
time of the virtual process based on the expected hitting times
of the single lazy random walk Z and effective resistances
of an appropriate network.

Theorem 1. The expected meeting time of the virtual process
initiated from x, y is equal to 1

2Φ(x, y), i.e.,

M(x, y) =
1

2

[
HZ(x, y)+HZ(y, w)−HZ(w, y)

]
.

Proof. Let g : V × V → R be the zero function, i.e., g ≡ 0.
Clearly, g is a harmonic function over G × G. On the other
hand, we have

f(w,w)=S(w,w)−M(w,w)=S(w,w)

=
1

2

(
H(w,w)+H(w,w)−H(w,w)

)
=0=g(w,w).

Since f and g are both harmonic functions for the transition
matrix Q and also they have the same value at the node
(w,w), using Lemma 6 they must be equal. Thus f ≡ 0,
which shows that M(x, y) = 1

2Φ(x, y),∀x, y.

Theorem 2. Consider a network G = (V, E). Then,

max
x,y

M(x, y) ≤ T̄ (G) ≤ 2 max
x,y

M(x, y).

Proof. Initiating from arbitrary nodes x and y, we note that
both the virtual process and the original process follow the
same joint distribution until they are each other’s neighbor.
However, when the walkers are each other’s neighbor, with
higher probability they are going to meet in the virtual
process than in the original process. Therefore, M(x, y) ≤
T̄ (G) for all x, y. Since by definition T̄ (G) is independent of
the initial states of walkers, maxx,yM(x, y) ≤ T̄ (G). For the
upper bound, we use the same argument as in [15]. Again, as
mentioned earlier, the virtual process and the original process
remain the same until the two walkers become each other’s
neighbors, i.e. for some x, y with x ∈ N(y). At this time,
the probability that two walkers meet in the next transition
in the original process is 1

m , while this probability for the
virtual process is 2

m . Since the former is half of the latter, this
immediately implies that the meeting time of the former is
within a constant factor of the latter. In fact, at each time that



the walkers in the virtual process meet, with probability 1
2

the walkers in the original process meet as well. However, if
the walkers in the virtual process meet, but they do not meet
in the original process (which happens with probability 1

2 )
then, in the original process we may assume that the positions
of the walkers have not changed, and in the virtual process
we may assume that they just switch their positions (from
x, y to y, x). Therefore, in this case we may assume that a
new original process which is followed by its corresponding
virtual process has just been initiated from nodes x and y.
Since each of these collisions of walkers during different
time intervals happens independently and with probability
1
2 , we can write

T̄ (G) ≤
∞∑
k=1

(
1

2
)kkmax

x,y
M(x, y) = 2 max

x,y
M(x, y),

where in the above summation the term ( 1
2 )k corresponds to

the probability that the walkers in the virtual process meet k
times while they do not meet in the original process, and the
term kmaxx,yM(x, y) is an upper bound for the expected
time that the walkers in the virtual process meet k times.

Next, we will proceed by computing HZ(x, y). Note that
if at the time instant t the walker is at the node Z(t), then
the probability of staying in that state is 1− d(Z(t))

m . Because
of Markov property of the random walk, the probability of
moving out from each state follows the geometric distribu-
tion. Therefore, the expected time that the walker waits in
state Z(t) is m

d(Z(t)) . However, when the walker is moving to
the next state, he will see all of his neighbors with the same
probability. Therefore, we can split the expected hitting time
of the random walk Z(t) namely HZ(x, y) to summation of
two parts:
• the expected time that the walker spends in each state
Z(t), which is m

d(Z(t)) ,
• the expected hitting time of a simple random walk
Z ′(t), namely H(x, y).

Therefore, we have:

HZ(x, y)=

H(x,y)∑
t=1

(
1+

m

d(Z ′(t))
)

=H(x, y)+m

H(x,y)∑
t=1

1

d(Z ′(t))

=H(x, y)+m
∑
i

Gτxy (i)

d(i)

=
∑
i

m+d(i)

2

[
R
(
x↔ y

)
+R

(
y ↔ i

)
−R

(
x↔ i

)]
≤m

∑
i

[
R
(
x↔ y

)
+R

(
y ↔ i

)
−R

(
x↔ i

)]
(13)

where the last equality is due to Lemma 5 and relation (24).

We are now ready to state our upper and lower bounds
for the expected convergence time of the unbiased quantized
consensus over static networks.

Theorem 3. Consider a connected network G with n nodes
and m edges and diameter D. Then, for unbiased quantized
consensus, we have

1

2
HZ ≤ T̄ (G) ≤ HZ ≤ 2nmD,

where, HZ = maxx,yHZ(x, y).

Proof. Since the transition matrix given in (3) is symmetric,
hence the random walk Z is a symmetric random walk.
Therefore, every path has the same probability backward and
forward and we have HZ(y, w) = HZ(w, y),∀y. Applying
this equality in the expression for M(x, y) in Theorem 1
gives us

M(x, y) =
1

2
HZ(x, y),∀x, y. (14)

Using (14) and Theorem 2, and the definition of HZ , we can
see that 1

2HZ ≤ T̄ (G) ≤ HZ . Furthermore, by relation (13),
we get

HZ ≤ max
x,y

{
m
∑
i

[
R
(
x↔ y

)
+R

(
y ↔ i

)
−R

(
x↔ i

)]}
≤ 2nmD,

(15)

where, in the second inequality we have used the fact that the
effective resistance between any two nodes cannot exceed the
length of the shortest path between those nodes [21] which
is upper bounded by the diameter of G.

Remark 2. As discussed earlier in Section II-B, the total
number of nontrivial averagings is at most of the order of
O(n). This, in view of the theorem 3 and Corollary 4 in
[15], shows that the maximum expected convergence time of
unbiased quantized consensus over static network is at most
O(nmD log(n)).

A. Simulation Results

In this section we present some simulation results to pro-
vide a comparison between the maximum expected meeting
time T̄ (G) and the proposed upper and lower bounds given
above. We consider four different types of graphs with n
nodes: line graph, star graph, lollipop graph, and semi-regular
graph. In lollipop graph each of its side clusters has [n4 ] nodes
and they are connected with a single path. Also, for the semi-
regular graph we consider a graph with n nodes arranged
around a circle, such that each node is linked to its next four
nodes when we move clockwise around the circle. In Figure
1, the ratio T̄ (G)

mnD is depicted for each graph. As it can be
seen, this ratio for the line graph converges asymptotically
to a constant as n goes to infinity. This is the same as what
we would have expected from Corollary 3. Moreover, using
the transition probabilities given in (3) for the star graph,
a simple calculation shows that HZ = n(n−1)

2 , and hence
from Theorem 3 we get n(n−1)

4n2 ≤ T̄ (G)
mnD ≤

n(n−1)
n2 , which

is consistent with the ratio given in Figure 1. Finally, for



lollipop and semi-regular graphs, although the ratio T̄ (G)
mnD is

oscillating, it is clearly bounded from above by 1, which
confirms the upper bound provided in Theorem 3.
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Fig. 1. Comparison between the maximum meeting time and mnD four
different types of graphs.

IV. CONVERGENCE TIME OVER TIME-VARYING
NETWORKS

In this section we extend the results of the previous section
to time-varying networks. Let us consider a sequence of
connected networks G(t) = (V, E(t)), t = 0, 1, 2, . . ., over
a set of n vertices, V = {1, 2, . . . , n}. We assume that such
a sequence is selected a priori arbitrarily, and then fixed at the
beginning of the process. In particular, the future sequences
of the graphs do not depend on the current states of the
quantized consensus protocol which we will define later. We
denote the number of edges and the degree of vertex x in
G(t) by mt and dt(x), respectively. Here, we assume that
all the networks are connected, as otherwise we may not
reach consensus through the dynamics. For example if the
networks are allowed to be disconnected, one can easily find
a sequence of networks such that the quantized algorithm
does not converge to any specific outcome. Moreover, as
in the case of static networks, and in order to be able to
define a virtual process (Remark 1), we invoke the following
assumption.

Assumption 1. G(t) = (V, E(t)) are connected graphs such
that dt(u) + dt(v) ≤ mt,∀(u, v) ∈ E(t),∀t = 0, 1, 2, . . ..

Note that the above assumption is a very mild one and
simply states that the sequence of graphs can be arbitrarily
chosen from the set of all connected graphs except star and
double-star graphs. Under this assumption we analyze the
expected convergence time of the dynamics.

Remark 3. One can relax the connectivity condition by
assuming the existence of a constant B ∈ N such that the
undirected graph with the vertex set V and the edge set
∪Bk=1E(t + k) is connected for all t ≥ 0. We refer to such
sequences of networks as B-connected networks.

Let us define a sequence of lazy random walks {Zt}t≥0

corresponding to each network with the following transition
probability matrices:

Pt(x, y) =


1− dt(x)

mt
, if y = x

1
mt
, if y ∈ Nt(x)

0, else,
(16)

where Nt(x) denotes the set of neighbors of node x in
G(t). Note that since all the probability matrices Pt, t ≥ 0
are doubly stochastic, any arbitrary product is also doubly
stochastic, and hence they all share a common stationary
distribution π = ( 1

n ,
1
n , . . . ,

1
n ). Now based on the above

setting and very naturally, one can extend the unbiased quan-
tized protocol over the sequences of time-varying graphs.
To be more precise, we consider a similar dynamics over
these sequences of networks as follows. At each time step
t = 0, 1, 2, . . ., we choose an edge uniformly at random from
G(t) and update its incident nodes as in the static case. We
note that since such dynamics preserve the average of the
opinions over time-varying networks, the function given in
(2) is a valid Lyapunov function for the dynamics over time-
varying networks. In particular, the value of this function
will decrease by at least 2 after every nontrivial update.
Thus, as in the static network analysis, the total number
of nontrivial averagings is at most of the order of O(n).
Consequently, finding an upper bound on the maximum ex-
pected convergence time of the dynamics over time-varying
networks reduces to that of finding the maximum expected
time it takes for a nontrivial update to take place, which we
denote it by T̄ .

Next, we consider two random walkers who move jointly
over these sequences of time-varying networks based on
whether the selected edge is incident to them or not. In other
words, if the chosen edge at some time instant is incident
to one of the walkers, we will then move it, otherwise
the walkers will not change their positions. Through some
manipulation as in the case of static network analysis, one
can argue that T̄ is equal to the maximum expected time it
takes for these two walkers to meet. Therefore, very similar
to the static case, we have the following definitions.

Definition 4. Denoting the locations of the walkers at time
instant t by x, y ∈ V (G(t)), if the selected edge at this time
is incident to one of the walkers, e. g., {x, xi} for some xi ∈
Nt(x), we will move it from node x to node xi, otherwise
the walkers will not change their positions. We refer to such
a random walks over the sequence of G(t), t = 0, 1, 2, . . . as
the original process.

Definition 5. In a time-varying network, a virtual process is
the same as the original process until when the walkers are
each other’s neighbors at some time instant t, i.e. x ∈ Nt(y),
for some x, y ∈ V (G(t)). At this time the connecting edge
{x, y} ∈ E(t) in the virtual process is counted twice in the



edge probability distribution, i.e., for e ∈ E(t),

P(e)=


2
mt
, if e = {x, y}

1
mt
, if e is incident to either x or y on G(t)

mt−dt(x)−dt(y)
mt(mt+1−dt(x)−dt(y)) , if e is incident to neither x nor y on G(t),

and the walkers move depending on whether the selected
edge is incident them or not.

Remark 4. Due to the time-varying nature of the networks,
there is no dependency between the location of the walkers
and the next graph in the sequence. In other words, the next
graph in the sequence cannot be determined based on the
current locations of the walkers, as otherwise, one can simply
construct a sequence of connected time-varying networks
which depends on the location of the walkers, such that the
walkers never meet each other. We will see later that due to
some laziness that exists in the joint transition probability
of these random walks, the expected time until they meet is
finite.

Now let us focus on the virtual process; we denote its
transition probabilities described on the network G(t)×G(t)
by a matrix K(t). In fact, K(t) is an n2 × n2 dimensional
matrix whose rows and columns are labeled as all the
possible pairs of vertices, and the entry ((x1, y1), (x2, y2))
of K(t) is the conditional probability that the walkers in
the virtual process are at the nodes (x2, y2) given that
they were at (x1, y1) at the previous time step. Based on
this construction, the meeting time of the virtual process
that started at (a, b) is equal to the expected time that a
time inhomogeneous Markov chain with transition matrices
K(t), t = 0, 1, 2, . . . started from (a, b) hits one of the states
S = {(1, 1), (2, 2), . . . , (n, n)} for the first time. In fact,
since we are interested in an upper bound on the expected
hitting time of such a random walk on {G(t)×G(t)}t≥0 (and
hence an upper bound on the expected meeting time of the
virtual process), we can manipulate some of the entries of
the matrices {K(t)}t≥0 as long as we make sure that the
expected hitting time to S does not decrease throughout the
process. Therefore, we upper bound the expected hitting time
of such a modified process whose transition matrix at time t
we denote by K̄(t). Following this idea and in order to have
a symmetric modified chain, for all t ≥ 0 we define K(t) to
be the same as K̄(t) in all but the following cases:
• We note that in the virtual process when two walkers

are each other’s neighbors (x ∈ Nt(y)), the probability
that the connecting edge between them is chosen is
2
mt

. Therefore, in the modified chain matrix K̄(t) by
assigning probabilities 1

mt
for moving from (x, y) to

(x, x) and also moving from (x, y) to (y, y) (similarly
moving from (y, x) to (x, x) and also moving from
(y, x) to (y, y)), the expected hitting time to S will
not change.

• Since all the vertices (x, x) ∈ S are absorbing states
in the virtual process, we have K(t)((x, x), (x, x)) =
1,∀x ∈ V . In this case, by modifying the row (x, x)

of the matrix K(t) to K̄(t)((x, x), (x, x)) = 1 −
2dt(x)
mt

and K̄(t)((x, x), (x′, y′)) = 1
mt
,∀(x′, y′) ∈

NG(t)×G(t)(x, x) we will get a chain whose expected
hitting time to S is again the same as the expected
hitting time of the chain {K(t)}t≥0.

By these modifications, the modified chains {K̄(t)}t≥0

and {K(t)}t≥0 will have the same expected hitting times
to S. Moreover, by the definition of the transition probabil-
ities of the virtual process matrices (K(t)) and the above
modifications, we observe that the transition matrix K̄(t)
must satisfy K̄(t) = I − 1

mt
LG(t)×G(t) for all t ≥ 0, where

LG(t)×G(t) is the Laplacian of the Cartesian product graph
G(t)×G(t) and I denotes the identity matrix of proper size.
On the other side by a close look at the matrix Pt it is not
hard to see that Pt = I − 1

mt
LG(t).

We are now in a position to study the expected conver-
gence time of the dynamics. But, before we proceed, we first
provide a summary of the steps involved in the proof. Based
on the above discussion, in order to determine the expected
meeting time function of the virtual process over {G(t)}∞t=0,
we can equivalently concentrate on finding the expected
hitting time to the absorbing states S of an inhomogeneous
Markov chain with transition matrices {K(t)}∞t=0 which are
defined over {G(t) × G(t)}∞t=0. As discussed above, the
hitting time to the absorbing states of this chain is equal
to that in the modified chain {K̄(t)}∞t=0. Since the matrices
{K̄(t)}∞t=0 are symmetric, and hence, doubly stochastic,
we can find a precise expression for the second largest
eigenvalue and the smallest eigenvalue of K̄(t) based on
those of the matrix Pt. This allows us to find tight bounds
on the spectral gap of the matrices K̄(t), t = 0, 1, . . ..

Since all matrices in the inhomogeneous Markov chain
{K̄(t)}∞t=0 are doubly stochastic, starting from any initial
distribution p(0), and after sufficiently long period of time
t′ (which will be determined by the spectral gap of such
matrices), the probability of being in different states p(t′)
will be very close to the stationary distribution of the chain,
i.e., π = ( 1

n2 ,
1
n2 , . . . ,

1
n2 )′. In particular, the probability of

being absorbed by S after time t′ will be large enough and
bounded away from 0. This allows us to find an upper bound
on how long it takes until the chain {K̄(t)}∞t=0 starting from
an arbitrary initial distribution p(0) to hit at least one of the
absorbing states. Equivalently, this provides an upper bound
on the expected hitting time of the chain {K(t)}∞t=0 to the set
S, and hence, an upper bound on the expected meeting time
of the virtual process. Finally, by the same line of argument
as in the case of static networks, we can show that the
maximum expected meeting time of the original process is
within a constant factor of that in the virtual process. Keeping
these main steps in mind and toward a complete proof, we
first consider the following lemma.

Lemma 2 (Laplacian Spectrum of a Graph Product [22]).
If LG has eigenvalues λ1, . . . , λn and LH has eigenvalues
µ1, . . . , µn, then LG×H has eigenvalues λi + µj , i, j =
1, . . . , n.



From the Perron-Frobenius theorem and Lemma 2 one can
conclude that the second smallest eigenvalues of LG(t) and
LG(t)×G(t) must be the same for t ≥ 0. Now let us denote the
second largest eigenvalue and the second smallest eigenvalue
of a k × k matrix A by α2(A) and αk−1(A), respectively.
For every t ≥ 0, we can write

α2(K̄(t))=α2(I− 1

mt
LG(t)×G(t))=1− 1

mt
αn2−1(LG(t)×G(t))

=1− 1

mt
αn2−1(LG(t))=α2(I− 1

mt
LG(t))=α2(Pt).

(17)

Similarly, from Perron-Frobenius theorem and Lemma 2
one can observe that the largest eigenvalue of LG(t)×G(t)

is two times of that in LG(t) for t ≥ 0. Thus, if we
denote, respectively, the largest eigenvalue and the smallest
eigenvalue of a k × k matrix A by α1(A) and αk(A), we
can write

αn2(K̄(t))=αn2(I− 1

mt
LG(t)×G(t))=1− 1

mt
α1(LG(t)×G(t))

=1− 2

mt
α1(LG(t)).

(18)

In what follows, our goal is to find an upper bound for the
second largest eigenvalue and a lower bound for the smallest
eigenvalue of the matrix K̄(t).

First, we note that by relation (17), the second largest
eigenvalue of the matrix K̄(t) is equal to the second largest
eigenvalue of the matrix Pt. In order to bound the second
largest eigenvalue of the matrix Pt we look for a relationship
between its eigenvalues and the hitting times of a random
walk with transition probability matrix Pt. In fact, the
random target Lemma provides us with such a relationship.

Lemma 3. [Random Target Lemma] For an irreducible
Markov chain with state space Ω = {1, 2, . . . , n}, transition
matrix P , and stationary distribution π, we have

n∑
j=1

πjH(i, j) =

n∑
k=2

1

1− αk(P )
, ∀i ∈ Ω

where 1 = α1(P ) > α2(P ) ≥ α3(P ) ≥ . . . , αn(P ) denote
the eigenvalues of P in a non-increasing order and H(·, ·)
is the expected hitting time function of the chain.

Proof. The idea of the proof is to find a recursion matrix
equality for the expected hitting time of a chain with transi-
tion probability matrix P and interpreting the solution of this
equation based on the eigenvalues of P . A complete proof
can be found in [23] and also [24].

Next, in order to obtain a lower bound for the smallest
eigenvalue of the matrix K̄(t) and in view of relation (18),
we find an upper bound for the largest eigenvalue of the
Laplacian of G(t), i.e., α1(LG(t)). In fact, the following
lemma provides us with a desired upper bound.

Lemma 4. The largest eigenvalue of the Laplacian of any
graph with m edges, satisfying Assumption 1, is bounded
from above by m− 1

2 .

Proof. The proof can be found in Appendix I.

Finally, based on Lemma 3 and Lemma 4 we can state
the main result of this section, which is an upper bound for
the expected convergence time of quantized consensus over
time-varying networks.

Theorem 4. Let mmax = maxt≥0mt and Dmax =
maxt≥0Dt. Then, the expected convergence time of un-
biased quantized consensus over time-varying graphs
satisfying Assumption 1 is bounded from above by
O
(
n2mmaxDmax ln2(n)

)
.

Proof. Since, for all t ≥ 0, the matrix Pt is doubly stochas-
tic, ( 1

n ,
1
n , . . . ,

1
n ) is its stationary distribution. Using Lemma

3, we can write

1

1− α2(Pt)
≤

n∑
k=2

1

1− αk(Pt)
=

1

n

∑
j 6=i

HZt(i, j)

≤ 1

n
(n× 2nmtDt) = 2nmtDt,

where the last inequality is due to the relation (15) for the
maximum hitting time that we computed in the case of the
fixed graph. Therefore, we get

α2(Pt) ≤ 1− 1

2nmtDt
,∀t ≥ 0. (19)

Moreover, using relation (18) and Lemma 4, we can write,

αn2(K̄(t)) = 1− 2

mt
α1(LG(t)) ≥ 1− 2

mt
(mt −

1

2
)

= −1 +
1

mt
,∀t ≥ 0. (20)

Let the vector p(t) =
(
p(1,1)(t), p(1,2)(t), . . . , p(n,n)(t)

)′
denote the probability at time t of being at different
states of a random walk with transition matrix K̄(t).
Since K̄(t) is a doubly stochastic matrix, π := π(t) =
( 1
n2 ,

1
n2 , . . . ,

1
n2 ),∀t ≥ 0 is its stationary distribution and the

average is preserved throughout the dynamics. Now, we note
that since K̄(t) is a real-valued and symmetric matrix, it has
an orthogonal set of eigenvectors 1, v2, . . . , vn2 , correspond-
ing to the eigenvalues 1 > α2(K̄(t)) ≥ . . . ≥ αn2(K̄(t)).
Since (p(t)−π)′1 = 0, p(t)−π can be written as

∑n2

k=2 rkvk
for some coefficients rk, k = 2, . . . , n2. In particular, since
vk, k = 2, . . . , n2, are orthogonal, we have ‖p(t) − π‖22 =



∑n2

k=2 r
2
k. Now we can write

∥∥K̄(t)p(t)−π
∥∥2

2
=
∥∥K̄(t)(p(t)−π)

∥∥2

2
=

∥∥∥∥∥∥
n2∑
k=2

rk(K̄(t)vk)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
n2∑
k=2

rkαk(K̄(t))vk

∥∥∥∥∥∥
2

2

=

n2∑
k=2

r2
kα

2
k(K̄(t))

≤ max
k=2,...,n2

{
α2
k(K̄(t))

} n∑
k=2

r2
k

=max
{
α2

2(K̄(t)), α2
n2(K̄(t))

}
‖p(t)− π‖22 .

Therefore, for every probability vector p(t), we have∥∥K̄(t)p(t)−π
∥∥

2
≤max

{
|α2(K̄(t))|, |αn2(K̄(t))|

}
‖p(t)−π‖2

= max
{
|α2(Pt)|, |αn2(K̄(t))|

}
‖p(t)−π‖2 ,

(21)

where the equality is due to the relation (17). Using relations
(19) and (20) in (21), we get,∥∥K̄(t)p(t)−π

∥∥
2
≤max

{
1− 1

2nmtDt
, 1− 1

mt

}
‖p(t)−π‖2

=

(
1− 1

2nmtDt

)
‖p(t)−π‖2 .

(22)

Since the above argument works for every time instant t ≥ 0,
and for each of the transition matrices Pt and K̄(t), using
relation (22) recursively we get,

‖p(t)− π‖2 =
∥∥K̄(t− 1)K̄(t− 2) . . . K̄(0)p(0)− π

∥∥
2

≤
t−1∏
k=0

(
1− 1

2nmkDk

)
‖p(0)− π‖2

≤
(

1− 1

2nmmaxDmax

)t
‖p(0)− π‖2

=

(
1− 1

2nmmaxDmax

)t√
n2 − 1

n2

≤ e
−t

2nmmaxDmax

√
n2 − 1

n2
< e

−t
2nmmaxDmax ,

where p(0) denotes the initial probability, which is 1 in
one entry and zero everywhere else. Therefore after at most
4nmmaxDmax(1 + ln(n)) steps, we get

(
1
2

) t
2nmmaxDmax ≤

1
2n2 and this means ‖p(t)− π‖2 ≤ 1

2n2 . In other words, for
all t ≥ 4nmmaxDmax(1 + ln(n)), we must have p(i,j)(t) ∈
[ 1
2n2 ,

3
2n2 ],∀i, j. In particular,

∑n
i=1 p(i,i)(t) ≥ n × 1

2n2 =
1

2n . This means that after at most 4nmmaxDmax(1 + ln(n))
steps the probability of hitting at least one of the states
in S = {(i, i), i = 1 . . . , n} is larger than or equal to
1

2n . Now, by applying Proposition 4.1 in [16], we con-
clude that the expected hitting time of a random walk with
transition probabilities K̄(t)t≥0 is less than or equal to
4n × 4nmmaxDmax(1 + ln(n)). This result can be also
viewed as a corollary of Lemma 13 in [20]. Therefore, since
{K̄(t)}t≥0 and {K(t)}t≥0 have the same expected hitting

times to the states of S, we conclude that the expected
meeting time of the virtual process started from any time
step t ≥ 0, which we denote by Mt, is bounded from above
by Mt ≤ 16n2mmaxDmax(1 + ln(n)).

Now, as in the case of static graphs, we argue that the
virtual process and the original process are the same until the
two walkers are each other’s neighbors, i.e. for some x, y and
t ≥ 0, with x ∈ Nt(y). At this time, the probability that two
walkers in the original process meet each other at the next
time step is at least half of that in the virtual process. In other
words, more than half of the times when two walkers are
each other’s neighbors and they meet in the virtual process,
they will meet in the original process as well. Since each of
these intersections may happen independently, we can write

T̄ ≤
∞∑
k=0

(
1

2
)k max
t1<t2<...<tk

(Mt1 +Mt2 + . . .+Mtk)

≤
∞∑
k=0

(
1

2
)kk × 16n2mmaxDmax(1 + ln(n))

= 32n2mmaxDmax(1 + ln(n)). (23)

Finally, since the dynamics preserve the average of the
opinions over time varying networks, the function given in
(2) is a valid Lyapunov function through the trajectory of
the dynamics over time-varying networks, and its value will
decrease by at least 2 after every nontrivial update. Thus as
in the static network analysis, the total number of nontrivial
averagings is at most of the order of O(n). This, in view
of the relation (23) and Corollary 4 in [15], completes the
proof.

In fact, Theorem 4 improves significantly some of the
existing upper bounds for the expected convergence time
of quantized consensus over time-varying networks [16].
Finally, we would like to emphasize that as in the analysis of
static networks and using direct analysis for the two special
cases of star graph and double-star graph (Lemma 7), one
may be able to generalize Theorem 4 to such graphs.

V. CONCLUSION

In this paper, we have studied the unbiased quantized
consensus problem under the assumption that the underlying
network G is connected. We provided tight upper and lower
bounds for the maximum expected convergence time of the
model. Further, we provided an exact asymptotic value for
the convergence time when the network is a line graph or a
cycle. We observed that the given bounds for static networks
agree with the simulation results for some particular choices
of undirected connected networks. Finally, we extended our
results to time-varying networks under the assumption of
connectivity over the sequence of networks. As a future
direction of research, an interesting problem is to consider
the model when the choice of edges at each time instant is
based on some specific, not necessarily uniform, distribution.
Also, given a network G, one can think of adding an edge



(or removing an edge) so as to minimize (or maximize) the
expected convergence time.

APPENDIX I
PRELIMINARY RESULTS AND OMITTED PROOFS

In this section, we discuss some preliminary results which
will be used to prove our main results in section III. We first
state some relevant results from the theory of Markov chains.
A simple random walk on a graph G is a Markov chain with
transition probabilities

P (x, y) =

{
1

d(x) , if y ∈ N(x)

0, otherwise,

where d(x) denotes the degree of a node x in the graph
G. Note that a simple random walk is a special case of a
weighted random walk when the weights of all edges in
G are equal to 1. It is well known that every reversible
Markov chain is a weighted random walk on a network.
Suppose P is a transition matrix on a finite set S which
is reversible with respect to the probability distribution π(·).
Define conductance on edges by c(x, y) = π(x)P (x, y) and
c(x) :=

∑
y: y∈N(x) c(x, y). Also, the resistance of each

edge e is defined to be the inverse of conductance, i.e.
r(e) = 1

c(e) .

Lemma 5. Gτaz (x)

d(x) is equal to the induced voltage between
x and z , i. e. Vxz when we define the terminal voltages to
be Vzz = 0, Vaz =

Gτaz (a)

d(a) . Moreover, for all x we have

1

2

[
R(a↔ z)+R(z ↔ x)−R(a↔ x)

]
=
Gτaz (x)

d(x)
= Vxz.

Proof. This is the result of Corollary 3 in [25].

By taking summation over the above equality and noting
that

∑
xGτaz (x) is equal to the expected hitting time of a

simple random walk when it starts from a and hits z, we
get:

H(a, z) =
1

2

∑
x

d(x)
[
R(a↔ z) +R(z ↔ x)−R(a↔ x)

]
(24)

Lemma 6. Let {Xt} be a Markov chain with an irreducible
transition matrix P , let B ⊂ Ω, and hB : B → R be a
function defined on B. The function h : Ω → R defined by
h(x) := E[hB(XτxB

)] is the unique extension h(·) of hB such
that h(x) = hB(x) for all x ∈ B and h is harmonic for P
at all x ∈ Ω \B.

Proof. The proof can be found in [21].

Lemma 7. For the star graph and the double-star graph
with m edges, the maximum expected meeting time T̄ (G) is
bounded from above by O(m2).

Proof. Let us denote the meeting time function of the
original process by M̄(·, ·) : V × V → R. For the case

of star graph with m edges, a center node z, and two leaves
x and y, it is not hard to see that T̄ (G) = M̄(x, y). Because
of the symmetric structure of the star graph and by one step
recursive expansion of the meeting time function, we can
write

M̄(x, y) =
2

m
(1 + M̄(x, z)) +

m− 2

m
(1 + M̄(x, y))

M̄(x, z) =
1

m
+
m− 1

m
(1 + M̄(x, y)).

Solving these two equations we get, T̄ (G) = M̄(x, y) =
m(m+2)

2 . For the case of the double-star graph, we use a
similar line of argument. In a general form, we consider a
double-star graph with center nodes x1 and y1 that share
k neighbors, for some k ≥ 0. Moreover, we assume that
x1 and y1 have i and m + 1 − i neighbors, respectively.
Such a graph has been depicted in Figure 2. Again, using the
symmetry, one can distinguish between 13 different states for
the position of the walkers in such a graph. As an example,
denoting the location of the two walkers by x, y and looking
at Figure 2, one can observe that when x ∈ N(x1) \N(y1)
the relative position of the other walker with respect to x
can fit into one of the following cases:

y ∈ N(y1) \N(x1)

y = y1

y ∈ N(x1) ∩N(y1)

y = x1

y ∈ N(x1) \N(y1).

Note that in order to write recursion expansions of the
expected meeting time of the original process, and due to
symmetry, only the relative positions of the walkers matters.
For example for x 6= y, M(x, y) is the same for all pairs
of x, y ∈ N(x1). Therefore, by recursion expansion of the
expected meeting time of the original process for such a
graph, we obtain a linear system of equations which for
simplicity we write in a matrix form as has been shown
in (25). Solving this system of equations fully characterizes
the expected meeting time of the original process for being
in different states of the double-star graph which are upper
bounded by O( i+m

2

k ). Since, k ≤ i ≤ m, for the double-star
graph we get T̄ (G) = O(m2).


− 2
m

1
m

2
m 0 0 0 0 0 0 0 0 0 0

−k−i+1
m − i+1

m 0 0 1
m 0 0 k

m 0 0 0 0 1
m

− i+k−mm 0 −m−i+2
m 0 0 0 k

m 0 1
m 0 0 0 1

m

0 0 0 −m−i+2
m 0 1

m 0 − i+k−mm 0 0 k−1
m 0 1

m

0 1
m 0 0 −m−i+1

m 0 0 k
m 0 0 0 − i+k−m+1

m 0
0 0 0 1

m 0 − i+1
m −k−i+1

m 0 0 0 k−1
m 0 1

m
0 0 1

m 0 0 1
m − 3

m 0 1
m 0 0 0 0

0 1
m 0 1

m
1
m 0 0 − 3

m 0 0 0 0 0
0 0 1

m 0 0 0 k
m 0 − i

m −k−i+2
m 0 0 0

0 0 0 0 0 0 0 0 2
m − 2

m 0 0 0
0 0 0 2

m 0 2
m 0 0 0 0 − 4

m 0 0
0 0 0 0 2

m 0 0 0 0 0 0 − 2
m 0

0 − i+k−mm −k−i+1
m

k
m 0 k

m 0 0 0 0 0 0 −1





M̄(x, y)
M̄(x1, y)
M̄(x, y1)

...

...

M̄(x1, y1)



= −



1
1
1
1
1
1
1
1
1
1
1
1
1



.

(25)

proof of Lemma 4. We use the upper bound of α1(LG) ≤
max{d(u) + d(v)|(u, v) ∈ E(G)} given in [22]. Since we



Fig. 2. Star graph and double-star graph with m edges.

already assumed d(u) + d(v) ≤ m,∀(u, v) ∈ E(G), we
consider two cases:
• max{d(u) + d(v)|(u, v) ∈ E(G)} ≤ m − 1. Then, we

simply get α1(LG) ≤ m− 1 ≤ m− 1
2

• max{d(u) + d(v)|(u, v) ∈ E(G)} = m. Then, there
exists (u∗, v∗) ∈ E(G) such that d(u∗) + d(v∗) = m.
In this case we used the upper bound of α1(LG) ≤
2 +

√
(m− 2)(s− 2) given in [26], where s =

max{d(u) + d(v)|(u, v) ∈ E(G) \ (u∗, v∗)}. Since
d(u∗) + d(v∗) = max{d(u) + d(v)|(u, v) ∈ E(G) = m,
there exists exactly one edge in G \ {u∗, v∗} such
that for any (u, v) ∈ E(G) \ (u∗, v∗) we must have
d(u) + d(v) ≤ m− 1. This shows that s ≤ m− 1, and
hence,

α1(LG)≤2+
√

(m−2)(m−3)=2+

√
(m− 5

2
)2− 1

4

<m− 1

2
.

Therefore, in both cases we have α1(LG) ≤ m− 1
2 , and this

completes the proof.

APPENDIX II
TIGHT BOUNDS FOR SIMPLE STATIC NETWORKS

In this Appendix, we develop an alternative approach in
order to study the maximum expected convergence time of
unbiased quantized consensus over static graphs. In particu-
lar, we identify the precise order of the maximum expected
convergence time for the case of simple static graphs such as
line graph and cycle. Here we note that, although the result
of this appendix works well when we benefit from inherent
symmetry in the underlying graph G, in general it does not
lead to an explicit tight bound based on the parameters of
the network.

Definition 6. A birth-and-death chain of length n + 1 has
state space Ω = {0, 1, . . . , n} such that in one step the state
can increase or decrease by at most 1.

Lemma 8. Assume that G is a connected graph with diam-
eter D. Then, T̄ (G) is bounded from above by the maximum
hitting time of a birth-and-death chain of length D + 1 and
positive transition probabilities greater than 1

m .

Proof. We partition all the different states of the above
original coupled random walks (Definition 1) into different

classes. Here, we refer to each state as a possible pair of
positions of the walkers in the network. For each state x
we define d(x(0), x(2)) to be the length of the shortest path
between walker 0 and walker 2 in state x. Let

S` = {x ∈ X (G)| d(x(0), x(2)) = `}, ` = 0, 1, . . . , D.

It is clear that {S`}D`=1 is a partitioning of all the states.
Furthermore, S0 contains just one state. In other words, when
we reach class S0, it means that the walkers have met. Now,
we introduce a new Markov chain, by letting each class to
be a single state by itself, and we denote it by S`. Finally,
we assign the following transition probabilities to the new
Markov chain. For each ` = 1, 2, . . . , D, let

1. P{S` → S`−1} = min
x∈S`,y∈S`−1

P{x→ y},

2. P{S` → S`} = min
x∈S`

P{x→ x},

3. P{S`→S`+1}=1−min
x∈S`

P{x→x}− min
x∈S`,y∈S`−1

P{x→ y}.

Also, note that P{S` → S`+1} ≥ 0, and hence the above
transition probabilities are well defined. In fact, assigning the
above transition probabilities for the new chain is based on a
worst case scenario which keeps the walkers away from each
other for the longest period of time. In other words, this new
birth-and-death chain slows down the progress of moving the
walkers toward each other. As an example, given that the
distance of the walkers at the current time instant is `, i.e.,
d(x(0), x(2)) = `, (and hence x ∈ S`) the probability that at
the next time instant the walkers will get closer to each other
in the original process (in the new birth-and-death chain this
means that x moves from S` to S`−1) is at least as large
as that in the new birth-and-death chain. Therefore, it is not
hard to see that the probability that the walkers in the original
process meet over every sample path is at least as large as the
probability of the equivalent associated sample path in the
new birth-and-death process to hit the class S0. Hence, the
expected time to hit the state S0 is always an upper bound
for meeting time in the original coupled process. Finally, we
note that since in the original process each edge is chosen
with probability 1

m , the above assigned probabilities cannot
be smaller than 1

m .

Corollary 1. Assume that G is a cycle of n nodes. Then,

T̄ (G) ≤ n(n− 1)(n− 3)

16
+

2n+ 1

2
.

Proof. Analyzing the birth-and-death chain described in
Lemma 8 for a cycle with n nodes, we can bound T̄ (G)
from above. For such a graph, the new Markov chain has
the structure shown in Figure 3.

Therefore, T̄ (G) is bounded from above by H(S[n−1
2 ], S0)

in the birth-and-death diagram of Fig. 3. A simple calculation
shows that H(S[n−1

2 ], S0) = n(n−1)(n−3)
16 + 2n+1

2 and the
result follows.



Fig. 3. Birth-and-death chain for a cycle with n nodes.

Corollary 2. If G is a line graph with n nodes, then

T̄ (G) ≤ (n− 1)2(n+ 1)

4
.

Proof. This follows from a similar argument as in the proof
of Corollary 1, and the bound coincides with the result given
in [2].

Corollary 3. For a line graph and cycle with n nodes, we
have C1n

3 ≤ T̄ (G) ≤ C2n
3, where 0 < C1 < C2 are two

constants.

Proof. We prove the result for the line graph; for cycle graph
the proof is similar. From (24), since the degree of each node
is at most 2, we have

2
∑
i

[
R
(
x↔ y

)
+R

(
y ↔ i

)
−R

(
x↔ i

)]
≥ H(x, y).

Replacing this inequality in (13), and since m = n− 1, we
get

HZ(x, y) ≥ n+ 3

4
H(x, y).

Also, using Theorem 3 we can write

T̄ (G) ≥ 1

2
HZ≥

n+3

8
max
x,y

H(x, y) =
n+3

8
(n−1)2.

This relation in view of Corollary 2 completes the proof.
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