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Abstract

We provide bounds on the smallest eigenvalue of groundethti@m matrices (which are obtained
by removing certain rows and columns of the Laplacian maifia given graph). The gap between our
upper and lower bounds depends on the ratio of the smalldstaagest components of the eigenvector
corresponding to the smallest eigenvalue of the groundethtan. We provide a graph-theoretic bound
on this ratio, and subsequently obtain a tight characteoizaf the smallest eigenvalue for certain classes
of graphs. Specifically, for Erdos-Renyi random graphs, sthat when a (sufficiently small) s8tof
rows and columns is removed from the Laplacian, and the pitityap of adding an edge is sufficiently
large, the smallest eigenvalue of the grounded Laplacigmpotically almost surely approachgsp.

We also show that for randomirregular graphs with a single row and column removed, thellesta
eigenvalue is@(%). Our bounds have applications to the study of the convermyeate in consensus

dynamics with stubborn or leader nodes.

I. INTRODUCTION

There has been a great deal of research over the past seseaaled dedicated to the study
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of the structure and dynamics of networks. These investigatspan multiple disciplines and
include combinatorial, probabilistic, game-theoretied algebraic perspectives [11, [2],! [3].][4].
It has been recognized that tepectraof graphs (i.e., the eigenstructure associated with certai
matrix representations of the network) provide insights loth the topological properties of the
underlying network and dynamical processes occurring emgtwork [5], [6]. The eigenvalues

and eigenvectors of the Laplacian matrix of the graph, fangale, contain information about
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the connectivity and community structure of the netwark, [[8], [9], [10], and dictate the
convergence properties of certain diffusion dynamics.[11]

A variant on the Laplacian that has attracted attentiongemeyears is thgrounded Laplacian
matrix, obtained by removing certain rows and columns frdra Laplacian. The grounded
Laplacian forms the basis for the classical Matrix Tree Taso(characterizing the number of
spanning trees in the graph), and also plays a fundamenairrahe study of continuous-time
diffusion dynamics where the states of some of the nodesam#iwork are fixed at certain
values. The eigenvalues of the grounded Laplacian chaizetihe variance in the equilibrium
values for noisy instances of such dynamics, and deternhi@adte of convergence to steady
state [12], [13]. Optimization algorithms have been depebbto select “leader nodes” in the
network in order to minimize the steady-state variance an&ximize the rate of convergence
[13], [14], [15], [1€], and various works have studied théeefs of the location of such leaders
in distributed control and consensus dynamics [17]] [189][2C], [21].

In this paper, we provide a characterization of the sma#dagtnvalue of grounded Laplacian
matrices. Specifically, we provide graph-theoretic bouadshe smallest eigenvalue based on
the number of edges leaving the grounded nodes, bottlenaclte graph, and properties of
the eigenvector associated with the eigenvalue. Our bobademe tighter as this eigenvector
becomes more uniform; we provide graph properties undecwthiis occurs. As a consequence
of our analysis, we obtain the smallest eigenvalue of thegiled Laplacian matrix for Erdos-

Renyi random graphs and random regular graphs.

[I. BACKGROUND AND NOTATION

We useg = {V, £} to denote an undirected graph wheérds the set of nodes (or vertices)
and& C V x V is the set of edges. We will denote the number of vertices.byhe neighbors
of nodev; € V in graphg are given by the seV; = {v; € V | (v;,v;) € £}. The degreeof
nodev; is d; = |N;|, and the minimum and maximum degrees of the nodes in the grdpbe
denoted byd,,;, andd,,.., respectively. Ifd,,.. = d,.;, = d, the graph is said to bé-regular.
For a given set of nodeS C V, the edge-boundaryor just boundary) of the set is given by
0S = {(vi,v;) € €| v; € S,v; € V\ S}. Theisoperimetric constanof G is given by [5]
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ChoosingA to be the vertex with the smallest degree yields the balGd < d,,;,.



A. Laplacian and Grounded Laplacian Matrices

The adjacency matrixfor the graph is a matrixd € {0,1}"*", where entry(z, j) is 1 if
(vi,v;) € €, and zero otherwise. Thieaplacian matrixfor the graph is given by, = D — A,
where D is the degree matrix wittD = diag(dy, ds, ..., d,). For an undirected grap$, the
Laplacian L is a symmetric matrix with real eigenvalues that can be edierequentially as
0=XA(L) <X (L) <--- < A\(L) < 2d4.- The second smallest eigenvaldg L) is termed

the algebraic connectivityf the graph and satisfies the bound [5]
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Mo(L) > 223

(1)

We will designate a nonempty subset of vertices- V to be grounded nodesand assume
without loss of generality that they are placed last in thdedng of the nodes. We use,
to denote the number of grounded nodes that nadis connected to (i.eq; = |[N; N S)).
Removing the rows and columns df corresponding to the grounded nod&sproduces a
grounded Laplacian matriXalso known as @irichlet Laplacian matriy denoted byL,(S).
When the setS is fixed and clear from the context, we will simply udg to denote the
grounded Laplacian. For any given st we denote the smallest eigenvalue of the grounded
Laplacian by\(L,(.S)) or simply A.

When the graplg/ is connected, the grounded Laplacian matrix is a positiViaite matrix and
all of the elements in its inverse are nonnegative [22]. FtbenPerron-Frobenius (P-F) theorem
[23], the eigenvector associated with the smallest eigaavaf the grounded Laplacian can be
chosen to be nonnegative (elementwise). Furthermore, Wiegrounded nodes do not form a
vertex cut, the eigenvector associated with the smallgsthegrlue is unique (up to normalization)

can be chosen to have all elements positive.

B. Applications in Consensus with Stubborn Agents

Consider a multi-agent system described by the connecteédiagirected graplyy = {V, £}
representing the structure of the system, and a set of eqsadescribing the interactions between
each pair of agents. In the study of consensus and opinicanaigs [11], each agent € V starts
with an initial scalar state (or opinion)(¢), which evolves over time as a function of the states

of its neighbors. A commonly studied version of these dymamnvolves a continuous-time



linear update rule of the form

yi(t) = Z (v () — wi(t)).

vjeM
T
Aggregating the state of all of the nodes into the ve&tot) = |y, (t) ya(t) --- wya(t)| . the
above equation produces the system-wide dynamical eaquatio
Y =-LY, 2

where L is the graph Laplacian. When the graph is connected, thectay of the above
dynamical system satisfiés(t) — 2117V (0) (i.e., all agents reach consensus on the average
of the initial values), and the asymptotic convergence iatgiven by \,(L) [11].

Now suppose that there is a subsetC V of agents whose opinions are kept constant
throughout time, i.e.Yvs € S, Jy, € R such thaty,(t) = ys V¢ € R>y. Such agents are known
as stubborn agent®r leaders(depending on the context) [13], [20]. In this case the dyicam

(@) can be written in the matrix form

YF(t) B Lyi Lio| |Yr(2)

Yy(t) Loy Loy | |Ys(?)
whereYr andYy are the states of the non-stubborn and stubborn agentgctastby. Since the
stubborn agents keep their values constant, the matfigeand L, are zero. Thus, the matrix
Ly, is the grounded Laplacian for the system, ik, = L,(5). It can be shown that the state
of each follower asymptotically converges to a convex caration of the values of the stubborn
agents, and that the rate of convergence is asymptoticaindpy A, the smallest eigenvalue of
the grounded Laplacian [13].

Similarly, one can consider discrete-time consensus digsafalso known as DeGroot dynam-
ics) with a setS of stubborn nodes, given by the update equatipft + 1) = A,Yx(t), where
Yr(t) is the state vector for the non-stubborn nodes at time#s@pd A, is an(n—|S|) x (n—|5])
nonnegative matrix given by, = 7 — %Lg, with constant € (d,,..., o0) [24]. Once again, each
non-stubborn node will converge asymptotically to a corsembination of the stubborn nodes’
states. The largest eigenvalue 4f is given by \,...(4,) = 1 — $A(L,), and determines the
asymptotic rate of convergence. Thus, our bounds on thelesha&igenvalue of the grounded

Laplacian will readily translate to bounds on the largegeavalue ofA,.



There have been various recent investigations of grapheptiep that impact the convergence
rate for a given set of stubborn agents, leading to the dpusdmit of algorithms to find ap-
proximately optimal sets of stubborn/leader agents to meed the convergence rate [13], [20],
[19]. The bounds provided in this paper contribute to theeusidnding of consensus dynamics
with fixed opinions by providing bounds on the convergende mduced by any given set of

stubborn or leader agents.

IIl. BOUNDS ON THESMALLEST EIGENVALUE OF L,

The following theorem provides our core bounds on the smsiaélEgenvalue of the grounded
Laplacian; in subsequent sections, we will characteriaplgs where these bounds become tight.
Theorem 1:Consider a graply = {V, £} with a set of grounded nodesC V. Let \ denote
the smallest eigenvalue of the grounded Lapladigrand letx be a corresponding nonnegative

eigenvector, normalized so that the largest component,is = 1. Then

|0S]| . |oX| |0S]|
n— 19" Xons X[ S n— 8] @)
wherez,,;, IS the smallest eigenvector componentxin O

Proof: From the Rayleigh quotient inequality [23], we have
A< zTng,

for all z € R"~I5 with 27> = 1. Let X C V'\ S be the subset of vertices for whicf| is
minimum, and assume without loss of generality that theicestare arranged so that those in
set X come first in the ordering. The upper boumdn x s % is then obtained by choosing
z= ﬁ[llxm 014\ (xusy]’, and noting that the sum of all elements in the {3f x | X|
block of L, is equal to the sum of the number of neighbors each verteX ihas outsideX
(i.e.,|0X]). The upper boundn'?—% readily follows by choosing the subsat=V\ S.

For the lower bound, we left-multiply the eigenvector eqpatL,x = Ax by the vector

consisting of alll’s to obtain
n—|S| n—|S]|

Z a;T; = A Z i,
=1 i=1
where «; is the number of grounded nodes in nog&s neighborhood. Using the fact that the

eigenvector is nonnegative, this gives
n—|5]| n—|S| n—|5]|

Tmin Y 06 < > iy =AY 1y <A — [S])Tmaa = A(n — |S]).
=1 =1 =1



Fig. 1. Two complete graphs, each withnodes, connected via a single edge. The grounded
node is colored black.

Since> " * a; = |8S
Remark 1:For the case thdtS| = 1 we have

, the lower bound is obtained. [ |

ds

n—1

dsxmin

<A<

n—1
whered, is the degree of the grounded node. Note that the smallest\atue of the grounded
Laplacian for a set of grounded nodes is always upper bounded$y(since|0S| < |S|(n —
|S])), with equality if and only if all grounded nodes connect tbather nodes (it is easy to
see that the smallest eigenvector compongnt = 1 in this case). O

Example 1:Consider the graph shown in Figuré 1 consisting of two cotepigaphs org
nodes, joined by a single edge. Suppose the black node ingilne fis chosen as the grounded
node. In this case, we hayéS| = § — 1, and the extreme upper bound [d (3) indicates that
A < % ~ % for large n. Now, if we take X to be the set of all nodes in the left clique, we
have|0X| =1 and |X| = 7, leading to\ < % by the intermediate upper bound [d (3). [

In the next section, we will characterize graphs under whigh, (the smallest eigenvector
component) converges tg in which case the lower and upper boundslin (3) coincide aeld y
a tight characterization of. As seen in the above example, the presence of bottleneckisgam
the non-grounded nodes will causg,;, to go to zero; in certain graphs with good expansion

properties, however, we will see that this will not occur.

IV. THE BEHAVIOR OF THE SMALLEST EIGENVECTOR COMPONENT

In this section, we analyze the effect of the network stgctan the behavior of the smallest
eigenvector component,,;,,. We will provide conditions under which this component goz$
and stays bounded away fraimrespectively. This will then allow us to characterize tightness

of the bounds on the smallest eigenvaluelin (3).



For a given subse$ C V of grounded nodes, let,(S) be the grounded Laplacian matrix
with smallest eigenvalug and corresponding nonnegative eigenvectoMe denote the-th
element ofx by z;. We write L, = L+ A whereL is the (n —|S]) x (n —|S|) Laplacian matrix
of the graph when we remove the grounded nodes and all ofitiedent edges. Matrix\ is a
(n —1|S]) x (n — |S|) diagonal matrix with the-th diagonal element equal tg¢ (the number of
grounded neighbors of nodg). We assume the graph correspondind.tis connected (as,,,;.,
can be0 otherwise), and denote the eigenvaluesLdfy 0 = A;(L) < Ao(L) < ... < A\, i5(L),
with corresponding orthogonal eigenvecters vo, ..., v,_|g. We takev, = 1, and normalize
all of the other eigenvectors so thige; ||, = 1.

There are various results in the literature that charametie change in eigenvectors under
modifications of matrix elements, including the commonlgdi®avis-Kahan theorems (which
provide bounds on the angle between the original and peudigenvectors) [25]. However,
such bounds on the angle are not particularly useful in cbamzing the behavior of the smallest
component of the perturbed eigenvectdNe thus provide the following perturbation result
bounding the smallest eigenvector componenk of terms of the number of grounded nodes,
the number of edges they have to the other nodes, and the atimityeof the graph induced
by the non-grounded nodes. The proof of the lemma starts imi#as manner to the proof of
standard perturbation resulis [25], but the latter halfha proof leverages the explicit nature
of the perturbations to obtain a bound on the smallest esgav component (i.e., this result
can be viewed as providing a bound on tkenorm of the difference between the original and
perturbed eigenvectors, as opposed to a bound on the artgledrethe vectors).

Lemma 1:Let L be the(n — |S|) x (n — |S]) Laplacian matrix for a connected network, and
let A = diag(ov, az, ..., ,_j5), Where0 < a; < [S] for all 1 < i < n —|S]. Let x be the
positive eigenvector corresponding to the smallest eiglelevof L, = L+ A, normalized so that

x|l = 1. Then the smallest element gfsatisfies

., 2/Is]

Tmin Z )\2 (E) 9 (4)

where|95| £ S5 a. O

1For example, consider two x 1 vectors, the first of which consists of all entries equal tand the second which has— 1
entries equal td and the last component equal @ The angle between these two vectors goe$ &sn increases, but the

smallest component of the second vector is always



Proof: The eigenvector equation fdy, is given by
Lyx = (L+A)x = )\x. (5)

Project the eigenvectat onto the subspace spanned byto obtainx = 1 + d, whered is

orthogonal tov, and~ = L'x_ Thus we can write

n—|S|*
n—|S|
d= Z (5iVZ', (6)
=2
for some real number&, ds, . . ., 0,,_|s). Substitutingx = 71 +d into (8) and rearranging gives
Ld = (M — A)x. (7
————

II>

Multiplying both sides of[{I7) byi” yields0 = 17z, and thusz is also orthogonal ter;. Writing
z = 2?:‘2'5‘ @;v; for some constantg,, ¢s, . . ., ¢,_|s| and substituting this andl(6) intbl(7), we

have
n—|S] n—|S] n—|S]

which givesd; = A;?ii) by the linear independence of the eigenvectors .., v,_is. Thus we

can writed = 3.7 )% £y, with 2-norm given by

(D)
A2 IR NPT P ]
d 2 = ( Z_ ) S — 22: —2 . 8
4= 2 (5D) = wEr &9 = nr ©
From the definition ok in (7)), we have
n—|5]| n—|S| n—|S|

Izl = > (A —a)’af < ) (A=)’ = (n—|S)A* —27|05| + ) of.

=1 =1 i=1

Applying ), [90S] < |S|(n — |S]), and the fact thaty; < |S| for all 1 <i <n — |S|, we obtain
oS ?
zll3 < (n—|S |7—2>\85 +|S]|0S| < 2|51|0S].
2[5 < (n — | |><n_‘5‘)2 |05] + 51195 < 215105
Combining this with [(B) yields
2|5]|95]
2
< —.

Next, fromd = x — v1 we have

HdH% > (Timaz — '7)2 + (v — xmin)2 =(1- 7)2 + (v — xmin)z' (10)



The right hand side of (10) achieves its minimum whes 1“’% Substituting this value and
rearranging gives,.;, > 1 —+/2||d||2, which yields the desired result when combined 9).
u

The above result, in conjunction with Theoréin 1, allows usharacterize graphs where the
bounds in[(B) become asymptotically tight.

Theorem 2:Consider a sequence of connected graghsn € Z., wheren indicates the
number of nodes. Consider an associated sequence of gobundiessS,, n € Z,. Let L,
denote the Laplacian matrix induced by the non-groundecsiad each graply,,, and let),
denote the smallest eigenvalue of the grounded Laplaciath& graphg, with grounded set

S,. Then:

25 1, then ), = © < 95|

1) If limsup,,_, o) 5T )

2) I lim, e Yo = 0, then(1 — o(1))2%L < &, < 2L

[]
In the next sections, we will apply the results from this getto study the smallest eigenvalue
of the grounded Laplacian of Erdos-Renyi aftdlegular random graphs.

V. ANALYSIS OF ERDOS-RENYI RANDOM GRAPHS

Definition 1: An Erdos-Renyi (ER) random graph, denotgth, p), is a graph om nodes
where each possible edge between two distinct verticeesept independently with probability
p (which could be a function of). Equivalently, an ER random graph can be viewed as a
probability space(2,, F,.,P,), where the sample spaée, consists of all possible graphs on
n nodes, thes-algebraF,, is the power set of,, and the probability measui®, assigns a
probability of pl/(1 — p)(2)~1€l to each graph with€| edges. 0

Definition 2: For an ER random graph, we say that a property haklgmptotically almost
surely if the probability of the set of graphs with that property €ovthe probability space
(Qy, Fn,P)) goes tol asn — oo. For a given graph functiorf : ©, — R>, and another
functiong : N — R, we say f(G(n,p)) < (1 + o(1))g(n) asymptotically almost surely if
there exists some functiola(n) € o(1) such thatf(G(n,p)) < (1 + h(n))g(n) with probability
tending tol asn — oc. O

We start by showing the following bounds on the degrees amgkrsmetric constants of such

graphs; while there exist bounds on these quantities focispdorms of p (e.g., [26], [27],



[28], [29]), they do not cover the full range of probabilityrictions considered by the following
lemma. The proof of this result is provided in the Appendix.

Lemma 2:Consider the Erdos-Renyi random gragln, p), where the edge probability
satisfiedim sup,,_, . 12—; < 1. Fix anye € (0,1]. There exists a positive constan{that depends
on p) such that the minimum degreg,;,, maximum degreel,,.., and isoperimetric constant

i(G) satisfy 1
anp < i(G) < din < daw < 1p (1 V3 (1“—") ) |

np
asymptotically almost surely. O

Remark 2:Note that the probability functions captured by the abovenha include the special
cases Wherg is a constant and wherg(n) = <22 for constantc > 1. The above results
generalize the bounds on the degrees and the isoperimetrgtant in [26], [[217], [[29] where
probability functions of the form"/% were studied, although the bounding constants provided
in those works will be generally tighter than the ones predidbove due to the special case
analysis. Further note that whénn = o(np), the upper bound on the maximum degree becomes
np(1+o(1)). O

Lemmal2 and the lower boundl (1) immediately lead to the falgwacorollary.

Corollary 1: Consider the Erdos-Renyi random gra@n, p), where the edge probability
satisfieslim sup,,_, . 12—;} < 1. Then there exists a positive constan{that depends op) such
that the algebraic connectivity,(G) satisfies\y(L) > ynp asymptotically almost surely. [

With the above results in hand, we are now in place to provefdhewing fact about the
smallest eigenvalue of the grounded Laplacian matrix fatoBfRenyi random graphs. We omit
the dependence of and A on n for notational convenience.

Theorem 3:Consider the Erdos-Renyi random gra@lv, p), where the edge probability
satisfieslimsup, .. 2% < 1. Let S be a set of grounded nodes chosen uniformly at random

np
with [S| = o(y/np). Then the smallest eigenvalueof the grounded Laplacian satisfies

(L —o(1))|Slp < A < (L+0(1))|S|p

asymptotically almost surely. O
Proof: For probability functions satisfying the conditions in ttheorem, Lemmal|2 indicates

for any setS of grounded nodesoS| < |S|dmn.. < 5|S|np asymptotically almost surely for



some positive constant. Let L be the Laplacian matrix for the graph induced by the non-
grounded nodes (i.e., the graph obtained by removing allirgted nodes and their incident
edges). From[]7], we havi,(L) > \y(L) — |S|. Combining this with Corollary11, we obtain

VISTOS| _ 1SWBw _ )

asymptotically almost surely whel$| = o(,/np). From LemmdIl and Theorem 1, we have

)\2(L) -onp — |S| N

(1—o(1))2%% < A < %% asymptotically almost surely.

Next, consider the random varialji2S|; there argS|(n — |S|) possible edges betweeghand
V \ S, each appearing independently with probabijityand thus|0S| is a Binomial random

variable with|S|(n — |S|) trials. For all0 < a < 1 we have the concentration inequalities|[30]
Pr(|0S| > (1+a)E[0S]) <e ™ 5
(11)

—E[|0S[]a?
2

Pr(|0S| < (1 — )E[|0S]]) < e
We know thatE[|0S|] = |S|(n — |S|)p. Considera = —L— which causes the upper bound in
_W)- Since|S|(n — |S|) is lower bounded by, — 1

andnp > Inn for sufficiently largen, the bounds in[(11) asymptotically go to zero. Thus,

the first expression to becomep(

(1= o(1)[S](n = [S])p < |05] < (1 + o(1))|S[(n — [S])p,

asymptotically almost surely. Substituting into the bosifiak A, we obtain the desired resulm

VI. RANDOM d-REGULAR GRAPHS

We now consider randoni-regular graphs, defined as follows, and characterize tradlesh
eigenvalue of the grounded Laplacian for such graphs.

Definition 3: For anyn € N, let d € N be such tha8 < d < n anddn is an even number.
Define 2, to be the set of alkd-regular graphs om nodes. Define the probability space
(Qn.a, Fna, Pna), Where thes-algebra?, ; is the power set of2,,, andP,, is a probabil-
ity measure assigning equal probability to every elemenf2pf. An element of(2, ; drawn
according toP, 4 is called a randona-regular graph, and denoted By ; [2]. O

Let M[(A) < A\y(A) < ... < X (A) be the eigenvalues of the adjacency matrix of any given
graphg; note that\/,(A) = d for d-regular graphs. Defing’(G) = max{|\|(A4)|, |\,_,;(A4)|}. It

was shown in[[31] that for any > 0,

N(Gna) <2Vd—1+c¢ (12)



asymptotically almost surely. As the Laplacian for the @rapgiven byL = D — A =dIl — A,

for any e > 0, the algebraic connectivity of a randadrregular graph satisfies
Mo(L) >d—2vVd—1—¢,

asymptotically almost surely. On the other hand we know #hal) > \o(L) — |S| [7]. Thus

for a randomd-regular graph with a single grounded node, we have

21511051 _ 2vd _ 2Vd 1

M(L) ML) " d—2yd—1-€e—1

asymptotically almost surely for sufficiently large and sufficiently smalle. Lemmall and

TheorenmL then yield the following result.
Theorem 41 et G be a randona-regular graph om vertices with a single grounded node. Then
for sufficiently larged, the smallest eigenvalue of the grounded Laplacian saifie © (%)

asymptotically almost surely. O

VIlI. CONCLUSION

We studied the smallest eigenvalue of grounded Laplaciatrices, and provided bounds
on this eigenvalue in terms of the number of edges betweemriwnded nodes and the rest
of the network, bottlenecks in the network, and the smalleshponent of the eigenvector for
the smallest eigenvalue. We showed that our bounds are wigbh the smallest eigenvector
component is close to the largest component, and providgghegtheoretic conditions that cause
the smallest component to converge to the largest compoAanbutcome of our analysis is
tight bounds for Erdos-Renyi random graphs ahcegular random graphs. A rich avenue for

future research is to extend and apply our results to otlemsek of random graphs.
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APPENDIX
A. Proof of Lemma&]2

Proof: The degree bounds are readily obtained from classical obrat®n inequalities.
Specifically, letd denote the degree of a given vertex. Note that a Binomial random variable
with parameters: — 1 and p, with expected valué[d] = (n — 1)p. Now, for any0 < 3 < v/3
we hav [30]

—E[d)5>

Pr(d > (1+ B)E[d]) < e 5

Choose3 = /3 (‘2—;}) *™" which is at most/3 for probability functions satisfying the conditions

in the lemma and for sufficiently large. Substituting into the above expression, we have

Pr(d > (14 B)E[d) < e ™5 —0 (6-1%(12:)*25) .
To show that the maximum degree is smaller than the givendagypmptotically almost surely,
we show that all vertices have degree less than the givendoaith probability tending tol.
By the union bound, the probability that at least one vertax tiegree larger thaii + 3)E[d]
is upper bounded by

nPr(d > (1+ B)E[) = O () ).

Sincelimsup,, . 12—;] < 1, the above expression goes to zeronas» oo, proving the upper
bound on the maximum degree.

We now show the lower bound fafG). Specifically, we will show that fop satisfying the
properties in the lemma, almost every graph has the propleatyall sets of vertices of size
1 <s < |3], have at leastsnp edges leaving that set, for some constarnhat we will specify
later. For any specific sef of vertices of sizes, the probability thatS has|asnp]| or fewer
edges leaving the set EJLZ%"“ (5(".‘5))]91' (1 —p)*(»==)=7, Let E, denote the event that at least

J
one set of vertices of size has|asnp| or fewer edges leaving the set. Then

Pr[E, < CL) Laim (S(nj“ S>) (1 — pyo=9-i (13)

=0

2The statement of this concentration inequality[in] [30] has 5 < 1, but the improved upper bound §f3 can be obtained

from the same proofutatis mutandis



Note that forl < j < |asnp],
(s(nj—s))pj(l — p)sn=s)=i s(n—s)—j+1 p - s(n—s)—asnp p

(S(]@:ls))pj—l(l — p)s(n—s)=j+1 J 1—p— asnp 1—0p
S 1—2ap 1 S i7
- 2 1—-p 7 2a
for s < |5 and2a < 1 (which will be satisfied by our eventual choice @). Thus, there exists

some constant > 0 such that

asnp|
sin—2:5 j s(n—s)—j sin—23:5 asn, s(n—s)—|asn,
3 <(j ))p’(l—P)( )JST(( ))pL (1 — p)stn—9)-lasnn]

o lasnp|
Substituting into[(IB) and using the fact th@&} < (%)k we have

s . asnp
Pr [Es] <r <E> (M) e—p(s(n—s)—asnp)
S asnp

ne asnp
< TeslnT (E) e—p(s(n—s)—asnp)
o o

— ,r,esh(s)’ (14)
where
Inn
h(s):1+np(—+a—alna+ap—1) +ps — In s. (15)
np

7

v~

I'(«)
Noting thath(s) is decreasing i until s = % and increasing afterwards, we have

h(s) < max{h(l),h (g)}
:max{l +p+npl'(a),l +1In2+np (F(a) — 12—;: + %)}

From (15),['(«) is increasing ina for 0 < a < 1, with I'(0) = 12—;‘ — 1 being negative and
bounded away frond for sufficiently largen (by the assumption op from the statement of the
lemma). Thus, there exists some sufficiently small positiwestanty such thath(s) < —anp
for some constant > 0 and for sufficiently large:. Thus [14) becomePBr [E;] < re~**" for
sufficiently largen.

By the union bound, the probability thatG) < anp is upper bounded by the sum of the

probabilities of the event&; for 1 < s < |7 ]. Using the above expression, we have

2] 2] o —np
Pr[E,] < —sanp < —sanp _ . © 7

which goes td) asn — co. Thus, we haveé(G) > anp asymptotically almost surely. [ |
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