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On the Smallest Eigenvalue of

Grounded Laplacian Matrices

Mohammad Pirani and Shreyas Sundaram

Abstract

We provide bounds on the smallest eigenvalue of grounded Laplacian matrices (which are obtained

by removing certain rows and columns of the Laplacian matrixof a given graph). The gap between our

upper and lower bounds depends on the ratio of the smallest and largest components of the eigenvector

corresponding to the smallest eigenvalue of the grounded Laplacian. We provide a graph-theoretic bound

on this ratio, and subsequently obtain a tight characterization of the smallest eigenvalue for certain classes

of graphs. Specifically, for Erdos-Renyi random graphs, we show that when a (sufficiently small) setS of

rows and columns is removed from the Laplacian, and the probability p of adding an edge is sufficiently

large, the smallest eigenvalue of the grounded Laplacian asymptotically almost surely approaches|S|p.

We also show that for randomd-regular graphs with a single row and column removed, the smallest

eigenvalue isΘ( d
n
). Our bounds have applications to the study of the convergence rate in consensus

dynamics with stubborn or leader nodes.

I. INTRODUCTION

There has been a great deal of research over the past several decades dedicated to the study

of the structure and dynamics of networks. These investigations span multiple disciplines and

include combinatorial, probabilistic, game-theoretic, and algebraic perspectives [1], [2], [3], [4].

It has been recognized that thespectraof graphs (i.e., the eigenstructure associated with certain

matrix representations of the network) provide insights into both the topological properties of the

underlying network and dynamical processes occurring on the network [5], [6]. The eigenvalues

and eigenvectors of the Laplacian matrix of the graph, for example, contain information about
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the connectivity and community structure of the network [7], [8], [9], [10], and dictate the

convergence properties of certain diffusion dynamics [11].

A variant on the Laplacian that has attracted attention in recent years is thegrounded Laplacian

matrix, obtained by removing certain rows and columns from the Laplacian. The grounded

Laplacian forms the basis for the classical Matrix Tree Theorem (characterizing the number of

spanning trees in the graph), and also plays a fundamental role in the study of continuous-time

diffusion dynamics where the states of some of the nodes in the network are fixed at certain

values. The eigenvalues of the grounded Laplacian characterize the variance in the equilibrium

values for noisy instances of such dynamics, and determine the rate of convergence to steady

state [12], [13]. Optimization algorithms have been developed to select “leader nodes” in the

network in order to minimize the steady-state variance or tomaximize the rate of convergence

[13], [14], [15], [16], and various works have studied the effects of the location of such leaders

in distributed control and consensus dynamics [17], [18], [19], [20], [21].

In this paper, we provide a characterization of the smallesteigenvalue of grounded Laplacian

matrices. Specifically, we provide graph-theoretic boundson the smallest eigenvalue based on

the number of edges leaving the grounded nodes, bottlenecksin the graph, and properties of

the eigenvector associated with the eigenvalue. Our boundsbecome tighter as this eigenvector

becomes more uniform; we provide graph properties under which this occurs. As a consequence

of our analysis, we obtain the smallest eigenvalue of the grounded Laplacian matrix for Erdos-

Renyi random graphs and random regular graphs.

II. BACKGROUND AND NOTATION

We useG = {V, E} to denote an undirected graph whereV is the set of nodes (or vertices)

andE ⊂ V ×V is the set of edges. We will denote the number of vertices byn. Theneighbors

of nodevi ∈ V in graphG are given by the setNi = {vj ∈ V | (vi, vj) ∈ E}. The degreeof

nodevi is di = |Ni|, and the minimum and maximum degrees of the nodes in the graphwill be

denoted bydmin anddmax, respectively. Ifdmax = dmin = d, the graph is said to bed-regular.

For a given set of nodesS ⊂ V, the edge-boundary(or just boundary) of the set is given by

∂S = {(vi, vj) ∈ E | vi ∈ S, vj ∈ V \ S}. The isoperimetric constantof G is given by [5]

i(G) , min
A⊂V ,|A|≤n

2

|∂A|
|A| .

ChoosingA to be the vertex with the smallest degree yields the boundi(G) ≤ dmin.



A. Laplacian and Grounded Laplacian Matrices

The adjacency matrixfor the graph is a matrixA ∈ {0, 1}n×n, where entry(i, j) is 1 if

(vi, vj) ∈ E , and zero otherwise. TheLaplacian matrixfor the graph is given byL = D − A,

whereD is the degree matrix withD = diag(d1, d2, . . . , dn). For an undirected graphG, the

LaplacianL is a symmetric matrix with real eigenvalues that can be ordered sequentially as

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) ≤ 2dmax. The second smallest eigenvalueλ2(L) is termed

the algebraic connectivityof the graph and satisfies the bound [5]

λ2(L) ≥
i(G)2
2dmax

. (1)

We will designate a nonempty subset of verticesS ⊂ V to be grounded nodes, and assume

without loss of generality that they are placed last in the ordering of the nodes. We useαi

to denote the number of grounded nodes that nodevi is connected to (i.e.,αi = |Ni ∩ S|).
Removing the rows and columns ofL corresponding to the grounded nodesS produces a

grounded Laplacian matrix(also known as aDirichlet Laplacian matrix) denoted byLg(S).

When the setS is fixed and clear from the context, we will simply useLg to denote the

grounded Laplacian. For any given setS, we denote the smallest eigenvalue of the grounded

Laplacian byλ(Lg(S)) or simplyλ.

When the graphG is connected, the grounded Laplacian matrix is a positive definite matrix and

all of the elements in its inverse are nonnegative [22]. Fromthe Perron-Frobenius (P-F) theorem

[23], the eigenvector associated with the smallest eigenvalue of the grounded Laplacian can be

chosen to be nonnegative (elementwise). Furthermore, whenthe grounded nodes do not form a

vertex cut, the eigenvector associated with the smallest eigenvalue is unique (up to normalization)

can be chosen to have all elements positive.

B. Applications in Consensus with Stubborn Agents

Consider a multi-agent system described by the connected and undirected graphG = {V, E}
representing the structure of the system, and a set of equations describing the interactions between

each pair of agents. In the study of consensus and opinion dynamics [11], each agentvi ∈ V starts

with an initial scalar state (or opinion)yi(t), which evolves over time as a function of the states

of its neighbors. A commonly studied version of these dynamics involves a continuous-time



linear update rule of the form

ẏi(t) =
∑

vj∈Ni

(yj(t)− yi(t)).

Aggregating the state of all of the nodes into the vectorY (t) =
[

y1(t) y2(t) · · · yn(t)
]T

, the

above equation produces the system-wide dynamical equation

Ẏ = −LY, (2)

where L is the graph Laplacian. When the graph is connected, the trajectory of the above

dynamical system satisfiesY (t) → 1
n
11

TY (0) (i.e., all agents reach consensus on the average

of the initial values), and the asymptotic convergence rateis given byλ2(L) [11].

Now suppose that there is a subsetS ⊂ V of agents whose opinions are kept constant

throughout time, i.e.,∀vs ∈ S, ∃ys ∈ R such thatys(t) = ys ∀t ∈ R≥0. Such agents are known

as stubborn agentsor leaders(depending on the context) [13], [20]. In this case the dynamics

(2) can be written in the matrix form



ẎF (t)

ẎS(t)



 = −




L11 L12

L21 L22








YF (t)

YS(t)



 ,

whereYF andYS are the states of the non-stubborn and stubborn agents, respectively. Since the

stubborn agents keep their values constant, the matricesL21 andL22 are zero. Thus, the matrix

L11 is the grounded Laplacian for the system, i.e.,L11 = Lg(S). It can be shown that the state

of each follower asymptotically converges to a convex combination of the values of the stubborn

agents, and that the rate of convergence is asymptotically given byλ, the smallest eigenvalue of

the grounded Laplacian [13].

Similarly, one can consider discrete-time consensus dynamics (also known as DeGroot dynam-

ics) with a setS of stubborn nodes, given by the update equationYF (t+ 1) = AgYF (t), where

YF (t) is the state vector for the non-stubborn nodes at time-stept, andAg is an(n−|S|)×(n−|S|)
nonnegative matrix given byAg = I− 1

k
Lg, with constantk ∈ (dmax,∞) [24]. Once again, each

non-stubborn node will converge asymptotically to a convexcombination of the stubborn nodes’

states. The largest eigenvalue ofAg is given byλmax(Ag) = 1 − 1
k
λ(Lg), and determines the

asymptotic rate of convergence. Thus, our bounds on the smallest eigenvalue of the grounded

Laplacian will readily translate to bounds on the largest eigenvalue ofAg.



There have been various recent investigations of graph properties that impact the convergence

rate for a given set of stubborn agents, leading to the development of algorithms to find ap-

proximately optimal sets of stubborn/leader agents to maximize the convergence rate [13], [20],

[19]. The bounds provided in this paper contribute to the understanding of consensus dynamics

with fixed opinions by providing bounds on the convergence rate induced by any given set of

stubborn or leader agents.

III. B OUNDS ON THESMALLEST EIGENVALUE OF Lg

The following theorem provides our core bounds on the smallest eigenvalue of the grounded

Laplacian; in subsequent sections, we will characterize graphs where these bounds become tight.

Theorem 1:Consider a graphG = {V, E} with a set of grounded nodesS ⊂ V. Let λ denote

the smallest eigenvalue of the grounded LaplacianLg and letx be a corresponding nonnegative

eigenvector, normalized so that the largest component isxmax = 1. Then

|∂S|
n− |S|xmin ≤ λ ≤ min

X⊆V\S

|∂X|
|X| ≤ |∂S|

n− |S| , (3)

wherexmin is the smallest eigenvector component inx.

Proof: From the Rayleigh quotient inequality [23], we have

λ ≤ zTLgz,

for all z ∈ R
n−|S| with zT z = 1. Let X ⊆ V \ S be the subset of vertices for which|∂X|

|X| is

minimum, and assume without loss of generality that the vertices are arranged so that those in

setX come first in the ordering. The upper boundminX⊆V\S
|∂X|
|X| is then obtained by choosing

z = 1√
|X|

[11×|X| 01×|V\{X∪S}|]
T , and noting that the sum of all elements in the top|X| × |X|

block of Lg is equal to the sum of the number of neighbors each vertex inX has outsideX

(i.e., |∂X|). The upper bound|∂S|
n−|S| readily follows by choosing the subsetX = V \ S.

For the lower bound, we left-multiply the eigenvector equation Lgx = λx by the vector

consisting of all1’s to obtain
n−|S|
∑

i=1

αixi = λ

n−|S|
∑

i=1

xi,

whereαi is the number of grounded nodes in nodevi’s neighborhood. Using the fact that the

eigenvector is nonnegative, this gives

xmin

n−|S|
∑

i=1

αi ≤
n−|S|
∑

i=1

αixi = λ

n−|S|
∑

i=1

xi ≤ λ(n− |S|)xmax = λ(n− |S|).
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Fig. 1: Two complete graphs, each withn
2

nodes, connected via a single edge. The grounded

node is colored black.

Since
∑n−|S|

i=1 αi = |∂S|, the lower bound is obtained.

Remark 1:For the case that|S| = 1 we have

dsxmin

n− 1
≤ λ ≤ ds

n− 1
,

whereds is the degree of the grounded node. Note that the smallest eigenvalue of the grounded

Laplacian for a setS of grounded nodes is always upper bounded by|S| (since|∂S| ≤ |S|(n−
|S|)), with equality if and only if all grounded nodes connect to all other nodes (it is easy to

see that the smallest eigenvector componentxmin = 1 in this case).

Example 1:Consider the graph shown in Figure 1 consisting of two complete graphs onn
2

nodes, joined by a single edge. Suppose the black node in the figure is chosen as the grounded

node. In this case, we have|∂S| = n
2
− 1, and the extreme upper bound in (3) indicates that

λ ≤ |∂S|
n−1

≈ 1
2

for largen. Now, if we takeX to be the set of all nodes in the left clique, we

have|∂X| = 1 and |X| = n
2
, leading toλ ≤ 2

n
by the intermediate upper bound in (3).

In the next section, we will characterize graphs under whichxmin (the smallest eigenvector

component) converges to1, in which case the lower and upper bounds in (3) coincide and yield

a tight characterization ofλ. As seen in the above example, the presence of bottlenecks among

the non-grounded nodes will causexmin to go to zero; in certain graphs with good expansion

properties, however, we will see that this will not occur.

IV. THE BEHAVIOR OF THE SMALLEST EIGENVECTOR COMPONENT

In this section, we analyze the effect of the network structure on the behavior of the smallest

eigenvector componentxmin. We will provide conditions under which this component goesto 1

and stays bounded away from0, respectively. This will then allow us to characterize the tightness

of the bounds on the smallest eigenvalue in (3).



For a given subsetS ⊂ V of grounded nodes, letLg(S) be the grounded Laplacian matrix

with smallest eigenvalueλ and corresponding nonnegative eigenvectorx. We denote thei-th

element ofx by xi. We writeLg = L̄+∆ whereL̄ is the(n−|S|)× (n−|S|) Laplacian matrix

of the graph when we remove the grounded nodes and all of theirincident edges. Matrix∆ is a

(n− |S|)× (n− |S|) diagonal matrix with thei-th diagonal element equal toαi (the number of

grounded neighbors of nodevi). We assume the graph corresponding toL̄ is connected (asxmin

can be0 otherwise), and denote the eigenvalues ofL̄ by 0 = λ1(L̄) < λ2(L̄) ≤ ... ≤ λn−|S|(L̄),

with corresponding orthogonal eigenvectorsv1,v2, . . . ,vn−|S|. We takev1 = 1, and normalize

all of the other eigenvectors so that‖vi‖2 = 1.

There are various results in the literature that characterize the change in eigenvectors under

modifications of matrix elements, including the commonly used Davis-Kahan theorems (which

provide bounds on the angle between the original and perturbed eigenvectors) [25]. However,

such bounds on the angle are not particularly useful in characterizing the behavior of the smallest

component of the perturbed eigenvector.1 We thus provide the following perturbation result

bounding the smallest eigenvector component ofx in terms of the number of grounded nodes,

the number of edges they have to the other nodes, and the connectivity of the graph induced

by the non-grounded nodes. The proof of the lemma starts in a similar manner to the proof of

standard perturbation results [25], but the latter half of the proof leverages the explicit nature

of the perturbations to obtain a bound on the smallest eigenvector component (i.e., this result

can be viewed as providing a bound on the∞-norm of the difference between the original and

perturbed eigenvectors, as opposed to a bound on the angle between the vectors).

Lemma 1:Let L̄ be the(n− |S|)× (n− |S|) Laplacian matrix for a connected network, and

let ∆ = diag
(
α1, α2, . . . , αn−|S|

)
, where0 ≤ αi ≤ |S| for all 1 ≤ i ≤ n − |S|. Let x be the

positive eigenvector corresponding to the smallest eigenvalue ofLg = L̄+∆, normalized so that

‖x‖∞ = 1. Then the smallest element ofx satisfies

xmin ≥ 1− 2
√

|S||∂S|
λ2(L̄)

, (4)

where|∂S| ,∑n−|S|
i=1 αi.

1For example, consider twon×1 vectors, the first of which consists of all entries equal to1, and the second which hasn−1

entries equal to1 and the last component equal to0. The angle between these two vectors goes to0 asn increases, but the

smallest component of the second vector is always0.



Proof: The eigenvector equation forLg is given by

Lgx = (L̄+∆)x = λx. (5)

Project the eigenvectorx onto the subspace spanned byv1 to obtainx = γ1 + d, whered is

orthogonal tov1 andγ = 1
T
x

n−|S| . Thus we can write

d =

n−|S|
∑

i=2

δivi, (6)

for some real numbersδ2, δ3, . . . , δn−|S|. Substitutingx = γ1+d into (5) and rearranging gives

L̄d = (λI −∆)x
︸ ︷︷ ︸

,z

. (7)

Multiplying both sides of (7) by1T yields0 = 1
T
z, and thusz is also orthogonal tov1. Writing

z =
∑n−|S|

i=2 ϕivi for some constantsϕ2, ϕ3, . . . , ϕn−|S| and substituting this and (6) into (7), we

have

L̄d =

n−|S|
∑

i=2

δiL̄vi =

n−|S|
∑

i=2

δiλi(L̄)vi =

n−|S|
∑

i=2

ϕivi,

which givesδi =
ϕi

λi(L̄)
by the linear independence of the eigenvectorsv2, . . . ,vn−|S|. Thus we

can writed =
∑n−|S|

i=2
ϕi

λi(L̄)
vi with 2-norm given by

‖d‖22 =
n−|S|
∑

i=2

(
ϕi

λi(L̄)

)2

≤ 1

λ2(L̄)2

n−|S|
∑

i=2

ϕ2
i =

||z||22
λ2(L̄)2

. (8)

From the definition ofz in (7), we have

‖z‖22 =
n−|S|
∑

i=1

(λ− αi)
2x2

i ≤
n−|S|
∑

i=1

(λ− αi)
2 = (n− |S|)λ2 − 2λ|∂S|+

n−|S|
∑

i=1

α2
i .

Applying (3), |∂S| ≤ |S|(n− |S|), and the fact thatαi ≤ |S| for all 1 ≤ i ≤ n− |S|, we obtain

‖z‖22 ≤ (n− |S|) |∂S|2
(n− |S|)2 − 2λ|∂S|+ |S||∂S| ≤ 2|S||∂S|.

Combining this with (8) yields

‖d‖22 ≤
2|S||∂S|
λ2(L̄)2

. (9)

Next, fromd = x− γ1 we have

‖d‖22 ≥ (xmax − γ)2 + (γ − xmin)
2 = (1− γ)2 + (γ − xmin)

2. (10)



The right hand side of (10) achieves its minimum whenγ = 1+xmin

2
. Substituting this value and

rearranging givesxmin ≥ 1−
√
2‖d‖2, which yields the desired result when combined with (9).

The above result, in conjunction with Theorem 1, allows us tocharacterize graphs where the

bounds in (3) become asymptotically tight.

Theorem 2:Consider a sequence of connected graphsGn, n ∈ Z+, wheren indicates the

number of nodes. Consider an associated sequence of grounded nodesSn, n ∈ Z+. Let L̄n

denote the Laplacian matrix induced by the non-grounded nodes in each graphGn, and letλn

denote the smallest eigenvalue of the grounded Laplacian for the graphGn with grounded set

Sn. Then:

1) If lim supn→∞
2
√

|Sn||∂Sn|
λ2(L̄n)

< 1, thenλn = Θ
(

|∂Sn|
n−|Sn|

)

.

2) If limn→∞

√
|Sn||∂Sn|
λ2(L̄n)

= 0, then(1− o(1)) |∂Sn|
n−|Sn| ≤ λn ≤ |∂Sn|

n−|Sn| .

In the next sections, we will apply the results from this section to study the smallest eigenvalue

of the grounded Laplacian of Erdos-Renyi andd-regular random graphs.

V. ANALYSIS OF ERDOS-RENYI RANDOM GRAPHS

Definition 1: An Erdos-Renyi (ER) random graph, denotedG(n, p), is a graph onn nodes

where each possible edge between two distinct vertices is present independently with probability

p (which could be a function ofn). Equivalently, an ER random graph can be viewed as a

probability space(Ωn,Fn,Pn), where the sample spaceΩn consists of all possible graphs on

n nodes, theσ-algebraFn is the power set ofΩn, and the probability measurePn assigns a

probability of p|E|(1− p)(
n
2)−|E| to each graph with|E| edges.

Definition 2: For an ER random graph, we say that a property holdsasymptotically almost

surely if the probability of the set of graphs with that property (over the probability space

(Ωn,Fn,Pn)) goes to1 as n → ∞. For a given graph functionf : Ωn → R≥0 and another

function g : N → R≥0, we sayf(G(n, p)) ≤ (1 + o(1))g(n) asymptotically almost surely if

there exists some functionh(n) ∈ o(1) such thatf(G(n, p)) ≤ (1 + h(n))g(n) with probability

tending to1 asn → ∞.

We start by showing the following bounds on the degrees and isoperimetric constants of such

graphs; while there exist bounds on these quantities for specific forms of p (e.g., [26], [27],



[28], [29]), they do not cover the full range of probability functions considered by the following

lemma. The proof of this result is provided in the Appendix.

Lemma 2:Consider the Erdos-Renyi random graphG(n, p), where the edge probabilityp

satisfieslim supn→∞
lnn
np

< 1. Fix anyǫ ∈ (0, 1
2
]. There exists a positive constantα (that depends

on p) such that the minimum degreedmin, maximum degreedmax and isoperimetric constant

i(G) satisfy

αnp ≤ i(G) ≤ dmin ≤ dmax ≤ np

(

1 +
√
3

(
lnn

np

) 1
2
−ǫ
)

.

asymptotically almost surely.

Remark 2:Note that the probability functions captured by the above lemma include the special

cases wherep is a constant and wherep(n) = c lnn
n

for constantc > 1. The above results

generalize the bounds on the degrees and the isoperimetric constant in [26], [27], [29] where

probability functions of the formc lnn
n

were studied, although the bounding constants provided

in those works will be generally tighter than the ones provided above due to the special case

analysis. Further note that whenlnn = o(np), the upper bound on the maximum degree becomes

np(1 + o(1)).

Lemma 2 and the lower bound (1) immediately lead to the following corollary.

Corollary 1: Consider the Erdos-Renyi random graphG(n, p), where the edge probabilityp

satisfieslim supn→∞
lnn
np

< 1. Then there exists a positive constantγ (that depends onp) such

that the algebraic connectivityλ2(G) satisfiesλ2(L) ≥ γnp asymptotically almost surely.

With the above results in hand, we are now in place to prove thefollowing fact about the

smallest eigenvalue of the grounded Laplacian matrix for Erdos-Renyi random graphs. We omit

the dependence ofS andλ on n for notational convenience.

Theorem 3:Consider the Erdos-Renyi random graphG(n, p), where the edge probabilityp

satisfieslim supn→∞
lnn
np

< 1. Let S be a set of grounded nodes chosen uniformly at random

with |S| = o(
√
np). Then the smallest eigenvalueλ of the grounded Laplacian satisfies

(1− o(1))|S|p ≤ λ ≤ (1 + o(1))|S|p

asymptotically almost surely.

Proof: For probability functions satisfying the conditions in thetheorem, Lemma 2 indicates

for any setS of grounded nodes,|∂S| ≤ |S|dmax ≤ β|S|np asymptotically almost surely for



some positive constantβ. Let L̄ be the Laplacian matrix for the graph induced by the non-

grounded nodes (i.e., the graph obtained by removing all grounded nodes and their incident

edges). From [7], we haveλ2(L̄) ≥ λ2(L)− |S|. Combining this with Corollary 1, we obtain
√

|S||∂S|
λ2(L̄)

≤ |S|√βnp

γnp− |S| = o(1)

asymptotically almost surely when|S| = o(
√
np). From Lemma 1 and Theorem 1, we have

(1− o(1)) |∂S|
n−|S| ≤ λ ≤ |∂S|

n−|S| asymptotically almost surely.

Next, consider the random variable|∂S|; there are|S|(n−|S|) possible edges betweenS and

V \ S, each appearing independently with probabilityp, and thus|∂S| is a Binomial random

variable with|S|(n− |S|) trials. For all0 < α < 1 we have the concentration inequalities [30]

Pr(|∂S| ≥ (1 + α)E[|∂S|]) ≤ e
−E[|∂S|]α2

3

Pr(|∂S| ≤ (1− α)E[|∂S|]) ≤ e
−E[|∂S|]α2

2 .

(11)

We know thatE[|∂S|] = |S|(n − |S|)p. Considerα = 1
4√lnn

which causes the upper bound in

the first expression to becomeexp(− |S|(n−|S|)p
3
√
lnn

). Since|S|(n− |S|) is lower bounded byn− 1

andnp > lnn for sufficiently largen, the bounds in (11) asymptotically go to zero. Thus,

(1− o(1))|S|(n− |S|)p ≤ |∂S| ≤ (1 + o(1))|S|(n− |S|)p,

asymptotically almost surely. Substituting into the bounds for λ, we obtain the desired result.

VI. RANDOM d-REGULAR GRAPHS

We now consider randomd-regular graphs, defined as follows, and characterize the smallest

eigenvalue of the grounded Laplacian for such graphs.

Definition 3: For anyn ∈ N, let d ∈ N be such that3 ≤ d < n anddn is an even number.

Define Ωn,d to be the set of alld-regular graphs onn nodes. Define the probability space

(Ωn,d,Fn,d,Pn,d), where theσ-algebraFn,d is the power set ofΩn,d, and Pn,d is a probabil-

ity measure assigning equal probability to every element ofΩn,d. An element ofΩn,d drawn

according toPn,d is called a randomd-regular graph, and denoted byGn,d [2].

Let λ′
1(A) ≤ λ′

2(A) ≤ ... ≤ λ′
n(A) be the eigenvalues of the adjacency matrix of any given

graphG; note thatλ′
n(A) = d for d-regular graphs. Defineλ′(G) = max{|λ′

1(A)|, |λ′
n−1(A)|}. It

was shown in [31] that for anyǫ > 0,

λ′(Gn,d) ≤ 2
√
d− 1 + ǫ (12)



asymptotically almost surely. As the Laplacian for the graph is given byL = D−A = dI −A,

for any ǫ > 0, the algebraic connectivity of a randomd-regular graph satisfies

λ2(L) ≥ d− 2
√
d− 1− ǫ,

asymptotically almost surely. On the other hand we know thatλ2(L̄) ≥ λ2(L) − |S| [7]. Thus

for a randomd-regular graph with a single grounded node, we have

2
√

|S||∂S|
λ2(L̄)

=
2
√
d

λ2(L̄)
≤ 2

√
d

d− 2
√
d− 1− ǫ− 1

< 1

asymptotically almost surely for sufficiently larged and sufficiently smallǫ. Lemma 1 and

Theorem 1 then yield the following result.

Theorem 4:Let G be a randomd-regular graph onn vertices with a single grounded node. Then

for sufficiently larged, the smallest eigenvalue of the grounded Laplacian satisfies λ = Θ
(
d
n

)

asymptotically almost surely.

VII. CONCLUSION

We studied the smallest eigenvalue of grounded Laplacian matrices, and provided bounds

on this eigenvalue in terms of the number of edges between thegrounded nodes and the rest

of the network, bottlenecks in the network, and the smallestcomponent of the eigenvector for

the smallest eigenvalue. We showed that our bounds are tightwhen the smallest eigenvector

component is close to the largest component, and provided graph-theoretic conditions that cause

the smallest component to converge to the largest component. An outcome of our analysis is

tight bounds for Erdos-Renyi random graphs andd-regular random graphs. A rich avenue for

future research is to extend and apply our results to other classes of random graphs.
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APPENDIX

A. Proof of Lemma 2

Proof: The degree bounds are readily obtained from classical concentration inequalities.

Specifically, letd denote the degree of a given vertex. Note thatd is a Binomial random variable

with parametersn− 1 andp, with expected valueE[d] = (n− 1)p. Now, for any0 < β ≤
√
3

we have2 [30]

Pr(d ≥ (1 + β)E[d]) ≤ e
−E[d]β2

3 .

Chooseβ =
√
3
(

lnn
np

) 1
2
−ǫ

, which is at most
√
3 for probability functions satisfying the conditions

in the lemma and for sufficiently largen. Substituting into the above expression, we have

Pr(d ≥ (1 + β)E[d]) ≤ e
−(n−1)p( lnn

np )
1−2ǫ

= O
(

e
− lnn( lnn

np )
−2ǫ)

.

To show that the maximum degree is smaller than the given bound asymptotically almost surely,

we show that all vertices have degree less than the given bound with probability tending to1.

By the union bound, the probability that at least one vertex has degree larger than(1 + β)E[d]

is upper bounded by

nPr(d ≥ (1 + β)E[d]) = O
(

e
lnn−lnn( lnn

np )
−2ǫ)

.

Since lim supn→∞
lnn
np

< 1, the above expression goes to zero asn → ∞, proving the upper

bound on the maximum degree.

We now show the lower bound fori(G). Specifically, we will show that forp satisfying the

properties in the lemma, almost every graph has the propertythat all sets of vertices of sizes,

1 ≤ s ≤ ⌊n
2
⌋, have at leastαsnp edges leaving that set, for some constantα that we will specify

later. For any specific setS of vertices of sizes, the probability thatS has⌊αsnp⌋ or fewer

edges leaving the set is
∑⌊αsnp⌋

j=0

(
s(n−s)

j

)
pj(1 − p)s(n−s)−j . Let Es denote the event that at least

one set of vertices of sizes has⌊αsnp⌋ or fewer edges leaving the set. Then

Pr [Es] ≤
(
n

s

) ⌊αsnp⌋
∑

j=0

(
s(n− s)

j

)

pj(1− p)s(n−s)−j. (13)

2The statement of this concentration inequality in [30] has0 < β ≤ 1, but the improved upper bound of
√
3 can be obtained

from the same proofmutatis mutandis.



Note that for1 ≤ j ≤ ⌊αsnp⌋,
(
s(n−s)

j

)
pj(1− p)s(n−s)−j

(
s(n−s)
j−1

)
pj−1(1− p)s(n−s)−j+1

=
s(n− s)− j + 1

j

p

1− p
≥ s(n− s)− αsnp

αsnp

p

1− p

≥ 1− 2αp

2α

1

1− p
≥ 1

2α
,

for s ≤ ⌊n
2
⌋ and2α < 1 (which will be satisfied by our eventual choice ofα). Thus, there exists

some constantr > 0 such that
⌊αsnp⌋
∑

j=0

(
s(n− s)

j

)

pj(1− p)s(n−s)−j ≤ r

(
s(n− s)

⌊αsnp⌋

)

p⌊αsnp⌋(1− p)s(n−s)−⌊αsnp⌋.

Substituting into (13) and using the fact that
(
n

k

)
≤
(
ne
k

)k
, we have

Pr [Es] ≤ r
(ne

s

)s
(
s(n− s)ep

αsnp

)αsnp

e−p(s(n−s)−αsnp)

≤ res ln
ne
s

( e

α

)αsnp

e−p(s(n−s)−αsnp)

= resh(s), (14)

where

h(s) = 1 + np

(
lnn

np
+ α− α lnα + αp− 1

)

︸ ︷︷ ︸

Γ(α)

+ps− ln s. (15)

Noting thath(s) is decreasing ins until s = 1
p

and increasing afterwards, we have

h(s) ≤ max
{

h(1), h
(n

2

)}

= max

{

1 + p+ npΓ(α), 1 + ln 2 + np

(

Γ(α)− lnn

np
+

1

2

)}

.

From (15),Γ(α) is increasing inα for 0 ≤ α < 1, with Γ(0) = lnn
np

− 1 being negative and

bounded away from0 for sufficiently largen (by the assumption onp from the statement of the

lemma). Thus, there exists some sufficiently small positiveconstantα such thath(s) ≤ −ᾱnp

for some constant̄α > 0 and for sufficiently largen. Thus (14) becomesPr [Es] ≤ re−sᾱnp for

sufficiently largen.

By the union bound, the probability thati(G) < αnp is upper bounded by the sum of the

probabilities of the eventsEs for 1 ≤ s ≤ ⌊n
2
⌋. Using the above expression, we have

⌊n
2
⌋

∑

s=1

Pr[Es] ≤ r

⌊n
2
⌋

∑

s=1

e−sᾱnp ≤ r

∞∑

s=1

e−sᾱnp = r
e−ᾱnp

1− e−ᾱnp

which goes to0 asn → ∞. Thus, we havei(G) ≥ αnp asymptotically almost surely.
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