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On Rates of Convergence for Markov Chains under
Random Time State Dependent Drift Criteria

Ramiro Zurkowski, Serdar Yiksel, Tamas Linder

Abstract—Many applications in networked control require involving control over an erasure channel is given [inl[11],
intermittent access of a controller to a system, as in event- where non-zero stabilizing actions of a controller are igapl
triggered systems or information constrained control appica- 1, 5 system at certain event driven times and stochastitistab
tions. Motivated by such applications and extending previas . h ina drift diti d i le technia fFes
work on Lyapunov-theoretic drift criteria, we establish both IS shown u_smg_ r cqn ifions and mariingaie techniq :
subgeometric and geometric rates of convergence for Markov @n extensive discussion, see [[19]. The methods of random-
chains under state dependent random time drift criteria. We time drift criteria can also be applied to models of netwaorke
quantify how the rate of ergodicity, nature of Lyapunov functions,  control systems with delay-sensitive information trarssian,
their drift properties, and the distributions of stopping times are ¢ axample, for studying the effects of randomness in the
related. We finally study an application in networked contrd. oL .

delay for transmission of sensor or controller signals,(seg,
[20], [21], [22], [23]).

I. INTRODUCTION AND LITERATURE REVIEW _ _ _ _ _
One other, increasingly prominent, areaeigent-triggered

Stochastic stability of Markov chains has an almost COMaadback controbystems (see e.d. [24[. [25]. [26]. [27]. [28])

plete theory, and forms a foundation for several other ginef hore the event instances constitute the stopping-times. T
techniques such as dynamic programming, linear progragimigy . of such systems is practically relevant since an event

approach to Markov Decision Processes [1], and MarkQuseq clock is usually more efficient than a time-triggered

Chaln_Monte-CarI(_) (MCM_C) LZ]' One powerful approach Qack for control under information or actuation costs. The
establish StO(,:hasF'C ,StaP'“ty is through smgle-s_tages’@r- literature on such systems has primarily focused on thé-stab
Lyapunov) drift criteria [3]. Thestate-dependertriteria [4], ization of such systems and we hope that the analysis in this
[51, [6] relax the one-stage criteria to criteria involvitigne o n0r il be useful for both stabilization and optimizatiof
instances which are state-dependent but deterministich Sy ., systems: If the objective is to compute optimal sohstio
criteria form the basis of the fluid-model (or ODE) approacfy 5, average cost optimization problem for an event trigger
to stability in stochastic networks and other general mdegetup, a powerful approach is tiéscounted limit approach
[71, [81, [©], [10], [2]. Building on [3] and [4], [11] considred »g) 130, This method typically requires geometric or suff
stability criteria based on a state-dependenidom sampling cienyy fast subgeometric convergence conditions to éistab
of the Markov chain of the following form: It was assumeqy,o eyistence of a solution to an average cost optimality
that ther_e is pos_ltlve real-valued_functld)ﬁon the s_tate space equation or inequality([29]. The rate of convergence result
Xofa dlscrete-tlme_z Ma_rkov Cha'{mt}t_zo’ and an increasing i, g paper will be useful in such contexts. Furthermore,
sequence of stopping timesi} >0, With 7o = 0, such that e of convergence to equilibrium in Markov chains are
for eachi, useful in bounding the distribution of transient events el
EV (1) | Fr] < V(er) — 8(zT), 1) approxi_mate comp_u_tation of optimal costs unde_r ergc_)dicity
) _ - properties. In addition, as documented extensively in the
where the functio: X — R is positive (bounded away from jiterature, Markov Chain Monte Carlo algorithms require a
zero) outside of a “small set”, anBl; denotes the filtration of tegious analysis on rates of convergence bounds to obtain
“events up to time7;”. We will make this more precise |aterprobabi|istically guaranteed simulation times, see, ,dZ],
in the paper. Further relevant work include [12] and [6].  [31]. Furthermore, as has been discussed in [32] and [33],
Motivation for studying such problems comes from netypproximation methods for optimization of Markov Decision

worked control systems and communication systems: Fpfpcesses benefit from the presence of sufficiently fast mix-
many networked control scenarios, access to information iAfy/rates of convergence conditions.

application of a control action in a system is limited to rand
event times. As examples for such settings, there has been this paper, we extend recent works on random-time drift
significant research on stochastic stabilization of nekadr analysis([11] to obtain criteria for rates of convergencdarm
control systems and information theory; as in stabilizatiosubgeometric and geometric rate functions.

of adaptive quantizers studied in source codingl [13]) [14]

and control theory[[15], [16], [17].T18]. A specific exampl(ﬁ]] The rest of the paper is organized as follows. In Section

we provide background information on Markov chains and
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1. MARKOV CHAINS, STOCHASTIC STABILITY, AND Definition 11.2. A seta € BT (X) is an atom if for allz, y € «
RATES OF CONVERGENCE P(z,-)=P(y, ).

In this section, we review some definitions and backgroundyp,e concept of an atom is extremely important as it gives us

material relating to Markov chains and their convergence pf,ndamental unit, where all the points of a reachable get ac

equilibrium. together. This allows, through theycle equation, an invariant
probability measurer(4) = Ea{z,ﬁgl 1A(xk)}/Ea[Ta].
When the state space is not countable, one typically needs
We let {z;},>0 denote a discrete-time Markov chain withto artificially construct such an atom, as we discuss further
state spac&. The basic assumptions of| [3] are adopted, sé@low.
[34] for a more comprehensive introduction: It is assumed _ . N _ )
thatX is a complete separable metric space; its Boréield Definition 11.3. A setC' € B™(X) is (no, ¢, v)-small if
is denoted byB(X). The transition probability is denoted by
P, so that for anyz € X, A € B(X), the probability of
moving in one step from the stateto the setA is given by \yheren, > 1, ¢ € (0,1), and v is a positive measure on
P(xi41 € A | 2y = x) = P(z,A). The n-step transitions (X, B(X))
are obtained via composition in the usual w&(z;,, € A |
2y = x) = P"(z,A), for anyn > 1. The transition law Animportant factis that small sets exist, see Theorem 5.2.1
acts on measurable functiorfs X — R and measureg on of [3].

B(X)via Pf (x):= [y P(x,dy)f(y), € X,anduP (A):= Eact 111, For an irreducible Markov chain, every set €
fxu(d_x)P(:c,A_), A_e B_‘(X). A pr_obab|I|ty measurer o s+ (x) contains a small set i+ (X).
B(X) is called invariant iftP = 7, i.e.,

A. Preliminaries

P™(z,B) > ev(B) VBeB(X),zeC

Definition I1.4. A setC € B*(X) is calledx-petite if there is
/w(d:v)P(:v,A) =7(A), A € B(X). a positive measure on B(X) and a probability distribution
aonZ; ={0,1,2...} such that
For any initial probability measure on B(X) we can

construct a stochastic proce$s:} with transition law P = n
satisfyingzo ~ v. We let P, denote the resulting probability ;Q(H)P (z.B) 2 5(B) forall B eBX), zeC. (3)

measure on the sample spag¥, B(X))>°, with the usual

convention forv = 4, (whered, is the probability measure The convolution of two functions, ¢ : Z, — R, denoted

defined by, (A) = 14(z) for all Borel A and1g(x) denotes by f * g, is defined as usual by g(n) = f: F(K)g(n— k),
k=0

the indicator function for the evedt: € E'}) when the initial =
state isz € X, in which case we write?, for the resulting for all n € Z,. The nextlemma follows from Lemma 5.5.2 of

probability measure. LikewiseE, denotes the expectation[3] and allows us to assume without loss of generality that fo

operator when the initial condition is given by, = z. an irreducible Markov chain, if a set ispetite, therk can be
Whenv = = (the invariant measure), the resulting procedgplaced by maximal irreducibility measure (or equivalent
is stationary. For a setl € B(X) we denote, can be assumed maximal).
Ta:=min{t > 1:2; € A}. (2) Lemma IL1. If an irreducible Markov chain has some set

. o C € BT (X) that is x-petite for some distributiom, then C
Definition I.1. Let ¢ denote ac-finite measure orB3(X). g Y-petite for the distribution: + f(n) where f(n) = 2-7~1
The Markov chain is calleg-irreducible if for anyz € X, and < is a maximal irreducibility measure.

and anyB € B(X) satisfyingp(B) > 0, we haveP, {Ts <

oo} > 0. A p-irreducible Markov chain is aperiodic if for any ~An important result is the equivalence of small sets and
r € X, and anyB € B(X) satisfyingy(B) > 0, there exists Petite sets.

ng = no(z, B) such thatP™(z, B) > 0 for all n > ng.
A o-irreducible Markov chain is Harris recurrent iP, (75 <
o0) = 1foranyz € X, and anyB € B(X) satisfyingy(B) >
0. It is positive Harris recurrent if in addition there is an Small sets are analogous to compact sets in the stability
invariant probability measurer. theory for ¢-irreducible Markov chains. In most applications
of ¢-irreducible Markov chains we find that any compact set
% small - in this case{z;} is called aT-chain [3]. The
equivalence of small sets and petite sets can be used gleverl
to show that all petite sets are petite for some distributiia

has finite mean. The next theorem follows from Propositions
5.5.5 and 5.5.6 of |3].

Theorem 1.2 ([3], Theorem 5.5.3) For an aperiodic and
irreducible Markov chain every petite set is small.

A maximal irreducibility measure is one with respect t
which all other irreducibility measures are absolutely toon
uous. DefineB*(X) = {4 € B(X) : ¢(A4) > 0}, where is
a maximal irreducibility measure. We refer to setsAn (X)
asreachable

A set A € B(X) is full if ¢(A°) = 0 for a maximal
irreducibility measurey. A set A € B(X) is absorbing if Theorem I1.3. For an aperiodic and irreducible Markov chain
P(z,A) = 1 for all x € A. In an irreducible Markov chain every petite set is petite with a maximal irreducibility reeee
every absorbing set iflll. for a distribution with finite mean.



Invoking (3), we will use Theorem 113 repeatedly with aan atom in order to construct an invariant distribution foe t
set C that is x-petite for some distributior(-) to achieve chain.
bounds on hitting times for an € BT (X), We first review the splitting technique for the case= 1

(i.e. Cis a(1, d,v-small set). Construct a new Markov chain

Ts—1 Ts—1 oo {z:} on X x {0,1} by letting z; = (24, a.), where{a;} is a
Ew|: Z 10(581@)} < [ Z Z 15(Zpgn)a } sequence of random variables fi 1}, independent of z, },

k=0 k=0 n=1 except whene; € C.

1. If Tt ¢ C thenIt+1 ~ P(It, )
Zna . (4 2.1f 2, €0, then
with probabilityd : a; =1 andz;1 ~ v(-)

] o with probability (1 — ¢) : a; = 0 and zy41 ~
B. Regularity and Ergodicity Pz, ) —0v(-)

Regularity and ergodicity are concepts closely related
through the work of Meyn and Tweedi€ [3] [4] and Tuominen
and Tweedie [[35]. The definitions below are in terms Of’(a?tﬂ € B|z = (z1,a;) € C x {1}) = v(B)
functionsf : X — [1,00) andr : Z — (0, 00). P(a1, B) — 6u(B)

IN

1-9 )
Thus the distribution ofr; 1 given z; is

P(,’Et+1 S B|Zt = (xt,at) e (C x {0}) =

Definition 11.5. A setA € B(X) is called(f,r)-regular if 1-9
T5_1 Note thatw > 0 is a valid probability measure
sup Ez[ > r(k)f(:cw] <0 sinceC is (1,4, v)-small. If z; € C, then
r k=0
.\ - j P(a, ) = ov(+) _
for all B € BT (X). A finite measurer on B(X) is called Zepr ~Oov(-) 4+ (1 — 5)T = P(xy, +)
(f,r)-regular if -
so the one-step transition probabilities are unchangeftfgr.
Te—1 . . .
E Z r(k)f(zn)| < o This construction allows one to defirfe= C x {1} as an
v atom for {2}, and to construct an invariant distribution for

k=0 .
N ) _ ~ {ax¢} using {z}.
for all B € B (X), and a pointz is called (f,r)-regular if We specified the technique for the one step transition

the measuré,, is (f,r)-regular. probability, but the same construction applies fot, €, v)-
To make sense of ergodicity we first need to define the Small sets wheren > 1 with the only change that the: — 1
norm, denoted|. ;. steps after hitting”' at ; are distributed conditionally om,

o ) andz.4,, (see Section 4.2 of [31]). When > 1, the Markov
Definition 11.6. For a functionf : X — [1,00) the f-norm of - chain {z,} does not have an atom; instead it has anstep
a measureu defined on(X, B(X)) is given by atom” in the sense tha"™ ((z,1), -) = P™((y, 1), - ) for all

z,y € C.
Il = sup / (dz)g

A useful method to obtain bounds of convergence is through
where the supremum is taken over all measurgbteich that g variation distance between the distributions of twodkam

thecoupling inequality The coupling inequality bounds the to-

g(z) < f(z) for all . variables by the probability they are different. L&t Y be
The commonly used total variation norm, @i -norm, is two jointly distributed random variables. The followingttse

the f-norm whenf = 1, and is denoted by} - || 7y well known coupling inequality.

Definition 11.7. A Markov chain{z;} with invariant distribu- [P(X€-)=PY € )lpy <PX#Y).

tion 7 is (f, r)-ergodic if This inequality is useful in discussions of ergodicity whesed

r(n)||P"(x, -) —7(-)||f = 0 asn — oo forall z € X. in conjunction with parallel Markov chains, as in Theorem
(5) 4.1 of [31], and Theorem 4.2 of [38]: One tries to create two
If B) is satisfied for a geometrie (so thatr(n) = M¢™ for Markov chains;z; andx}, having the same one-step transition
some¢ > 1, M < oo) and f = 1 then the Markov chaifz; } probability distribution but driven independently untilty are
is called geometrically ergodic. coupled on a small set with some fixed probability whenever
they visit the small set. Herep; is a stationary Markov

. . . . chain. By the Coupling Inequality and the previous disaussi
C. The Splitting Technique and the Coupling Inequality with Nur);mellns gplltgtlmg ?echn)llque we r?avHaP"( -

Nummelin's splitting technique [36] (see also [37]) is &()|rv < Pz, # '), wherez!, ~ 7P" = .
widely used method in the study of Markov chains; see, e.qg.,
Chapter 5 in[[3], Proposition 3.7 and Theorem 4.1[in] [35], ) o o
Section 4.2 in[[31]. With an irreducible, aperiodic Marko\P- Drift criteria for positivity
chain{z;} on state spac¥ with transition probability? and We now consider specific formulations of the random-time
a (m,d,v)-small setC' with finite return time, we construct drift criterion (d). Throughout the paper the sequence of



stopping timeg7; };>o is assumed to be non-decreasing, wititheorem 11.6 ([3, Theorem 15.0.1]) Suppose{z;} is an

To=0. aperiodic and irreducible Markov chain. Then the following
Theorem[I.%4 is the general result of [11], providing are equivalent:

single criterion for positive Harris recurrence, as well as (i) F.[Tz] < co for all z € X, B € BT (X), the invariant

finite “moments” (the steady-state mean of the functipn distribution = of {z;} exists and there exists a petite s&t

appearing in the drift conditiofi.{(6)). The drift conditid6)(is constantsy < 1, M > 0 such that for allz € C

a refinement of[{1). P(2,C) — (C)| < MA™
Theorem I1.4. [11I] Suppose that{x;} is a ¢-irreducible

and aperiodic Markov chain. Suppose moreover that there aw For a petite setC' and for somes > 1

functionsV: X — (0,00), 6: X = [1,00), f: X = [1,00), & sup F,[k7¢] < oc.
small setC' on whichV is bounded, and a constahte R, zeC
such that (iii) For a petite setC, constantsh > 0 A € (0,1), and a
EV(xr,,) | Fr,] £ V(zr,) —0(xr;) + ble(xr;) functionV : X — [1, oo] (finite for somer) such that
Tipa-l PV <AV +blc.
E{ Z f (k) ’]:Ti] < oe). ©20. Any of the conditions imply that there exists> 1, R < oo
=T (6) such that for any:
Then the following hold: >
(i) {x;} is positive Harris recurrent, with unique invariant Z [P (@, ) = (- )llv < RV (2).
distribution = "o . )
@iy ©(f) = [ f(z) m(dz) < . We note for future reference that if (iii) above holds, (ii)

(i) For any functiong that is bounded byf, in the  holds for foralls € (1,A7).
sense thatup,, |g(z)|/f(z) < oo, we have convergence
of moments in the mean, and the strong law of largeF- Rates of Convergence: Subgeometric Ergodicity
numbers holds: Here, we review the class of subgeometric rate functions
lim E,[g(z;)] = 7(g) (see Section 4 in[38], Section 5 ial[6], and [4]J [3]._[39],
t—00 [35)). Let Ay be the family of functions: : Z, — [0,00)

N-—-1 h .
. 1 satisfying
R N Z gla) =m(g)  as., zeX r is non-decreasing, (1) > 2
t=0
and
. . logr(n)
E. Rates of Convergence: Geometric Ergodicity ——~ 10 asn — oo.
n

In this section, following[[8] and[[31], we review resultStpa second condition implies that for alle Ao
stating that a strong type of ergodicity, geometric ergibyglic

follows from a simple drift condition. An irreducible Marko r(m+mn) <r(m)r(n) forallm,neZy. (8)
chain is said to satisfy thanivariate drift conditionif there
are constants\ € (0,1) andb < oo, along with a function
V :X = [1,00), and a small se€ such that

The class of subgeometric rate functiohgefined in [35]
is the class of sequencesfor which there exists a function
ro € Ag such that

< .
PV <AV +ble ™ 0 < lim inf r(n) < lim sup r(n)
n—oo 79(n) T nooo T0(N)

< o0

Using the coupling inequality, Roberts and Rosenthal [31]
prove that geometric ergodicity follows from the univagiat 1he main theorems we use to construct conditions on
drift condition. We also note that the univariate drift céiimh Subgeometric rates of convergence are due to Tuominen and
allows us to assume that is bounded orC without any loss Tweedie [35].

(see Lemma 14 of [31]). Theorem 11.7 ([35], Theorem 2.1) Suppose{z;} is an

Theorem 11.5 ([31, Theorem 9]) Suppose(z,} is an aperi- irreéducible and aperiodic Markov chain with state spake
odic, irreducible Markov chain with invariant distributior. @nd transition probabilityP. Let f : X — [1,00) andr € A
Suppos& is a(1, ¢, v)-small set and’ : X — [1, c0) satisfies D€ given. The following are equivalent:

the univariate drift condition with constants € (0,1) and (i) There exists a petite sét € 5(X) such that

b < oco. Then{x;} is geometrically ergodic. Te—1
That geometric ergodicity follows from the univariate drif i‘ég b [ ,;) T(k)f(xk)] =0

condition with a small setC is proven by Roberts and . ) .
Rosenthal by using the coupling inequality to bound THe-  (ii) There exist a sequendd’, } of functionsV, : X — [0, o],
norm, but an alternate proof is given by Meyn and Tweed%petlte seCU € B(X), andb > 0 such thatl; is bounded on

[3] resulting in the following theorem. ' o
Vo(z) = oo implies Vi (z) = oo,



and We apply TheorenI[l7 to the case where the Foster-
PVii1 < Vi — r(n)f + br(n)1 nez ©) Lyapunov drift condition holds not for every but for a
nl =t @ + sequence of stopping time§7,}. Our goal is to reveal

(iii) There exists an(f, r)-regular setA € B+ (X). a relation between the stopping tim¢g,} where a drift
(iv) There exists a full absorbing sétwhich can be covered condition holds and the rate function so that we obtain
by a countable number dff, r)-regular sets. (f,r)-ergodicity.

Theorem 11.8 ([35, Theorem 4.1]) Suppose an aperiodic N
and irreducible Markov chain{z,} satisfies the equivalentA. A general result on ergodicity

conditions (i)-(iv) of Theorern TlI7 wittf : X — [1,00) and  The following result builds on and generalizes Theorem 2.1

r € A. Then the Markov chain i§f, r)-ergodic, i.e., in [A1].
Jim 7 (n)|[P"(z, -) = 7|y = 0. Theorem IIl.1. Let {x,} be an aperiodic and irreducible

arkov chain with a small set’. Suppose there are functions
: X = (0,00) with V' bounded onC, f : X — [1,00),6 :
X — [1,00), a constantb € R, andr € A such that for a
gequence of stopping tim¢g,, }

The proof of this result relies on a first-entrance last-e
decomposition[[3] of the transition probabilities; see tRecr
13.2.3 of [3].

The conditions of Theorerh 1.7 may be hard to chec
especially (ii), comparing a sequence of Lyapunov funcion EV(zr,.,) | z7.] < V(er,) — 0(z7,) + ble(oT,)

{Vi.} at each time step. We briefly discuss the methods Tsi—1
of Douc et al. [39] (see also Hairer [38]) that extend the E{ Z Fla)r(k) ‘}—T} <6(zr). (1)
subgeometric ergodicity results and show how to construct =7 T "

subgeometric rates of ergodicity from a simpler drift cdiwai. - , .
[39] assumes that there exists a functibn: X — [1, o0, Then{z:} satisfies Theorel l.7 and i, r)-ergodic.

a concave monotone non-decreasing differentiable fumctio  Proof: The proof is similar to the proof of the Com-

¢ : [1,00] = (0,00], @ setC' € B(X) and a constank € R parison Theorem of_[3] as well as Theorem 2.1(i) [in][11].

such that We may assume € Ay. We define sampled hitting times
PV + ¢oV <V +blc. (10) 4 = min{n > 0 : 27, € B} for all B € B*(X) and

If an aperiodic and irreducible Markov chafm:;} satisfies 7B = min(N, yp). Since{zr, } satisfies the drift condition,
the above with a petite sef, and if V(zo) < oo, then it it follows thatforz & ¢

& -1

can be shown thafxz;} satisfies Theorem Tl17(ii). Therefore 7 —1
{z;} has invariant distributionr and is (¢oV, 1)-ergodic so Em[ Z 6(£C7’n):| <V(z) —i—bEm[ Z 1c(x7n)] <V(z)+b
that lim ||P"(x, -) — 7(+)|lgovy = 0 for all = in the set n=0 n=0

n— oo

{z : V(z) < oo} of m-measure 1. The results by Douc ethich is finite sincel” is bounded onC' by assumption. An
al. build then on trading off¢ o V, 1) ergodicity for(1,7,)- application of the monotone convergence theorem then gives
ergodicity for some rate functior, by carefully constructing No—1 No—1
the function utilizing concavity; see Propositions 2.1 &8 Ez{ Z 5(17%)} <V(z)+ bEm[ Z 10(17%)} <V(z)+b
of [39] and Theorem 4.1(3) of [38]. ot

To achieve ergodicity with a nontrivial rate and norm one
can invoke a result involving the class péirs of ultimately
non-decreasing functiongefined in [39]. The clasy of Tc—1 gleint
pairs of ultimately non-decreasing functions consists @if £ { > f(In)T(n)] <E [ > 5(177")} <V(z)+b
Uy, ¥y : X — [1,00) such that¥y(x)Us(y) < = + y and n=0 n=0

n=0

SinceTp < T, for all B € B*(X) by definition, we have

U, (x) — oo for one ofi =1, 2. so C'is a petite set which satisfies
Proposition 11.9. Suppose{x;} is an aperiodic and irre- Tc—1
ducible Markov chain that is botkil, r)-ergodic and(f, 1)- sup Ew[ > T(n)f(iﬂn)} < Slelgv(iﬂ) +b < o0.

n=0

ergodic for somer € A and f : X — [1,00). Suppose
¥y, U, : X — [1,00) are a pair of ultimately non-decreasingThis means that the Markov chaifi;,,} satisfies Theorem
functions. Theqz;} is (¥; o f, ¥ o r)-ergodic. [L7(i) and is (f,r)-ergodic. [ |

Therefore we can show that (fty, ¥2) € Y and a Markov ] )
chain satisfies the conditiop{10), then i(iB, ooV, Wyor,)- B On petite sets and sampling

ergodic. Unfortunately the techniques we reviewed earlier that rely
on petite sets (specifically Theorém ]1.3) become unavklab
Il. RATES OF CONVERGENCE UNDERRANDOM-TIME i the random time drift setting as a petite &&tor {,,} is not
STATE-DEPENDENTDRIFT necessarily petite fofz, }. To be able to relax conditions on

The second condition of Theorem 1I.7 assumes that tlae behavior of” on C, we can place one of the following two
deterministic sequence of functioq¥,,} exists and satisfies conditions on the stopping times or require tiats bounded
the drift condition [®). onC.



For an analogous application of TheoremlIl.3 in the random
time setting we define sampled hitting times for aBy € < Eq Z le(ar)
B*(X) asyg = min{n > 0: z1, € B}. k=0 _—
.
Lemma IIl.2. Suppose{z;} is an aperiodic and irreducible < L Em|: > lé(xk+n)a(n)]
Markov chain. If there exists sequence of stopping tifigs K(C) k=0 n
independent ofz, }, then anyC that is small for{x; } is petite 1 Te—1
for {u7,). -5 S aln)B| Y- telonin)]
K
Proof: SinceC is petite, it is small by Theorefi I1.2 for 1 " k:f)
somem. Let C be (m, ¢, v)-small for {x}. < — Za(n)n =¢(C) < 0. (13)
N w(C) &
PT(z,-)=> P(T = k)P¥(x, -) Hence if the stopping times satisfy the conditions in
k=1

= Lemmallll.2 or LemmallL.B, we can drop the condition
= _ m b that V' is bounded onC', by applying Chap. 11 of_[3] and

Z Z P(Ty = k)/P (,dy)P () Proposition 5.5.6 of[]3] to{zr,} and noting that by[(11),
h=m {z:} satisfies Theoreri 1l17(i). This follows since the drift

> P(Ti= /f)/lc(ff)@(dy)Pk_m(% -) (12) * condition implies for anyB € B*(X), Em[milé(xn)] <
n=0

k=m
C . - el
which is a well defined measure. Therefore definilg) =V (z) + bE, | Ii lo(z7,)], where the last term is bounded

Sv(dy) > P(Ti = k)P*™(y,-), we have thatC' is if the conditions of either Lemm& T2 or LemniaTl.3 and
(1,6, H)Eﬁ%ﬂ for {71 }. m Assumptior 1.1 are satisfied.

The above aTIows us to uniformly  bound It is interesting to note that the two extreme cases of the
Em[Zjﬁgl 1c($n)] when the stopping times areStopping times, eith_er indepe.nder.n c_>f or completely degand
indepen_dent of the Markov chain, by an application di" the Markov chain, both give similarly useful relaxations
TheorenIL3 and[{4).

The independence of stopping timgg,,} of {z;} is a (. Subgeometric ergodicity

restrictive condition thagvent triggered systentsinnot satisfy The second inequality{11) may be hard to check as it

since in such syste_ms the stc_)pplng times depend expliaitly 8oes not provide means for checking the relation between the
the state process hitting certain sets. One useful exampdeaw Lo . . .
stopping timeg 7, } and the rate function since the function

independence of stopping times can be enforced is given’jn . - : .
P PPing . g depends ork in a non-explicit fashion. In the following, the
[21] where a system controlled over an unreliable network is

affected by variable transmission delays between the ltetr relationship _of th_e criteria with the rate functienis relative
to the stopping time.
and the plant.

For the event-triggered case we will derive a useful resuIEWe assume that € Ao and thusr satisfiesr(m +n) <
which will be used to show that in the drift equations of m)r(n).
the form [11), the Lyapunov functiol may not need to be Theorem I1l.4. Let {x;} be an aperiodic and irreducible

assumed bounded ati. Markov chain with a small se€. Suppose there exidt :
The proof of the next result follows directly from theX — [1,00) which is bounded orC' and for somec > 0,

definition of 7,,. A€ (0,1), \WW(x) <V(zx)—eforall z ¢ C, andb € R such

Lemma 111.3. Suppos€7,} are the subsequent hitting timesthat for an increasing sequence of stopping tinds}

of a sequence of sef,, } in B7(X), so that7,,+1 = min{t > E[V(xr Fr,] <AV (xr,) +ble(zr,). (14)

T+ x € Epm}. If 02, B, € BY(X) then for any V@r) | PRl < AV(er,) cler,)

reachableB C N, E,, we haveT,, = Tz. If

Assumption IlIl.1. The stopping times are as in Lemmall.3 Tes1-1

andC c N2, En. Sl}ipE[ Z r(n—Ti) | Fr,] = M < oo (15)

n="Tj
Recall that by Theoreni I3 a petite séf is petite *

with a maximal irreducibility measure for a distribution and

. . . +
a W|torl finite mean, so for anyB € B*(X) we have sup E[r(Ter — Tr) | Fr] <AL (16)
that > a(n)P"(z, B) > k(B)1lc(z). Assumptior 1Ll then k

n=0 . e . .
implies that if any C is petite for {z;}, then for some then {z,} satisfies Theorel IL.7 wittf = 1 and is (1,7)-
CcCcNX,E, we have that ergodic.

Proof: Suppose that instead df {14), we have that

Ye—1
EI{ k; 10(%)] BV (@ni1) | Fal <AV (20) + blo(zn). (17)



It follows then that the sequendé\/,,} defined by From (I3) and the conditionV (z) < V(z) — e for z ¢ C,
we get that for allz € C

M, = A"V (z,) Z blo(ap) A~ WY, E.[V(er,,)]
yo—1 yo—1
with My = V(zo), is a supermartingale. Then, with{14), < <V(:1:) —Em[ Z e] +EZ[ Z blc(:cTn)D
definingyy = min{N,~p} for B € B¥(X) gives, by Doob’s n=0 n=0
optional sampling theorem, and thus,
sup E [ ] < Li+b
E, [)\—ng(;w N)] <V(x) zeg miel= '
B
. Therefore C Te Bt(X) is a petite set such that
B o—1
~(n+41) sup,ec B[ Y050 r(n)] is finite and sofz,} satisfies The-
+E””[ nz:% blo(er,)A ] (18) orem[II.7(i) with f = 1 and is(1, r)-ergodic. n
for any B € B+(X), and N € Z.. Remark 1ll.1. We note that just as in the previous theorem, if

the stopping times satisfy Lemmalll.2, we can focus onmetur
times for a petite sett C {V < L} wit (x)—e for

all z ¢ A instead ofC. Similarly, if the stoppmg times satisfy
sup B [A‘”gV(:vT . )} <L+ Lemmdlll.3 and AssumptidénTIl.1 we can focus on return times

zeC for a petite setA in (), E, with v‘x//((z)) < V(z) — € for all

and by the monotone convergence theorem, and the fact that A N (1N, £n) instead ofC. This allows us to relax the
V is bounded from below by 1 everywhere and bounded frof@nditions forV".

SinceV is bounded above o6, we have thatC C {V <
L} for someL; and thus,

above onC', AsTan 1example, withr(n) = 2n%, let for all k,
_ _ B g, (m=Tk)*|F7] < 00 andE[(Tiy1 —T5)| 7] <
216110) By [/\ Vi, )} < Li(Ly + A7), A Thgcn the chain ipolynomially ergodic Note that one
can obtain explicit expressions for a large class of sums of
Now, for anyr € A, we have powers of the formy_,* | k* with v € Z.
Te—1 Too—1 We also note that ifr satisfiessup,, E, [r(Tit1 — Ti) |
sup Em[ Z r(n)] < sup Em|: Z T(n)} :ch] < M for some finiteM, then by Jensen’s mequalm}/‘S
zeC = zeC = satisfies the bounsup, E[r'/*(Tes1 — Te) | Fr] < A7 if

s > 1 is large enough so that/'/s < \—*.
Suppose now that the sequence of stopping times are state-
dependent but deterministic, thatfig;1 = T +n(xr,), To =

and sincer(m + n) < r(m)r(n) by (@), we obtain through
iterated expectations that

To—-1 0
222 [ 1;) T(n)} Corollary IIl.5. Let {z;} be an aperiodic and irreducible
yo—1 Tisa—1 Markov chain with a small se€’. Suppose there exidt :
< sup Em|: Z E{E{ Z r(n—Th) ‘ }—T} X — [1, 00) which is bounded o' and with for some > 0,
~ zeC = : A€ (0,1), \V(z) < V(x)—eforall 2 ¢ C, andb € R such
& that for an increasing sequence of stopping tifi&gs }
X H T(Tm - Tml):” E[V(xn+1) | ]'—7’71] < /\V(xTn) + blc(:Z?Tn). (20)

m=1

Now, with (I8)-[T8), and by the fact that is bounded from 1 1"€" for anyr € A and M > 0 that satisfy

below by 1, it follows that @o) 1
EY<M <= X
. §< )<M, rn(@)) <5, meEX,
222 2 ngo r()] then {_:z:t} satisfies Theoref 1.7 withf = 1 and it is (1,7)-
vo—1 ergodic.
<sup E, Z Ey[MV(z7,)A"]] We note that Theorer Ill4 above is useful for proving
vec n=1 (1,7)-ergodicity and Theorem 1Ill1 is really only useful for
vyo—1 . .. . .
proving (f,1)-ergodicity, wherer, f satisfy the respective
-1
<y :ggE Z M(V () +A77b)] (19) hypotheses. In order to be able to prove more rate results,
n=0 we may use results by Douc et al. [39] on the clgéssf pairs
so that of ultimately non-decreasing functions defined in SediieR |
Tye—1 If a Markov chain{z,} satisfies Theorefm IIll4 witli1, r) and

Z r(n)] < MLy(Ly + \7'b) sup B, [yc]- TheorenIIL.1 with(f, 1), then{z;} is (Vo f, ¥50r)-ergodic

sup E, o
zeC for (U1, ¥s) € Y by Propositiori 11.9.

zeC |: n=0



Before ending this section, we revisit a criterion by Connarondition PW < W — V 4+ M1, with A petite, and by
and Fort [6] who studied rates of convergence under drifheoren{Il.3

criteria which are based on state-dependent but detetiminis Te—1
sampling times so that Em|: Z V(:vk)}
k=0
Pr@V (z) < AV (z) + ble(x) —
. . <W ME, 1 <W Mec(B
wheren : X — Z, is the state dependent time where the < Wie)+ { Z A(xk)} (@) + Me(B)

. . . . k=0
drift condition is enforced. Now, consider the case where

is random and we have a sequence of stopping tiffeg  for any B € B¥(X). Therefore, since? is increasing,

defined as7y+1 = Tx + n(x7,) with 7o = 0. Theorem 3.2(i) To—1 To—1
of [6] can be partly generalized to the random-time case as Em|: Z R(k)] < Em|: Z E[R(Tc) | }'k}]
follows. =0 =0
. . . To—1
Theorem II.6. Let {x;} be an aperiodic and irreducible < <
Markov chain with a small sef’. Suppose that the stopping < E kZ:O DV(ay)| < D(W(z) + Me(C)). (21)

times{7,} satisfy the conditions of LemrhaTll.2 and that there )
exist a functionV : X — [1,00), V bounded onC, and To complete the proof, we show thidt is bounded or.. If the

constantsh € R and \ € (0,1) such that for an increasing stopping times are independent and thus satisfy the conditi

sequence of stopping timésy, } with 7o = 0, of L_emma[m, thenC' is petite for the randomly sampled
chain {z7, } and the drift condition in the hypothesis gives
E.\V(zr,,,) | Fr] < AV(zg,) + ble(zr, ). E,[R(TB)] < (¢(B) + 1)V (x) for any B € Bt (X). SinceW

satisfies a drift conditior{ 1V < oo} is full and absorbing and
If there exists a strictly increasing functioR : (0,00) — we can find a petite set ifilV < co}.
(0,00) such thatR(t)/t is non-increasing anE[R(Ti4+1 — Combining the above witH (21) gives
Ti) | 1] < V(z7,), then there exists a constabt such that .
E.[R(7¢)] < DV (z). If in addition the invariant distribution S <
7 of {z;} exists,7(V') < oo, then the Markov chain iél, R)- 22‘; Ee kzo Rik)| < EEE(C(B) + D)W@) +b) <o,

ergodic. ] ) -
for an appropriate petite seB when the conditions of

Proof: Since R(t)/t is non increasing, it follows that LemmaTI[.2 are satisfied. Thuse,} satisfies Theoref Tl 7(i)

—logf(t) — 0 and R € A. It also follows thatR(a +b) < with (f,) = (1, R) and it is (1, R) ergodic. m
R(a) + R(b) for any a,b > 0. With R also increasing we
have that D. Geometric ergodicity
yoe—1 . . :
B We use the same reasoning as before to obtain geometric
Ea[R(Te)] < Ex[R(The )] = Eo {R( ;0 Tet1 = T’“)} ergodicity from a random time univariate drift condition.
rye—l Theorem I1.7. Let {x;:} be an aperiodic and irreducible
<E, Z R(Tk+1 — 7%)] Markov chain with a small se€. If there exists a function
" k=0 V :X — [1,00), V bounded onC, constant®$ € R, B > 0,
el and A, 8 € (0,1) such that for a sequence of stopping times
L k=0
Fre—1 ElV(zT,,,) | Fr.) < AV(zT,) + ble(zr,),
L kz:%) * and

With the drift conditionP7++1=-7+V <V — (1 = \)V +blc  P(Ty1 — T = k | x7,) < BS*, forall n,k, andzr, ¢ C
andV bounded onC, we have

with
yo—1 1—BA <
(1— /\)Em[ > V(;m)} < V(z)+b, 3 ’
k=0 and
where 7o = 0 and so we obtaink,.[R(7¢)] < DV (z) for sup Eu[aT] < oo (22)

someD > 0. zeC
If the invariant distributionr of {x;} exists andr(V') < oo,

then by Theorem 14.2.11 of|[3] there exists a small det

and M € R such thatsup,c, B | Zgglvm)} < M. Proof: By Theoren{IL® forr € (1,A71)

Defining the hitting timeo4 = min{t > 0 : =, € A}, o

the functionW(z) = E,[>7%,V(z,)] satisfies the drift :ggEm[” J < o0,

for somea > 1, thenzx; is geometrically ergodic.



Let p € (1, 1*BBA). Then, The source output is quantized as follows:

(k= 3(K+1)A,

ifz e [(k—1-3K)A, (k—3K)A)
(K -1)A, if 2=1iKA
0, if 2¢[-1KA LKA]

E, [an+1*7—n|]:Tn} < 1_B 3 < 2! (23)
Qx(z) =

for x ¢ C. By a use of iterated expectations

c—1
E,[pTe] :Ez[VH an+rTn] < E, [/\f(wfl)pﬂ] (24) Wwhere K is a positive integer. The quantizer outputs are
transmitted through a memoryless erasure channel, afieg be
subjected to a bijective mapping, which is performed by the
By letting 1 < p < min(a, 1‘[33’\), we obtain that” € B (X) channel encoder. At time, the channel encodef; maps
is a small set with a uniformly bounded, [p”>c] for = € C. the quantizer output symbols to corresponding channeitinpu
Therefore by Theore 1ll6 the chaifw,} is geometrically ¢; € M :={1,2..., K + 1} so that&(Q(x;)) = ¢. The
ergodic. m controller/decoder has access to noisy versions of thedemco
We also note that the rate of ergodicity relies on theutputsq; € M’ := M U {e}, with e denoting the erasure
constantsm and ¢ for some (m,§,v)-small setC, so the symbol, generated according to a probability distribution
ergodicity rate cannot be made explicit using only the infoevery fixedqg € M. The channel transition probabilities are
mation in the drift condition. given by

n=0

P(¢'=ilg=1i)=p, Pl =elg=i)=1-p, ieM.
IV. AN EXAMPLE IN NETWORKED CONTROL . .
At each timet, the controller/decoder applies a mappibg:
We revisit the motivating example in [11], concerning thé\t U {e} — R, given by
stabilization problem over erasure channels. In particule , oy
apply the results of the previous section to establish a rate Di(q;) = &7 (41) X Ligjer +0 X Ligi=e}-

of convergence to equilibrium provided that the mforma_ﬂoLet{Tt} denote the sequence of i.i.d. binary random variables,

transmission rate satisfies a certain inequality. We censd . :

scalar LTI discrete-time system described by representing the erasure process in the_z channel_, Wher_e the
eventY; = 1 indicates that the signal is transmitted with

no error through the channel at timelLet p = E[Y;] denote

the probability of success in transmission. The followiray k

wherez, is the state at time, «, is the control input, the initial 2SSUMPptions are imposed: Givefi > 2 introduced in the
statex, is a random variable with a finite second momengl€finition of the quantizer, define thate variables
and {w,} is a sequence of zero-mean i.i.d. Gaussian random _ ;
varie;[ble}s, also independentaf. We assume that the system is R = logy(K +1) R = logy(K) (26)
open-loop unstable and controllable, thatig,> 1 andb # 0. e fix positive scalar$ and a satisfying|a[2~® < a < 1
This system is connected over a noisy channel to a controligg af|al + 5)p*1—1 < 1. With L > 0 a constant, leQ) :
as shown in Figurgl1. The channel is assumed to have finjte, p {0,1} — R be defined as
input alphabetM and finite output alphabet’. A source
coder maps the source symbols (state values) to corresgpndi la|+48, if |n|>1,0orp=0
channel inputs. The quantizer outputs are transmittedutfiro A p) =4 a, fo<|p<l,p=1A>L
the channel, after passing through a channel encoder. The R
. . . ) 1, ifO<|h <1, p=1, A<L.

receiver has access to noisy versions of the quantizewcode
outputs for each time instanf which we denote by; € M’.  For each > 0 and with A, € R selected arbitrarily, let

The problem is to identify conditions on the channel so that

Tir1 = ary + buy + wy, t>0, (25)

a

there exist coding and control schemes leading to the stecha Uy = ——ay,
tic stability of the controlled process. For a thorough eewbf . b , A
such problems with necessity and sufficiency conditions, se Ze = Dilay) = TeQy' (x0),
[19] A = AQAL|op—| T (@)
+2
N ‘1_>Channel_‘/_) S Given the channel outplql; #e the controller can simultane-
ously deduce the realization &f, and the even{|h;| > 1},
T whereh; = #. This is due to the fact that if the channel
output is not the erasure symbol, the controller knows theat t
v Plant u signal is received with no error. lf; = e, however, then the

controller applies) as its control input and enlarges the bin

Figure 1: Control of a system over a noisy channel. ~ Size of the quantizer.
By Lemma 3.1 of [11],(z, A:) is a Markov chain.



Consider now a sequence of stopping times which denote

the times when there is a successful transmission of a sourﬁ? V'S, Borkar

symbol in thegranular regionof the quantizer:

To=0, T.i1 inf{k >T,:|he| <L,pr=1}, 2€Z; [
[3]
[4]

(5]

By Proposition 3.1 of[[11], the stopping time distributian i
bounded uniformly by a geometric measure:

Lemma IV.1 ([11, Proposition 3.1]) The discrete probability
measureP (7,11 — T; = k | 7, Ap;) satisfies,

(1=p)*=' < P(Tis1—T > k | o7, A7) < (1—p)FL40(1), ©

whereo(1) — 0 as Ay, — oo uniformly in z7;. [7]

As a consequence, the probabilif§(7;.1 — 7; > k |
a7, A7) tends to(1 — p)*~1p as Ay — . (8]
Theorem IV.2. Suppose that (0]
(1 _pp P
a (1 p+ (23_1)2) <1 (28) 0

Then, under the coding and control policy considered, the
chain (x¢, A;) is geometrically ergodic. [11]

Proof: By the proof of Theorem 3.2 ofl[11], with

V(x,A) = A2, and with [12]

pa?

1= (1 =p)(la| +6)*’

b < oo andC a small set, it follows that

E[V(xﬁ+17A7—z+1) | z7.]
< (1 -eV(rrn, A7) +bl{(2r Ar)eC)

Together with Lemma1Vll, and (34) in_[11] leading EKZZ)[,m]

these imply that for soma =1 —e€ < (0,1), B € (p, §) for

some sufficiently larg€’, ands = 1—p, Theoreni III.7 holds. [17]
[

Remark IV.1. We recall from [11] that under[(28), the
system is quadratically stable in the sense that for eadfalni
condition (zg, Ag), lim;_,oo E[7?] = Ex[23] < co. We also [19]
note that by [[11] if the goal is to only have the existence
of an invariant probability measure, the requirements oa th20]
channel reduce to the conditions thaf2~% < o < 1 and
a(la| + 0Pt < 1.

[13]

O<e<1-—

[14]

[15]
(29)

(18]

[21]
V. CONCLUSION

In this paper, we established random-time state-dependgnt
drift criteria for Markov chains using Lyapunov-theoretic
methods. We established drift criteria both for sub-gem’met[23]
and geometric rates of convergence, where the conditions
revealed the relationship between the distributions of the

L ; . [24]
stopping times, the drift of the Lyapunov functions at ramdo
times, and the ergodicity rates. Future work includes the
application of these results in event triggered controteys,
as well as information theory problems for variable-lengtlﬁ‘%]
decoding.
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