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System identification for
passive linear quantum systems

Mădălin Guţă and Naoki Yamamoto

Abstract—System identification is a key enabling component
for the implementation of quantum technologies, includingquan-
tum control. In this paper, we consider the class of passive linear
input-output systems, and investigate several basic questions: (1)
which parameters can be identified? (2) Given sufficient input-
output data, how do we reconstruct the system parameters?
(3) How can we optimize the estimation precision by preparing
appropriate input states and performing measurements on the
output? We show that minimal systems can be identified up to
a unitary transformation on the modes, and systems satisfying
a Hamiltonian connectivity condition called “infecting” a re com-
pletely identifiable. We propose a frequency domain design based
on a Fisher information criterion, for optimizing the estimation
precision for coherent input state. As a consequence of the
unitarity of the transfer function, we show that the Heisenberg
limit with respect to the input energy can be achieved using
non-classical input states.

Index Terms—Quantum information and control; System iden-
tification; Linear systems; Estimation; Stochastic systems

I. I NTRODUCTION

We are currently witnessing the beginning of a quantum
engineering revolution [1], marking a shift from “classical
devices” which are macroscopic systems described by deter-
ministic or stochastic equations, to “quantum devices” which
exploit fundamental properties of quantum mechanics, with
applications ranging from computation to secure commu-
nication and metrology [2], [3]. While control theory was
developed from the need for predictability in the behavior of
“classical” dynamical systems, quantum filtering and quantum
feedback control theory [4], [5], [6] deal with similar ques-
tions in the mathematical framework of quantum dynamical
systems.

System identification is an essential component of control
theory, which deals with the estimation of unknown dynam-
ical parameters of input-output systems; in particular, the
identification of linear systems is a well studied subject in
classical systems theory [7]. A similar task arises in the
quantum setup, and various aspects of thequantum system
identification problem have been considered in the recent
literature, cf. [8], [9], [10], [11], [12], [13], [14], [15], [16]
for a shortlist of recent results. Further, detailed statistical
analysis for some dynamical quantum identification problems
have been demonstrated [17], [18], [19], [20].

In this paper, we focus on the class ofpassive linear
quantum system[21], [22], [23], [24], which serves as a device
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Fig. 1. Setup of system identification for linear quantum systems. The exper-
imenter can prepare a time-dependent input state, and perform a continuous-
time measurement on the output, from which the unknown system parameters
θ are estimated. The input-output relation is encoded in the transfer function
Ξ(s; θ).

for several applications in quantum information technology,
such as entanglement generation [25], [26], [27], [28], [29],
quantum memory [30], [31], [32], [33], [34], [35], and linear
quantum computing [36]. Analyzing this important class of
systems provides the foundation for the general case, but ithas
a clear interest in its own right in the context of estimation,
as described later in this section. The system consists of a
number of quantum variables (e.g. the electromagnetic field
inside an optical cavity), and is coupled with the quantum
stochastic input consisting of non-commuting noise processes
(e.g. a laser impinging onto the cavity mirror). As a result of
the quantum mechanical interaction between system and input,
the latter is transformed into an output quantum signal which
can be measured to produce a classical stochastic measurement
process. In this context, we address the problem of identifying
the linear system by appropriately choosing the state of its
input and performing measurements on the output (see Fig. 1).

In contrast to the classical case, a systematic methodology
for linear quantum system identification has not yet been
developed. Our aim is to fill this gap by investigating the fol-
lowing questions. (1)Identifiability: which system parameters
can be in principle identified? (2)Identification method: given
sufficient input-output data, how can we actually reconstruct
system parameters? (3)Statistics: how well can we estimate
unknown parameters by preparing appropriate input states and
performing measurements on the output? The key fact to
solve these problems is that, for linear systems, the Laplace
domain input and output fields are related by a simple linear
transformation represented by thetransfer function matrix.

Below we give a more detailed account of the above-
mentioned problems and the results obtained in this paper.
First, the system identifiability is the property guaranteeing
that all the system parameters can be in principle uniquely
determined from the input-output data. This is actually an
important notion in the classical case as well [37], [38],
[39], and recently we find some proposals of those quantum
analogues [40], [41] for nonlinear systems. In this paper, we
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show that minimal passive linear systems having the same
transfer function (i.e. the equivalent class) are related by
unitary transformations acting on the space of modes. Then,
based on this result, we characterize a wide class of identi-
fiable quantum linear networks, by employing the concept of
infection introduced in [13], [15]. Next, the problem (2) boils
down to that of identifying the transfer function, which can
then be used to reconstruct the parameters of the system; in
our case, those are the system’s (quadratic) Hamiltonian and
its coupling to the environment, both described by appropriate
matrices. In this paper, we provide two methods for finding
the identifiable parameters and physical realizations for agiven
transfer function.

Beyond identifiability, it is important to investigate and
compare thestatistical performanceof different estimation
methods. By employing the well-established quantum estima-
tion theory [42], [43], in particular the notion ofquantum
Fisher information, we investigate the problem of devising
optimal (time dependent) coherent input states of a given
energy, and output measurements. More precisely, we study
the special case of a single-mode, single-input single-output
(SISO) system in several scenarios with one or two unknown
parameters. Moreover, for the single-mode SISO system, we
show that theHeisenberg limit with respect to the input
energy can be achieved for a non-classical input state. Note
that, although this enhanced statistical performance could
be expected from the quantum metrology theory [44], the
important new concept is that this is the metrology for a
dynamical system, where the static phase is now replaced
by a dynamical phase represented by the transfer function.
In fact this setup poses some new problems; for instance we
need to optimize the frequency of the input field, which is
not considered in the standard quantum metrology dealing
with only static parameter estimation problems. These new
problems can be formulated and solved thanks to the unitarity
of the transfer function of linear passive systems, which isone
of the reasons why we are chosen to investigate this class of
systems separately from more general, active linear systems.

For reader’s convenience we summarize in advance the
new concepts appearing in the quantum system identification
problems studied in this paper, which are not found in the
conventional identification theory for classical systems.The
system’s input-output relation is represented by a transfer
function having a special structure, which stems from the
joint unitary evolution of the system and the field, and
the fact that the interaction is passive. As consequence, the
equivalence classes of parameters with the same output can
be characterized in terms of unitary, rather than a general
invertible matrices as is the case for classical systems. Note
that limiting to a special class of linear systems does not mean
straightforward applicability of the general identification the-
ory for classical systems, but we need to take into account the
essential feature of the focused system. Another specifically
quantum aspect of the present theory is that all our results
apply also to non-classical input states such as a single photon
field; indeed, the transfer function can be used to describe the
input-output relation even in such strong quantum scenarios
[45], which is one of the advantages of the linear setup.

This fact is important for the following two reasons. First,
as mentioned in the above paragraph, the enhanced quantum
system identification is achieved for non-classical input states.
Second, such a passive linear systems driven by single photons
behave essentially in the same way as some nonlinear/finite-
level systems such as a dissipative qubit network driven by a
single photon [46]; hence the theory developed in this paper
is applicable to those genuine quantum systems beyond linear
regime.

The paper is structured as follows. In Section II we intro-
duce the setup of passive linear quantum systems, illustrated
with realistic examples of system identification problems.In
Section III, we give a necessary and sufficient condition for
the identifiability of a passive linear system, which is then
applied to several examples. Section IV describes the class
of infective networks, which are shown to be completely
identifiable. Section V provides two concrete identification
methods. Section VI is devoted to the statistical analysis of the
identification problem, using a Fisher information approach for
the optimization over input states and output measurements.
In Section VII, we briefly discuss the case of general (i.e.
active) systems, pointing out some similarities and differences
from the passive case, and formulate a conjecture regarding
the structure of the equivalence classes.

Throughout the paper we will use the following notations:
for a matrixA = (aij), the symbolsA† andAT represent its
Hermitian conjugate and transpose ofA, i.e.,A† = (a∗ji) and
AT = (aji), respectively. For a matrix of operators,Â = (âij),
we use the same notation, in which caseâ∗ij denotes the adjoint
to âij . In denotes then× n identity matrix.

A preliminary version of this paper was presented at the
52nd IEEE CDC [47].

II. PASSIVE LINEAR QUANTUM SYSTEMS

In this section we briefly review the framework of linear
classical and quantum dynamical systems, with several exam-
ples showing the need of system identification.

A. Classical linear systems

A classical linear system is described by the set of differ-
ential equations

dx(t) = Ax(t)dt+Bu(t)dt, dy(t) = Cx(t)dt+Du(t)dt,

wherex(t) ∈ Rn is the state of the system,u(t) ∈ Rm is an
input signal, andy(t) ∈ Rk is the output signal. The observer
can control the input signal and observe the output, but does
not have access to the internal state of the system. The input
signal can be deterministic, in which case we deal with a set
of ODEs, or stochastic, in which case the equations should
be interpreted as SDEs. Apart from the input and the initial
state of the system, the dynamics is determined by the (real)
matricesA,B,C,D.

To find the relation between input and output it is convenient
to work in the Laplace domain. The Laplace transform ofx(t)
is defined by

L[x](s) :=
∫ ∞

0

e−stx(t)dt, (1)
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whereRe(s) > 0. Then, we have the explicit input-output
relationL[y](s) = Ξ(s)L[u](s), where

Ξ(s) = C(sI −A)−1B +D (2)

is thetransfer function matrix. System identification deals with
the problem of estimating the matricesA,B,C,D or certain
parameters on which they depend, from the knowledge of
the input and output processes. From (2) it is clear that the
observer can at most determine the transfer functionΞ(s) by
preparing appropriate inputs and observing the output.

The identifiability problem is closely related to the funda-
mental system theory concepts ofcontrollability and observ-
ability. The system is controllable if for any statesx0,x1 and
timest0 < t1 there exists a (piece-wise continuous) inputu(t)
such that the initial and final states are given byx(t0) = x0

andx(t1) = x1, respectively. This is equivalent to the fact that
the controllability matrixC = [B,AB, . . . , An−1B] has full
row rank. The system is observable if for any timest0 < t1, the
initial statex(t0) = x0 can be determined from the history
of the input and output on the time interval[t0, t1]. This is
in turn equivalent to the fact that the observability matrix
O = [CT , (CA)T , . . . , (CAn−1)T ]T has full column rank.

The importance of these concepts for identifiability stems
from the fact that if the system isnot controllable or ob-
servable then there exists a lower dimensional system with
the same transfer function as the original one. The former
can be obtained from the latter by separating its coordinates
via a canonical procedure called the Kalman decomposition.
Therefore, in system identification it is natural to restrict the
attention to minimal systems, i.e. systems which are both
controllable and observable. As noted above, by appropriately
choosing the input signalu(t), the observer can effectively
identify the transfer functionΞ(s), while other independent
parameters in the system matrices are not identifiable in the
absence of any prior knowledge. The following theorem gives
a precise characterization of systems which are equivalentin
the sense that they cannot be distinguished based on the input-
output history [7].

Theorem 2.1:Two minimal systems (A,B,C,D) and
(A′, B′, C′, D′) have the same transfer functionΞ(s) if and
only if they are related by a similarity transformation, i.e. there
exists an invertiblen× n matrix T such that

A′ = TAT−1, B′ = TB, C′ = CT−1, D′ = D.

B. Passive linear quantum system

A general linear quantum system withn continuous vari-
ables modes is described by the column vectors of creation
operatorsâ∗ := [â∗1, . . . , â

∗
n]

T and annihilation operators
â := [â1, . . . , ân]

T satisfying the commutation relations

âiâ
∗
j − â∗j âi = [âi, â

∗
j ] = δij 1̂. (3)

The system has a quadratic Hamiltonian of the form

Ĥ = â
†Ωâ = [â∗1, . . . , â

∗
n]




Ω11 . . . Ω1n

...
...

Ωn1 . . . Ωnn






â1
...
ân




with Ω ann×n complex Hermitian matrix, and is coupled to
m bosonic quantum fieldŝB(t) = [B̂1(t), . . . , B̂m(t)]T whose
algebraic properties are characterized by the commutation
relations

[B̂i(t), B̂
∗
j (s)] = min{s, t}δij 1̂,

or alternatively by

[b̂i(t), b̂
∗
j (s)] = δ(t− s)δij 1̂. (4)

where b̂(t) = [b̂1(t), . . . , b̂m(t)]T is the white noise operator
formally defined aŝb(t) = dB̂(t)/dt.

The coupling between system and field is described by the
following set of operators:

L̂ = Câ =




c11 . . . c1n
...

...
cm1 . . . cmn






â1
...
ân


 ,

with cij a complex number. More precisely, the joint system-
field evolution up to timet is given by the unitary operator
Û(t) satisfying the quantum stochastic differential equation
(QSDE) [48]

dÛ(t) =

(
dB̂†(t)L̂− L̂†dB̂(t) +

1

2
â
†Aâdt

)
Û(t),

where
A := −iΩ− 1

2
C†C. (5)

This type of system is called “passive”, because the operators
do not involve the creation process such asâ∗i â

∗
j in Ĥ and â∗i

in L̂, representing a purely dissipative evolution.
The Heisenberg evolution of the system operators isâ(t) =

Û(t)∗âÛ(t), which by differentiation gives the equation

dâ(t) = Aâ(t)dt− C†dB̂(t). (6)

Similarly, the output procesŝBout(t) = Û(t)∗B̂(t)Û(t) satis-
fies the differential equation

dB̂out(t) = Câ(t)dt+ dB̂(t). (7)

The Laplace transforms of̂a(t), b̂(t) = dB̂(t)/dt, and
b̂
out

(t) = dB̂out(t)/dt are defined as in (1), forRe(s) > 0.
As we will be assuming that the system is stable, the initial
state of the system is irrelevant in the long time limit, and we
can set its mean to zero〈â(0)〉 = 0. In the Laplace domain
the input-output relation is a simple multiplication

L[b̂out](s) = Ξ(s)L[b̂](s), (8)

whereΞ(s) is the transfer function matrix:

Ξ(s) := Im − C(sI −A)−1C†. (9)

With s = −iω we define the frequency domain operators

b̂(ω) := L[b̂](−iω) = 1√
2π

∫ ∞

−∞

eiωtb̂(t)

so that b̂
out

(ω) = Ξ(−iω)b̂(ω). Since b̂
out

(ω) must satisfy
canonical commutation relations similar to (4),Ξ(−iω) must
be unitary for allω [21].
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Fig. 2. Examples of passive linear systems. (a) Mode-cleaning cavity; the
output fieldB̂out

1
is measured to estimate the detuningωo, which is further

used to lock the optical path length in the cavity. (b) Two atomic ensembles;
they interact with each other in a nontrivial way through thecavity field. (c)
Energy levels of aΛ-type atom.

C. Examples of passive linear systems

Example 2.1:The first example is an optical cavity illus-
trated in Fig. 2 (a). The intra-cavity field with modêa(t)
couples to the incoming laser field̂B1(t) and a vacuum̂B2(t);
then two outgoing fieldsB̂out

1 (t) and B̂out
2 (t) appear in the

output ports. The system dynamics is given by

dâ = (−iωo − κ)âdt−√
κdB̂1 −

√
κdB̂2,

dB̂out
1 =

√
κâdt+ dB̂1, dB̂out

2 =
√
κâdt+ dB̂2, (10)

whereκ is the transmissivity of the coupling mirrors andωo

is the detuning representing the frequency difference between
the inner and outer optical fields. Note thatC† = [

√
κ,

√
κ]

and Ω = ωo. The role of this cavity system is low-pass
filtering for the noisy incoming laser field̂B1, andB̂out

2 is the
resultant mode-cleaned field which can be use for quantum
information processing [49]. To effectively perform mode
cleaning, we need to identify the parameterωo. In practice,
the corresponding error signal can be detected by homodyne
measuring the first output field̂Bout

1 , which is further used to
lock the cavity path-length to attainωo = 0 by a piezo-actuator
mounted on the mirror. Thanks to recent progress in nano-
device engineering, it is possible to realize high-Q cavities,
which can be used for storing optical light fields [50].

Example 2.2:The next example is that of two large atomic
ensembles trapped in a cavity (which will be adiabatically
eliminated) having two input-output ports, as illustratedin
Fig. 2 (b). The system variables of thekth ensemble(k = 1, 2)
are the total angular momentum operators(Ĵx

k , Ĵ
y
k , Ĵ

z
k ) satis-

fying [Ĵx
k , Ĵ

y
k ] = iĴz

k ∼ iJ (J ∈ R), where the approximation
is taken due to the large ensemble limit; then, the “position”
and “momentum” operatorŝqk = Ĵx

k /
√
J , p̂k = Ĵy

k /
√
J serve

as system variables. It was shown in [25], [27], [28] that a
nontrivial coupling between the ensembles can be realized,
which as a result leads to the following dynamical equation:

dx̂ = −κ
2

[
Y 0
0 Y

]
x̂dt+ i

√
κ

2

[
−I2 I2
iY iY

] [
dB̂

dB̂∗

]
,

whereB̂ = [B̂1, B̂2]
T , B̂∗ = [B̂∗

1 , B̂
∗
2 ]

T ,

x̂ = [q̂1, q̂2, p̂1, p̂2]
T , Y =

[
cosh(2r) − sinh(2r)
− sinh(2r) cosh(2r)

]
.

andκ andr are system parameters. SinceY > 0, the system
is stable and has a unique steady state; interestingly, it isthe
so-called puretwo-mode squeezed state[3], whose covariance
matrix is given byV (∞) = diag{Y −1/2, Y/2}. This implies
that the two atomic ensembles areentangled. We emphasize
the general fact that, if a linear system has a unique pure
steady state, then it must be passive [29]. Actually, the vector
of operatorŝa = [â1, â2]

T defined by

â =
1√
2
[−iY 1/2, Y −1/2]x̂

satisfies the CCR (3) and obeys

dâ = −κ
2
Y âdt−√

κY 1/2dB̂, dB̂out =
√
κY 1/2âdt+ dB̂.

This is clearly a passive system withΩ = 0 andC =
√
κY 1/2.

(Note that the equation of̂x can be uniquely recovered from
that of â.) Clearly, identifying the parameterr is important,
as it determines the amount of entanglement between the
ensembles. The same fact holds for the more general case
of pureGaussian cluster states, which may be generated via
a passive system composed of atomic ensembles [26], can be
used for one-way quantum computing.

Example 2.3:The last example is that of a medium of
N Λ-type atoms trapped in a cavity [30], cf. Fig. 2 (c).
Each atom has two metastable ground states|s〉 and |g〉, and
an excited state|e〉. The e-g transition is naturally coupled
to the cavity modêa1 with strengthg

√
N , whereas the s-

e transition is induced by adding a classical magnetic field
with time-varying Rabi frequencyω(t). The system’s variables
are the polarization operator̂a2 = σ̂ge/

√
N and the spin-

wave operator̂a3 = σ̂gs/
√
N , where σ̂• is the collective

lowering operator. As in the previous example, they can
be well approximated by annihilation operators in the large
ensemble limit, and as a resultâ = [â1, â2, â3]

T obeys the
following passive system;

dâ =




−κ ig
√
N 0

ig
√
N −iδ iω

0 iω∗ 0


 âdt−




√
2κ
0
0


 dB̂,

dB̂out =
√
2κâ1dt+ dB̂, (11)

whereκ denotes the cavity decay rate andδ is the detuning of
the cavity center frequency and the s-e transition frequency.
This system works as a quantum memory as follows. A
state of the input optical field̂B(t) is transferred to that of
the spin-wave modêa3, and then it is preserved there by
setting ω(t) = 0. An effective pulse shaping method for
ω(t) which achieves high fidelity state transfer and storage
is presented in [30]. Such an optimal pulse depends on the
system’s parameters, which therefore should be identified as
accurately as possible. Note that several similar architectures
for quantum memory have been proposed for instance in an
inhomogeneously broadened ensemble of atoms or nitrogen-
vacancy centers in diamond [31], [32], [33], nano-mechanical
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oscillators [34], or a general linear network [35], all of which
are modeled by passive linear systems. We should emphasize
that the passivity property is essential, as in general an active
system violates the energy balance and does not realize a
perfect state transfer.

III. T HE SYSTEM IDENTIFIABILITY

This section begins with the problem formulation of system
identification and the definition of identifiability. We thenpro-
vide basic necessary and sufficient conditions for the passive
linear system (6) and (7) to be identifiable. Some examples
are given to illustrate the result.

A. System identifiability

Broadly speaking, by system identification we mean the
estimation of the parametersΩ and C which completely
characterize the linear quantum system (6) and (7). This
task can be analyzed in various scenarios, depending on the
experimenter’s ability to prepare the field’s input state and
the system’s initial state, and the type of measurements used
for extracting information about the dynamics. In the simplest
experimental scenario the input field is prepared in a coherent
state with a certain temporal shape

〈b̂(t)〉 = β(t),

and the experimenter can perform standard (e.g. homodyne
and heterodyne) measurements on the output. We return to
this scenario in section VI.

As noted before, in the frequency domain we have
b̂
out

(ω) = Ξ(−iω)b̂(ω), so by taking expectation we get
〈b̂out〉(ω) = Ξ(−iω)β̃(ω), where β̃(ω) is the Fourier trans-
form of β(t). Therefore, the experimenter can at most deter-
mineΞ(−iω), and this can be done by preparing appropriate
inputs (e.g. sinusoids with a certain frequencyω), observing
the outputs (e.g. by homodyne measurements) and computing
their Fourier transforms.

In general, the system matrices may be modeled as depend-
ing on an unknown parameter vectorθ ∈ Θ such that

(Ω, C) = (Ω(θ), C(θ)), (12)

and Ξ(s) = Ξ(s; θ) correspondingly. The task is then to
estimateθ using the input and output relations (see Fig. 1).
The identifiability of the system is defined as follows.

Definition 3.1: The parameterθ is identifiable ifΞ(s; θ) =
Ξ(s; θ′) for all s implies θ = θ′.

B. Observability, controllability and minimality

The concepts of controllability and observability have a
straightforward, though arguably non unique, extension tothe
quantum domain; see Section II-A for the classical case. The
system defined by (6) and (7) is controllable if the following
controllability matrix has full row rank:

C = −[C†, AC†, . . . , An−1C†]. (13)

Similarly, the system is observable if theobservability matrix

O = [CT , (CA)T , . . . , (CAn−1)T ]T (14)

has full column rank. As in the classical case, if the system
is not controllable or observable then there exists a lower
dimensional system with the same transfer function as the
original one. Thus, we focus onminimal, i.e. controllable
and observable quantum systems. The following lemma shows
that in the passive case we need to check only one of the
controllability and observability conditions to verify that the
system is minimal and stable.

Lemma 3.1:For the quantum passive linear system (6) and
(7), the controllability and the observability conditionsare
equivalent. Moreover, any minimal system is stable, i.e.A
is Hurwitz.

Proof: From the result of systems theory [7],(A,C†)
controllability is equivalent to the following condition:yA =
λy, ∃y, λ ⇒ yC† 6= 0. Then we have

zA† = µz, ∃z, µ ⇒ zC† 6= 0. (15)

To prove (15), suppose that there exists a vectorz satisfying
zA† = µz and zC† = 0. This leads tozΩ = −iµz and
zC†C = 0, yielding zA = z(−iΩ − C†C/2) = −µz. But
together withzC† = 0, this is contradiction to the condition
posed in the first line, thus (15) holds. Now again from
the systems theory, (15) is the iff condition for(A†, C†)
controllability and it is equivalent to(A,C) observability. The
proof for the inverse direction is the same.

Let us move to prove the stability property. Because of the
minimality, the system satisfies the condition (15); hencez† is
an eigenvector ofA andµ∗ is the corresponding eigenvalue.
Then the relationzA†z† = µ‖z†‖2 together with its complex
conjugate lead toRe(µ) = −‖Cz†‖2/2‖z†‖2, which is strictly
negative due tozC† 6= 0. ThereforeA is a Hurwitz matrix.

C. The identifiability conditions

As noted above, by appropriately choosing the input signal
β(t), the observer can effectively identify the transfer function
Ξ(s). The following theorem gives a precise characterization
of systems which are equivalent in the sense that they cannot
be distinguished based on only the input-output relation.

Theorem 3.1:Let (Ω1, C1) and (Ω2, C2) be two passive
linear systems as defined in (6) and (7), and assume that
both systems are minimal. Then they have the same transfer
function if and only if there exists a unitary matrixU such
that

Ω2 = UΩ1U
†, C2 = C1U

†. (16)

Proof: It is well known that two minimal systems have
the same transfer functions

C1(sI −A1)
−1C†

1 = C2(sI −A2)
−1C†

2 ,

(we here omit the trivial constant termI) iff there exists an
invertible matrixU satisfying

A2 = UA1U
−1, C†

2 = UC†
1 , C2 = C1U

−1. (17)

Note thatU is not assumed to be unitary. Using the second
and third conditions we haveC1(U

†U) = C1, which further
gives [U †U, C†

1C1] = 0. Also, applying the second and third
conditions to the first one, we haveΩ2 = UΩ1U

−1. Then,
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becauseΩi is a Hermitian matrix,[U †U, Ω1] = 0 holds.
Combining these two results we obtain[U †U, A1] = 0.
Therefore we have

C1A1 = C1(U
†U)A1 = C1A1(U

†U),

which means that the observability matrixO satisfiesO =
OU †U . Because of the assumption thatO is of full rank, U
is unitary. Therefore the conditions (17) are reduced to (16).

For a parameterized model the identifiability condition is
given by the following.

Corollary 3.1: Let (Ω(θ), C(θ)) be a minimal system with
unknown parameter vectorθ ∈ Θ. Thenθ is identifiable if and
only if

Ω(θ′) = UΩ(θ)U †, C(θ′) = C(θ)U †

implies θ = θ′.
The above result can be interpreted as follows. The matrix

U corresponds to the coordinate transformationâ
′ = U â

and the unitarity ofU means that the canonical commutation
relation (3) is preserved. Note that if the system variables
contain classical components,U would not necessarily be
unitary. Similarly, if the system is not passive, then one needs
to consider botĥa and â∗ as coordinates, and corresponding
doubled-up transfer matrices [51].

In addition to the above corollary, we give another criterion
for testing the identifiability. Note this result does not require
the minimality of the system.

Lemma 3.2:The parameterθ is identifiable if and only if

C(θ)Ω(θ)kC(θ)† = C(θ′)Ω(θ′)kC(θ′)†, ∀k (18)

implies θ = θ′.
Proof: For simplicity let us denoteC := C(θ), C′ :=

C(θ′) and similarly forΩ andA. By expanding the equation
Ξ(s; θ) = Ξ(s; θ′) with respect tos and comparing their
coefficients, we haveCAkC† = C′A′kC′† for all k, and thus

C
(
− iΩ− 1

2
C†C

)k
C† = C′

(
− iΩ′ − 1

2
C′†C′

)k
C′†.

Thisk-th order polynomial is composed of the linear combina-
tion of C[(C†C)p ◦Ωq]C† with p+ q = k, where◦ means the
symmetrization, e.g.(C†C)1 ◦Ω2 = (C†C)Ω2+Ω(C†C)Ω+
Ω2(C†C)2 for k = 3. Then (18) can be proven by induction
with respect tok.

D. Examples

We here apply the identifiability conditions to some systems.
The critical assumption is that we have some a priori infor-
mation about the system, such as the structure of the network
and some parameters. This a priori knowledge helps us to
reduce the size of the equivalence class of the system and
in some cases even to exactly identify the system, as will be
demonstrated.

Example 3.1:We begin with the simple cavity system stud-
ied in Example 2.1. In this case,Ω = ωo andC† = [

√
κ,

√
κ]T ,

where we assume thatκ is a known parameter. Now, from
Theorem 3.1, the equivalence class is generated by a trivial

1× 1 unitary matrixU = eiφ; but clearlyC = CU † imposes
U = 1, hence from Corollary 3.1ωo is identifiable.

Example 3.2:Next let us consider the system in Exam-
ple 2.2, whereΩ = 0 and C =

√
κY 1/2. It is easy to see

that the system is minimal. Then Theorem 3.1 states that the
equivalence class is generated by a unitary matrixU as

Ω′ = 0, C′ = CU † =
√
κ

[
cosh(r) − sinh(r)
− sinh(r) cosh(r)

]
U †.

Now, we know thatC′ is positive symmetric and the (1,1) and
(2,2) elements are the same; this a priori knowledge allows
only U = I2, so the parameters are identifiable.

Example 3.3:The memory system shown in Example 2.3
is a passive system essentially with

C = [
√
2κ, 0, 0], Ω(θ) =




0 θ1 0
θ1 0 θ2
0 θ2 0



 , (19)

where(θ1, θ2) are unknown coupling constants to be identified
(we assumeδ = 0).

We immediately see that the system is controllable and ac-
cordingly minimal. Thus, we can apply Theorem 3.1, showing
that the equivalence class of the system is generated by the
unitary matrix U . But since we know the structure of the
matricesΩ and C, it follows that U must be eitherU1 =
Diag(1, 1, 1), U2 = Diag(1,−1, 1), U3 = Diag(1, 1,−1),
or U4 = Diag(1,−1,−1). This means that the systems with
parameterθ = (θ1, θ2), (−θ1, θ2), (θ1,−θ2), and (−θ1,−θ2)
have the same transfer function. Therefore the parameters
θ1 and θ2 are identifiable up to the sign, i.e.θ is locally
identifiable butnot globally [38].

An alternative proof of the above result is obtained by using
Lemma 3.2. Actually we compute

CΩ(θ)C† = 0, CΩ(θ)2C† = 2κθ21,

CΩ(θ)3C† = 0, CΩ(θ)4C† = 2κθ21(θ
2
1 + θ22)

yielding θ21 = θ′21 andθ22 = θ′22 hold, if θ1 6= 0. Thus we have
the same conclusion as above.

A third route is to look directly at the transfer function:

Ξ(s) =
s3 − κs2 + (θ21 + θ22)s− κθ22
s3 + κs2 + (θ21 + θ22)s+ κθ22

,

and note that the poles give us enough information to deter-
mine bothθ21 and θ22 . Note whenθ1 = 0 (i.e., there is no
connection between̂a1 and â2), Ξ(s) = (s − κ)/(s + κ),
showing that the system is clearly not minimal; actually in
this caseθ2 cannot be estimated.

Example 3.4:Let us consider the large atomic ensemble
network depicted in Fig. 3 (a). The cavity field̂a1 is coupled
to the input field and is connected to the ensembles with
modesâ2 and â3 which correspond to the collective lowering
operators of the ensembles [25]. The system Hamiltonian is
given byĤ = ∆â∗2â2 + θ1(â

∗
1â2 + â1â

∗
2) + θ2(â

∗
1â3 + â1â

∗
3),

hence we have

Ω(θ) =




0 θ1 θ2
θ1 ∆ 0
θ2 0 0


 .
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a1

out
B

B

a2 a3

(a)

a4

a3

a2

a1

B

out
B

(b)

Fig. 3. Examples of passive linear systems. (a) Two atomic ensembles where
in this case the cavity field with modêa1 is not adiabatically eliminated. (b)
Opto-mechanical oscillator with phonon modeâ4, which is coupled to two
cavities with modes(â2, â3); they are further coupled to a bow-tie type cavity
with modeâ1, which works as an input-output port.

TheC matrix is the same as in (19).
The additional detuning Hamiltonian∆â∗2â2 is necessary

for the parametersθ1 and θ2 to be identifiable, because the
system is minimal only when∆ 6= 0. In fact, when∆ = 0
we cannot distinguish the two ensembles, thus the system is
not identifiable. So we assume∆ 6= 0 and apply Theorem 3.1.
The constraintC = CU † implies thatU must be of the form
U = Diag(1, Ũ) with Ũ a 2 × 2 unitary matrix. Then the
equivalence class is characterized by

Ω′ =

[
1 0T

0 Ũ

] [
0 θT

θ Λ

] [
1 0T

0 Ũ †

]
=

[
0 (Ũθ)†

Ũθ ŨΛŨ †

]
,

where θ = [θ1, θ2]
T and Λ = Diag(∆, 0). Now we know

that the matrixΩ′ is of the same form asΩ, which yields
additional constraint oñU , i.e. ŨΛŨ † = Λ, or equivalently
[Ũ ,Λ] = 0. This readily clarifies that̃U is diagonal; hence
together withŨθ ∈ R2, we conclude that the parametersθ1
andθ2 are identifiable up to the sign.

Example 3.5:The last example is a linear network com-
posed of cavities and an opto-mechanical oscillator shown in
Fig. 3 (b). This specific configuration is inspired by [52] and
the oscillator can serve as a quantum memory. The oscillator
with phonon modêa4 couples to two cavities with modes
(â2, â3), through radiation pressure force; particularly with
the dissipative (red-sideband) regime the coupling Hamiltonian
takes a passive form [53]. The two cavities further interactwith
a bow-tie type cavity with modêa1. As a result, the system
Hamiltonian is given by

Ĥ = θ1(â
∗
1â2 + â1â

∗
2) + θ2(â

∗
1â3 + â1â

∗
3)

+ θ3(â
∗
2â4 + â2â

∗
4) + θ4(â

∗
3â4 + â3â

∗
4),

thus we have

Ω(θ) =




0 θ1 θ2 0
θ1 0 0 θ3
θ2 0 0 θ4
0 θ3 θ4 0


 ,

while theC matrix is given byC = [
√
2κ, 0, 0, 0].

Let us first check the minimality. A direct computation
shows that the observability matrixO satisfiesdet(O) =
4κ2(θ1θ3+θ2θ4)

2(θ2θ3−θ1θ4). Hence, we consider the min-
imal system satisfyingdet(O) 6= 0. Then from Theorem 3.1,
the equivalence class is generated in terms of the unitary
U = Diag(1, Ũ) with Ũ a 3 × 3 unitary matrix, and it is

parameterized by

Ω′ =




0 [θT12 0]Ũ †

Ũ

[
θ12
0

]
ŨΘŨ †


 , Θ =

[
0 θ34
θT34 0

]
,

whereθ12 = [θ1, θ2]
T , θ34 = [θ3, θ4]

T . The structure of the
matrix Ω′ further imposes the additional constraint oñU ,
which as a result yields̃U = Diag(V, 1) with V a 2 × 2
orthogonal matrix. Therefore, the equivalence class is the
system whose Hamiltonian matrix is characterized by

Ω′ =




0 θT12V
T 0

V θ12 O V θ34
0 θT34V

T 0


 .

Hence, from Theorem 3.1, the systems specified by(Ω′, C)
have the same transfer function for allV . Thus, this system
is not (completely) identifiable. However, if for instance the
second cavity modêa2 is detuned and as consequence the
(2,2) element ofΩ is nonzero, then the system gains the
identifiability property.

IV. N ETWORK IDENTIFICATION; THE INFECTION

CONDITION

As demonstrated in Section III, in order to establish the
identifiability of a given system, we need to carry out certain
model specific calculations ruling out the existence of non-
trivial unitaries in Theorem 3.1. It would therefore be useful to
find an identifiability criterion which applies to a general class
of systems. In this section we describe such a criterion which
relies on the special topological structure of the Hamiltonian.
Similar results have been found in different contexts [13],[15].

Let V be the set of vertices representing the modes of
our continuous variables system. The interactions betweenthe
different modes are modeled by the set of edgesE over V :
E ⊂ V × V , so that two modesi and j interact if they are
connected by an edge. More precisely, we assume that the
matrix Ω describing the system Hamiltonian is of the form

Ω(θ) =
∑

(i,j)∈E

ωi,j(θ)(eie
T
j + eje

T
i ), (20)

whereωi,j(θ) are unknownreal coefficients which make up
the parameterθ andei = [0, · · · , 1, · · · , 0]T is the basis vector
having zeros except theith element. We further assume that
the coupling between the system and the field is known and
specified by the matrixC whose support is spanned by a set
of basis vectors{ei : i ∈ I} for some set of verticesI, the
restriction ofC†C to this subspace being strictly positive.

The crucial property we will require ofI is that it is infect-
ing for the graph(V , E), which can be defined sequentially by
the following conditions (see Fig. 4):

(i) At the beginning the vertices inI are infected;
(ii) If an infected vertex has only one non-infected neighbor,

the neighbor gets infected;
(iii) After some interactions all nodes end up infected.

Roughly speaking, this infection property means that the
network is similar to a “chain”, where the neighboring nodes
are coupled to each other. Such a chain structure often appears
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Infection property. The colored node indicates thatit is infected,
and the arrow indicates that the infection occurs along thatedge. Through the
steps from (a) to (e), the whole network becomes infected.

in practical situations, and as shown in [54], it can be fully
controlled by only accessing to its local subsystem. Also itis
notable that in general a chain structure realizes fast spread
of quantum information [55] and is thus suitable for e.g.
distributing quantum entanglement. The result we present here
is that such a useful network is always identifiable.

Lemma 4.1:Let Ω(θ) be given by (20), and assume that
the support ofC is spanned by{ei : i ∈ I} with (I,V , E)
having the infecting property. Then, the system is minimal.

Proof: From the assumption, at least one vertexi0 ∈ I
is connected to exactly one vertexj0 ∈ Ic. Thus,Ω(θ) can
be written as

Ω(θ) = ωi0,j0(θ)(ei0e
T
j0 + ej0e

T
i0)

+
∑

i∈I,i6=i0

∑

j∈Ic

ωi,j(θ)(eie
T
j + eje

T
i )

+
∑

i,j∈I

ωi,j(θ)(eie
T
j + eje

T
i )

+
∑

i,j∈Ic

ωi,j(θ)(eie
T
j + eje

T
i ).

This readily leads to

Ω(θ)ei0 = ωi0,j0(θ)ej0 + 2
∑

j∈I

ωi0,j(θ)ej .

Also clearlyC†Cei0 is spanned by the vectors{ei : i ∈ I}.
These two facts imply thatAei0 = (−iΩ − C†C/2)ei0 is
spanned byej0 and {ei : i ∈ I}. In other words,C† and
Aei0 generate a new infecting setI ′ = I ∪ {j0}. Repeating
this procedure, we find that the controllability matrix (13),
C = −[C†, AC†, . . . , An−1C†], is of full rank, thus the system
is controllable. This further implies from Lemma 3.1 that the
system is observable, thus as a result it is minimal.

Theorem 4.1:Let Ω(θ) be given by (20), and assume that
the support ofC is spanned by{ei : i ∈ I} with (I,V , E)
having the infecting property. Then,Ω(θ) is identifiable.

Proof: First, from Lemma 4.1 we can apply Theorem 3.1;
the two parameters are in the same equivalence class if and
only if there exists ann× n unitary matrixU such that

Ω(θ2) = UΩ(θ1)U
†, (21)

andC = CU . The latter condition implies[U,C†C] = 0 and
in particularU commutes with projectionP onto the support
of C†C so that

U =

[
I 0
0 V

]
(22)

with V unitary on the orthogonal complement of the support
of C. Let us write the Hamiltonian in the block form according
to the partitionJ = I ∪ Ic:

Ω(θ) =

[
Ω11(θ) Ω12(θ)
Ω21(θ) Ω22(θ)

]
.

Then (21) implies that

Ω11(θ2) = Ω11(θ1),

Ω12(θ2) = Ω12(θ1)V
†,

Ω22(θ2) = V Ω22(θ1)V
†. (23)

The first equation of (23) means that

ωi,j(θ1) = ωi,j(θ2), i, j ∈ I. (24)

Furthermore, sinceI is infecting, there exists at least one
vertex i0 ∈ I which is connected to exactly one vertex
j0 ∈ Ic, so that the off-diagonal blockΩ12(θ) can be written
as
[

0 Ω12(θ)
0 0

]
= ωi0,j0(θ)(ei0e

T
j0 + ej0e

T
i0)

+
∑

i∈I,i6=i0

∑

j∈Ic

ωi,j(θ)(eie
T
j + eje

T
i ).

The second equation of (23) then implies

ωi0,j0(θ1)Uej0 = ωi0,j0(θ2)ej0 ,

which means thatej0 is an eigenvector ofU andωi0,j0(θ2) =
exp(iφ0)ωi0,j0(θ1) for some phaseφ0. But since the coeffi-
cients ofΩ(θ) are assumed to be real, this implies that

ωi0,j0(θ1) = ωi0,j0(θ2), i0 ∈ I, j0 ∈ Ic. (25)

Additionally, sinceUej0 = ej0 , a decomposition of the form
(22) holds with the identity block supported by the index set
I ′ = I ∪ {j0}.

The same argument can now be repeated for the setI ′, and
by using the infecting property, all vertices will be eventually
included in the growing set of indices, so that at the end we
haveΩ(θ1) = Ω(θ2). Consequently, from Corollary 3.1, the
system is identifiable.

From this result, we now readily see that the system in
Example 3.3 in Section III-D is identifiable, since clearly this
system has a chain-type structure and is thus infecting. On the
other hand, the systems of Examples 3.4 and 3.5 have the tree
and ring structures, respectively, which are thus not infecting.
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Hence, Theorem 4.1 states nothing about the identifiability
of these systems; in fact, as shown there, the tree system is
identifiable, while the ring one is not.

V. M ETHODS FOR SYSTEM MATRICES IDENTIFICATION

Let us consider the situation where we have constructed the
transfer function matrixΞ(s), using the input-output data; this
is indeed possible via several techniques [7]. In the SISO case,
this means that we have determined the coefficients(ai, ci) of
the following rational function:

Ξ(s) = 1 +
cn−1s

n−1 + · · ·+ c0
sn + an−1sn−1 + · · ·+ a0

.

Then the following set of system matrices

A0 =




0 1 0
. . .

. . .
0 0 1

−a0 −a1 −an−1


 , B0 =




0
...
0
1


 ,

C0 = [c0, · · · , cn−1], (26)

constitute a realization ofΞ(s) in the sense thatΞ(s) =
1 + C0(sI − A0)

−1B0. Any other realization having the
same transfer function can be generated via the similarity
transformation

A = TA0T
−1, B = TB0, C = C0T

−1. (27)

However, the matrices (26) do not satisfy the constraints
imposed on passive linear quantum systems. This means that,
for generalT , the transformation (27) does not yield the set
of coefficient matrices of a quantum system; e.g., the relation
B = −C† is not satisfied. Clearly, in this case, the system
matrices(Ω, C) cannot be reconstructed. This is an important
issue, since from the physics viewpoint we are often interested
in the system matrices and the system parameters, rather than
the transfer function. Therefore, we need to find a special class
of T so that the coefficient matrices (27) satisfy the constraints
and that the system matrices can be reconstructed. In this
section, we provide two concrete procedures to achieve this
goal.

A. Reconstruction of system matrices

Let (A0, B0, C0) be constructed from the transfer function
of a minimal quantum system (6) and (7) (note that now it is
not limited to the SISO case). Then, for a certain matrixT ,
the matrices (27) satisfy the constraints (5), which immediately
yieldsA + A† + C†C = 0, andB = −C†. These conditions
are written in terms of(A0, B0, C0) as

(T †T )A0 +A†
0(T

†T ) + C†
0C0 = 0 (28)

and (T †T )B0 = −C†
0 . Now the system is assumed to be

minimal, thusA0 is Hurwitz from Lemma 3.1. This means that
the Lyapunov equation (28) has a unique solutionT †T > 0.
Accordingly, we have the diagonalizationT †T = U0ΛU

†
0 ,

whereΛ > 0 is a diagonal matrix composed of eigenvalues

A(     ,     ,     )

Unitary equivalence class

B C0 0 0

Equivalence class

via all similarity transformation

A(               ,          ,             )B C0 0 0T0 T0 T0 T0
1-1-

U

Fig. 5. Unitary equivalence class of the system matrices, which is generated
from (A0, B0, C0). We denoteT0 =

√
ΛU†

0
.

of T †T andU0 the corresponding unitary matrix. Then,T is
fully characterized by an arbitrary unitary matrixU as

T = U
√
ΛU †

0 , (29)

where
√
Λ is a positive diagonal matrix satisfying(

√
Λ)2 = Λ.

ThisT generates the equivalence class of quantum systems. In
particular, by denotingT0 =

√
ΛU †

0 , we can interpret thatT
first transforms the matrices(A0, B0, C0) to those correspond-
ing to the quantum system,(T0A0T

−1
0 , T0B0, C0T

−1
0 ); then

we obtain the unitary equivalence class by acting a unitary
matrix U on those matrices. See Fig. 5.

Now the system matrices(Ω, C) can be reconstructed. It
follows from (5) thatA − A† = −2iΩ, which thus together
with (27) and (29) yields

Ω = UΩ0U
†,

Ω0 =
i

2

[√
ΛU †

0A0U0

√
Λ−1 −

√
Λ−1U †

0A
†
0U0

√
Λ
]
. (30)

Similarly, fromC = C0T
−1 we have

C = (C0U0

√
Λ−1)U †. (31)

These are exactly of the form (16) in Theorem 3.1. Hence, the
following theorem holds. Note that a similar result is foundin
[56].

Theorem 5.1:Let A0 andC0 be matrices directly obtained
from the transfer functionΞ(s), e.g. (26) in the SISO case.
Then, the equivalence class of system matrices(Ω, C) is given
by (30) and (31) with unitary matrixU , whereΛ andU0 are
constructed from the solution of (28).

B. Example

Let us consider a two-mode SISO system with only sin-
gle mode accessible and assume that the following transfer
function has been experimentally obtained:

Ξ(s) = 1 +
c1s

s2 + a1s+ a0
,

wherea0, a1 > 0 andc1 are real numbers. (As we will explain
later,c1 = −2a1 is satisfied.) For this transfer function we take
the typical realization (26); i.e.,

A0 =

[
0 1

−a0 −a1

]
, B0 =

[
0
1

]
, C0 = [0, c1].
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Note thatB0 = −C†
0 does not hold in general. With this

choice, the Lyapunov equation (28) has the following unique
solution:

T †T =
c21
2a1

[
a0 0
0 1

]
,

which is equal toΛ, and nowU0 = I. Thus, the equivalence
class of the system matrices are given by (30) and (31) with

Ω0 =

[
0 i

√
a0

−i√a0 0

]
, C0U0

√
Λ−1 = [0,−

√
2a1].

In particular, when choosingU = [0, − 1 ; i, 0], we have

Ω =

[
0

√
a0√

a0 0

]
, C = [

√
2a1, 0],

which have exactly the same forms as the system matrices
in Example 3.3 with specificallyθ2 = 0 taken. That is, the
coupling strength between the system modes is identified as√
a0, and the system-field coupling strength is identified as√
2a1. Note that the condition(T †T )B0 = −C†

0 yields c1 =
−2a1; indeed this relation is satisfied for the two-mode system,
as easily seen by again settingθ2 = 0 in Example 3.3.

C. Direct reconstruction of system matrices from the transfer
function

In Section V-A we have shown that the equivalent class
of system matrices can be reconstructed through typical re-
alization methods employed in classical system theory. We
here present another procedure that directly reconstructsthe
equivalence class.

We begin with the simple SISO model where the coupling
matrix is of the formC = (

√
θ, 0, . . . , 0) with θ > 0 an

unknown parameter; that is, we assume that only a single mode
is accessible. However, we do not assume a specific structure
on Ω and write it as

Ω =

[
Ω11 E

E† Ω̃

]
, (32)

whereΩ̃ is a Hermitian matrix with dimensionn− 1, Ω11 is
a real number, andE is an− 1 dimensional complex column
vector. In this case, the transfer function (9) is given by

Ξ(s) = 1− θ
(
s+ iΩ11 +

θ

2
+ E(s+ iΩ̃)−1E†

)−1

.

Again we assume thatΞ(s) is known. The parameters are then
reconstructed as follows.

First, through a straightforward calculation we have

s(1 − Ξ(s)) =
θ

1 + iΩ11/s+ 1/2s+ E(s2 + isΩ̃)−1E†
,

which thus leads to

θ = lim
|s|→∞

s(1 − Ξ(s)).

Next, since nowθ has been identified, we can further identify
Ω11 using the following equation:

Ω11 = lim
|s|→∞

[ iθ(Ξ(s) + 1)

2(Ξ(s)− 1)
+ is

]
.

Now, θ and Ω11 have been obtained in addition toΞ(s).
This means that the functioñΞ(s) := E(sI + iΩ̃)−1E†

is known. We diagonalizẽΩ as Ω̃ = V Λ̃V † with Λ̃ =
Diag{λ̃1, . . . , λ̃n−1}. Then,Ξ̃(s) = EV (sI − Λ̃)−1(EV )† is
of the form

Ξ̃(s) =
n−1∑

i=1

|E′
i|2

s+ iλ̃i
,

whereE′
i is thei-th element ofEV . This implies that̃λi can

be detected by examining the functioñΞ(iω); that is, −iλ̃i
is the value on the imaginary axis such thatΞ̃(iω) diverges.
Then, (assuming that̃Ω has non-degenerate spectrum) we can
further determine|E′

i|2 from

|E′
i|2 = (s+ iλ̃i)Ξ(s)

∣∣
s=−iλ̃i

.

Lastly, let us expressE′
i asE′

i = eiφi |E′
i| with phaseφi and

defineΦ = Diag{φ1, . . . , φn−1}. Then, (32) can be written

Ω =

[
1 0
0 V e−iΦ

] [
Ω11 |E′|
|E′|⊤ Λ̃

] [
1 0
0 eiΦV †

]
,

where|E′| = [|E′
1|, . . . , |E′

n−1|]. As shown above, the middle
matrix can be completely identified from the transfer function
Ξ(s). Therefore, all the eignevalues ofΩ can now be deter-
mined. In the case wheñΩ is degenerated, all the elements
of the vector|E′| cannot be determined, butΩ11 and Λ̃ can
be. Thus as in the above case the eigenvalues ofΩ can be
identified. Let us now summarize the result.

Theorem 5.2:The equivalence class of systems having a
given transfer functionΞ(s) is completely parameterized by
the set of parameters(θ,Ω11, |E′

i|, λ̃i) ∈ R2n, which are
directly computed fromΞ(s) using the above procedure. In
particular, the coupling parameterθ and the eigenvalues ofΩ
can be identified.

To describe the general case, we assume that them × n
matrix C is of rankm, meaning that all the injected input
fields couple with the system. Furthermore, we assumem ≤ n;
in this case, without loss of generality,C can be expressed
asC = (C̃, 0), with C̃ a m × m full rank complex matrix.
Correspondingly, we representΩ as in the same form (32), in
which caseΩ11 is am×m Hermitian matrix. Then, as in the
previous case we have

C̃C̃† = lim
|s|→∞

s(1− Ξ(s)).

This means that̃C can be represented in terms of a known
strictly positive matrixC̃0 and an arbitrary unitary matrix̃U
as C̃ = C̃0Ũ . Moreover,

ŨΩ11Ũ
† = lim

|s|→∞

[
− iC̃†

0(I − Ξ(s))−1C̃0 + isI
]
+
i

2
C̃†

0C̃0,

which means thatΩ11 can be determined up to the unitary
rotation byŨ . Now, we are given

Ξ̃(s) = ŨE(sI + iΩ̃)−1(ŨE)†.

Hence, from the same procedure as in the simple case, we can
determine the eigenvalues ofΩ̃ andEiE

∗
j from Ξ̃(s). Conse-

quently, the eigenvalues ofΩ can be also be reconstructed.
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VI. STATISTICAL ANALYSIS OF THE SYSTEM

IDENTIFICATION PROBLEM

In this section we study the problem ofhow to identify the
unknown parameters of a linear system, and related questions
such as which input states are optimal, what is the quantum
Fisher information of the output, and which output measure-
ments should be performed.

As before, we suppose that the system dynamics depends
on an unknown parameterθ ∈ Θ, asΩ = Ω(θ) andC = C(θ).
We will probe the system with a coherent input state|α(t)〉
whose temporal profile is given by the complex amplitude
function α(t) ∈ L2(R,Cm). In experiments,α(t) would be
supported in the finite time interval of the experiment, but for
our analysis the time length will not be considered as an es-
sential resource, but rather the total “energy”E =

∫
|α(t)|2dt

used to excite the system. We will furthermore assume that
the Fourier transform̃α(ω) concentrates around a finite set of
frequenciesω1, . . . , ωp, so that in the frequency domain the
input state can be approximated by the finite mode continuous
variables state

|~z, ~ω〉in ≈ |z1;ω1〉 ⊗ · · · ⊗ |zp;ωp〉,

where ~z := (z1, . . . , zp), ~ω := (ω1, . . . ωp), and |zi;ωi〉
represent the coherent state with amplitudezi ∈ Cm and
frequencyωi. In this representation, the “energy” constraint
is E =

∑
i |zi|2.

Since the system is linear, the output is obtained by rotating
the amplitude vectorz by the θ-dependent transfer function
Ξθ(−iω), separately for each frequency mode

|zi;ωi〉 7−→ |Ξθ(−iωi)zi〉,

so the the output state is

|~zθ, ~ω〉out ≈ |Ξθ(−iω1)z1;ω1〉 ⊗ · · · ⊗ |Ξθ(−iωp)zp;ωp〉.
(33)

The task is now to perform an appropriate measurement and
provide an estimator̃θ of θ based on the measurement data.
The parameter estimation for such “unitary rotation” families
of states is a fairly well understood topic in quantum statistics
[42], but for reader’s convenience we briefly recall some of
the key concepts here.

For a quantum system with Hilbert spaceH, an arbitrary
measurementM with values in the probability space(X ,Σ)
is described by a positive operator valued measure (POVM)
over(X ,Σ), i.e. a familyM := {m(A) : A ∈ Σ} of operators
on H satisfying the properties

• positivity: m(A) ≥ 0 for all eventsA ∈ Σ;
• σ-additivity: for any disjoint countable family of events
Ai,

∑
im(Ai) = m(∪iAi) holds;

• normalization:m(X ) = 1.

When the system is in stateρ, the probability distribution
of the measurement outcomeX is PM

ρ (dx) = Tr(ρm(dx)).
Now consider that the state depends on an unknown one-
dimensional parameterθ ∈ Θ ⊂ R, such thatθ 7→ ρθ
forms a smooth family of states. The multidimensional case
will be discussed later. In order to estimateθ we perform

a measurementM and construct an estimator̃θ(X), whose
performance can be measured by the mean square error (MSE)

Eθ

[
(θ̃ − θ)2

]
=

∫ (
θ̃(x)− θ

)2
P
M
ρθ
(dx).

As the MSE depends on the measurement and the chosen
estimator, one would like to find an optimal procedure mini-
mizing the MSE. Thequantum Craḿer-Rao bound[43] states
that for any measurement and any unbiased estimatorθ̃ (i.e.
Eθ(θ̃) = θ) the following lower bound holds:

Eθ

[
(θ̃ − θ)2

]
≥ F (θ)−1, (34)

whereF (θ) = Tr(ρθL
2
θ) is the quantum Fisher information

(QFI) andLθ = L†
θ is the symmetric logarithmic derivative

defined through the operator-valued equation

dρθ
dθ

=
1

2
(Lθρθ + ρθLθ).

In particular, ifρθ = |ψθ〉〈ψθ | is a pure state family, then

F (|ψθ〉) = 4
(
〈ψ′

θ|ψ′
θ〉 − |〈ψ′

θ|ψθ〉|2
)
, (35)

where|ψ′
θ〉 = d|ψθ〉/dθ.

The bound (34) is achievable when a large numbern of
copies ofρθ, in the sense that there exist measurements and
estimators̃θn such that

lim
n→∞

n · Eθ[(θ̃n − θ)2] = F (ρθ)
−1.

In our case that|~zθ, ~ω〉out is a product of independent co-
herent states, each frequency modeωi carries an amount of
QFI which is proportional to the change of the amplitude
Ξθ(−iωi)zi with θ. The total QFI is given by the following
convex combination of individual informations:

F (θ) =

p∑

i=1

Fi(θ) = 4E ·
p∑

i=1

‖zi‖2
E

∥∥∥∥
dΞθ(−iωi)

dθ

zi

‖zi‖

∥∥∥∥
2

.

This implies that, for a one-dimensional parameter, the optimal
input consists of a coherent signal with single frequencyωopt

and amplitudezopt = Ewopt defined as the solution of the
following optimization problem:

(ωopt,wopt) = argmax
ω,‖w‖=1

∥∥∥∥
dΞθ(−iω)

dθ
w

∥∥∥∥
2

. (36)

As Ξθ(−iω) is unitary, the generatorGθ = idΞθ(−iω)/dθ is
self-adjoint. Thuszopt is given by the eigenvector ofGθ whose
eigenvalue has the largest absolute value. Then the optimal
QFI is

Fopt = 4Emax
ω

∥∥∥∥
dΞθ(−iω)

dθ

∥∥∥∥
2

, (37)

and it can be achieved asymptotically by performing adaptive
homodyne measurements [57].
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A. SISO example

Consider the single mode (i.e.n = 1) SISO system with
parametersΩ = θ1 andC = θ2, such as an ideal mechanical
oscillator with resonant frequencyθ1. The transfer function is
then

Ξθ(−iω) =
−iω + iθ1 − θ22/2

−iω + iθ1 + θ22/2
= − exp(−2iφ(ω, θ1, θ2)),

(38)

where
φ(ω, θ1, θ2) = arctan

(−2ω + 2θ1
θ22

)

is the phase ofi(−ω + θ1)− θ22/2. We distinguish two cases
depending on which ofθ1 andθ2 is considered to be unknown.

If θ1 is unknown, then QFI at frequencyω is given by

F (θ1;ω) = 16E

∣∣∣∣
dφ(ω, θ1, θ2)

dθ1

∣∣∣∣
2

= 16E

∣∣∣∣
2θ22

θ42 + 4(ω − θ1)2

∣∣∣∣
2

.

This takes the maximumFopt = 64Eθ−4
2 at ωopt = θ1. There

are three remarks on this result.
Firstly,ωopt = θ1 means that the optimal input is a coherent

field with unknownresonant frequency. In practice, one can
adopt an adaptive strategy whereby one initially injects a signal
composed of sufficiently many frequencies, also called “M-
sequence” [7], followed by more precise inputs targeting the
optimal frequency. Secondly, the optimal QFIFopt = 64Eθ−4

2

increases asθ2 decreases and the system becomes less stable
(note that the system’sA matrix has eigenvalue−iθ1−θ22/2).
This is expected due to the longer coherence time, but it
also implies that the time to reach the asymptotic regime
is longer. Therefore, as in the classical case, there existsa
trade-off between the stability and the information for system
identification. The third observation is that the maximum QFI
Fopt can be achieved for largez by adaptively choosing the op-
timal frequency, and by performing a homodyne measurement
of an appropriate quadrature, similar to the adaptive phase
estimation protocol of [57].

We pass now to the second case whereθ2 is unknown. In
this case, QFI at frequencyω is

F (θ2;ω) = 16E

∣∣∣∣
dφ(ω, θ1, θ2)

dθ2

∣∣∣∣
2

= 16E

∣∣∣∣
4(−ω + θ1)θ2

θ42 + 4(−ω + θ1)2

∣∣∣∣
2

.

By optimizing overω we find that the largest QFI is achieved
at ωopt = θ1 ± θ22/2 and is equal toFopt = 16Eθ−2

2 . Note
that in this caseFopt depends on the unknown parameterθ2.

Similar techniques can be applied to the more general case
of one-dimensional parameters. For instance, a SISO passive
linear system can be represented as a cascaded network of
single-mode oscillators, hence the transfer function at−iω is
the complex phase [22]

Ξθ(iω) = (−1)n
(−iω − ζ1)

(−iω − ζ1)
. . .

(−iω − ζn)

(−iω − ζn)

= (−1)n exp
(
− 2i

∑

j

arg(−iω − ζj)
)
.

ζj is theθ-dependent pole of the transfer function. In principle
the optimal frequency can be obtained in the same way as
above by maximizing QFIF (ω) = 4|dΞθ(−iω)/dθ|2 overω.
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Fig. 6. (a) The lower bound of the total estimation error as a function
of the frequencies(ω1, ω2), in the caseθ1 = 0.5 and θ2 = 0.02. (b) A
cut through the previous plot atω = θ1 = 0.5 shows two local minima at
ω2 ≈ θ1 ± θ2

2
/2. (c) Achievable lower bound for the MSE as a function of

θ2, for the values ofω1,2 described above and withr = 1/2.

B. Estimation for multidimensional parameters

The theory for one-dimensional parameter can be extended
to multi-dimensional parametersθ = [θ1, . . . , θm]T ∈ R

m.
In this case the error covariance matrix is bounded by the
following Cramér-Rao matrix inequality:

Eθ

[
(θ̃ − θ)(θ̃ − θ)T

]
≥ F c(θ)−1 ≥ F (θ)−1. (39)

θ̃ is the vector of unbiased estimators.F c(θ) is the classical
Fisher information (CFI) matrix corresponding to the proba-
bility distribution of a particular measurement process, while
F (θ) is the QFI matrix of the output state, defined similarly
to the one dimensional case [42], [43].

However, the quantum Cramér-Rao bound is in general not
achievable due to incompatibility of the optimal measurements
corresponding to different parameter components. We will
therefore focus on the possibly sub-optimal setup where a
dual homodyne (heterodyne) measurement is performed on
each output mode. Essentially this means that the output is
split into two channels, and complementary quadratures are
measured on each. In particular, this implies that the MSE for
the heterodyne measurement is at most a factor two larger than
that of the optimal measurement. For a one-mode coherent
state|z〉 the probability density of the measurement outcome
is the two-dimensional Gaussian centered at(ℜ(z),ℑ(z))
and variance equal to two times the vacuum fluctuations:
p(y) = N (ℜ(z),ℑ(z),1).

As an example, we consider the same SISO system as above,
but in this case the unknown parameter isθ = (θ1, θ2). We
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will consider an input consisting of several frequencies, with
corresponding output amplitudeszθ;i = Ξθ(−iωi)zi ∈ C , for
i = 1, . . . , p. The jk element of the CFI matrix ofp(y; θ) is
then given by

F c
jk(θ) = E

p∑

i=1

f c
jk,i(θ)

= E ·
p∑

i=1

2|zi|2
E

[
∂ℜ(zθ;i)
∂θj

∂ℜ(zθ;i)
∂θk

+
∂ℑ(zθ;i)
∂θj

∂ℑ(zθ;i)
∂θk

]
.

The explicit expression of the (normalized) CFI matrix is

f c(θ;ω)

=
8

((ω − θ1)2 + θ42/4)
2

[
θ42/4 (ω − θ1)θ

3
2/2

(ω − θ1)θ
3
2/2 (ω − θ1)

2θ22

]
.

Note that rank(f c(θ;ω)) = 1, which simply means that a
single coherent input state with fixedω can only identify
one component of the parameter. We will therefore consider
the case of two frequency modesω1 andω2. By asymptotic
efficiency theory, the MSEEθ[(θ̃1 − θ1)

2 + (θ̃2 − θ2)
2] of

optimal estimators (e.g. the maximum likelihood) scales as
ǫ/E where

ǫ = trace
[
f c(θ)−1

]

= trace
[(
rf c(θ;ω1) + (1− r)f c(θ;ω2)

)−1]
,

and0 < r < 1 is the weight of the input with frequencyω1.
To find the optimal procedure and MSE one has to minimizeǫ
overr and(ω1, ω2). Figure 6 (a) illustrates the dependence ofǫ
on the frequenciesω1, ω2, for a set of true parametersθ1 = 0.5
and θ2 = 0.02, wherer is optimized at each point. We find
the values of the optimal frequencies are very near to those
which were shown to be optimal in the two one-dimensional
estimation problems, namelyω1 ≈ θ1, andω2 ≈ θ1 ± θ22/2,
cf. Fig. 6 (b). For these values, and withr = 1/2 the bound
ǫ is given by

ǫ(θ2) =
θ22
16

(5 + θ22),

which is plotted in Fig. 6 (c). We note that as before, the MSE
vanishes when the coupling constantθ2 goes to zero, and does
not depend onθ1.

C. Heisenberg scaling

The coherent input setup is fairly close to that of classi-
cal linear system identification. We will show now that the
superposition principle allows us to attain higher estimation
precision as encountered in quantum enhanced metrology [44].
Consider as above, a single-mode SISO model with unknown
HamiltonianΩ = θ and known couplingC = c. Let the input
field state be thecoherent superpositionof the vacuum and
the n-photon state of frequencyω:

|ψ〉in =
1√
2
(|0〉+ |n;ω〉) ,

whose mean energy isE = n/2. We note that|n;ω〉 is a state
of the light field with continuous-modêb(t) satisfying (4), and
refer to the Appendix for more details.

Now the system interacts with the field with initial state
|ψ〉in. For times which are significantly longer than the dura-
tion of the input pulse, the system returns to the ground state
due to the stability of the dynamics while the field state is
transformed by the action of the transfer function, and the two
are decoupled from each other. In particular, the field output
state is given by

|ψθ〉out =
1√
2
(|0〉+ Ξθ(−iω)n|n;ω〉)

=
1√
2

(
|0〉+ e−2inφ(ω,θ,c)|n;ω〉

)
. (40)

For derivation, see Appendix. The QFI of|ψθ〉out is calculated
as

F (θ) = 16E2

∣∣∣∣
dφ(ω, θ, c)

dθ

∣∣∣∣
2

,

which is exactly the same as in the coherent input case, with
the important difference that it has a quadratic (Heisenberg)
scaling with E, familiar from quantum metrology models.
In particular, the optimal frequency isωopt = θ1, and the
corresponding QFI is64E2/θ42. As discussed before, since
ωopt is unknown, in practice we can use an adaptive strategy
in which the input frequency is repeatedly tuned to approach
ωopt as the estimator becomes more and more accurate. Note
however that the quadratic scaling withE does not rely on the
frequency distribution of the input, but rather on the ability
to prepare superpositions of states with very different photon
numbers. In particular, more realistic input signal containing a
continuum of frequencies can achieve a similar scaling inE.

The above input state is by no means the only design
exhibiting quadratic scaling inE. Other schemes based on
squeezed or NOON states have been extensively discussed
in the literature on quantum metrology [58]. Here we limit
ourselves to listing some of the issues that require a more in
depth analysis. The first question is whether the Heisenberg
scaling can be achieved by performing realistic measurements,
e.g. homodyne or photon counting. This question can be
addressed by using the interferometric setup described in [59],
which involves a product of squeezed and coherent input
states. The optimization over input frequencies and general
linear output measurements can be formulated along the lines
of the previous section, and will be addressed in a future
publication. Other issues which have not been addressed are
decoherence due to losses, and measurement imperfections.
To some extent these can be modeled by extending the linear
setup to include additional input-output channels which are
not monitored.

VII. G ENERAL LINEAR SYSTEMS

In this paper we dealt with passive systems, as a special,
but important class of linear input-output systems. We showed
that taking this prior information into account leads to smaller
equivalence classes than it is expected based on the classical
theory. Additionally, in this case, the statistical estimation
problem can be cast into that of optimizing the mean square
error for a given energy of the input. For completeness, we
will now sketch the general set-up of the system identification



14

problem for linear systems which will be analysed in more
detail elsewhere. We will use the following “doubled-up” no-
tation convention introduced in [51]. For a vector of operators
x̂ = [x̂1, . . . , x̂n]

T we denotĕx := [x̂1, . . . , x̂n, x̂
∗
1, . . . , x̂

∗
n]

T .
Given a linear transformation of the form̂y = E−x̂+E+x̂

∗,
we write

y̆ =

[
ŷ

ŷ∗

]
= ∆(E−, E+)x̆ :=

[
E− E+

E∗
+ E∗

−

] [
x̂

x̂∗

]
,

whereE∗
−, E

∗
+ denote the complex conjugates of the matrices

E−, E+. For a 2n × 2n matrix X we define theinvolution
X♭ = J (n)X†J (n) where

J (n) :=

[
In 0
0 −In

]
.

The 2n × 2n matrix S̃ is called ♭-unitary if SS♭ = S♭S.
The symplectic groupis the subgroup of♭-unitaries of the
form S = ∆(S−, S+) with S± suitable n × n complex
matrices. Moreover, anyn × n unitary U can be identified
with the “doubled-up” element̃U = ∆(U, 0) of the symplectic
group, so the unitary group can be seen as a subgroup of the
symplectic one.

In order to describe the input-output relations for active
systems we collect all of the system’s variables into the vector
ă := [â1, . . . , ân, â

∗
1, . . . , â

∗
n]

T , which satisfies the commu-
tation relations[ăi, ă∗j ] = Jij . For any symplectic matrix
S = ∆(S−, S+), there exists a Bogolubov transformation
â
′ = S−â + S+â

∗ which has the property that it preserves
the above commutation relations. The system has a quadratic
Hamiltonian of the form

Ĥ = ă
†Ω̃ă

where Ω̃ := −i∆(iΩ−, iΩ+) is the generator of a symplec-
tic transformation, i.e.exp(iΩ̃) is a ♭-unitary. Equivalently,
Ω̃ = Ω̃♭, which means that then × n matricesΩ± satisfy
the following conditions:Ω− = Ω†

− and Ω+ = ΩT
+. The

input B̂(t) couples with the system through the operator
L = C−â+C+â

∗, whereC−, C+ are complexm×nmatrices.
In the Laplace domain, the input-output relations are givenby
[51]

L[b̆out](s) = Σ̃(s)L[b̆](s)
whereΣ̃(s) is the transfer function

Σ̃(s) :=

[
Σ−(s) Σ+(s)
Σ+(s

∗)∗ Σ−(s
∗)∗

]
= I − C̃(sI − Ã)−1C̃♭,

(41)

with C̃ := ∆(C−, C+), and Ã := ∆(A−, A+), andA∓ :=
−iΩ∓ − (C†

−C∓ − CT
+C

∗
±)/2.

As in the passive case, we would like to answer the
following questions: what are the equivalence classes of
dynamical parameters(Ω̃, C̃) which have the same transfer
function, and how can we estimate the identifiable parameters?
Concerning the first question, we note that for any symplectic
transformationS, the system with parametersΩ′ = SΩ̃S♭ and
C̃′ := C̃S♭ has the same transfer function (41), and therefore
all such parameters belong to the same equivalence class. As
expected, the equivalence classes of general linear systems

are larger than those of passive systems, sincen×n unitaries
are a subgroup of the symplectic group. We conjecture that
the equivalence class is in fact completely determined by
symplectic transformations, but this question will be addressed
elsewhere.

Concerning the second question, we note that the active
case differs from the passive one in some important respects,
which are closely related to presence of squeezing elementsin
the dynamics. For instance, even if the input is in the vacuum
state, the system’s and output’s stationary states may be mixed
squeezed Gaussian states, and the two quantum systems may
share quantum correlations. Although this makes the statistical
analysis of the output state more involved, we expect that the
tools developed for estimation of Gaussian states can be used
to compute the quantum Fisher information of the output in
terms of the transfer function, and to study the optimal input
problem along the lines of the passive systems case.

VIII. C ONCLUSION AND FUTURE WORKS

In Theorem 3.1 we characterized the equivalence classes
of linear input-output systems; minimal passive linear systems
with the same transfer function are related by unitary transfor-
mations acting on the space of modes. Theorem 4.1 states that
systems satisfying the infection property are completely identi-
fiable. Additionally, in Theorems 5.1 and 5.2 we provided two
methods for finding the identifiable parameters and physical
realizations for a given transfer function. We then addressed
the statistical aspects of the system identification problem, and
investigated the question of finding optimal input design and
output measurement. The analysis is based on the statistical
concepts of quantum and classical Fisher information. While
for coherent inputs, the estimation error scales with the energy
E as1/

√
E, we showed that using non-classical input states

we can attain the Heisenberg scaling1/E due to the unitarity
of the transfer function.

There are a number of direction in which this work can
be extended. For instance, in control applications it may be
relevant to identify physical realizations which optimizethe
prediction rather than the estimation error. Since for large
networks the identification becomes intractable, it may be
useful to develop new system identification methods inspired
by quantum compressed sensing [60] and dimensional re-
duction. Switching from passive to active linear systems, we
conjectured that the equivalence classes consist of systems
related by symplectic rather than unitary transformations. The
system identification problem can be considered in a different
setting, where the input fields are stationary (quantum noise)
but have a non-trivial covariance matrix (squeezing). In this
case the characterization of the equivalence classes boilsdown
to finding the systems with the same power spectral density, a
problem which is well understood in the classical setting [37]
but not yet addressed in the quantum domain.
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APPENDIX

A single photon (field) state is defined by

|1ξ〉 =
∫ ∞

−∞

ξ(ω)b̂∗(ω)dω|0〉, (42)

where b̂∗(ω) is the Fourier transform of the white noise
creation operator̂b∗(t), and ξ(ω) is the frequency domain
shape function satisfying

∫∞

−∞ |ξ(ω)|2dω = 1 [61].
If |1ξ〉 is taken as an input field state for a passive system

that initially set to the ground state, then, in the long timelimit
the system returns to the ground state and the output is a single
photon field state with pulse shapeξ′(ω) = Ξ(−iω)ξ(ω) [45].
That is, as in the coherent input case, the output field state is
completely characterized by the transfer function as follows:

|1ξ′〉out =
∫ ∞

−∞

Ξ(−iω)ξ(ω)b̂∗(ω)dω|0〉.

We now suppose that the input pulse shape is enough broaden
and so is confined around a fixed frequencyω, thereby we
denote|1ξ〉 = |1;ω〉. Then, the output field state is given by
|1;ω〉out = Ξ(−iω)|1;ω〉. Then-photon field state is defined
in a similar way by [62]:

|nξ〉 =
1√
n!

[ ∫ ∞

−∞

ξ(ω)b̂∗(ω)dω
]n

|0〉.

As above, if the input for a linear passive system is an-photon
field state with its pulse shape confined at aroundω, then the
output is given by|n;ω〉out = Ξ(−iω)n|n;ω〉.
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