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Abstract

We study the price competition in a duopoly with an arbitrarynumber of buyers. Each seller can

offer multiple units of a commodity depending on the availability of the commodity which is random

and may be different for different sellers. Sellers seek to select a price that will be attractive to the buyers

and also fetch adequate profits. The selection will in general depend on the number of units available

with the seller and also that of its competitor - the seller may only know the statistics of the latter. The

setting captures a secondary spectrum access network, a non-neutral Internet, or a microgrid network

in which unused spectrum bands, resources of ISPs, and excess power units constitute the respective

commodities of sale. We analyze this price competition as a game, and identify a set of necessary and

sufficient properties for the Nash Equilibrium (NE). The properties reveal that sellers randomize their

price using probability distributions whose support sets are mutually disjoint and in decreasing order

of the number of availability. We prove the uniqueness of a symmetric NE in a symmetric market, and

explicitly compute the price distribution in the symmetricNE.

Index Terms

pricing, game theory, micro-grid networks, cognitive radio networks, secondary spectrum networks,

network neutrality

I. INTRODUCTION

The Research Challenges and Goals

We consider a market with two sellers, where each seller offers multiple commodities for sale.

The commodities that are available for sale are randomly generated. In other words, sellers do

not control the amount supplied or they may obtain the commodities from a residual supply. We
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Part of this work was presented in Allerton’12 [1].
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investigate the price selection strategy for sellers in presence of uncertainty in competition using

Game Theory [2]. Customers shop around for the lowest available prices. Therefore sellers seek

to set prices that will ensure that their commodities are sold and also fetch adequate profit. In

our model, a seller is not aware of the number of units available to her competitor before quoting

her price. Thus, the competition that each seller faces is uncertain, and different sellers have

different number of goods available (heterogeneous availability). Each seller selects the price per

unit depending on the number of units she has available for sale, the statistics of the availability

process for her competitor, and the demand. In general, eachseller chooses her price randomly

using different probability distributions for different availability levels. Thus, the strategy of each

player is a vector of probability distributions. For instance, if a seller can potentially offer up to

three units of commodity, her vector of strategies would be(Φ1(.),Φ2(.),Φ3(.)), whereΦi(.) is

the price selection probability distribution when the seller offersi units.

Due to uncertainty in competition, quoting a high price by a seller enhances the risk of not

being able to sell the commodity offered by that seller. On the other hand, although selecting a

low price increases the chance of winning the competition, it also decreases the profit earned by

the seller. Therefore, pricing in presence of uncertainty in competition is a risk-reward tradeoff.

It is not a priori clear that how offering multiple number of units affects the price selection by

sellers. For instance, a seller with a large number of available units may be motivated to quote

a low price, since in the event of winning the competition, a small amount of profit per unit

would result in a large total profit. On the other hand, a seller maybe enticed to select a high

price when the availability is high to significantly increase her overall profit, even at the risk of

not being able to sell the available units. We focus on investigating the impact of heterogeneous

availability and uncertain competition on the aforementioned risk-reward tradeoff.

Uncertainty in competition is an integral feature of diverse sets of applications. In Section VIII,

we outline the connection between the decision problem we considered and three different

emerging application domains: primary/secondary market,a non-neutral Internet, and microgrid

networks.

Contributions

We start by positioning our work in the context of the existing literature. We next model the

price selection problem as a one-shot non-cooperative game(Section II). The sellers are allowed
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to have different probability distributions for differentavailability levels (asymmetric market). In

Section III, we identify key properties that every NE pricing strategy should satisfy when demand

is greater than the maximum possible availability level. The properties reveal that the sellers

randomize their price using probability distributions whose support sets are mutually disjoint

and in decreasing order of the number of availability. In thecontext of the aforementioned risk-

reward tradeoff, sellers opt for low-risk pricing when theyhave high availability. In Section IV,

we prove that any strategy profile that satisfies the properties listed in Section III constitutes

an NE regardless of the relation between the demand and the number of available units. This

sufficiency result naturally leads to an algorithm (Appendix C-A) for computing the strategies

that satisfy the properties in Section III.

In Section V, we consider a symmetric market and prove that these properties are also

necessary conditions for a NE regardless of the relation between the demand and the number

of available units. We prove that the symmetric NE uniquely exists, and obtain an algorithm

for explicitly computing it. Note that the uniqueness is specific to the symmetric market- our

analysis in Appendices C-B and C-C reveals that an asymmetric market allows for multiple Nash

equilibria. Results are generalized to the case of random demand in Section VI. The asymptotic

behavior of the symmetric NE (whenm → ∞) is investigated through numerical simulations in

Section VII.

Related Literature

Price competition among different entities has been extensively studied in [3]–[12]. In eco-

nomics literature as also in the context of specific applications, uncertainty in competition has

been investigated when the availability level is either zero or one [13]–[17]. The strategy profile

of each seller consists of only one probability distribution since sellers need to select a price

only when they have one unit available for sale. We, however,characterize the Nash equilibrium

pricing strategies when sellers have arbitrary and potentially different number of available units

for sale (not merely zero or one). In this case, different price selection strategies may be required

for different number of available units. Thus, the pricing strategy profile of each seller is a

collection of probability distributions, one for each availability value. Therefore both results and

proofs are substantially different from previous works.

Another genre of work allows sellers to control the amount ofcommodities they would
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generate for sale [18]–[25]. In these works, sellers (e.g. power generators) bid a supply function
1 to a central auctioneer. Given the demand and the bids submitted, the auctioneer solves an

optimization problem to determine the number of units needed to be generated by the sellers

and subsequently the price that should be paid to them. In [18]–[20], the setting is a uniform-

price procurement auction in which the price is equal for different sellers, i.e. the clearing price.

However, in [21]–[25], authors investigate a pay-as-bid (discriminatory) procurement auction

which is similar to our work in the sense that the price can be different for the bidder (sellers

in our case). In these works, central entity accepts the offers submitted by the sellers and

pays the accepted offers based on the bid submitted. For instance in [23], authors provide

a characterization of mixed equilibria over increasing supply curves. In other words, in their

characterization, the price per infinitesimal unit of the commodity is increasing, i.e., the higher

the number of units produced, the higher the price per unit. Note that in [21]–[23] authors

consider divisible goods, i.e. continuous amount of goods for sale. However, in [24] and [25],

the number of units is effectively discrete. In this sense, they have a closer model to ours.

Nonetheless, the main distinction of our work with this entire genre of work is that we consider

scenarios where sellers do not control the amount of commodities they produce. This distinction

in the setup, lead to major differences in the formulation, analyses, and results.

II. M ARKET MODEL AND PROBLEM FORMULATION

A. Market Model

First, we define some preliminary notation. Then sellers’ decision and information are de-

scribed.

1) Preliminary notation: We consider a market with two sellers in which each seller owns

multiple number of the same commodity and quotes a price per unit. The total demand of the

market isd units. For simplicity, the demand is assumed to be deterministic. The generalization

to randomd is straightforward, and is presented in Section VI.

Buyers prefer the seller who quotes a lower price per unit, and they are equally likely to buy a

unit from sellers who select equal prices. Thus, if sellers havea, b units to sell respectively and

quote prices ofx, y per unit, wherex < y, then they respectively sellmin{a, d}, min{b, (d−a)+}

1A supply function is a function that maps the price of the commodity under sale to the amount a producer will produce for
sale.
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units, wherez+ denotesmax{z, 0}. The cost of each transaction isc. Therefore, a seller earns a

profit of i(x− c) when she sellsi units with pricex per unit. Because of regulatory restrictions

or because of valuations that buyers associate with purchase of each unit, the price selected by

each seller should be bounded by some constantv > c, i.e.x ≤ v. The availability of each seller

is random:

Terminology 1. We denotemk as the maximum possible number of available units of seller

k. Let qkj ∈ [0, 1] be the probability that sellerk has j ∈ {0, . . . , mk} units available, and

~qk = (qk0, . . . , qkmk
).

The availability of sellers may for example follow binomialdistributionsB(m1, p1) and

B(m2, p2). Specifically, if p1 = 0.5, p2 = 0.3, m1 = 3, andm2 = 2, then ~q1 = (1
8
, 3
8
, 3
8
, 1
8
)

and~q2 = ( 49
100

, 42
100

, 9
100

).

We assume that sellers have zero unit available for sale withpositive probability, i.e.,qk0 > 0

for k ∈ {1, 2}, and the competition is uncertain, i.e.,qk̄i < 1 for i ∈ {0, 1, . . . , mk} for at least

one sellerk. 2 Note that if competition is deterministic for both sellers,then the problem is

trivial.

Terminology 2. For each sellerk, let k̄ denote the other seller, i.e., ifk = 1 (respectively,

k = 2), then k̄ = 2 (respectivelȳk = 1).

2) Sellers’ decisions and information:Sellers select their price based on the number of units

they offer in the market. Before choosing her price, a sellerdoes not know the number of units

of the commodity that her competitor has available for sale and the price per unit her competitor

selects. She is however aware of the demand and the distributions for the above quantities. A

seller may select her price randomly.

Terminology 3. Let Φkj(.) be the probability distribution that the sellerk ∈ {1, 2} uses for

selecting price per unit when she offersj units. Letp̃kj and ṽkj be the infimum and the supremum

of thesupport set3 of Φkj(.). The strategy profile of sellerk is Θk(.) = (Φk1(.), . . . ,Φkmk
(.)).

2Note that if this existsi, j ∈ {0, . . . ,mk} such thatq1i = 1 and q2j = 1, then both sellers know the exact number of
available units with the other seller. Thus the competitionis deterministic.

3The support set of a probability distribution is the smallest closed set such that its complement has probability zero under
the distribution function.
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An example of probability distributions, support sets, andtheir infimums and supremums is

presented in Figure 1. In this figure, the infimums (p̃kj ’s) are illustrated explicitly, and̃vkj =

p̃k,j−1 (For instance,̃v13 = p̃12). Note that, Figure 1 presents the distributions which are strictly

increasing between the infimum and the supremum of their support sets. However, the probability

distributions in general may consist of strictly increasing and flat parts. For example, a probability

distribution that is strictly increasing over intervals[a, b] and [c, d], and flat over interval[b, c].

Unlike the previous example, the support set of this probability distribution ([a, d]∪ [c, d]) is not

connected.

B. Problem Formulation

Note that in general, the number of units a seller sells and her profit can be random.

Terminology 4. Let uk(Θk(.),Θk̄(.)) denotes the expected profit of sellerk when she adopts

strategy profileΘk(.) and her competitor adoptsΘk̄(.).

In a Bayesian game (where players are modeled as risk-neutral), rational players are seeking

to maximize their expected payoff, given their beliefs about the other players (

Definition 1. A Nash equilibrium(NE) 4 is a strategy profile such that no seller can improve

her expected profit by unilaterally deviating from her strategy. Therefore,(Θ⋆
1(.),Θ

⋆
2(.)) is a NE

if for each sellerk:

uk(Θ
∗
k(·),Θ

∗
k̄(·)) ≥ uk(Θ̃k(·),Θ

∗
k̄(·)), ∀ Θ̃k(·).

Terminology 5. With slight abuse of notation, we denoteukl(x) as the expected profit that seller

k earns, andBkl(x) as the expected number of units that sellerk sells, when she offersl units for

sale with pricex per unit, respectively (the dependence on the competitor’sstrategy is implicit

in this simplified notation).

Clearly,ukl(x) = Bkl(x)(x− c). (1)

Note thatukl

l
is the expected utility per unit of availability. Thus,Ak,l,j(x) =

1
l
ukl(x)−

1
j
ukj(x)

4Clearly, our game is a Bayesian game with the number of available units for sale being the type of a player. For the sake
of notational convenience, we use Nash equilibrium as an alternative for Bayesian Nash equilibrium.
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is the difference between the utility per availability for availability levels l and j. We will see

that Ak,l,j(x) plays an important role throughout in the proofs, which motivates the following

terminology:

Terminology 6. Let Ak,l,j(x) = 1
l
ukl(x) −

1
j
ukj(x) = (x − c)Bk,l,j(x), where Bk,l,j(x) =

1
l
Bkl(x)−

1
j
Bkj(x).

Terminology 7. Let ek = (d−mk̄)
+.

Note that for allx ≤ v,

Bkl(x) = l l = 1, . . . , ek (2)

ask will sell all she offers in this case given that the total offering is less than the demand. We

would later obtain the expression forBkl(x) under the NE strategy profiles whenl > ek.

Definition 2. A price x is said to be abest-response pricefor seller k when she offersj units

if ukj(x) ≥ ukj(a) for all a ∈ [0, v].

Note that a NE-strategy profile selects with positive probability only amongst the best-response

prices. Thus, all the elements of support sets are best responses except potentially those on the

boundaries (elements of boundaries may not be best responses) if there is a discontinuity in the

utility at those points.

We seek to determine the Nash equilibrium strategy profile ofsellers. Ifm1 +m2 ≤ d, since

there is no competition between sellers, both sellers offertheir units with the monopoly price,

v at the NE. We therefore assume thatm1 +m2 > d.

III. PROPERTIES OF ANE WHEN d > max{m1, m2}

Note that from Corollary 5.2 in [26], a mixed strategy NE exists for our model. In this section,

we investigate the necessary conditions for a strategy to bean NE whend > max{m1, m2} (The-

orem 1). We will explicitly point out whenever we use the assumption thatd > max{m1, m2}.

Theorem 1. A NE must satisfy the following properties whend > max{m1, m2},

1) For eachk, there exists a threshold such that sellerk offers pricev with probability one if

she has the availability level less than or equal to this threshold. This threshold, denoted

as lk henceforth, is such that:
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a) lk ∈ {ek, . . . , mk − 1}

b) l1 + l2 = d− 1 or l1 + l2 = d

2) When sellerk has lk + 1 5 units, she uses distributionΦk,lk+1(.)

a) whose support set is[p̃k,lk+1, v],

b) which is continuous throughout except possibly atv, and

c) has a jump atv for at most one value ofk ∈ {1, 2}, and size of such a jump is less

than 1

3) When the availability level isi ∈ {lk + 2, . . . , mk}
6, sellerk uses distributionΦki(.)

a) whose support set is[p̃k,i, p̃k,i−1],

b) which is continuous throughout

c) p̃1,mk
= p̃2,mk

4) The utility of sellerk when she offersi units is equal for all prices in the support set of

Φki(.), except possibly at pricev (if v belongs to her support set).

In Appendix C, we will present an algorithm to explicitly compute the NE strategies satis-

fying properties in Theorem 1. Using this algorithm, in Figure 1, we plot an NE probability

distribution of price when the vector of availability distributions are~q1 = [0.3, 0.2, 0.2, 0.3] and

~q2 = [0.4, 0.2, 0.2, 0.2], the demand , i.e.d, is 3, v = 10, and c = 6. Note that in this case

l1 = l2 = 1, and l1 + l2 = d − 1 (part 1 at Theorem 1). This means that both sellers offer

price v with probability one if they have one unit of commodity available. When sellers have

availability l1 + 1 = 2 and l2 + 1 = 2 units available for sale, they use probability distributions

Φ12(.) andΦ22(.), respectively, whose support sets are[p̃12, v] and [p̃22, v], respectively (part 2a

of the Theorem). In addition, these distributions are continuous throughout except possibly at

v (part 2b). Furthermore, only the probability distributionΦ22(.) has a jump at pricev and the

size of this jump is less than one (part 2c of Theorem 1). When sellers have availability level

l1 + 2 = l2 + 2 = 3, they use probability distributionsΦ13(.) andΦ23(.), respectively, whose

support sets are[p̃13, p̃12] and [p̃23, p̃22], respectively (part 3a of Theorem 1). In addition, these

probability distributions are continuous throughout (part 3b). Note thatp̃13 = p̃23 = p̃ (part 3c

of the Theorem). More numerical examples are presented in Appendix C-B.

5The samelk as the one in part 1.
6The samelk as the one in part 1
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Fig. 1: An example of an NE pricing strategy, whend = 3, Supp = Support Set. Note that
Φ11 andΦ21 have a jump of magnitude one, andΦ22 has a jump of size0.6 at v.

We prove Theorem 1 using the following results which we first state and prove later.

1) The probability distribution of price,Φki(x) for i ∈ {1, . . . , mk}, is continuous forx < v

(Section III-B, Property 3).

2) The lower bound of prices are equal for both sellers (Section III-C, Property 4).

3) There is no gap between support sets (Section III-D, Property 5).

4) Support sets are disjoint barring common boundary points, and are in decreasing order of

the number of available units for sale (Section III-D, Property 6).

5) The structure of NE at pricev: A seller selectsv with probability one, if and only if the

number of available units with her is less than or equal to a thresholdlk ∈ {0, 1, . . . , mk−

1}, wherel1 + l2 = d or l1 + l2 = d− 1 (Section III-F, Property 7).

Note that in Figure 1, the distributions are continuous and the lower bound of prices are

equal. In addition, every element of the set[p̃, v] belongs to a support set, i.e. there is no gap

between support sets. The support sets of seller one when sheoffers3, 2, and1 unit are[p̃, p̃12],

[p̃12, v], and{v}, respectively. This illustrates the result4. The result5 is the same as part 1 in

Theorem 1, and is previously connected to Figure 1.

Henceforth in this section, we focus on proving the necessary results and properties needed

to prove Theorem 1.
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A. Results that we use throughout

Property 1. For eachi and k, Φki(c) = 0.

This result follows directly since prices less than costc are not chosen by sellers. Property 1

therefore rules out jumps at pricesx ≤ c.

Proof: Note that for eachi, uki(x) ≤ 0 for x ≤ c. But, sinceBki(x) ≥ iqk̄0 > 0 for all

x ∈ [0, v], uki(x) > 0 for all x ∈ (c, v]. Thus, no price in[0, c] is a best response for a seller.

Lemma 1, which we use throughout the paper, rules out jumps atprices higher thanc.

Lemma 1. Let the strategy profile of playerk beΘk(.) = (Φk1(.), . . . ,Φkmk
(.)), andΦki(.) have

a jump atx > c. Then forl such thatl + i > d, uk̄l(x − ǫ′) > uk̄l(a), ∀a ∈ [x,min{x+ ǫ, v}],

and for all sufficiently small but positiveǫ and ǫ′.

We provide the intuition behind the result and defer the proof to Appendix A. Note that

offering a lower price increases the expected number of units sold by a seller, but decreases

the revenue per unit sold. Suppose that a sellerk offers i units with pricex with a positive

probability. Let her competitor̄k have l units available wherel + i > d; k̄ can sell a strictly

larger number of units in an expected sense by choosing a price in the left neighborhood ofx

(eg,x− ǫ) rather thanx or in its right neighborhood. In addition the difference is bounded away

from zero even as the size of the left neighborhood approaches zero. On the other hand, the

difference in the revenue per unit approaches zero as the size of the left neighborhood approaches

zero. Therefore, prices in the left neighborhood ofx constitute better responses for the seller

thanx or those in its right neighborhood.

The following property fully characterizes the NE when seller k offers i ∈ {1, . . . , ek} units.

Property 2. Φki(x) selectsv with probability 1 and any other prices with probability0 when

i = 1, . . . , ek for eachk.

The proof relies on the fact that if a seller offers less than or equal toek units of commodity,

she can sell all units regardless of the price she quotes. Thereforev strictly dominates all other

prices.

Proof: This statement holds by vacuity ifmax{m1, m2} ≥ d. Now considerd > max{m1, m2}.

If the sellerk offers i ≤ ek units, the total offerings from both sellers are at mostd, since the
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other seller offers at mostmk̄ units. Thus, the sellerk can sell everything it offers with any price

x in interval [0, v]. Therefore for allx ∈ [0, v), uki(x) = i(x− c) < i(v − c) = uki(v). Thus, no

price in [0, v) is a best response. The result follows.

B. Continuity of Price Distribution for Pricex < v

Utilizing Lemma 1, we can prove that the distribution of price is continuous for prices less

thanv,

Property 3. Φki(x) is continuous forx < v.

Note that in Fig 1, there is no jump in the distributions for prices less thanv.

Proof: If i ≤ ek, the property follows from Property 2. Now leti > ek. If x ≤ c, the

property follows from Property 1. Now considerx ∈ (c, v). We use contradiction argument.

SupposeΦki(.) has a jump at pricex < v. Sincei > ek, there existsl ≤ mk̄ such thatl+ i > d.

Using lemma 1, we can say that ifΦki(.) has a jump atx, for eachl such thatl + i > d,

uk̄l(x − ǫ′) > uk̄l(a), wherea ∈ [x,min{x + ǫ, v}], and for all sufficiently small but positiveǫ

and ǫ′. Therefore no price in this interval is a best response for the sellerk̄ when she offersl

units. ThereforeΦk̄l(x+ ǫ) = Φk̄l(x) for all sufficiently small but positiveǫ and all l such that

l > d− i, i.e. the other seller does not choose any price in[x, x+ ǫ) whenever she offersl units.

Knowing this we can say thatBki(a) = Bki(x) for all a ∈ [x, x + ǫ) for someǫ > 0 such that

x+ ǫ ≤ v. Therefore,

uki(x) = (x− c)Bki(x) < (x+
ǫ

2
− c)Bki(x+

ǫ

2
) = uki(x+

ǫ

2
) (3)

Thus,x is not a best response for a seller who offersi units. Hencex is chosen with probability

zero, which rules out a jump atx for Φki(.). The property follows.

Based on this property, the distribution of price is continuous forx < v. We will later show

that the price distribution has a jump atv for some availabilities.

Based on the above continuity result, the expression for theexpected number of units sold

for all x ∈ [0, v) and l = ek + 1, . . . , mk is,
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Bkl(x) = l

d−l
∑

i=0

qk̄i + l

m
k̄

∑

i=d−l+1

(

1− Φk̄i(x)
)

qk̄i

+

m
k̄

∑

i=d−l+1

Φk̄i(x)qk̄i(d− i)

(4)

Note that we assumedd ≥ max{m1, m2} in (4). The first term in the left hand side corresponds

to the situation in which the other seller offers at mostd − l units. In this case, sellerk will

sell all l units she offered in the market. The second and the third terms are corresponding to

the situation in which the other seller offers more thand− l units with a price higher than and

less thanx, respectively. If the other seller offers with price higherthan x, sellerk is able to

sell the entirel units. On the other hand, if̄k offers with a price less thanx, k will sell d − l

units of commodity.

We can now obtain an expression forukl(x) for x < v from (1), (2), and (4).

C. Sellers Have Equal Lower Bound of Prices

Note that the example NE distributions presented in Figure 1have equal lower bounds (p̃ =

p̃13 = p̃23). We now prove that all NE distributions must satisfy this property:

Property 4. The minimum of lower end points of support sets are equal for both sellers.

Mathematically,

p̃1 = p̃2

where,p̃k = min{p̃ki : i = 1, . . . , mk}. Furthermore,p̃1 = p̃2 < v if d < m1 +m2.

If the lower bound of prices for sellerk, i.e. p̃k, is lower than that for the other seller,p̃k̄,

then k sells equal number of units in an expected sense by choosingp̃k as any other price in

(p̃k, p̃k̄). Using continuity of distributions for prices less thanv, we can say that̃pk̄ is a better

response thañpk for k, which is a contradiction. The formal proof follows:

Proof: Suppose not. Without loss of generality supposep̃1 < p̃2 ≤ v. Therefore there exists

j such that̃p1 belongs to the support set ofΦ1j(.). Since player 2 does not offer with any price

in the interval [p̃1, p̃2), B1j(p̃1) = B1j(p̃
−
2 )

7. Thus u1j(p̃1) < u1j(p̃
−
2 ) which contradicts the

7f(x−) = limy↑x f(y)
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assumption that̃p1 is a best response for the first player when she offersi units of commodity.

Therefore, the first part of the property follows.

Supposẽp1 = p̃2 = v. Thus, both sellers choose the pricev with probability 1 regardless of

the number of units they have available. Consider sellerk. Let l = mk̄. Sincem1 + m2 > d,

Lemma 1 implies thatuk̄mk̄
(v− ǫ) > uk̄mk̄

(v). This contradicts the assumption thatv is the best

response for sellerk. The result follows.

Terminology 8. Let p̃ denote the minimum of lower end points of prices in the NE, i.e. p̃1 =

p̃2 = p̃.

D. The union of support sets cover[p̃, v]

We show that there does not exist an interval of prices in[p̃, v] which is eschewed with

probability1 by both sellers. If such an interval existed, the cumulativedistribution functions of

both sellers would be flat in it, which we rule out below. Note that in Fig 1, the NE distributions

are strictly increasing throughout their support sets, andthere is no flat region.

Property 5. There does not exista, b such thatp̃ ≤ a < b ≤ v and Φki(b) = Φki(a) for all

i ∈ {ek + 1, . . . , mk} and k = 1, 2.

If such a andb exist for sellerk, this means that regardless of the number of available units,

k does not select any price in the interval(y, z) wherey ≤ a, z ≥ b, andy is a best response

whenk has an availability levell. This implies that for the competitor,̄k, the expected utility is

strictly increasing in interval[y, b]. Thus k̄ does not select any price in the interval[y, b). This

again implies that for sellerk, when she offersl units, priceb yields a strictly higher payoff

thany, which is in contradiction withy being a best response fork when offeringl units. The

formal proof is as follows:

Proof: Let there bea, b, andk such that̃p ≤ a < b ≤ v andΦki(b) = Φki(a) for all i. Thus

for ζ such thata < b− ζ < b ≤ v, Φki(b− ζ) = Φki(a). Considery such that,

y = sup{x|x < a, x ∈ support set ofΦkl(.) for an l}

Since support sets are closed,y belongs in the support set ofΦkl(·) for somel. Thus,y is a best

response when the availability of playerk is l (using Property 3 andy < v).
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In addition, note thatΦki(y) = Φki(b − ζ) for all i. Sincea < b − ζ < v, from Property

3 and equation (4), the expected number of units sold for the second seller remains constant

for prices in [y, b − ζ ], regardless of the number of units she offers, i.e.Bk̄,.(y) = Bk̄,.(b − ζ).

Thus, uk̄,.(b − ζ) > uk̄,.(y), and playerk̄ does not offer any price in the interval[y, b − ζ).

ThereforeΦk̄,.(y) = Φk̄,.(b − ζ). Since a < b − ζ < v, from Property 3 and equation (4),

Bkl(y) = Bkl(b − ζ). Thus,ukl(b − ζ) > ukl(y). This is in contradiction withy being a best

response when the availability of playerk is l. Therefore, there does not exista, b such that

p̃ ≤ a < b ≤ v andΦki(b) = Φki(a) for all i ∈ {1, . . . , mk} and k = 1, 2. Also, note that for

i ∈ {1, . . . , ek}, Φki(b) = Φki(a) for p̃ ≤ a < b ≤ v, since support sets for these distributions

only containv. The result follows.

Remark: In all the previous results, we consideredd ≥ max{m1, m2}. In the next section, we

need to consider thatd > max{m1, m2}.

E. Support Sets Are Mutually Disjoint and in Decreasing Order of the Number of Availabilities

We start with proving a result, Lemma 2, onAk,l,j(x) (defined in Section II, Terminology 6).

Note that we use Lemma 2 in subsequent sections as well. We next prove Property 6 using this

result, which leads to the main results of this section: Corollaries 1 and 2.

First, using (2) and (4).

Bk,l,j(x) =−
1

l

d−j
∑

i=d−l+1

Φk̄i(x)qk̄i(i− d+ l)

+

mk̄
∑

i=d−j+1

Φk̄i(x)qk̄i(d− i)(
1

l
−

1

j
)

(5)

Thus,Bk,l,j(·) is non increasing and non positive with respect to the pricex when l > j.

Therefore ifl > j thenAk,l,j(x) is non increasing and non positive with respect tox. Based on the

following lemma,Ak,l,j(x) is (strictly) decreasing forv > x ≥ p̃ andl > j if d > max{m1, m2}.

Lemma 2. For each sellerk ∈ {1, 2} and everyl and j, j < l ≤ mk, Ak,l,j(x) is (strictly)

decreasing for̃p ≤ x < v whend > max{m1, m2}.

Lemma 2 implies that the high-availability agent sacrificesmore expected payoff than the

low-availability agent by increasing her price.
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SinceAk,l,j(.) = (x − c)Bk,l,j(x), knowing thatBk,l,j(x) is non-increasing, lemma follows

if we prove thatBk,l,j(·) is negative. We will prove thatΦkmk
(x), which is included in the

summation ofBk,l,j(·), is positive forx > p̃ and k ∈ {1, 2}. In addition, the coefficient of

Φkmk
(x) is negative sinced > max{m1, m2}. Thus, the result follows.

Proof: It is enough to prove thatBk,l,j(x) is non-increasing forx ≥ p̃ and negative for

x > p̃. This yields thatAk,l,j(x) = (x− c)Bk,l,j(x) is strictly decreasing with respect tox.

Note that in (5),Φkj(.)’s are non-negative and non-increasing since they are probability

distributions. In addition, they have negative weights:−(i − d − l) ≤ −1 < 0, 1
l
− 1

j
< 0,

and sinced > max{m1, m2}, d − i ≥ d − mk̄ > 0. ThusBk,l,j(x) is non increasing and non

positive with respect to the pricex when l ≥ j. To prove thatBk,l,j(x) is negative forx > p̃,

since the distributions in (5) have (strictly) negative weights , it is enough to prove that at least

one of theΦkj(.)’s is included in the summation ofBk,l,j(.) is positive, i.e. not all of them are

zero. We will prove thatΦkmk
(x) > 0 for x > p̃ andk ∈ {1, 2}.

Suppose not and there existsx > p̃ such thatx ≤ p̃kmk
. By Property 5, there exists anǫ > 0

and an availability levelj 6= {1, . . . , ek, mk} such that[p̃kmk
− ǫ, p̃kmk

] belongs to the support

set ofΦkj(.) and p̃kj < p̃kmk
. Thusukj(p̃kmk

) = ukj(p̃kmk
− ǫ). In addition,Bk,mk,j(x) is the

weighted summation ofΦk̄i(.) for i ∈ {ek̄ + 1, . . . , mk̄}. Property 5 implies that̃pkj belongs

to at least one of the support sets ofΦk̄i(.) for i ∈ {ek̄ + 1, . . . , mk̄}. The distributionΦk̄i(.)

is included in the summation ofBk,mk,j(x), and its coefficient is negative. Thus,Ak,mk,j(x) is

strictly decreasing with respect tox for x > p̃kj. ThusAk,mk,j(p̃kmk
− ǫ) > Ak,mk,j(p̃kmk

). Using

ukj(p̃kmk
) = ukj(p̃kmk

− ǫ), we can conclude thatukmk
(p̃kmk

) = ukmk.max < ukmk
(p̃kmk

− ǫ).

This contradicts with̃pk,mk
belonging to the support set ofΦkmk

(.). The result follows.

Note that in the previous lemma, we usedd > max{m1, m2} to prove thatAk,l,j(x) is

decreasing for̃p ≤ x < v. The following properties characterize the NE for price less than

v.

Property 6. For k ∈ {1, 2}, the support set ofΦkl(.) is a subset of[p̃, p̃kj] ∪ [v] for all integers

j ∈ [1, l).

For example, in Figure 1, the support set for seller 1 and availability 3 is [p̃, p̃12], which is a

subset of the mentioned set.

Proof: First note that forj ∈ {1, . . . , ek} property follows, sincẽpkj = v by Property 2.
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Now considerj > ek. Consider support sets ofΦkj(·), Φkl(·), and j < l. We will show that

ukl(a) < ukl(p̃kj) for all a ∈ (p̃kj, v). Thus, noa ∈ (p̃kj, v) is a best response for the sellerk

with availability of l units. Therefore, the support set ofΦkl(·) is a subset of[c, p̃kj] ∪ [v].

We now complete the proof, by showing thatukl(a) < ukl(p̃kj) for all a ∈ (p̃kj, v):

1

l
ukl(a)−

1

j
ukj(a) = Ak,l,j(a)

Since l > j and p̃ ≤ p̃kj < a < v, by Lemma 2,Ak,l,j(a) is decreasing function ofa for

a ∈ [p̃kj, v). Thus,Ak,j(a) < Ak,j(p̃kj) for a ∈ (p̃kj, v). On the other handukj(a) ≤ ukj(p̃kj) for

all a > p̃kj , sincep̃kj is a best response of a seller with availabilityj, thereforeukl(p̃kj) > ukl(a).

Note that, in this stage, sinceΦkl(.) can have a jump atv, we cannot rule outv as a member

of the support set ofΦkl(.).

Corollary 1. The support sets ofΦkl(.) andΦkj(.) overlap at most at one point in[p̃, v).

For instance, note that in Figure 1, the support sets ofΦ13 andΦ12 overlap only atp̃12, the

support sets ofΦ12 andΦ11 overlap only atv, and there is no overlap between support sets of

Φ13 andΦ11.

Proof: Suppose two pointsx1 andx2, wherex1 < x2 < v, and both points belong to the

intersection of the support sets ofΦkj(·) andΦkl(·). Without loss of generality, considerj < l.

The pricex2 > p̃j belongs to the support set ofΦkl(.), which is a contradiction with Property

6.

Corollary 2. For prices less thanv support sets are contiguous (Property 5), disjoint (except

possibly at one point) (Corollary 1), and in decreasing order of the number of available units

for sale (Property 6). Thus, there exists an increasing sequenceakmk
, ak,mk−1, . . . of positive real

numbers in(c, v] such that the sellerk will randomize her price in the interval[aki, ak,i+1] and

possibly{v} when she hasi units of commodity available for sale.

For instance, note that in Figure 1, the support sets of seller one are in decreasing order of

the number of available units for sale, and the aforementioned increasing sequence isp̃, p̃12, and

v.
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F. The Structure of Nash Equilibrium at Pricev

We will investigate the possibility of having a jump atv. First, we prove Lemma 3 which

complements previous results by identifying the nature of overlap betweenΦkj(.) and Φk̄l(.)

for j ∈ {1, . . . , mk} and l ∈ {1, . . . , mk̄} for prices less thanv. Using this lemma, we prove

Property 7 which is the main result of this section.

Lemma 3. For every pricep̃ ≤ x < v, x should belong to the support setsΦkl(.) and Φk̄j(.)

such thatl + j > d.

A contradiction argument is used to prove the lemma. Assume that there existx, l, and j

such thatx belongs to sayΦkl(.) and Φk̄j(.), and l + j ≤ d. We show that in this case, the

expected number of units sold atx andx + ǫ are equal for sellerk when offeringl units, i.e.

Bkl(x) = Bkl(x + ǫ), and subsequently thatukl(x + ǫ) > ukl(x). Thusx is not a best response

for sellerk who offersl units, which is a contradiction.

Proof: Suppose not. There existx, l, and j such thatx belongs to sayΦkl(.) andΦk̄j(.),

and l + j ≤ d. We show that there exist̃j, ǫ > 0 such thatx + ǫ belongs in the support set of

Φk̄j̃(.), and subsequently thatukl(x+ ǫ) > ukl(x). Thusx is not a best response for sellerk who

offers l units which is a contradiction. Consider two cases:

• x = ṽk̄j . Using Corollary 2,x andx + ǫ belongs to the support set ofΦk̄,j−1(.) when ǫ is

small enough. Takẽj = j − 1.

• x < ṽk̄j . If ǫ is small enough,x andx+ ǫ belongs to the support set ofΦk̄j(.). Take j̃ = j.

Note that sincel + j ≤ d, l + j̃ ≤ d. We are going to argue that the expected number of

units sold atx and x + ǫ are equal for sellerk, i.e. Bkl(x) = Bkl(x + ǫ). To show this, we

condition on the number of available units with the sellerk̄. If k̄ has more thañj number of

available units, sayf , then she will offer with price less thanx with probability one. Thus

B̃kl(x|f) = B̃kl(x + ǫ|f) = d − f in which B̃.(.|.) is the conditional expected number of units

sold. If k̄ offers less thañj number of units, she will offer with price higher thanx + ǫ with

probability one. ThusB̃kl(x|f) = B̃kl(x + ǫ|f) = l. If k̄ offers j̃ units, sincel + j̃ ≤ d,

B̃kl(x|j̃) = B̃kl(x + ǫ|j̃) = l. Therefore the expected number of units sold atx and x + ǫ are

equal for sellerk, andukl(x+ ǫ) > ukl(x). The proof is complete.

Finally, the following property characterizes the behavior of NE at v.
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Property 7. For eachk, there exists a threshold such that sellerk offers pricev with probability

one if she has the availability level less than or equal to this threshold. We denote this threshold

with lk. This threshold is such that:

• lk ∈ {ek, . . . , mk − 1}

• l1 + l2 = d− 1 or l1 + l2 = d

The price distributionΦkj(.) does not have a jump atv if j > lk + 1, at most one of the

distributionsΦ1,l1+1(.) andΦ2,l2+1(.) can have a jump atv, and size of such a jump is less than

1.

Note that in Fig 1,l1 = l2 = 1, and l1 + l2 = d− 1. In addition, both sellers have a jump of

magnitude one at pricev when they have one unit available, only seller two has a jump at price

v when the availability level is two, and there is no jump in thedistribution functions when

sellers have three units available.

Proof: Take zk such thatk offers pricev with probability one if she hasi ∈ {1, . . . , zk}

units. Property 2 shows thatzk ≥ ek. We will prove that thezk should be less thanmk. Note

that if sellerk hasmk units of availability and she offers her units with a single price v, then

p̃k = v. By Properties 4 and 6, the other seller,k̄, offers her units with a single pricev regardless

of the number of available units. This is a contradiction. The reason is because of Lemma 1.

Sincem1+m2 > d, if Φ1,m1
(.) has a jump atv, thenu2m2

(v− ǫ) > u2m2l(v), for all sufficiently

small but positiveǫ. Thus v is not a best response for the second player when she offersm2

units, which is a contradiction. Thuszk < mk. Thereforezk ∈ {ek, . . . , mk − 1}.

First, supposez1 + z2 ≥ d+ 1. By Lemma1, v is not a best response for the playerk when

she offerszk units, which is a contradiction. Thereforez1 + z2 ≤ d. Next, we will prove that

eitherz1 + z2 = d− 1 or z1+ z2 = d. Note that by the definition ofzk, sellerk with availability

zk + 1 cannot choose the pricev with probability 1. Thus using this fact and Corollary2, the

pricex = v− ǫ for ǫ > 0 small enough is in the support sets ofΦ1,z1+1(·) andΦ2,z2+1(·). Thus,

by Lemma 3,z1 + z2 ≥ d− 1. Knowing thatz1 + z2 ≤ d. Takelk = zk, and the first part of the

property follows.

Now we should consider the possibility of having a jump atv for Φkj(.) for j ≥ lk + 1. We

will prove that the price distribution does not have a jump atv when sellerk offers more than

lk + 1 units. SupposeΦkj(.) has a jump forj > lk + 1. Note thatj + lk̄ > lk + lk̄ + 1 ≥ d. By
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Lemma 1,v is not a best response for the sellerk̄ under availabilitylk̄ which contradicts the

definition of lk̄.

Now considerlk + 1. By definition of lk such a jump must have a size less than1, should

it exist. We will prove that at most one of the distributionsΦ1,l1+1(.) andΦk,l2+1(.) can have a

jump atv. Suppose not and both have a jump atv. By Lemma 1, since(l1 + 1) + (l2 + 1) > d,

v is not a best response for the playerk when she offerslk + 1 units. This is a contradiction.

The result follows.

Revisiting Equation (4) implies that utility,uki(.), is continuous not only in interval[c, v), but

also at pricev, if i ≤ d− lk̄ −1. The reason is that fori ≤ d− lk̄ −1, equation (4) depends only

on Φk̄j(.) wherej ≥ lk̄ + 2, which is continuous at pricev based on Property 7. IfΦk̄lk̄+1(.) is

continuous atv thenuki(.) is continuous in[c, v] for i ≤ d− lk̄.

G. Proof of Theorem 1

Proof: Part 1 of Theorem 1 follows from Property 7. We now prove part 2. The support

set ofΦk,lk+1(.) includes at least onex < v from Property 7. Thus, Properties 6 and 5 imply

part 2a of this part. Parts 2b and 2c follow from Properties 3 and 7, respectively.

We now prove part 3. We start with 3a. Consideri > lk+1. From Property 7,Φk,i(·) does

not have a jump atv. From part 2a and Property 6,v is not in the supports set ofΦk,i(.) and

ṽk,i ≤ p̃k,i−1. The result can now be proved by induction starting withi = lk+2 using the fact

that there is no gap between the support sets (Property 5). Since v is not in the support set of

Φk,i(.), part 3b follows from Property 3. Part 3c follows from part 3aand Property 4.

Part 4 follows from the fact that every price in the support set of a NE, except those on the

boundaries, should be a best response for a seller. Thus theyyield the same utility value. The

result follows for the boundary points of the support sets other thanv from Property 3.

IV. A RBITRARY DEMAND

Note that the existence of the mixed strategy NE follows fromCorollary 5.2 in [26]. In

this section, first we present the sufficiency theorem ford ≥ max{m1, m2} (Theorem 2).

Theorem 2 establishes that a strategy profile which satisfiesthe mentioned properties in Theorem

1 constitutes an NE whend ≥ max{m1, m2}. Note that unlike Theorem 1, the sufficiency
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theorem holds even whend = max{m1, m2}. Thus, the properties in Theorem 1 are both

necessary and sufficient conditions for an NE whend > max{m1, m2}, and only sufficient

conditions whend = max{m1, m2}. The sufficiency theorem naturally leads to an algorithm for

computing NE strategy profiles that satisfy the properties in Theorem 1 (Appendix C-A). Any

strategy profile obtained by the algorithm constitutes an NEby Theorem 2. In Section IV-B,

we argue that the computation of the NE strategies ford < max{m1, m2} can be reduced to

d = max{m1, m2}. This completes the entire framework.

A. The Sufficiency Theorem whend ≥ max{m1, m2}

Theorem 2. Consider a strategy profile that satisfies the properties enumerated in Theorem 1.

This strategy profile is a Nash equilibrium whend ≥ max{m1, m2}.

The proof is presented in Appendix B. In the proof, we use the fact thatAk,l,j(.) is non

increasing and non positive whend ≥ max{m1, m2}.

B. Allowingd ≤ max{m1, m2}

Note that all results before equation (4) also hold whend ≤ max{m1, m2}. Thus (4) can be

restated by replacingek = d−mk̄ with ek = (d−mk̄)
+:

Bkj(x) = j

(d−j)+
∑

i=0

qk̄i +min{j, d}

m
k̄

∑

i=(d−j)++1

(

1− Φk̄i(x)
)

qk̄i

+

m
k̄

∑

i=(d−j)++1

Φk̄i(x)qk̄i(d− i)+

(6)

Note that ifmk > d, the utilities of all number of availability levelsj ≥ d for playerk are

equal:

ukd = uk,d+1 = · · · = ukmk
= d

mk̄
∑

i=1

(

1− Φk̄i(x)
)

qk̄i (7)

Let q̃k̄d =
∑mk̄

i=d qk̄i and Φ̃k̄d(x) =
∑mk̄

i=d

qk̄i
q̃k̄d

Φk̄i(x). Thus, q̃k̄d is the probability that the

availability level of seller̄k is greater than or equal tod and Φ̃k̄d(x) is the average probability

distribution associated with selecting the price if sellerk̄ availability isd or higher. Now, the term
∑mk̄

i=d

(

1− Φk̄i(x)
)

qk̄i in the expression foruki(.) in (6) can be replaced bỹqk̄d(1−Φ̃k̄d(x)). Thus

the problem is reduced to finding the structure whend = max{m1, m2}. It was proved previously
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that a strategy profile that satisfies properties in Theorem 1is a NE whend = max{m1, m2}.

Thus, a set of equilibria of the game whend < max{m1, m2} can be found by defining̃Φkd(.)

and using the properties in Theorem 1. The distribution of each individualΦkj(.) for j ≥ d

cannot be determined uniquely and is not of significant interest.

V. THE SYMMETRIC SETTING

We now consider the symmetric setting in which~q1 = ~q2 = ~q (clearlym1 = m2 = m). In this

case, it is natural to consider a symmetric NE, defined as follows,

Definition 3. An NE (Θ1(·),Θ2(·)) is said to besymmetricif Θ1(·) = Θ2(·).

Thus, when considering symmetric NE, in terminologies likeΦ.(·),Θ.(·), u.(·), p̃·, we drop

the index that represents the seller and only retain the index that represents the number of units

available for sale. As a special case of the general setting (Sections III and IV), every symmetric

NE should satisfy the properties in Theorem 1 whend > m , and every strategy profile that

satisfies these properties is a NE whend ≥ m (Theorem 2). In Section V-A, we extend Theorem 1

to the case ofd = m. In Section V-B, we will present an algorithm to find symmetric Nash

equilibria of the game whend ≥ m. Using the results in Section IV-B, the algorithm can be

extended tod < m.

Note that the algorithm reveals that there is only one symmetric strategy profile that satisfies

the properties. It follows from Theorems 1 and 2 that a symmetric NE strategy profile uniquely

exists whend ≥ m. In contrast, in Appendix C-C, we show that there may exist multiple Nash

equilibria for an asymmetric market. It is not clear if thereexists an asymmetric NE for the

symmetric market; our extensive numerical evaluations have not however led such strategy.

A. Properties of a Symmetric Nash Equilibrium

Theorem 3. Let d = m. A symmetric NE in a symmetric market satisfies the properties in

Theorem 1.

The proof is technical and is relegated to the Appendix. It implies that properties in Theorem 1

are necessary and sufficient conditions for a symmetric NE when d ≥ m.
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Since NE is symmetric,l∗ = l1 = l2. Thus,l∗ = d−1
2

or l∗ = d
2
, whichever is an integer. Since

at most one seller can have a jump atv at l∗ + 1, in a symmetric NE, none of them do. Thus,

the properties in Theorem 1 transform to the following in thesymmetric context.

1) Sellers offer pricev with probability 1, if they havei ∈ {1, . . . , l∗} available units.

2) There exists an increasing sequenceam, am−1, . . . , al∗+1, al∗ of positive real numbers in

(c, v] with al∗ = v such that each seller randomizes her price in the interval[ai, ai−1] when

she hasi units of commodity available for sale fori ∈ {l∗ + 1, . . . , m}. Thus,

a) Support sets are contiguous.

b) Support sets are disjoint (except possibly at one point).

c) Support sets are in decreasing order of the number of available units for sale.

3) Price distribution is continuous fori ≥ l∗.

4) The utility of a seller when she offersi units is equal for all prices in the support set of

Φi(.), except possibly at pricev (if it belongs to her support set).

B. Algorithm for computing a symmetric NE for the symmetric setting

We will now identify an algorithm to compute strategies thatexhibit the properties in the

previous subsection. The algorithm reveals that there is only one symmetric strategy profile that

satisfies the same. It follows from Theorem 1 and 2 that a symmetric NE strategy profile uniquely

exists whend ≥ m. Note that the algorithm is developed ford ≥ m. However, with the method

presented in Section IV-B, the algorithm can be used to find the equilibrium ford ≤ m.

SinceΦj(·) is completely characterized forj < d+1
2

, we should characterizeΦj(·) for j ≥ d+1
2

,

and outline a framework for computing the same. We proceed inan increasing order ofj starting

with j = ⌈d+1
2
⌉. Then moving toj = ⌈d+1

2
⌉+ 1, etc.

Now, let⌈d+1
2
⌉. Note that̃v⌈ d+1

2
⌉ = v andp̃k = v for k < ⌈d+1

2
⌉, andṽk ≤ p̃⌈ d+1

2
⌉ for k > ⌈d+1

2
⌉

(Properties 1 and 2c). Since support sets are ordered (Property 2c) and disjoint (Property 2b),

the expression foru⌈ d+1

2
⌉(x) for x ∈ [p̃⌈ d+1

2
⌉, v) only depends onΦ⌈ d+1

2
⌉(x)(Equation (4)). In

particular,u⌈ d+1

2
⌉(v

−) can be obtained using the fact thatΦ⌈ d+1

2
⌉(v

−) = 1 which follows from

the continuity ofΦ⌈ d+1

2
⌉(.) (Properties 3). Next,u⌈ d+1

2
⌉(x) = u⌈ d+1

2
⌉(v

−) for everyx ∈ [p̃⌈ d+1

2
⌉, v).

Thus havingu⌈ d+1

2
⌉(v

−), and using continuity, we can find a unique expression forΦ⌈ d+1

2
⌉(x).

UsingΦ⌈ d+1

2
⌉(p̃⌈ d+1

2
⌉) = 0, p̃⌈ d+1

2
⌉ can be found uniquely.
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We now compute the structure ofΦi(·), ∀i > ⌈d+1
2
⌉ usingΦi−1(.),Φi−2(.), · · · ,Φ⌈ d+1

2
⌉(.) that

are computed beforeΦi(·). We utilize the facts that,

1) Φj(x) = 1 for j > i, x ∈ [p̃i, ṽi]

2) Φj(x) = 0 for j < i, x ∈ [p̃i, ṽi]

3) ṽi < v

Thus, from (4),

ui(ṽi) = (ṽi − c)

(

i

i−1
∑

g=0

qg +

m
∑

i

qg(d− g)

)

(8)

Since ṽi = p̃i−1, and p̃i−1 is computed during the computation ofΦi−1(·), which precedes that

of Φi(·), (8) fully specifiesui(ṽi). Furthermore, forx ∈ [p̃i, ṽi] the only unknown variable in the

expression ofui(x) is Φi(x). Sinceui(x) = ui(vi) for x ∈ [p̃i, ṽi],

Φi(x) =
i
∑i−1

g=0 qg + iqi +
∑m

g=i+1 qg(d− g)− ui(ṽi)
x−c

qi(2i− d)
(9)

From (9),Φi(ṽi) = 1. Thus, forx ≥ ṽi, Φi(x) = 1. Now, p̃i can be uniquely identified using

the fact thatΦi(p̃i) = 0,

p̃i = c +

(ṽi − c)

(

i
∑i−1

g=0 qg +
∑m

i qg(d− g)

)

i
∑i−1

g=0 qg + iqi +
∑m

g=i+1 qg(d− g)
(10)

ThereforeΦi(x) = 0 for x ≤ p̃i. Clearly,Φi(·) has been characterized uniquely. Note that the

denominator of (10) is positive sinced ≥ m andqm < 1 (uncertainty assumption in Section II).

In addition, p̃i > c. This is because of the fact that the second term of RHS of (10)is positive.

We now prove thatΦi(·) is a valid probability distribution. Clearly,Φi(·) is continuous. Note

that in (9) forx ∈ [p̃i, ṽi), by increasingx, the termui(vi)
x−c

will strictly decrease (sinceui(ṽi) > 0),

and we can say thatΦi(x) is strictly increasing. Also,Φi(p̃i) = 0 and Φi(ṽi) = 1. Thus,

0 ≤ Φi(x) ≤ 1 for x ∈ [p̃i, ṽi). Therefore,Φi(·) is non-decreasing and assumes values in[0, 1]

for all x. The claim follows. Thus we have uniquely identified a symmetric strategy that satisfies

the properties required by a Nash equilibrium.

VI. RANDOM DEMAND

We have so far assumed that the demandd is deterministic. In this section, we will generalize

the results to a random demand,D. Let rd denote the probability that the demand isd, Bkld(x)
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be the expected number of units that sellerk sells if she offersl units for sale and quotesx as

the price per unit when the total demand isd, andukld(x) be the expected utility in this case.

Clearly,

ukl(x) =
∑

d

rdukld(x) =
∑

d

rdBkld(x)(x− c)

We introduced = min{d : d > 0 and rd > 0}. Utilizing similar proofs, we can show that all the

previous results about the structure of NE are valid for the random demand, onced is replaced

with d. This is but expected as each seller now chooses her price knowing that she is assured

of an overall demand of at leastd (instead ofd in the deterministic demand case). Algorithms

similar to those in the deterministic case can be developed for computation of the NE in both

symmetric and general cases.

VII. T HE ASYMPTOTIC BEHAVIOR

In this section, through numerical evaluations, we investigate the asymptotic behavior of the

symmetric NE of a symmetric duopoly market when the number ofavailable units with a seller

increases to infinity. In asymptotic scenario, many of availability probability distributions that

arise naturally concentrate around the mean. Thus,qk → 0, whenk is far from the mean. First,

we show that the length of the support set for availability ofk units approaches zero asqk → 0:

From equation (10),

p̃i = c+
(p̃i−1 − c)(i

∑i−1
g=0 qg +

∑m

g=i qg(d− g))

i
∑i

g=0 qg +
∑m

g=i+1 qg(d− g)

= p̃i−1 + (p̃i−1 − c)
qi(d− 2i)

i
∑i

g=0 qg +
∑m

g=i+1 qg(d− g)

It is immediate that ifqi → 0, then p̃i → p̃i−1
8. This implies that the length of the support set

for the availability leveli units approaches zero.

We investigate the asymptotic behavior using numerical simulations when the availability of

each seller follows a binomial distribution(m, r < 1). With this distribution, asm → ∞, the

binomial distribution can be approximated by a normal distribution with meanmr and variance

mr(1− r). Thusm → ∞ yields thatp̃i → p̃i−1 when |i−mr| is large enough. In other words,

8Note that the denominator is positive sinced ≥ m, and we assume uncertainty in competition, i.e.qm < 1.
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m: The Maximum Possible Availability
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Fig. 2: p̃ versusm for when availability level is binomial with probabilityp and demand ism

the length of the support set for the availability leveli units approaches zero ifi is far from the

mean. Other parameters are considered to bev = 10, c = 1, andd = m.

In Figure 2, the value of̃p, i.e. the lowest lower-bound is plotted versusm, i.e. the highest

possible level of availability. As you can see, the larger the probabilityr, the smallerp̃. Note

that whenr is large, the seller is more likely to offer with higher levels of availability. Therefore

the competition is more intense. In addition, whenm is increased, the distribution~q of the

availability levels concentrates around the mean,mr. If r > 1
2
, when a seller offersk = mr,

knowing that the other seller offersmr > m
2

with positive probability, she will offer price less

than v (note thatd = m). Furthermore, the higherm, the more intense the competition, and

consequentlỹp is decreasing. On the other hand, whenr ≤ 1
2
, if a seller offers aroundmr

units, there is no competition between sellers knowing that2mr ≤ d = m. Furthermore, the

availability probability qk, when k is far from mr, tends to zero whenm is large. Thus the

associated support sets shrink to zero. This explains the increasing behavior of̃p. We notice

oscillation in the figure, sincem alternates between odd and even.

VIII. A PPLICATIONS AND DISCUSSION

The framework we described in this paper can be used to model three different applications

in which uncertainty in competition naturally emerges: secondary spectrum access networks, a

non-neutral Internet market, and micro grid networks.

Pricing in secondary spectrum access networks [28] is one ofthe applications of our model.

Recent developments in wireless devices have resulted in a significant growth in demand for

October 23, 2018 DRAFT



26

the radio spectrum. This leads to spectrum congestion. On the other hand, the available radio

spectrum is greatly under-utilized [29]. Spectrum congestion and under-utilization have directed

researchers to adopt new techniques in order to use the available spectrum more efficiently

and to decrease congestion. Secondary spectrum access is anexample of these techniques. In

these networks, there are two types of users: (i) Primary/licensed users, who lease a number of

frequency bands (channels) directly from the regulator, and (ii) Secondary/unlicensed users, who

lease frequency bands from primary users for a certain amount of time in exchange for money or

other types of credit. Note that primary and secondary userscorrespond to sellers and buyers in

our model, respectively. Each primary user may have multiple vacant frequency bands available

for sale, and a secondary user can lease a channel only if it isnot in use by the primary user

who owns it. The usage of subscribers of primary users is random and different for different

primaries. Thus primaries are uncertain about the competition, and they need to select prices

for the frequency bands they offer for sale, without knowingthe number of frequency bands

available for sale with their competitors.

The next application of our model is the interaction betweenInternet Service Providers (ISPs)

and Content Providers (CPs) in anon-neutralInternet. Net neutrality on the Internet is perceived

as the policy that mandates ISPs to treat all data equally, regardless of the source, destination,

and type of the data [30]. This precludes ISPs from charging CPs to carry their data to the

end-users in the last-mile. In January 2014, a federal appeals court struck down parts of the

Federal Communication Commission’s (FCC) rules for Net-Neutrality [31]. The new changes

in the Internet policies enable ISPs to change their policies and provide differential treatment

of traffic to generate additional revenue streams from CPs. This is called anon-neutralregime

for the Internet in which ISPs can offer resources to CPs for sale or rent. Our framework can

capture the pricing in this type of the Internet market. Here, ISPs represent the sellers that

offer resources for reservation/sponsorship, and CPs are the customers that shop around for the

lowest available prices. Therefore ISPs seek to set prices that will ensure that their resources

are reserved/sponsored and also fetch adequate profit. Notethat ISPs determine the number of

resources available for sponsoring based on the demand of their end-users. The more congested

an ISP, the higher the demand of end-users, and therefore thelower the number of available

resources for sponsoring. Since the demand of end-users is not a priori known, the ISPs are not

aware of the number of units of resources available to her competitor before quoting her price.
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Thus, the competition that each ISP faces is uncertain.

The third example scenario pertains to pricing in micro grids [32]. A micro grid network

is a network of distributed power generating systems connected to local subscribers, and also

to the central macro power grid. The distributed generationof power at small on-site stations

is a promising alternative to the traditional generation atlarge stations. Decreasing the loss of

transmission by reducing the distance to consumption units9, utilizing renewable energy sources,

decreasing the risk of blackout, and increasing security are some of the advantages of distributed

power generating scheme [33]. In these networks, a microgrid equipped with a distributed power

generating system can sell its excess power to other microgrids as well as the macro grid. Since

micro grids are emerging technologies10, their market structure has not been finalized yet. Thus,

different market structures needs to be investigated. One possible scenario is a centralized market

in which micro grids sell their excess power to the macro gridor a local utility at a feed-in

tariff 11 [36]. Another scenario, which is investigated in this paper, is a distributed market in

which micro grids trade the power among themselves as also with macro grid at a price quoted

by them in a competitive market. Our model captures the second scenario in which each micro

grid with excess power (seller) sells its excess power to micro grids with deficient power or the

macro grid (buyers)12. The amount of power generated by a power generating system is not a

priori known and is different for different sellers. Thus, the sellers need to select prices for the

excess power they offer for sale, without knowing the numberof power units available for sale

with their competitors (uncertainty in competition).

Note that in these applications, we considered the case thatsellers sell their surplus supply.

The original supply is allocated to their subscribers, i.e.contracted customers, using either usage-

based or flat-rate pricing.

We now discuss about some details of the applications that arise in practice. Note that one

unit of commodity might be valued differently by different buyers in the above mentioned

9In microgrid networks, the power can be sold to or bought fromother local micro grids. This reduces the distance the power
should be transmitted via the macro grid from a generation toa consumption site.

10Microgrids are emerging in different countries such as United States [34] and India [35].
11A feed-in tariff is an offer by the macro grid to purchase someor all of the output of a micro grid at a fixed or formula

rate.
12Note that each microgrid can be a seller or a buyer depending on the number of power units generated and the demand of

its subscribers. However, at a fixed time, the identity of a micro grid as a seller or a buyer is fixed.
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applications. For instance, different secondary users receive different rates for the same frequency

band, depending on their location. Similarly, different microgrids receive different amounts of

power owing to differences in power loss. Hence, different buyers have different utilities even

when they buy the same amount of commodity. However, in our formulations, we assumed that

the pricing structure is the same for all buyers, regardlessof the differences in the utilities. We

justify this assumption as follow.

First note that in microgrid networks, the transmission loss is typically negligible, due to the

proximity of generators and consumers. Thus, all consumersreceive approximately the same

utility for a unit of power they purchase. For Primary/Secondary markets and a Non-Neutral

Internet market, the utility of secondary users and CPs (as buyers) depends on the utility of

their end-users, and subsequently is different for different secondaries and CPs, depending on

the characteristics of their end-users. Sellers would not in general know the characteristics and

identities of the subscribers of potential buyers. Hence, prices quoted by the sellers cannot

depend on the utility of buyers. In addition, note that introducing a differential pricing for

customers complicates the pricing structure for them, and prevents an easy cost prediction and

management. For instance, in wireless settings, the channel quality of end-users and the rate

perceived by them are time and location dependent [37]. Thus, in a differential pricing scheme,

customers know the current pricing only when they use the service. But, customers are usually

reluctant to adopt differential pricing schemes, owing to the rapid variability of prices which is

not usually well-received by them [38]. In addition, sellers are also reluctant using a differential

pricing scheme for their end-users, as they are usually computationally complex. Therefore, we

did not consider different valuations for different customers in determining the pricing strategy

of sellers. However, differential pricing for users with different valuation might arise for other

applications; this constitutes a topic of future research.

IX. CONCLUSION

We investigated price competition in a duopoly market with uncertain competition when

different sellers may have different number of units available for sale. We modelled the in-

teractions among sellers as a non-cooperative game and listed a set of properties that are

sufficient conditions for a strategy profile to be an NE. We proved that these properties are

also necessary conditions for an NE in a symmetric market, orfor some values of demand
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values in an asymmetric market. We showed that a symmetric NEuniquely exists and presented

an algorithm for computing the same. In Appendix E, using theresults proved for a duopoly,

we proposed a heuristic pricing strategy for sellers in a symmetric oligopoly market. Numerical

results reveal that the proposed pricing strategies are good approximations of NE when sellers

are not too concerned about optimizing over small gains. A Direction for future work is to

consider different pricing for different types of demand.

APPENDIX A

PROOF OFLEMMA 1

Proof: First consider the tuple< l, y > associated with the sellerk̄ in which the first element

is the number of units she offers and the second one is the price she chooses. We introduce

D
(1)
kl (y, i, x) as the expected number of units sold by the sellerk who wants to offerl units

with price y when her competitor’s tuple< g, z > 6=< i, x >, andD(2)
kl (y, i, x) as the expected

number of units sold by the seller who wants to offerl units with pricey when her competitor’s

tuple< g, z >=< i, x >. The expected number of units sold by a seller can be written as,

Bkl(y) = D
(1)
kl (y, i, x)Pr{< g, z > 6=< i, x >}

+D
(2)
kl (y, i, x)Pr{< g, z >=< i, x >}

Note thatD(1)
kl (a, i, x) ≤ D

(1)
kl (x, i, x) andD

(2)
kl (a, i, x) ≤ D

(2)
kl (x, i, x) for a ≥ x because the

number of units a seller sells is a non-increasing function of her price for any given amounts

offered by both sellers and any given price chosen by the competitor. ThusBkl(a) ≤ Bkl(x). In

addition,

Bkl(x− ǫ′)−Bkl(x) = (D
(1)
kl (x− ǫ′, i, x)

−D
(1)
kl (x, i, x))Pr{< g, z > 6=< i, x >}

+ (D
(2)
kl (x− ǫ′, i, x)−D

(2)
kl (x, i, x))Pr{< g, z >=< i, x >}

(11)

As we discussedD(1)
kl (x, i, x) ≤ D

(1)
kl (x − ǫ′, i, x). For D(2)

kl (x, i, x), we should consider ties.

Since each buyer is equally likely to buy a unit from both sellers if both select equal prices,

we can say thatD(2)
kl (x, i, x) = l d

i+l
< l (since i + l > d) and D

(2)
kl (x − ǫ, i, x) = l. Note

that Pr{other seller’s tuple< g, z >=< i, x >} = qi × Jump Size ofΦki(.) at x. Thus, for all

positiveǫ′, RHS of (11) is greater than or equal toθ(x), whereθ(x) is a positive number that
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does not depend onǫ. Therefore sinceBkl(a) ≤ Bkl(x), ∀a ≥ x, Bkl(x− ǫ′) ≥ Bkl(a) + θ(x),

for all a ≥ x. Thus,

ukl(x− ǫ′)− ukl(a) ≥ (x− ǫ′ − a)Bkl(a) + θ(x)(x− ǫ′ − c)

Sincex > c, for all sufficiently smallǫ′, x − ǫ′ − c > 0. In addition, sincea ≤ x + ǫ by the

statement of the lemma, the lowest value forx − ǫ′ − a is −ǫ − ǫ′, andBkl(a) ≤ l. Therefore

(x − ǫ′ − a)Bkl(a) + θ(x)(x − ǫ′ − c) ≥ (−ǫ − ǫ′)l + θ(x). Therefore, for all sufficiently small

but positiveǫ and ǫ′,

ukl(x− ǫ′) > ukl(a) a ∈ [x,min{x+ ǫ, v}]

APPENDIX B

PROOF OFTHEOREM 2

Proof: The goal is to show that for eachi andk all x ∈ [p̃ki, ṽki) constitutes a best response

for the sellerk who offersi units. That is, for eachx ∈ [p̃ki, ṽki) and for ally, uki(x) ≥ uki(y).

In addition, if Φki(·) associates positive probability with̃vki, thenuki(ṽki) ≥ uki(y) for all y,

i.e., vki is a best response when the sellerk offers i units. Note that the distributions,Φki(·)’s,

should satisfy Property 3. Thus, equations (4) and (5) holdsfor x < v, andAk,l,j(x) is non

increasing and non positive with respect tox for l > j > ek̄.

We consider the casej ≤ ek̄ here. Thus,Bk,j(x) = j andBk,l,j(x) =
1
l
Bk,l(x)− 1. Note that

the expected number of unitsBk,l(x) sold at pricex whenl units are offered is a non-increasing

function of x andBk,l(x) ≤ l. Thus,Bk,l,j(x) and thereforeAk,l,j(x) is non increasing and non

positive with respect tox for l > j regardless of howj compares withek̄.

Considerx < p̃. uki(x) ≤ i(x − c) < i(p̃ − c) = uki(p̃). The last equality follows from (4),

sinceΦkj(p̃) = 0 for all j. Therefore we considerx ≥ p̃ throughout the proof.

Supposelk ∈ {0, 1, . . . , mk − 1} in Property 7 is fixed. We first start withi ≥ lk + 1. From

the assumption in Theorem 2, we know thatuki(x) = uki(y) for any x, y in the interior of the

support set ofΦki(·), the support set ofΦki(·) is [p̃ki, ṽki], Φki(·) is continuous at allx < v,

ṽki < v for i > lk + 1, and ṽki = v for i = lk + 1. Thus, if i > lk + 1 uki(x) = uki(y) for all
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x, y ∈ [p̃ki, ṽki], and fori = lk + 1, uki(x) = uki(y) for all x, y ∈ [p̃ki, ṽki). We consider the last

case in detail. Here,̃vki = v. If k̄ has a jump atv when she offerslk̄ + 1 units, by Lemma 1,

uki(v) < uki(v− ǫ) for arbitrary small but positiveǫ. 13 If not, using equation (4) and continuity

of the price distributions included in that equation, it follows thatuki(v) = uki(p̃ki). Thus, we

only need to prove that for allx, uki(p̃ki) ≥ uki(x). We do so by separately considering three

cases: 1.i ≥ lk + 1 andx ∈ [p̃, p̃ki) 2. i ≥ lk + 1 andx ∈ (ṽki, v] 3. i ≤ lk.

1) i ≥ lk+1 andx ∈ [p̃, p̃ki): The claim follows by vacuity fori = mk. We therefore consider

i < mk. Since ṽkj = p̃k,j−1 for j ≥ lk + 1, any suchx is in [p̃kg, p̃k,g−1) for someg > i. We

prove this claim by induction ong, starting with the base case ofg = i+1. Forx ∈ [p̃k,i+1, p̃ki),

1

i+ 1
uk,i+1(x)−

1

i
uki(x) = Ak,i+1,i(x)

1

i+ 1
uk,i+1(p̃ki)−

1

i
uki(p̃ki) = Ak,i+1,i(p̃ki)

uk,i+1(x) = uk,i+1(p̃ki)

Note thatp̃ki = ṽk,i+1. Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃ki)) = Ak,i+1,i(p̃ki)− Ak,i+1,i(x) ≤ 0

SinceAk,l,j(x) is non increasing and non positive with respect tox for l > j. Therefore

uki(x) ≤ uki(p̃ki) for x ∈ [p̃k,i+1, p̃ki). We want to prove thatuki(x) ≤ uki(p̃ki) for x ∈

[p̃k,g+1, p̃kg), knowing thatuki(x) ≤ uki(p̃ki) for x ∈ [p̃kg, p̃k,g−1) and mk − 1 ≥ g ≥ i + 1

(at the base we hadg = i+ 1).

1

g + 1
uk,g+1(x)−

1

i
uki(x) = Ak,g+1,i(x)

1

g + 1
uk,g+1(p̃kg)−

1

i
uki(p̃kg) = Ak,g+1,i(p̃kg)

uk,g+1(x) = uk,g+1(p̃kg)

Note thatp̃kg = ṽk,g+1. Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃kg)) = Ak,g+1,i(p̃kg)− Ak,g+1,i(x) ≤ 0

Thus,uki(x) ≤ uki(p̃kg) for x ∈ [p̃k,g+1, p̃kg). The induction hypothesis yieldsuki(x) ≤ uki(p̃ki)

13Note that Lemma 1 holds for any arbitrary price distributions and not only those that are NE.
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for x ∈ [p̃k,g+1, p̃kg).

2) i ≥ lk + 1 andx ∈ (ṽki, v]: We have just shown thatuki(x) ≤ uki(p̃ki) for all x ∈ [p̃, p̃ki).

We now show the same for allx ∈ (ṽki, v]. The claim follows by vacuity fori = lk + 1, since

ṽki = v. We therefore consideri > lk + 1. Since ṽkj = p̃k,j−1 for lk + 1 ≤ j ≤ mk, and

ṽk,lk+1 = v, any suchx is in (p̃kg, p̃k,g−1] for somelk + 1 < g < i. We prove this claim by

induction ong, starting with the base case ofg = i− 1. Let x < v.

1

i
uki(x)−

1

i− 1
uk,i−1(x) = Ak,i,i−1(x)

1

i
uki(p̃k,i−1)−

1

i− 1
uk,i−1(p̃k,i−1) = Ak,i,i−1(p̃k,i−1)

uk,i−1(x) = uk,i−1(p̃k,i−1)

Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃k,i−1)) = Ak,i,i−1(x) −Ak,i,i−1(p̃k,i−1) ≤ 0

Thereforeuki(x) ≤ uki(p̃k,i−1) for x ∈ (p̃k,i−1, p̃k,i−2] \ v. The claim is established in the base

case if p̃k,i−2 < v. Else, if p̃k,i−2 = v, the claim has been shown only forx ∈ (p̃k,i−1, v) and

we still need to show thatuki(v) ≤ uki(p̃k,i−1), which we proceed to do. Now, letx = v. if the

seller k̄ has a jump when it offerslk̄ + 1 units, sincei > lk + 1, for all sufficiently small but

positiveǫ, uki(v) < uki(v− ǫ), and for sufficiently small but positiveǫ, v− ǫ ∈ (p̃k,i−1, v). Since

uki(v−ǫ) ≤ uki(p̃k,i−1), the base case follows. If not, that is sellerk̄ does not have a jump when

it offers lk̄ +1 units, using equation (4) and continuity, we can deduce thatuki(v) ≤ uki(p̃k,i−1).

The base case follows.

Now we want to prove thatuki(x) ≤ uki(p̃k,i−1) for x ∈ (p̃k,g−1, p̃k,g−2], knowing thatuki(x) ≤

uki(p̃k,i−1) for x ∈ (p̃kg, p̃k,g−1] andg ≤ i− 1 andg − 1 ≥ lk + 1. First, letx < v.

1

i
uki(x) −

1

g − 1
uk,g−1(x) = Ak,i,g−1(x)

1

i
uki(p̃k,g−1)−

1

g − 1
uk,g−1(p̃k,g−1) = Ak,i,g−1(p̃k,g−1)

uk,g−1(x) = uk,g−1(p̃k,g−1)

Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃k,g−1)) = Ak,i,g−1(x) −Ak,i,g−1(p̃k,g−1) ≤ 0
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The inequality is because of the fact thatAk,l,j(x) is non increasing and non positive with

respect tox if l > j. Thereforeuki(x) ≤ uki(p̃k,g−1). Furthermore we know from the assumption

of induction thatuki(p̃k,g−1) ≤ uki(p̃k,i−1), thusuki(x) ≤ uki(p̃k,i−1) for x ∈ (p̃k,g−1, p̃k,g−2] \ v.

We can show thatuki(v) ≤ uki(p̃k,i−1) if v ∈ (p̃k,g−1, p̃k,g−2] exactly as in the base case. The

proof that for eachi ≥ lk + 1 eachx ∈ [p̃ki, ṽki) is a best response when a seller offersi units

is therefore complete.

3) i ≤ lk: Now let i ≤ lk. Thus,lk > 0. Consider two cases:

• lk + lk̄ = d− 1. Thereforei ≤ lk = d− lk̄ − 1. As we previously mentioned, utilityuki(.),

is continuous not only in interval[c, v), but also at pricev, if i ≤ d − lk̄ − 1. Using (5),

and the fact thatAk,l,j(x) is non increasing and non positive with respect tox, for l > j

and a similar argument to case 1, we can getuki(x) ≤ uki(v) for all x ∈ [p̃, v). The result

follows.

• lk + lk̄ = d. Thereforei ≤ lk = d− lk̄. Sincelk + lk̄ +1 > d, neitherΦklk+1(.) nor Φk̄lk̄+1(.)

have a jump atv, anduki(.) is continuous in[c, v]. The result follows by a similar argument

to that of in the previous case.

APPENDIX C

COMPUTATION OF NE STRATEGIES IN AN ASYMMETRIC SETTING

In this section, we consider the general case in which the setting may not be symmetric.

First we develop a framework to obtain the strategy profiles that satisfy the properties listed in

Theorem 1 (Section C-A). Then, we compute these strategies for a simple case of an asymmetric

market in whichm1 = m2 = d = 3 (Section C-B). In Section C-C, we show that the system

may have multiple Nash equilibria.

A. Framework for computation

In Theorem 2, it has been proved that the properties listed inTheorem 1 are sufficient properties

for a NE whetherd > {m1, m1} or d = max{m1, m2}. In this section, we use Theorem 1 to

obtain a framework to identify a set of Nash equilibria for the game.

First, fix l1 andl2 (refer to Property 7). In addition, note that Theorem 1 specifies the ordering

of support sets for a seller and not the relative ordering of support sets of the two sellers. Thus,

October 23, 2018 DRAFT



34

we fix an ordering ofp̃ki’s and p̃k̄j ’s for i ∈ {lk + 1, . . . , mk} and j ∈ {lk̄ + 1, . . . , mk̄} such

that for sellerk and k̄ the lower bounds are ordered with a decreasing relation withi and j

respectively, and̃pkmk
= p̃k̄mk̄

= p̃. The unknowns that we should determine for a NE arep̃,

mk− lk−1 andmk̄− lk̄−1 number of lower bounds other thañp for sellerk andk̄ respectively,

and the distribution of price over each support set.

For these particularl1, l2, and relative ordering of support sets, based on Theorem 1, the NE

is the solution of:

uki(p̃ki) = uki(p̃
−

k,i−1) i ∈ A

uk̄j(p̃k̄j) = uk̄j(p̃
−

k̄,j−1
) j ∈ A

uki(p̃ki) = uki(p̃
−

k̄j
) i ∈ A, j : p̃k̄j ∈ (p̃ki, p̃k,i−1)

uk̄j(p̃k̄j) = uk̄j(p̃
−

ki) j ∈ A, i : p̃ki ∈ (p̃k̄j, p̃k̄,j−1)

f1f2 = 0

(12)

whereA = {lk + 1, . . . , mk}. In addition,f1 and f2 are the magnitude of jump atv for the

first and second seller when they offerlk + 1 and lk̄ + 1 units, respectively. Note that the first

four sets of equations are derived using the fact that the utility of a seller should be equal over

the entire support set. The fifth equation ensures that only one seller can have a positive jump

at v.

In equation (12), the unknowns arẽp, m1 +m2 − l1 − l2 − 2 number of lower-bounds other

than p̃, p1, p2, andm1 +m2 − l1 − l2 − 2 number of probability distributions at some specific

points. That isΦki(p̃k̄j) for i ∈ {lk + 1, . . . , mk} and j such thatp̃k̄j ∈ (p̃ki, p̃k,i−1). By solving

the system of equations (12), we can get a candidate NE.

Using the solution,Φki(.) for k ∈ {1, 2} and i ∈ {1, . . . , mk} can be found. To find the

distributions of price for prices less thanv, first note that each pricex ∈ [p̃, v) which is not

a lower bound for the support set belongs to exactly one of thesupport sets of each seller.

Therefore, by (4), the expression of utility of playerk when it offersi units depends only onx

andΦkj(x), i.e. uki(x) = (x − c)G(Φkj(x)), whereG(Φ.(.)) is a decreasing function ofΦ.(.),

and therefore its inverse exists. On the other hand, the utilities at the lower bounds are obtained

from (12) for both sellers. Using Property 4,Φk̄j(x) = G−1(
uki(p̃kj)

x−c
). If the resultingΦk̄j(·) are

valid probability distribution functions, using Theorem 2we can conclude that they constitute a
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c

p̃11 = v

p̃21 = vp̃ = p̃13 = p̃23

p̃12

p̃222nd Seller

1st Seller

Fig. 3: Structure corresponding tol1 = 1 and l2 = 1

NE for the givenl1, l2, and the fixed ordering of lower bounds.

We have shown how to obtain a Nash equilibrium given one exists for a particular choice of

l1, l2, and a relative ordering between the support sets of the two sellers. Note that by changing

the choices of the above we can possibly obtain multiple Nashequilibria. In the next sections,

we present an example in which there exist at least two equilibria.

B. Example illustration of computation of Nash Equilibria

Consider the case in which each seller offers up to three units and the total demand is exactly

three units, i.e.d = 3. Without loss of generality we assume thatl1 ≥ l2; the strategy profiles

in the other casel1 < l2 can be obtained by swapping the indices of the sellers.

1) First we focus on the case in whichl1 + l2 = d − 1 = 2. In this case,l1 = l2 = 1 or

l1 = 2, l2 = 0. If l1 = l2 = 1, then sellers choosev with probability 1, if they offer 1 unit of

commodity. In order to specify the NE, we should find the lowerboundsp̃13 = p̃23 = p̃, p̃12,

p̃22, jumps at pricev (f1 andf2), and each distributionΦkj(.) for all k = 1, 2, andj = 2, 3.

First consider the ordering of lower bounds in whichp̃22 ≥ p̃12 (Figure 3). The system of

equations is presented in the next page. Using equations (13), (15), (17), and (18), we can find

p̃22 as,

p̃22 =
(v − c)A
1
2 − 1

2q13
+ c

A =

(

2q10 + 2q11 + q12(1 + f1)−
3

2
q20 −

3

2
q21

−
3

4
q22(1 + f2)

)

(20)

October 23, 2018 DRAFT



36

u13(p̃) = u13(p̃12) ⇒ 3(p̃ − c) = (3− 3q23Φ23(p̃12))(p̃12 − c) (13)

u23(p̃) = u23(p̃12) ⇒ 3(p̃ − c) = (3− 3q13)(p̃12 − c) (14)

u23(p̃) = u23(p̃22) ⇒ 3(p̃ − c) = (3− 3q13 − 2q12Φ12(p̃22))(p̃22 − c) (15)

u12(v
−) = u12(p̃22) ⇒ (v − c)(2q20 + 2q21 + 2q22f2 + q22(1 − f2)) = (p̃22 − c)(2 − 2q23) (16)

u12(v
−) = u12(p̃12) ⇒ (v − c)(2q20 + 2q21 + 2q22f2 + q22(1− f2)) = (p̃12 − c)(2 − 2q23Φ23(p̃12)) (17)

u22(v
−) = u22(p̃22) ⇒ (v − c)(2q10 + 2q11 + 2q12f1 + q12(1 − f1)) = (p̃22 − c)(2− 2q13 − q12Φ12(p̃22)) (18)

f1f2 = 0 (At most one seller can have a jump atv ) (19)

System of equations forl1 = l2 = 1 and p̃22 ≥ p̃12

On the other hand, from (16),

p̃22 =
(v − c)(2q20 + 2q21 + q22(1 + f2))

2− 2q23
+ c (21)

The values of̃p22 in (20) and (21) should be equal. Utilizing this and (19),

2f1q12
1− q13

−
1

2
q22f2A = (q20 + q21 +

1

2
q22)A

−
4q10 + 4q11 + 2q12

1− q13
= B

(22)

whereA = 1
1−q23

+ 3
1−q13

. Therefore,



















f1 = f2 = 0 if B = 0

f1 > 0&f2 = 0 if B > 0

f2 > 0&f1 = 0 if B < 0

(23)

Thereforef1, f2, andp̃22 are uniquely determined. Using (18),Φ12(p̃22) can be derived uniquely,

Φ12(p̃22) =
1

q12

(

2− 2q13 −
v − c

(p̃22 − c)
(2q10 + 2q11 + q12(1 + f1))

)

(24)

By (15), p̃ can be derived uniquely, (14) determinesp̃12 uniquely, and (13) provides usΦ23(p̃12)

uniquely. However, we should check whetherΦ23(p̃12) andΦ12(p̃22) are between zero and one

or not. If not, then this NE candidate is not valid. The distributions can be found by the process

explained previously.

Another possible ordering of lower bounds is whenp̃22 ≤ p̃21. The system of equations

corresponding to this case can be obtained by swapping the index of sellers.
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c

p̃11 = p̃12 = v

vp̃ = p̃13 = p̃23

p̃22

p̃21

2nd Seller

1st Seller

Fig. 4: Structure corresponding tol1 = 2 and l2 = 0

c

p̃11 = p̃12 = v

p̃21 = vp̃ = p̃13 = p̃23 p̃22

2nd Seller

1st Seller

Fig. 5: Structure corresponding tol1 = 2 and l2 = 1

In the case ofl1 = 2 and l2 = 0, Figure 4 illustrates a schematic view of the support sets for

the unique relative ordering of support sets. Equations canbe obtained with a similar approach

to the previous case.

2) l1 + l2 = 3 = d. Note thatlk = 3 and lk̄ = 0 can be ruled out sincelk should be less than

mk = 3. Thus,l1 = 2 and l2 = 1 (Figure 5). The approach to find the equilibria is similar to the

previous cases.

C. Multiple Nash Equilibria

In Section V, we proved that the symmetric NE uniquely exists. In this section, we show that

an asymmetric market allows for multiple Nash equilibria. Nash equilibria are computed using

the above framework withv = 10 andc = 1 and for different values of~q1 and~q2. Some lead to

a unique NE and some others to multiple Nash equilibria. For instance, the NE is unique, if

~q1 = [0.45, 0.1, 0.4, 0.05] ~q2 = [0.2, 0.2, 0.45, 0.15]

In this case, in the NE strategy,l1 = 1, l2 = 2, p̃12 = 9.0526, p̃ = 8.65, andΦ23(p̃12) = 0.3333,

and the second seller has a jump of size0.625 at pricev = 10. However, there are two Nash
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equilibria if:
~q1 = [0.05, 0.1, 0.4, 0.45] ~q2 = [0.2, 0.2, 0.4, 0.2]

In both NE, l1 = 2, l2 = 1, andΦ13(p̃22) = 0.4444. In the first NE,f2 = 0.06525, f1 = 0,

p̃ = 5.95, and p̃22 = 7.1875. In the second NE,f2 = 0, f1 = 0.7778, p̃ = 5.8, and p̃22 = 7.

APPENDIX D

PROOF OFTHEOREM 3

Before going to the proof of Theorem 3, we need to prove some lemmas and theorems. First

we prove thatAl,j(x) is (strictly) decreasing forv > x ≥ p̃m−1 when d = m (Lemma 4).

Then, in Lemma 5, we prove that the minimum of the lower end points is the lower end point

of Φm(x), i.e., p̃ = p̃m. Next, using Lemmas 4 and 5, we prove thatp̃i /∈ [p̃m, p̃m−1) for

i ∈ {1, . . . , m− 2}. This establishes the ordering forΦm(.) andΦm−1(.). After that we proceed

to establish the ordering for the remaining support setsΦj(.) for j ∈ {1, . . . , m− 2}, knowing

that for themp̃j ≥ p̃m−1. A similar result to the Property 6 is proved in Property 8. Finally, we

prove Theorem 3.

Note that a symmetric NE in a symmetric market is considered in this section. Let us define

Al,j(x) =
1
l
ul(x)−

1
j
uj(x). Bl,j(x) is defined such that,

Al,j(x) = (x− c)Bl,j(x)

where,

Bl,j(x) = −
1

l

d−j
∑

i=d−l+1

Φi(x)qi(i− d+ l)+

m
∑

i=d−j+1

Φi(x)qi(d− i)(
1

l
−

1

j
)

(25)

Based on the following lemma,Al,j(x) is (strictly) decreasing forv > x ≥ p̃m−1 and l > j,

whend = m.

Lemma 4. For everyl and j, l > j ≥ 1, Al,j(x) is (strictly) decreasing forv > x ≥ p̃m−1 when

d = m.

We argued thatBl,j(·) is non increasing and non positive with respect to the pricex. To prove

thatAl,j(.) = (x− c)Bl,j(x) is strictly decreasing, it is enough to prove thatBl,j(·) is negative.
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We will prove thatΦm−1(x) is included in the summation ofBl,j(·) and obviously positive for

x > p̃m−1. In addition, its coefficient is negative sinced = m > m− 1. Thus, the result follows.

Proof: It is enough to prove thatBl,j(x) is non-increasing forx ≥ p̃m−1 and negative for

x > p̃m−1 when demand ism. This yields thatAl,j(x) = (x − c)Bl,j(x) is strictly decreasing

with respect tox.

Note that in (25),Φi(.)’s are non-negative and non-increasing since they are probability

distributions. In addition, they have non-positive weights: −(i − d − l) ≤ −1 < 0, 1
l
− 1

j
< 0,

and d − i ≥ d − m = 0 (note thatd = m). ThusBl,j(x) is non increasing and non positive

with respect to the pricex when l ≥ j. To prove thatBl,j(x) is negative forx > p̃m−1, since

d− (m−1) = 1 > 0 and−(i−d− l) ≤ −1 < 0 (possible coefficients ofΦm−1(x)) , it is enough

to prove thatΦm−1(.) is included in the summation ofBl,j(.) and it is positive, i.e.Φm−1(x) > 0

for x > p̃m−1. The later follows from the definition of̃pm−1.

Now we prove thatΦm−1(.) is included in the summation ofBl,j(.). Note thatl > j ≥ 1.

Thus l ≥ 2, and the lowest index of the (25) isd − l + 1 ≤ m − 2 + 1 = m − 1. The result

follows.

To prove the ordering and disjoint properties in the symmetric setting we should alter the

proofs. First we will prove that̃p = p̃m, i.e. the minimum of lower bounds is the lower bound

of Φm(x). Then we will prove that̃pj /∈ [p̃m, p̃m−1) for j ∈ {1, . . . , m− 2}. This proves that the

next lowest support set is the support set ofΦm−1(.). After that using Lemma 2 will prove that

the support set ofΦl(.) for l < m is a subset of[p̃m−1, pj] for all integersj ∈ [1, l). These three

all together establishes the ordering.

Lemma 5. p̃ = p̃m, i.e. the minimum of lower end points is the lower end point ofΦm(x).

Proof: Suppose not and there existsx > p̃ such thatx ≤ p̃m. By Property 5, there exists an

ǫ > 0 and an availability levelj 6= m such that[p̃m − ǫ, p̃m] belongs to the support set ofΦj(.)

andp̃j < p̃m. Thusuj(p̃m) = uj(p̃m−ǫ). In addition,Bm,j(x) is the weighted summation ofΦi(.)

for i ∈ {1, . . . , m}. Thus, the distributionΦj(.) is included in the summation ofBm,j(x), and its

coefficient is negative. In addition,Φj(x) > 0 for x > p̃j. Thus,Am,j(x) is strictly decreasing

with respect tox for x > p̃j . ThusAm,j(p̃m − ǫ) > Am,j(p̃m). Note thatuj(p̃m) = uj(p̃m − ǫ).

Thus,um(p̃m) = um,max < um(p̃m − ǫ). This contradicts with̃pm belonging to the support set

of Φm(.). The result follows.
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Lemma 6. p̃i /∈ [p̃m, p̃m−1) for i ∈ {1, . . . , m− 2}.

To prove this, we use a contradiction argument. Suppose thatthere existsp̃j ∈ [p̃m, p̃m−1)

such thatj ∈ {1, . . . , m− 2}. We will prove that nox ∈ (p̃j, p̃m−1] is in the support ofΦm(.).

Thus there existsu ∈ {1, . . . , m − 2} such thatp̃m−1 is in the support set ofΦu(.). We prove

that the payoff of the seller when she offersu units with pricep̃m−1 + ǫ is strictly greater than

the payoff when offering with pricẽpm−1. This is in contradiction withp̃m−1 being the best

response for player with availabilityu.

Proof: The lemma follows by vacuity ifm ≤ 2. Takem > 2. Note thatp̃m−1 < v. If not

there is a jump of size1 at pricev when the seller offersm− 1 units. Since2m− 2 > d = m

for m > 2, using Lemma 1,um−1(v− ǫ) > um−1(v) for ǫ small enough. This is in contradiction

with assigning a positive probability to pricev in the equilibrium when seller offersm−1 units.

Thus p̃m−1 < v.

Suppose there exists̃pj ∈ [p̃m, p̃m−1) such thatj ∈ {1, . . . , m − 2}. We will prove that

no x ∈ (p̃j, p̃m−1] is in the support ofΦm(.). Thus (using this and Property 5), there exists

u ∈ {1, . . . , m− 2} such thatp̃m−1 is in the support set ofΦu(.). ConsiderBm−1,u(x) which is

the summation of weighted distributionsΦi(x) when i ∈ {2, . . . , m− 1}. Thus, the distribution

Φm−1(.) is included in the summation ofBm−1,u(x) (note thatm > 2), and its coefficient

is negative (Note thatd > 0). Thus,Am−1,u(x) is strictly decreasing with respect tox for

x > p̃m−1. ThusAm−1,u(p̃m−1 + ǫ) < Am−1,u(p̃m−1). Usingum−1(p̃m−1) = um−1(p̃m−1 + ǫ), we

can conclude thatuu(p̃m−1) = uu,max < uu(p̃m−1 + ǫ). This is in contradiction with̃pm−1 being

the best response for player with availabilityu. Note thatp̃m−1 < v, and every price less than

v which belongs to the support set of a distributionΦi(.) should be a best response for players

when offeringi units. The lemma follows.

Now we complete the proof by proving that nox ∈ (p̃j, p̃m−1] is in the support ofΦm(.).

Suppose not. We will show that there exist an availability level f and two pricesy1 andy2, such

that p̃j < y1 < p̃m−1, belongs to the support set ofΦm(.), and bothy1 and y2 belong to the

support set ofΦf (.). Then we will show thatum(y1) < um(y2), which contradicts withy1 being

in the support set ofΦm(.).

Using the contradiction assumption,w is defined as,
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w = inf
x∈(p̃j ,p̃m−1] & x ∈ Supp(Φm(.))

x

Note thatw is in the support set ofΦm(.). Now consider two cases:

1) w > p̃j : Using continuity, the definition of support sets, and Property 5, there existǫ and

f ∈ {1, . . . , m− 2} such thatw andw− ǫ is in the support set ofΦf (.). Takey1 = w and

y2 = w − ǫ.

2) w = p̃j: Using continuity and the definition of infimum, there existsǫ such that every

w+ ǫ belong to the support set ofΦm(.) andΦj(.). Takef = j, y1 = w+ ǫ, andy2 = w.

Next, we will prove thatum(y1) < um(y2), which contradicts withy1 being in the support

set ofΦm(.). Note thaty1 < v, and every price less thanv which belongs to the support set of

a distributionΦi(.) should be a best response for players when offeringi units. This completes

the proof.

ConsiderBm,f (x) which is the summation of weighted distributionsΦi(x) wheni ∈ {1, . . . , m−

1}. Thus, the distributionΦf (.) is included in the summation ofBm,f(x), and its coefficient is

negative. Thus,Am,f (x) is strictly decreasing with respect tox for x ≥ p̃f . ThusAm,f(y2) >

Am,f (y1). Using uf(y1) = uf(y2), we can conclude thatum(y1) < um(y2). The contradiction

argument is complete.

Therefore we established the ordering forΦm(.) andΦm−1(.). Now we are set to establish

the ordering for the remaining support setsΦj(.) for j ∈ {1, . . . , m− 2}, knowing that for them

p̃j ≥ p̃m−1. The next is the counterpart of the Property 8 in symmetric setting.

Property 8. The support set ofΦl(.) is a subset of[p̃, p̃j] ∪ [v] for all integersj ∈ [1, l).

Proof: Consider support sets ofΦj(·), Φl(·), andj < l. We will show thatul(a) < ul(p̃j)

for all a ∈ (p̃j, v). Thus, noa ∈ (p̃j, v) is a best response for the seller with availability ofl

units. Therefore, the support set ofΦl(·) is a subset of[p̃, p̃j] ∪ [v].

We now complete the proof, by showing thatul(a) < ul(p̃j) for all a ∈ (p̃j, v):

1

l
ul(a)−

1

j
uj(a) = Al,j(a)

Note that if p̃j ≥ v, property follows by vacuity. Now we consider̃pj < v. Sincej < l ≤ m,

j ≤ m− 1. By Lemma 6,p̃m−1 ≤ p̃j < a < v, by Lemma 4,Al,j(a) is decreasing function ofa
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for a ∈ [p̃m−1, v). Thus,Al,j(a) < Al,j(p̃j) for a ∈ (p̃j, v). On the other handuj(a) ≤ uj(p̃j) for

all a > p̃j , sincep̃j is a best response of a seller with availabilityj, thereforeul(p̃j) > ul(a).

Now we will prove the Theorem 3:

Proof: Note that the first place that we used the conditiond > max{m1, m2} (in symmetric

settingd > m) instead ofd = max{m1, m2} (d = m) was in Section III-E. Thus all of the

results before that apply also to the case thatd = m. Property 8 provides exactly the same

property in the Property 6 for the symmetric scenario. Thus the corollaries after the property

follows. In addition, results in the Section III-F follows,since they are based on results before

the Section III-E and Property 6 and its corollaries. Thus Theorem 1 goes through in the case

of a symmetric NE andd = m.

APPENDIX E

OLIGOPOLY MARKET

Suppose that the setting is symmetric and there existn sellers in the market. We consider a

strategy that satisfies the properties identified for a symmetric NE in Section V with the difference

that in our proposed strategies the thresholdl∗ = ⌊ d
n
⌋. Note that the algorithm for finding such

a strategy is similar to what is presented in Section V-B, butthe results would be different. We

now investigate how well this strategy approximates an NE strategy in an oligopoly market.

We numerically compute the maximum expected utility for a particular seller, when all other

sellers choose the proposed strategy (best response utility, UBest Response). We observe that over a

large set of parameters for all possible availability levels, the best response utility is either the

same as the expected utility obtained by following the proposed strategy (UProposed Strategy), or is

fairly close to this value14.

For instance, consider a market in which the availability ofeach seller follows a binomial

distribution,B(m, p), with binomial probabilityp = 0.4 andm = 3 (m is the maximum possible

available units with each seller). In addition, in this market the demand isd = max{n,m},

v = 10, and c = 1. We plot the relative difference, described as follows, between the best

14For large sets of parameters, the difference is at most5 percent of the value of the expected utility resulted by the proposed
strategy.
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Fig. 6: The relative difference of the best response expected utility and the expected utility of
the proposed strategy versus different number of sellers

response utility and the expected utility of the proposed strategy versus different number of

sellers, i.e.n, for different availability levels in Figure 6.

Relative Difference=
UBest Response− UProposed Strategy

UProposed Strategy

Note that the relative difference is zero for all availability levels when there exist2, 3, and6

sellers in the market. Thus, the proposed strategy is a NE of the market in these cases. Although,

in the case of 4 and 5 sellers the proposed strategy is not an NEwhen a seller has 1 and 2

units of commodity available, respectively, the relative difference in these cases is less than 3

percent. Thus, overall, we can say that the proposed strategy is a good approximations of NE

when sellers are not too concerned about optimizing over small gains.
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