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Abstract

We study the price competition in a duopoly with an arbitragmber of buyers. Each seller can
offer multiple units of a commodity depending on the avallgbof the commodity which is random
and may be different for different sellers. Sellers seeletect a price that will be attractive to the buyers
and also fetch adequate profits. The selection will in gdralepend on the number of units available
with the seller and also that of its competitor - the selleyraaly know the statistics of the latter. The
setting captures a secondary spectrum access network,-aendral Internet, or a microgrid network
in which unused spectrum bands, resources of ISPs, andsegoeser units constitute the respective
commodities of sale. We analyze this price competition aaragy and identify a set of necessary and
sufficient properties for the Nash Equilibrium (NE). The pecties reveal that sellers randomize their
price using probability distributions whose support sets mutually disjoint and in decreasing order
of the number of availability. We prove the uniqueness of mmetric NE in a symmetric market, and

explicitly compute the price distribution in the symmetN&.

Index Terms

pricing, game theory, micro-grid networks, cognitive mdietworks, secondary spectrum networks,

network neutrality

|. INTRODUCTION
The Research Challenges and Goals
We consider a market with two sellers, where each selleroffaultiple commodities for sale.
The commodities that are available for sale are randomleigded. In other words, sellers do
not control the amount supplied or they may obtain the comtiesdrom a residual supply. We
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investigate the price selection strategy for sellers irs@nee of uncertainty in competition using
Game Theory[2]. Customers shop around for the lowest dlailarices. Therefore sellers seek
to set prices that will ensure that their commodities arel swid also fetch adequate profit. In
our model, a seller is not aware of the number of units avislabher competitor before quoting
her price. Thus, the competition that each seller faces cemiain, and different sellers have
different number of goods available (heterogeneous avéilg. Each seller selects the price per
unit depending on the number of units she has available fer & statistics of the availability
process for her competitor, and the demand. In general, s&ltdr chooses her price randomly
using different probability distributions for differentailability levels. Thus, the strategy of each
player is a vector of probability distributions. For instenif a seller can potentially offer up to
three units of commodity, her vector of strategies would ®¢(.), ®2(.), ®5(.)), whered,(.) is
the price selection probability distribution when the selbffers: units.

Due to uncertainty in competition, quoting a high price byetles enhances the risk of not
being able to sell the commodity offered by that seller. Oa dther hand, although selecting a
low price increases the chance of winning the competitibalsio decreases the profit earned by
the seller. Therefore, pricing in presence of uncertaintgampetition is a risk-reward tradeoft.
It is not a priori clear that how offering multiple number ofits affects the price selection by
sellers. For instance, a seller with a large number of dviglanits may be motivated to quote
a low price, since in the event of winning the competition,n@all amount of profit per unit
would result in a large total profit. On the other hand, a seflaybe enticed to select a high
price when the availability is high to significantly increalser overall profit, even at the risk of
not being able to sell the available units. We focus on ingating the impact of heterogeneous
availability and uncertain competition on the aforememeid risk-reward tradeoff.

Uncertainty in competition is an integral feature of diwesets of applications. In Sectibn VIII,
we outline the connection between the decision problem wesidered and three different
emerging application domains: primary/secondary maiketpn-neutral Internet, and microgrid

networks.

Contributions

We start by positioning our work in the context of the exigtliterature. We next model the

price selection problem as a one-shot non-cooperative ¢@ewtior1l). The sellers are allowed
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to have different probability distributions for differeavailability levels (asymmetric market). In
SectiorL1ll, we identify key properties that every NE prigistrategy should satisfy when demand
is greater than the maximum possible availability levele ogroperties reveal that the sellers
randomize their price using probability distributions vgkosupport sets are mutually disjoint
and in decreasing order of the number of availability. In ¢batext of the aforementioned risk-
reward tradeoff, sellers opt for low-risk pricing when thegve high availability. In Section 1V,
we prove that any strategy profile that satisfies the prageeitisted in Sectiof Il constitutes
an NE regardless of the relation between the demand and théeruof available units. This
sufficiency result naturally leads to an algorithm (Apperi@tA) for computing the strategies
that satisfy the properties in Sectibnl I1.

In Section[V, we consider a symmetric market and prove thasdhproperties are also
necessary conditions for a NE regardless of the relatiowdsst the demand and the number
of available units. We prove that the symmetric NE uniquetists, and obtain an algorithm
for explicitly computing it. Note that the uniqueness is @fie to the symmetric market- our
analysis in Appendicds CIB afd C-C reveals that an asymmmaaiket allows for multiple Nash
equilibria. Results are generalized to the case of randamadd in Sectioh VI. The asymptotic
behavior of the symmetric NE (when — o) is investigated through numerical simulations in
Section VII.

Related Literature

Price competition among different entities has been exntelysstudied in [3]-[12]. In eco-
nomics literature as also in the context of specific appboat uncertainty in competition has
been investigated when the availability level is eitheozer one [13]-[17]. The strategy profile
of each seller consists of only one probability distribatgince sellers need to select a price
only when they have one unit available for sale. We, howesreracterize the Nash equilibrium
pricing strategies when sellers have arbitrary and patytiifferent number of available units
for sale (not merely zero or one). In this case, differentggelection strategies may be required
for different number of available units. Thus, the pricingategy profile of each seller is a
collection of probability distributions, one for each dadility value. Therefore both results and
proofs are substantially different from previous works.

Another genre of work allows sellers to control the amountcommodities they would
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enerate for sale [18]-[25]. In these works, sellers (eogvgy generators) bid a supply function
gto a central auctioneer. Given the demand and the bids stdointhe auctioneer solves an
optimization problem to determine the number of units ndetdebe generated by the sellers
and subsequently the price that should be paid to them. I3-[2@)], the setting is a uniform-
price procurement auction in which the price is equal fofedént sellers, i.e. the clearing price.
However, in [21]-]25], authors investigate a pay-as-bisddminatory) procurement auction
which is similar to our work in the sense that the price can ifferént for the bidder (sellers
in our case). In these works, central entity accepts therofseibmitted by the sellers and
pays the accepted offers based on the bid submitted. Fanicestin [23], authors provide
a characterization of mixed equilibria over increasing@ypurves. In other words, in their
characterization, the price per infinitesimal unit of thentoodity is increasing, i.e., the higher
the number of units produced, the higher the price per unitteNhat in [21]-[23] authors
consider divisible goods, i.e. continuous amount of goantsshle. However, in_[24] and [25],
the number of units is effectively discrete. In this sen$eythave a closer model to ours.
Nonetheless, the main distinction of our work with this entienre of work is that we consider
scenarios where sellers do not control the amount of contesdhey produce. This distinction

in the setup, lead to major differences in the formulatiomalgses, and results.

[I. MARKET MODEL AND PROBLEM FORMULATION
A. Market Model

First, we define some preliminary notation. Then sellergiglen and information are de-
scribed.

1) Preliminary notation: We consider a market with two sellers in which each seller own
multiple number of the same commodity and quotes a price pir The total demand of the
market isd units. For simplicity, the demand is assumed to be detestmniThe generalization
to randomd is straightforward, and is presented in Secfion VI.

Buyers prefer the seller who quotes a lower price per und,they are equally likely to buy a
unit from sellers who select equal prices. Thus, if sellergeta, b units to sell respectively and
quote prices of, y per unit, where: < y, then they respectively sellin{a, d}, min{b, (d—a)*}

1A supply function is a function that maps the price of the cardity under sale to the amount a producer will produce for
sale.
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units, wherez* denotesnax{z,0}. The cost of each transactiondsTherefore, a seller earns a
profit of i(z — ¢) when she sellg units with pricex per unit. Because of regulatory restrictions
or because of valuations that buyers associate with pugcblasach unit, the price selected by
each seller should be bounded by some constant, i.e.z < v. The availability of each seller

is random:

Terminology 1. We denoten, as the maximum possible number of available units of seller

k. Let ¢; € [0,1] be the probability that sellek hasj € {0,...,ms} units available, and

Q= (QkOw-'anzmk)-

The availability of sellers may for example follow binomidistributions B(m4,p;) and
B(ms, p»). Specifically, ifp; = 0.5, p, = 0.3, m; = 3, andm, = 2, thenq, = (3,2,2, %)
andq; = (505, 15, 195 )-

We assume that sellers have zero unit available for sale paitiitive probability, i.e.gyo > 0
for k € {1,2}, and the competition is uncertain, i.gz; < 1 for i € {0,1,...,m;} for at least
one sellerk. H Note that if competition is deterministic for both selleteen the problem is

trivial.

Terminology 2. For each sellerk, let k denote the other seller, i.e., f = 1 (respectively,
k = 2), thenk = 2 (respectivelyk = 1).

2) Sellers’ decisions and informatior8ellers select their price based on the number of units
they offer in the market. Before choosing her price, a selsgs not know the number of units
of the commodity that her competitor has available for sale the price per unit her competitor
selects. She is however aware of the demand and the digtrisufior the above quantities. A

seller may select her price randomly.

Terminology 3. Let ®,,(.) be the probability distribution that the sellér € {1,2} uses for
selecting price per unit when she offgranits. Letp,; andv; be the infimum and the supremum
of the support s&of ®4;(.). The strategy profile of sellét is O (.) = (Pr1(.), ..., Prm, ().

Note that if this exists, j € {0,...,ms} such thatg;; = 1 and ¢2; = 1, then both sellers know the exact number of
available units with the other seller. Thus the competiimeterministic.

*The support set of a probability distribution is the smalledssed set such that its complement has probability zedemun
the distribution function.
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An example of probability distributions, support sets, @helir infimums and supremums is
presented in Figurel 1. In this figure, the infimumg;6) are illustrated explicitly, andy,; =
Pr;—1 (For instancep;s = pi2). Note that, Figuréll presents the distributions which #rietly
increasing between the infimum and the supremum of their@tigpts. However, the probability
distributions in general may consist of strictly incregsamd flat parts. For example, a probability
distribution that is strictly increasing over intervails b] and [c, d], and flat over intervalb, c].
Unlike the previous example, the support set of this prditgldistribution (a, d] U [c, d]) is not

connected.

B. Problem Formulation

Note that in general, the number of units a seller sells amcphadit can be random.

Terminology 4. Let ux(©(.), Oz(.)) denotes the expected profit of sellerwhen she adopts
strategy profile©,(.) and her competitor adopt®;(.).

In a Bayesian game (where players are modeled as risk-Hyeustidonal players are seeking

to maximize their expected payoff, given their beliefs abitne other players (

Definition 1. A Nash equilibrium(NE)H is a strategy profile such that no seller can improve
her expected profit by unilaterally deviating from her ségyt. Therefore(©73(.),©3(.)) is a NE
if for each sellerk:

CAORCHO)EXTCHONCHO) A ANC O}

Terminology 5. With slight abuse of notation, we denotg(x) as the expected profit that seller
k earns, andBy,(z) as the expected number of units that sellesells, when she offefaunits for
sale with pricex per unit, respectively (the dependence on the competisbriegy is implicit

in this simplified notation).

Clearly, u(x) = Br(z)(x — ¢). (1)
Note that** is the expected utility per unit of availability. Thudy; ;(z) = Jug(z) = Juk,(z)

4Clearly, our game is a Bayesian game with the number of aleailanits for sale being the type of a player. For the sake
of notational convenience, we use Nash equilibrium as anmredtive for Bayesian Nash equilibrium.
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is the difference between the utility per availability foradlability levels/ and j. We will see
that A, ;(x) plays an important role throughout in the proofs, which waigs the following

terminology:

Terminology 6. Let Ay (x) = jum(r) — jui(x) = (v — ¢)Br;(z), where By (z) =
1Bu(x) — 5 Bij(x).

Terminology 7. Lete, = (d —my)™.

Note that for allz < v,
By(x) =1 l=1,...,¢e (2)

ask will sell all she offers in this case given that the total affig is less than the demand. We

would later obtain the expression fék,(z) under the NE strategy profiles wheén- ¢,

Definition 2. A price x is said to be aest-response prider seller £ when she offerg units

if wg;(x) > uyj(a) for all a € [0,v].

Note that a NE-strategy profile selects with positive praliglonly amongst the best-response
prices. Thus, all the elements of support sets are bestmsgpa@xcept potentially those on the
boundaries (elements of boundaries may not be best resgydhsieere is a discontinuity in the
utility at those points.

We seek to determine the Nash equilibrium strategy profilsetiers. 1fm; + my < d, since
there is no competition between sellers, both sellers afferr units with the monopoly price,

v at the NE. We therefore assume that + m, > d.

IIl. PROPERTIES OF ANE WHEN d > max{my, msy}

Note that from Corollary 5.2 in [26], a mixed strategy NE ¢xifor our model. In this section,
we investigate the necessary conditions for a strategy smbiéE wheni > max{m,, my} (The-

orem[1). We will explicitly point out whenever we use the asption thatd > max{m;, ms}.

Theorem 1. A NE must satisfy the following properties whénp- max{m;, ms},
1) For eachk, there exists a threshold such that selieoffers pricev with probability one if
she has the availability level less than or equal to this shd. This threshold, denoted

as [, henceforth, is such that:
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a) lp € {ep,....,m—1}
b) h+lp=d—1orli+1l,=d
2) When sellerk hasi, + 1 H units, she uses distributiofy, ;, 1 1(.)
a) whose support set iy, +1,v],
b) which is continuous throughout except possibly aand
c) has a jump at for at most one value of € {1,2}, and size of such a jump is less
than 1
3) When the availability level i$ € {l; +2,... ,mk}H, seller k uses distributiondy;(.)
a) whose support set iy ;, Pr.i—1],
b) which is continuous throughout
C) Dimp = P2,my
4) The utility of sellerk when she offers units is equal for all prices in the support set of

®,;(.), except possibly at price (if v belongs to her support set).

In Appendix[C, we will present an algorithm to explicitly cpote the NE strategies satis-
fying properties in Theorernl 1. Using this algorithm, in Figll, we plot an NE probability
distribution of price when the vector of availability dismtions areq; = [0.3,0.2,0.2,0.3] and
¢ = [0.4,0.2,0.2,0.2], the demand , i.ed, is 3, v = 10, andc¢ = 6. Note that in this case
I, =1, =1,andl; + 1, = d — 1 (part[1 at Theoremll1). This means that both sellers offer
price v with probability one if they have one unit of commodity aadle. When sellers have
availability [y + 1 = 2 and i, + 1 = 2 units available for sale, they use probability distribago
®15(.) and @y (.), respectively, whose support sets &g, v] and [pa, v], respectively (paft 2a
of the Theorem). In addition, these distributions are cardus throughout except possibly at
v (part[2h). Furthermore, only the probability distributidg,(.) has a jump at price and the
size of this jump is less than one (phari 2c of Theotém 1). Wredlers have availability level
l1 +2 = Iy + 2 = 3, they use probability distribution$,3(.) and ®,3(.), respectively, whose
support sets aré s, p12] and [po3, paol, respectively (part-3a of Theorelm 1). In addition, these
probability distributions are continuous throughout (fi2l). Note thatp,;; = p.3 = p (part[3¢
of the Theorem). More numerical examples are presented peAgix[C-B.

5The samd}, as the one in part 1.

5The samd}, as the one in part 1
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Fig. 1: An example of an NE pricing strategy, whén= 3, Supp = Support Set. Note that
®,, and ®,; have a jump of magnitude one, add, has a jump of sizé.6 at v.

We prove Theorerh]1 using the following results which we fitatesand prove later.
1) The probability distribution of pricep,;(x) for i € {1,...,m;}, is continuous forr < v
(Section1-B, Property13).

2) The lower bound of prices are equal for both sellers (8adiil-Cl, Property( 4).

3) There is no gap between support sets (Seétionllll-D, Ptp{Es.

4) Support sets are disjoint barring common boundary poand are in decreasing order of

the number of available units for sale (Section 1lI-D, Prop®&).

5) The structure of NE at price: A seller selects) with probability one, if and only if the

number of available units with her is less than or equal torestiold/, € {0, 1, ..., m; —
1}, wherel; + 1, =d orl; + I, = d — 1 (SectiondIl-F, Property]7).

Note that in Figurd]l, the distributions are continuous ama Ibwer bound of prices are
equal. In addition, every element of the $gtv] belongs to a support set, i.e. there is no gap
between support sets. The support sets of seller one wheoffehg3, 2, and1 unit are[p, p2),
[D12,v], and{v}, respectively. This illustrates the resdlt The results is the same as pdrt 1 in
Theorem L, and is previously connected to Fidure 1.

Henceforth in this section, we focus on proving the necgsezsults and properties needed
to prove Theoren]1.
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A. Results that we use throughout

Property 1. For eachi and k, ®;(c) = 0.

This result follows directly since prices less than cosire not chosen by sellers. Propérty 1
therefore rules out jumps at prices< c.
Proof: Note that for each, ug;(z) < 0 for x < ¢. But, sinceBy;(x) > igz, > 0 for all
x € [0,v], ugi(x) > 0 for all = € (¢, v]. Thus, no price in0, c] is a best response for a sella

Lemmall, which we use throughout the paper, rules out jumpsicts higher than.

Lemma 1. Let the strategy profile of playdrbe ©.(.) = (Px1(.),. .., Pm, (), and @y, (.) have
a jump atx > c. Then forl such thatl + i > d, up(z — €) > ug(a), Va € [z, min{z + ¢, v}],

and for all sufficiently small but positiveand ¢'.

We provide the intuition behind the result and defer the prtooAppendix[A. Note that
offering a lower price increases the expected number ofswsotd by a seller, but decreases
the revenue per unit sold. Suppose that a sdllaffers i units with pricex with a positive
probability. Let her competitok have!l units available wheré + i > d; k can sell a strictly
larger number of units in an expected sense by choosing a prithe left neighborhood of
(eg,z —¢) rather thanz or in its right neighborhood. In addition the difference mubded away
from zero even as the size of the left neighborhood appr@azkeo. On the other hand, the
difference in the revenue per unit approaches zero as th@bthe left neighborhood approaches
zero. Therefore, prices in the left neighborhoodxo€onstitute better responses for the seller
thanz or those in its right neighborhood.

The following property fully characterizes the NE when eelt offersi € {1,...,e;} units.

Property 2. ®,;(x) selectsv with probability 1 and any other prices with probability when

1=1,...,e; for eachk.

The proof relies on the fact that if a seller offers less thaedgual toe, units of commaodity,
she can sell all units regardless of the price she quotesefdre v strictly dominates all other
prices.

Proof: This statement holds by vacuityrifax{m,, ms} > d. Now consider > max{m;y, ms}.

If the sellerk offersi < e, units, the total offerings from both sellers are at méssince the
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other seller offers at most;, units. Thus, the seller can sell everything it offers with any price
x in interval [0, v]. Therefore for allz € [0,v), uxi(x) = i(x — ¢) < i(v — ¢) = ug;(v). Thus, no

price in [0,v) is a best response. The result follows. [ |

B. Continuity of Price Distribution for Price: < v

Utilizing Lemmall, we can prove that the distribution of jgriis continuous for prices less

thanwv,
Property 3. ®,;(z) is continuous forr < v.

Note that in Fig_L, there is no jump in the distributions foicps less tham.

Proof: If i < ¢, the property follows from Propertyl 2. Now lét> ¢,. If z < ¢, the
property follows from Property]1. Now consider € (c,v). We use contradiction argument.
Supposed;(.) has a jump at price < v. Sincei > ¢y, there existg < mg such that +i > d.
Using lemmall, we can say that df;;(.) has a jump atz, for each! such thatl + i > d,
up(x — €) > ug(a), wherea € [z, min{z + ¢,v}], and for all sufficiently small but positive
and ¢. Therefore no price in this interval is a best response ferséllerk when she offers
units. Thereforedy,(z + €) = &y, (x) for all sufficiently small but positive and alll such that
[ > d—1i, i.e. the other seller does not choose any price:jn: + ¢) whenever she offersunits.
Knowing this we can say thaBy;(a) = By, () for all a € [z, z + €) for somee > 0 such that
x + € < v. Therefore,

€

() = (z — ) Biw) < (2 + g — ) Bpilz + §> = w(x +3) 3)

Thus,z is not a best response for a seller who offeusits. Hencer is chosen with probability
zero, which rules out a jump at for ®,(.). The property follows. [ |

Based on this property, the distribution of price is contiasi forz < v. We will later show
that the price distribution has a jump atfor some availabilities.

Based on the above continuity result, the expression fore#pected number of units sold

forall z € [0,v) andl =e; + 1,...,my IS,
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my

By (z —ZZ%H'Z Z 1 q)Ei(I))QEi

1=d—I+1

+ Z (I)kz qkz )

i=d—1+1

(4)

Note that we assumetl> max{m;, ms} in (4). The first term in the left hand side corresponds
to the situation in which the other seller offers at mdst [ units. In this case, sellet will
sell all [ units she offered in the market. The second and the thirdstemra corresponding to
the situation in which the other seller offers more th&n [ units with a price higher than and
less thanz, respectively. If the other seller offers with price highbkan z, sellerk is able to
sell the entirel units. On the other hand, ¥ offers with a price less tham, & will sell d —
units of commaodity.

We can now obtain an expression fay(z) for x < v from (1), (2), and[(#).

C. Sellers Have Equal Lower Bound of Prices

Note that the example NE distributions presented in Figlihende equal lower boundg &
P13 = po3). We now prove that all NE distributions must satisfy thisperty:

Property 4. The minimum of lower end points of support sets are equal tuh Isellers.

Mathematically,

b1 =p2
where,pr, = min{py; : i = 1,...,my}. Furthermore,p; = po < v if d < my + mo.

If the lower bound of prices for sellék, i.e. p,, is lower than that for the other sellef;,
then k sells equal number of units in an expected sense by choggig any other price in
(pr, Pr)- Using continuity of distributions for prices less thanwe can say thap; is a better
response thap, for k£, which is a contradiction. The formal proof follows:

Proof: Suppose not. Without loss of generality supppsec p, < v. Therefore there exists
J such thatp; belongs to the support set &f;(.). Since player 2 does not offer with any price

in the interval [p1, p2), Bi1;(p1) = B1;(Dy) . Thusuy;(p1) < ui;(p,) which contradicts the
"f(z7) = limyre f(y)
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assumption thap, is a best response for the first player when she offersits of commodity.
Therefore, the first part of the property follows.

Supposep; = p, = v. Thus, both sellers choose the pricavith probability 1 regardless of
the number of units they have available. Consider séllelcet [ = mj. Sincem, + mq > d,
Lemmall implies thaty,, (v —¢€) > ug,, (v). This contradicts the assumption thais the best

response for sellek. The result follows. [ |

Terminology 8. Let p denote the minimum of lower end points of prices in the NEpi.e=

P2 = D.

D. The union of support sets covgr, v]

We show that there does not exist an interval of pricegpin] which is eschewed with
probability 1 by both sellers. If such an interval existed, the cumulatiigribution functions of
both sellers would be flat in it, which we rule out below. Ndtattin Fig[1, the NE distributions

are strictly increasing throughout their support sets, t#uede is no flat region.

Property 5. There does not exist, b such thatp < a < b < v and ®;(b) = P;(a) for all
ie{ex+1,...,mp}andk =1,2.

If sucha andb exist for sellerk, this means that regardless of the number of available,units

k does not select any price in the interyal z) wherey < a, z > b, andy is a best response
whenk has an availability level. This implies that for the competitok, the expected utility is
strictly increasing in intervaly, b]. Thusk does not select any price in the interyglb). This
again implies that for sellek, when she offers units, priceb yields a strictly higher payoff
thany, which is in contradiction withy being a best response férwhen offeringl units. The
formal proof is as follows:

Proof: Let there bes, b, andk such thaty < a < b < v and®;(b) = ®4;(a) for all i. Thus
for ¢ such thate < b— ¢ <b < v, &k(b— () = Py;(a). Considery such that,

y = sup{z|r < a,z € support set ofb,(.) for ani}

Since support sets are closedhelongs in the support set df,(-) for somel. Thus,y is a best

response when the availability of playkris | (using Property 3 ang < v).
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In addition, note thatby,;(y) = &;(b — () for all i. Sincea < b — ¢ < v, from Property
and equation[{4), the expected number of units sold for duerel seller remains constant
for prices inly,b — (], regardless of the number of units she offers, Be.(y) = B; (b — ().
Thus, ug (b — ¢) > ug (y), and playerk does not offer any price in the intervg), b — ¢).
Therefore®; (y) = @5 (b — (). Sincea < b — ¢ < v, from Property B and equatiofl(4),
Bri(y) = Br(b — ¢). Thus,uy (b — ¢) > ui(y). This is in contradiction withy being a best
response when the availability of playkris [. Therefore, there does not exist b such that
p<a<b<wvand®(b) = &(a) forall i € {1,...,my} andk = 1,2. Also, note that for
i€ {l,...,ex}, Pri(b) = Ppi(a) for p < a < b < v, since support sets for these distributions
only containv. The result follows. [ |
Remark: In all the previous results, we consideréd> max{my, my}. In the next section, we

need to consider that > max{m, ms}.

E. Support Sets Are Mutually Disjoint and in Decreasing @raethe Number of Availabilities

We start with proving a result, Lemnia 2, o ;(z) (defined in Sectioflll, Terminolody 6).
Note that we use Lemnid 2 in subsequent sections as well. Weprmse Property 16 using this
result, which leads to the main results of this section: Caries[1 and P.

First, using [(2) and[(4).

d—j
1 .
By j(z) =— 1 Z Py (2)qp (1 — d + 1)
i=d—I+1 )
- 11
+ Z Ori(7)qri(d — Z)(f - =)
i=d—j+1 J

Thus, By ;(-) is non increasing and non positive with respect to the prioghen! > j.
Therefore ifl > j thenA,, ;(x) is non increasing and non positive with respect tBased on the

following lemma, A, ;(x) is (strictly) decreasing foo > = > p andl > j if d > max{m;, m»}.

Lemma 2. For each sellerk € {1,2} and everyl and j, j < | < my, Ay (x) is (strictly)

decreasing fop < x < v whend > max{my, ms}.

Lemmal2 implies that the high-availability agent sacrificesre expected payoff than the
low-availability agent by increasing her price.
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Since Ay, ;(.) = (x — ¢)By,,j(x), knowing thatB;; ;(x) is non-increasing, lemma follows
if we prove thatBy, ;(-) is negative. We will prove tha®,,,, (), which is included in the
summation ofBy, ;(-), is positive forz > p and k € {1,2}. In addition, the coefficient of
Q. () IS negative since > max{m;, mo}. Thus, the result follows.

Proof: It is enough to prove thaBy, ;(z) is non-increasing for: > p and negative for
x > p. This yields thatA,; ;(x) = (x — ¢) By, ;(x) is strictly decreasing with respect 10

Note that in [(5), ®z;(.)'s are non-negative and non-increasing since they are pildpa
distributions. In addition, they have negative weightgi — d — ) < —1 < 0, % — % < 0,
and sinced > max{m;,ms}, d —i > d — mj > 0. Thus By ;(x) is non increasing and non
positive with respect to the price when! > j. To prove thatBy; ;(x) is negative forz > p,
since the distributions i {5) have (strictly) negative g¥ds , it is enough to prove that at least
one of thed;(.)’s is included in the summation d8;; ;(.) is positive, i.e. not all of them are
zero. We will prove thatby,,, (x) > 0 for z > p andk € {1, 2}.

Suppose not and there exists> p such thatr < py,,, . By Property(b, there exists an> 0
and an availability level # {1,..., ex, my} such that[ps,,, — €, prm,] belongs to the support
set of @;;(.) and px; < Prmy,- ThUS Uk (Prm,) = Uk;(Prm, — €). In addition, By, ,,, ;(z) is the
weighted summation obz;(.) for i € {e; + 1,...,mz}. Propertylb implies thap,,; belongs
to at least one of the support sets ®f;(.) for i € {e; + 1,...,m;}. The distribution®,(.)
is included in the summation a8, ,,, ;(x), and its coefficient is negative. Thudy ,,, ;(z) is
strictly decreasing with respect tofor x > py;. Thus Ay 1, i (Pem, —€) > Akmy.i (Pkm, ). USIiNg
Wk (Dkmy,) = Ukj(Drm,, — €), We can conclude thatiy,,, (Prm,) = Ukmp.maz < Ukmy (Pkmy — €)-
This contradicts withp; ,,, belonging to the support set @f;,,, (.). The result follows. [ ]

Note that in the previous lemma, we us€d> max{m;,my} to prove thatA,;(z) is
decreasing fop < = < v. The following properties characterize the NE for pricesléisan

.

Property 6. For k € {1,2}, the support set ob,(.) is a subset ofp, p;;] U [v] for all integers
Jje L.

For example, in Figurél 1, the support set for seller 1 andaidity 3 is [p, p1»], which is a
subset of the mentioned set.

Proof: First note that forj € {1,...,e.} property follows, sincey,; = v by Property 2.
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Now considerj > e;. Consider support sets dfy;(-), ®u(-), andj < I. We will show that
up(a) < up(py;) for all a € (px;,v). Thus, noa € (py;,v) is a best response for the seller
with availability of [ units. Therefore, the support set ®f;(-) is a subset ofc, py;| U [v].

We now complete the proof, by showing thag(a) < w(px;) for all a € (P, v):

1 1
Zukz(a) — Euw(a) = Ay5(a)

Sincel > j andp < pi; < a < v, by Lemmal®,4;,;(a) is decreasing function of for
a € [Prj,v). Thus, Ay ;(a) < Ay ;(pr;) for a € (pyj,v). On the other hand,;(a) < wy;(py;) for
all « > py; , sincepy; is a best response of a seller with availabilitghereforeu,; (px;) > uw(a).
u

Note that, in this stage, sineky,(.) can have a jump at, we cannot rule out as a member

of the support set oby,(.).
Corollary 1. The support sets ob;;(.) and ®;;(.) overlap at most at one point ifp, v).

For instance, note that in Figuké 1, the support set®gfand ®,, overlap only atp;,, the
support sets ofb;, and ®;; overlap only atv, and there is no overlap between support sets of
®,3 and dy;.

Proof: Suppose two points; and ., wherex; < x, < v, and both points belong to the
intersection of the support sets &f,;(-) and ®,(-). Without loss of generality, considgr< I.
The pricez, > p; belongs to the support set df,(.), which is a contradiction with Property
6. [

Corollary 2. For prices less than support sets are contiguous (Propelty 5), disjoint (except
possibly at one point) (Corollaryl 1), and in decreasing ardé the number of available units
for sale (Property B). Thus, there exists an increasing eeq@ax,,, , @ m, -1, - - . Of positive real
numbers in(c, v] such that the sellek will randomize her price in the intervaty;, ax ;+1] and

possibly{v} when she has units of commodity available for sale.

For instance, note that in Figuré 1, the support sets ofrselie are in decreasing order of
the number of available units for sale, and the aforemeatlancreasing sequencejisp;,, and

V.
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F. The Structure of Nash Equilibrium at Price

We will investigate the possibility of having a jump at First, we prove Lemmal 3 which
complements previous results by identifying the nature \@riap betweend,;(.) and ®g(.)
for j € {1,...,my} andl € {1,...,mz} for prices less tham. Using this lemma, we prove

PropertyL ¥ which is the main result of this section.

Lemma 3. For every pricep < = < v, = should belong to the support sebs;(.) and ®z;(.)
such that! + j > d.

A contradiction argument is used to prove the lemma. Assume there existr, [, and j
such thatz belongs to sayb;(.) and ®;;(.), andl + j < d. We show that in this case, the
expected number of units sold atand x + ¢ are equal for sellek when offeringl units, i.e.
Byi(z) = Bi(x + ¢€), and subsequently that,(x + ¢) > ug/(x). Thuszx is not a best response
for seller k who offers/ units, which is a contradiction.

Proof: Suppose not. There exist /, andj such thatr belongs to sayb,;(.) and ®;(.),
and! + j < d. We show that there exist ¢ > 0 such thatz + ¢ belongs in the support set of
®z;(.), and subsequently thag;(z +¢) > uy(z). Thusz is not a best response for selfewho
offers { units which is a contradiction. Consider two cases:

« = = 75;. Using Corollanf2,x andz + ¢ belongs to the support set &f; ; ;(.) whene is

small enough. Takg = j — 1.

o 1 < Up;. If € is small enoughz andx + ¢ belongs to the support set &, (.). Takej = j.

Note that sincd +j < d, | + j < d. We are going to argue that the expected number of
units sold atz and z + ¢ are equal for sellek, i.e. By(x) = By(z + ¢). To show this, we
condition on the number of available units with the seltedf % has more thary number of
available units, sayf, then she will offer with price less tham with probability one. Thus
Bu(z|f) = Bu(z + €|f) = d — f in which B.(.].) is the conditional expected number of units
sold. If k& offers less thary number of units, she will offer with price higher than+ e with

probability one. ThusBy,(z|f) = Bu(z + €|f) = I. If k offers j units, sincel + ; < d,

Bu(z]j) = Bu(x + €|j) = 1. Therefore the expected number of units sold:and = + ¢ are

equal for sellerk, andug(x + €) > ug/(x). The proof is complete.

Finally, the following property characterizes the behawbdbNE at v.
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Property 7. For eachk, there exists a threshold such that selteoffers pricev with probability
one if she has the availability level less than or equal ts threshold. We denote this threshold
with [;,. This threshold is such that:

o lpeder,...,my— 1}

e it+lb=d—-1orlj+1l,=d
The price distribution®,;(.) does not have a jump at if j > [, + 1, at most one of the
distributions®, ;, 4 (.) and ®,,+1(.) can have a jump at, and size of such a jump is less than
1.

Note that in Fig L], =, = 1, andl; + [, = d — 1. In addition, both sellers have a jump of
magnitude one at price when they have one unit available, only seller two has a jutrriae
v when the availability level is two, and there is no jump in fttistribution functions when
sellers have three units available.

Proof: Take z;, such thatk offers pricev with probability one if she has € {1,..., 2z}
units. Property 2 shows thaf, > e,. We will prove that thez;, should be less tham,. Note
that if sellerk hasm, units of availability and she offers her units with a singlece v, then
Pr = v. By Propertie§ 4 and 6, the other selleroffers her units with a single priceregardless
of the number of available units. This is a contradictioneTkason is because of Lemina 1.
Sincem; +mgy > d, if ®1,,,(.) has a jump av, thenug,,, (v —€) > uam,i(v), for all sufficiently
small but positivec. Thuswv is not a best response for the second player when she offers
units, which is a contradiction. Thug < m;. Thereforez, € {eg,...,m; — 1}.

First, suppose; + 2, > d + 1. By Lemmal], v is not a best response for the playewhen
she offersz; units, which is a contradiction. Thereforg + 2, < d. Next, we will prove that
eitherz; + z, = d— 1 or z; + z; = d. Note that by the definition of;, sellerk with availability
zr + 1 cannot choose the price with probability 1. Thus using this fact and Corollai the
pricex = v — e for e > 0 small enough is in the support sets®f ., (-) and®, ., (-). Thus,
by Lemma 8,2, + 23 > d — 1. Knowing thatz; + 2, < d. Takel, = z;, and the first part of the
property follows.

Now we should consider the possibility of having a jumpuébr ®;(.) for j > [, + 1. We
will prove that the price distribution does not have a jump athen sellerk offers more than

I, + 1 units. Suppos&y;(.) has a jump forj > [, + 1. Note thatj + i > [, + {; + 1 > d. By
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Lemmall,v is not a best response for the selleunder availabilityl; which contradicts the
definition of /.

Now considerl,, + 1. By definition of [, such a jump must have a size less tharshould
it exist. We will prove that at most one of the distributiofs,, ;1(.) and ®,;,.(.) can have a
jump atwv. Suppose not and both have a jumpaBy Lemmall, sincél; + 1)+ (I + 1) > d,
v IS not a best response for the playewhen she offersg, + 1 units. This is a contradiction.
The result follows.

[

Revisiting Equation[(4) implies that utility;(.), is continuous not only in intervat, v), but
also at pricev, if i < d—1I; —1. The reason is that far< d — Iz — 1, equation[(#) depends only
on ®;(.) wherej > [ + 2, which is continuous at price based on Properfyl 7. tby, ,(.) is

continuous ab thenwy,(.) is continuous inc, v] for i < d — Ij.

G. Proof of Theorerh]1

Proof: Part[1 of Theoreni]1 follows from Propeity 7. We now prove parfRe support
set of &, +1(.) includes at least one < v from Property V7. Thus, Propertiés 6 and 5 imply
part[2a of this part. Paris Pb ahd 2c follow from Propeifies\@[@, respectively.

We now prove part]3. We start with13a. Consider [;.,. From Property 7 ®; ;(-) does
not have a jump at. From parf 2k and Properky 6,is not in the supports set af, ;(.) and
Uk < Pri—1. The result can now be proved by induction starting witk [,., using the fact
that there is no gap between the support sets (Property e Siis not in the support set of
®,.;(.), part[3b follows from Property] 3. Pdrti3c follows from plart &ad Property 4.

Part[4 follows from the fact that every price in the suppottafea NE, except those on the
boundaries, should be a best response for a seller. Thusyiblelythe same utility value. The

result follows for the boundary points of the support setepothany from Property B. [ |

IV. ARBITRARY DEMAND

Note that the existence of the mixed strategy NE follows fr@arollary 5.2 in [26]. In
this section, first we present the sufficiency theorem dot> max{m;, ms} (Theorem[R).
Theoreni 2 establishes that a strategy profile which satigfeementioned properties in Theorem

constitutes an NE wherd > max{m;,my}. Note that unlike Theorernl 1, the sufficiency
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theorem holds even whed = max{mi, my}. Thus, the properties in Theorelh 1 are both
necessary and sufficient conditions for an NE when- max{m;, my}, and only sufficient
conditions whenl = max{my, ms}. The sufficiency theorem naturally leads to an algorithm for
computing NE strategy profiles that satisfy the propertre3theoreni il (Appendix CJA). Any
strategy profile obtained by the algorithm constitutes anbyETheorem R. In Sectioh V4B,
we argue that the computation of the NE strategiesdfer max{m;, ms} can be reduced to

d = max{mj, ms}. This completes the entire framework.

A. The Sufficiency Theorem whé> max{m,, m.}

Theorem 2. Consider a strategy profile that satisfies the propertiesnegnated in Theoreml 1.

This strategy profile is a Nash equilibrium whén> max{my, ms}.

The proof is presented in AppendiX B. In the proof, we use e thatA,;;(.) is non

increasing and non positive when> max{m;, ms}.

B. Allowingd < max{mi, my}

Note that all results before equatidd (4) also hold when max{m;, my}. Thus [4) can be

restated by replacing, = d — mg with e, = (d — mjy)™:

(d=5)* mj
Byj(z) =j Z qr; + min{j, d} Z (1 - @pi(2)) ari
—(d=t+1

(6)

+ Z D, (2)gr;(d — 1) "
i=(d—j)T+1
Note that ifm; > d, the utilities of all number of availability levels > d for playerk are

equal:

Ukd = Uk,d+1 = = Ukm,;,, = d Z (I)m ka (7)

Let Gry = S.% qr; and Ogy(z) = SO7F Z:d%(x) Thus, G, is the probability that the
availability level of sellerk is greater than or equal 1 and ®;,(x) is the average probability
distribution associated with selecting the price if sell@vailability isd or higher. Now, the term
STk (1 — @gi()) gz in the expression fouy,(.) in () can be replaced bi,(1—®z,(x)). Thus

the problem is reduced to finding the structure whHea max{m;, m,}. It was proved previously
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that a strategy profile that satisfies properties in Thedresmd NE whend = max{my, ms}.
Thus, a set of equilibria of the game whén< max{m,, m,} can be found by definin@kd(.)
and using the properties in Theorém 1. The distribution aheadividual ®,;(.) for j > d

cannot be determined uniquely and is not of significant eger

V. THE SYMMETRIC SETTING

We now consider the symmetric setting in whigh= ¢5 = ¢ (clearly m; = my = m). In this

case, it is natural to consider a symmetric NE, defined asvisl|
Definition 3. An NE (©,(-), O2(-)) is said to besymmetricif ©,(-) = O4(-).

Thus, when considering symmetric NE, in terminologies liké-),© (-),u.(-), p., we drop
the index that represents the seller and only retain thexitiug represents the number of units
available for sale. As a special case of the general setBagtions 1ll and 1V), every symmetric
NE should satisfy the properties in Theoréin 1 whken m , and every strategy profile that
satisfies these properties is a NE whieh m (Theorem 2). In Sectidn VAA, we extend Theoreim 1
to the case ofl = m. In SectionL\-B, we will present an algorithm to find symmetNash
equilibria of the game whed > m. Using the results in Sectidn IV!B, the algorithm can be
extended tal < m.

Note that the algorithm reveals that there is only one symimstrategy profile that satisfies
the properties. It follows from Theorerhs 1 dnd 2 that a symm®&tE strategy profile uniquely
exists whend > m. In contrast, in Appendik CiC, we show that there may existtipie Nash
equilibria for an asymmetric market. It is not clear if themeists an asymmetric NE for the

symmetric market; our extensive numerical evaluationsehas however led such strategy.

A. Properties of a Symmetric Nash Equilibrium

Theorem 3. Let d = m. A symmetric NE in a symmetric market satisfies the propeitie
Theorent1L.

The proof is technical and is relegated to the Appendix. filies that properties in Theorem 1

are necessary and sufficient conditions for a symmetric NEnwh> m.
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Since NE is symmetrid; = [, = [. Thus,l* = % orl* = g, whichever is an integer. Since
at most one seller can have a jumpuvasit [* + 1, in a symmetric NE, none of them do. Thus,
the properties in Theorel 1 transform to the following in fyenmetric context.

1) Sellers offer pricey with probability 1, if they havei € {1,...,[*} available units.

2) There exists an increasing sequenagg a,, 1, ..., a1, a;= Of positive real numbers in
(¢, v] with a;« = v such that each seller randomizes her price in the intésyat, ;] when
she hag units of commodity available for sale forc {I* +1,...,m}. Thus,

a) Support sets are contiguous.
b) Support sets are disjoint (except possibly at one point).
c) Support sets are in decreasing order of the number ofadlailunits for sale.
3) Price distribution is continuous far> [*.
4) The utility of a seller when she offeisunits is equal for all prices in the support set of

®,(.), except possibly at price (if it belongs to her support set).

B. Algorithm for computing a symmetric NE for the symmeteitiisg

We will now identify an algorithm to compute strategies tlehibit the properties in the
previous subsection. The algorithm reveals that there Iy @me symmetric strategy profile that
satisfies the same. It follows from Theoreim 1 &hd 2 that a sytneniE strategy profile uniquely
exists wheni > m. Note that the algorithm is developed fér> m. However, with the method
presented in Sectidn IVIB, the algorithm can be used to firdetuilibrium ford < m.

Since®;(-) is completely characterized fgr< %, we should characterizg;(-) for j > 4t
and outline a framework for computing the same. We proceeshiimcreasing order gf starting
with j =[], Then moving toj = [#] + 1, etc.

Now, let[41]. Note thatha1) = v andpy, = v for k < [1], andd, < Ppasy fork > []
(Properties 1 and 2c). Since support sets are ordered @@ and disjoint (Property 2b),
the expression fou(%ﬁx) for x € [ﬁ(%Pv) only depends onb(d%] (x)(Equation [(4)). In
particular,u(%](v‘) can be obtained using the fact ththFd% (v™) = 1 which follows from
the continuity of®[%1(.) (Propertie$ B). Nexm(%](x) = u[%](v_) for everyx € [ﬁ(%],v).
Thus havingu(%1 (v™), and using continuity, we can find a unique expression@fp%ﬁx).

Using Q(%ﬁﬁ[%]) =0, ﬁ(%1 can be found uniquely.
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We now compute the structure & (-), Vi > [4L] using®;_1(.), ®;_2(.), - - , @pas1(.) that
are computed befor®;(-). We utilize the facts that,

1) ®;(x) =1for j > i, x € [ps, 0]

2) ®;(z) =0 for j <i, x € [p;, ;]

3) v, <w

Thus, from [(4),

) = (6 - o) Z gt i wld—9) ®)

Sincev; = p;_1, andp;_; is computed during the computation @f_;(-), which precedes that
of ®;(-), (8) fully specifiesu;(v;). Furthermore, for: € [p;, v;] the only unknown variable in the
expression of;(x) is ®;(x). Sinceu;(x) = u;(v;) for x € [p;, 4,

—a— . m u;i(;
o ? Zgzo qg + 1q; + Eg:i—i—l qg(d - g) - x(—c)

®i(z) (2 — d)

(9)

From (9),®;(v;) = 1. Thus, forz > v;, ®;(z) = 1. Now, p; can be uniquely identified using
the fact that®,(p;) = 0,

- a(iIZh a0+ S ald-0)

i Z;_:lo qg +1q; + Z;n:i.u qg(d — g)

Therefore®;(z) = 0 for = < p;. Clearly, ®;(-) has been characterized uniquely. Note that the

pi=c+ (10)

denominator of[(1I0) is positive sinee> m andq,, < 1 (uncertainty assumption in Sectidn ).
In addition,p; > ¢. This is because of the fact that the second term of RHE df i€lppsitive.
We now prove thatb,(-) is a valid probability distribution. Clearlyp;(-) is continuous. Note
that in [9) forz € [p;, v;), by increasinge, the term% will strictly decrease (since;(v;) > 0),
and we can say thab;(z) is strictly increasing. Also®;(p;) = 0 and ®;(7;) = 1. Thus,
0 < ®;(z) <1 for z € [p;, 0;). Therefore,®;(-) is non-decreasing and assumes valueg) n|
for all . The claim follows. Thus we have uniquely identified a symrmmedtrategy that satisfies

the properties required by a Nash equilibrium.

VI. RANDOM DEMAND

We have so far assumed that the demadnsl deterministic. In this section, we will generalize

the results to a random demand, Let r; denote the probability that the demandiisByy(x)
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be the expected number of units that sellesells if she offerd units for sale and quotes as
the price per unit when the total demanddisand uy4(x) be the expected utility in this case.

Clearly,

up(x E raUgra (T E r¢Bria(x)(x — ¢)

We introduced = min{d : d > 0 and ry > 0}. Utilizing similar proofs, we can show that all the
previous results about the structure of NE are valid for sredlom demand, oncéis replaced
with d. This is but expected as each seller now chooses her priogikgdhat she is assured
of an overall demand of at leagt(instead ofd in the deterministic demand case). Algorithms
similar to those in the deterministic case can be developed¢dmputation of the NE in both

symmetric and general cases.

VIl. THE ASYMPTOTIC BEHAVIOR

In this section, through numerical evaluations, we ingegé the asymptotic behavior of the
symmetric NE of a symmetric duopoly market when the numbewvailable units with a seller
increases to infinity. In asymptotic scenario, many of alality probability distributions that
arise naturally concentrate around the mean. Thusy 0, whenk is far from the mean. First,
we show that the length of the support set for availability: afnits approaches zero ag — 0:

From equation[(1I0),

. (Pi—1 — c)(i S0 ls T e qe(d —9))
izlg:o qg + Zg:i—i—l qy(d - 9)
qi(d — 21)
iz;:o qg + Z;n:i—i-l qe(d — g)

It is immediate that if; — 0, thenp; — pHH. This implies that the length of the support set

=Di—1+ (Pi-1 — ©)

for the availability leveli: units approaches zero.

We investigate the asymptotic behavior using numericabktions when the availability of
each seller follows a binomial distributiofmn, < 1). With this distribution, asn — oo, the
binomial distribution can be approximated by a normal distion with meanmr and variance

mr(1 —r). Thusm — oo yields thatp; — p;,_1 when|i — mr| is large enough. In other words,

8Note that the denominator is positive sinée> m, and we assume uncertainty in competition, §,g. < 1.
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Fig. 2: p versusm for when availability level is binomial with probability and demand isn

the length of the support set for the availability levelnits approaches zero ifis far from the
mean. Other parameters are considered to bel0, ¢ = 1, andd = m.

In Figure[2, the value of, i.e. the lowest lower-bound is plotted versus i.e. the highest
possible level of availability. As you can see, the larger gnobabilityr, the smallerp. Note
that whenr is large, the seller is more likely to offer with higher les@f availability. Therefore
the competition is more intense. In addition, whenis increased, the distributioq of the
availability levels concentrates around the meam, If r > % when a seller offer& = mr,
knowing that the other seller offersr > % with positive probability, she will offer price less
than v (note thatd = m). Furthermore, the highern, the more intense the competition, and
consequentlyp is decreasing. On the other hand, wher< % if a seller offers aroundnr
units, there is no competition between sellers knowing that < d = m. Furthermore, the
availability probability ¢;, when k is far from mr, tends to zero whem: is large. Thus the
associated support sets shrink to zero. This explains ttreasing behavior of. We notice

oscillation in the figure, since: alternates between odd and even.

VIII. A PPLICATIONS AND DISCUSSION

The framework we described in this paper can be used to mbhdst Wifferent applications
in which uncertainty in competition naturally emerges:@&tary spectrum access networks, a
non-neutral Internet market, and micro grid networks.

Pricing in secondary spectrum access netwdrks [28] is ortheofpplications of our model.

Recent developments in wireless devices have resulted ignifisant growth in demand for
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the radio spectrum. This leads to spectrum congestion. @rotiher hand, the available radio
spectrum is greatly under-utilized [29]. Spectrum conigesand under-utilization have directed
researchers to adopt new techniques in order to use theablaispectrum more efficiently
and to decrease congestion. Secondary spectrum accessiam@ple of these techniques. In
these networks, there are two types of users: (i) Primaprbed users, who lease a number of
frequency bands (channels) directly from the regulatad, @h Secondary/unlicensed users, who
lease frequency bands from primary users for a certain atauime in exchange for money or
other types of credit. Note that primary and secondary usem@spond to sellers and buyers in
our model, respectively. Each primary user may have meltplcant frequency bands available
for sale, and a secondary user can lease a channel only ihatisn use by the primary user
who owns it. The usage of subscribers of primary users isa@ndnd different for different
primaries. Thus primaries are uncertain about the comgetiand they need to select prices
for the frequency bands they offer for sale, without knowthg number of frequency bands
available for sale with their competitors.

The next application of our model is the interaction betwkgarnet Service Providers (ISPs)
and Content Providers (CPs) iman-neutralinternet. Net neutrality on the Internet is perceived
as the policy that mandates ISPs to treat all data equaligrdéess of the source, destination,
and type of the datd [30]. This precludes ISPs from chargiRg @ carry their data to the
end-users in the last-mile. In January 2014, a federal dpmeart struck down parts of the
Federal Communication Commission’s (FCC) rules for Netdxidity [31]. The new changes
in the Internet policies enable ISPs to change their pdieied provide differential treatment
of traffic to generate additional revenue streams from CIRs iB called anon-neutralregime
for the Internet in which ISPs can offer resources to CPs &be sr rent. Our framework can
capture the pricing in this type of the Internet market. HHd&Ps represent the sellers that
offer resources for reservation/sponsorship, and CPshareustomers that shop around for the
lowest available prices. Therefore ISPs seek to set prizaiswill ensure that their resources
are reserved/sponsored and also fetch adequate profit.thaitéSPs determine the number of
resources available for sponsoring based on the demaneiofethd-users. The more congested
an ISP, the higher the demand of end-users, and thereforiowes the number of available
resources for sponsoring. Since the demand of end-usedt & priori known, the ISPs are not

aware of the number of units of resources available to herpetitor before quoting her price.
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Thus, the competition that each ISP faces is uncertain.

The third example scenario pertains to pricing in micro grd2]. A micro grid network
is a network of distributed power generating systems caredeto local subscribers, and also
to the central macro power grid. The distributed generatibpower at small on-site stations
is a promising alternative to the traditional generatiodaage stations. Decreasing the loss of
transmission by reducing the distance to consumption ghitslizing renewable energy sources,
decreasing the risk of blackout, and increasing securégysame of the advantages of distributed
power generating scheme [33]. In these networks, a miaaguipped with a distributed power
generating system can sell its excess power to other midogs well as the macro grid. Since

micro grids are emerging technologi€stheir market structure has not been finalized yet. Thus,
different market structures needs to be investigated. @ssibple scenario is a centralized market
in which micro grids sell their excess power to the macro gnida local utility at a feed-in
tariff [36]. Another scenario, which is investigated in this papgera distributed market in
which micro grids trade the power among themselves as aldomacro grid at a price quoted
by them in a competitive market. Our model captures the sesgenario in which each micro
grid with excess power (seller) sells its excess power taomgeids with deficient power or the
macro grid (buyersj. The amount of power generated by a power generating systemtia
priori known and is different for different sellers. Thubgtsellers need to select prices for the
excess power they offer for sale, without knowing the nundfguower units available for sale
with their competitors (uncertainty in competition).

Note that in these applications, we considered the cases#iiars sell their surplus supply.
The original supply is allocated to their subscribers,dantracted customers, using either usage-
based or flat-rate pricing.

We now discuss about some details of the applications the¢ ar practice. Note that one

unit of commodity might be valued differently by differentiyers in the above mentioned

°In microgrid networks, the power can be sold to or bought fattrer local micro grids. This reduces the distance the power
should be transmitted via the macro grid from a generatioa t@onsumption site.

Microgrids are emerging in different countries such as ethiStates [34] and India [B5].

1A feed-in tariff is an offer by the macro grid to purchase sooneall of the output of a micro grid at a fixed or formula
rate.

2Note that each microgrid can be a seller or a buyer dependingie®number of power units generated and the demand of
its subscribers. However, at a fixed time, the identity of armigrid as a seller or a buyer is fixed.
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applications. For instance, different secondary usemsvedifferent rates for the same frequency
band, depending on their location. Similarly, differentcrogrids receive different amounts of
power owing to differences in power loss. Hence, differamydrs have different utilities even
when they buy the same amount of commodity. However, in ount@itations, we assumed that
the pricing structure is the same for all buyers, regardiégke differences in the utilities. We
justify this assumption as follow.

First note that in microgrid networks, the transmissiorsl@stypically negligible, due to the
proximity of generators and consumers. Thus, all consumemsive approximately the same
utility for a unit of power they purchase. For Primary/Sedary markets and a Non-Neutral
Internet market, the utility of secondary users and CPs (g®1i8) depends on the utility of
their end-users, and subsequently is different for diffesecondaries and CPs, depending on
the characteristics of their end-users. Sellers would maeneral know the characteristics and
identities of the subscribers of potential buyers. Henc&ep quoted by the sellers cannot
depend on the utility of buyers. In addition, note that idtroing adifferential pricing for
customers complicates the pricing structure for them, aedigmts an easy cost prediction and
management. For instance, in wireless settings, the chajuadity of end-users and the rate
perceived by them are time and location dependernt [37]. ,Tihus differential pricing scheme,
customers know the current pricing only when they use theicerBut, customers are usually
reluctant to adopt differential pricing schemes, owinghe tapid variability of prices which is
not usually well-received by them [38]. In addition, sedlere also reluctant using a differential
pricing scheme for their end-users, as they are usually atatipnally complex. Therefore, we
did not consider different valuations for different cusemin determining the pricing strategy
of sellers. However, differential pricing for users withfdrent valuation might arise for other

applications; this constitutes a topic of future research.

IX. CONCLUSION

We investigated price competition in a duopoly market withcertain competition when
different sellers may have different number of units adddafor sale. We modelled the in-
teractions among sellers as a non-cooperative game amdl lesstset of properties that are
sufficient conditions for a strategy profile to be an NE. Wevprtb that these properties are

also necessary conditions for an NE in a symmetric markefpoisome values of demand
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values in an asymmetric market. We showed that a symmetriamguely exists and presented
an algorithm for computing the same. In Appendix E, usingrésults proved for a duopoly,
we proposed a heuristic pricing strategy for sellers in aragtnic oligopoly market. Numerical
results reveal that the proposed pricing strategies ard gpproximations of NE when sellers
are not too concerned about optimizing over small gains. Aedion for future work is to

consider different pricing for different types of demand.

APPENDIX A
PROOF OFLEMMA [I]

Proof: First consider the tuple [,y > associated with the sellérin which the first element
is the number of units she offers and the second one is the phie chooses. We introduce
D,S)(y,z',x) as the expected number of units sold by the sellevho wants to offer/ units
with price y when her competitor’s tuple: ¢,z >#< ¢,z >, and D,Ej)(y,z’,x) as the expected
number of units sold by the seller who wants to offemits with pricey when her competitor’'s

tuple < g, z >=< 7,z >. The expected number of units sold by a seller can be written a
Bu(y) = DY (y,i, 2) Pr{< g,z >#< i,z >}

+ DYy i,2)Pr{< g,z >=< i,z >}

Note thatD')(a,i,z) < D)(z,i,z) and D) (a,i,2) < D (z,i, ) for a > z because the
number of units a seller sells is a non-increasing functibhey price for any given amounts
offered by both sellers and any given price chosen by the etitop ThusBy,;(a) < By(z). In
addition,

Bi(z — €) — Bu(x) = (DY (v — ¢ i,2)
— DY (,4,2))Pr{< g,z >#£< i,z >} (11)

+ (D,(j)(x —€i,x) — D,(j)(x,i,x))Pr{< g,z >=<14,T >}

As we discussed') (z,i,z) < D\ (z — €, i,z). For D) (x,i,x), we should consider ties.
Since each buyer is equally likely to buy a unit from both essllif both select equal prices,
we can say thaD}) (z,i,2) = I;4, < [ (sincei + 1 > d) and D\ (z — ¢,i,x) = . Note
that Pr{other seller’s tuple< ¢,z >=< i,z >} = ¢; x Jump Size ofd,;(.) atz. Thus, for all

positivee’, RHS of [11) is greater than or equal 8¢z), whered(z) is a positive number that
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does not depend on Therefore sincesy;(a) < By(x), Ya > x, By(z — €) > By(a) + 0(x),

for all @ > z. Thus,
up(r —€) —up(a) > (xr — € —a)Byla) + 0(x)(x — € — ¢)

Sincez > ¢, for all sufficiently smalle¢’, x — ¢ — ¢ > 0. In addition, sincez < x + € by the
statement of the lemma, the lowest value for ¢ — a is —e — ¢/, and By, (a) < [. Therefore
(x — € —a)By(a) + 0(x)(x — € —¢) > (—e — €)l + 6(x). Therefore, for all sufficiently small

but positivee and¢/,

up(x — €) > uy(a) a € [z, min{z + €, v}]

APPENDIX B

PROOF OFTHEOREM[2

Proof: The goal is to show that for eacrandk all = € [py;, Ux;) constitutes a best response
for the sellerk who offers: units. That is, for each € [py;, Ux;) and for ally, ug;(z) > ugi(y).
In addition, if ®;,(-) associates positive probability with,;, thenwuy;(ox;) > ug(y) for all v,
i.e., vx; IS a best response when the selleoffers i units. Note that the distribution®y;(-)’s,
should satisfy Property] 3. Thus, equatiohs (4) dnd (5) h@ddsr < v, and A, ;(x) is non
increasing and non positive with respectatdor [ > j > ej.

We consider the casg< e; here. Thus By, ;(z) = j and By ;(z) = 1By, (z) — 1. Note that
the expected number of unis, ;(x) sold at pricec when! units are offered is a non-increasing
function of x and By, ;(z) <. Thus, By ;(x) and therefored,; ;(x) is non increasing and non
positive with respect ta: for [ > j regardless of how compares withe;.

Considers < p. ui(x) < i(z —¢) < i(p — ¢) = ugs(p). The last equality follows from{4),
since ®z,(p) = 0 for all j. Therefore we consider > p throughout the proof.

Supposéd,, € {0,1,...,my; — 1} in Propertyl ¥ is fixed. We first start with> [;, + 1. From
the assumption in Theorem 2, we know thaf(x) = ug;(y) for any x, y in the interior of the
support set ofd,;(-), the support set ofb;(-) iS [pri, Ui], Pri(-) is continuous at alk < v,

O < v fori >+ 1, andoy; = v for i = I + 1. Thus, ifi > I + 1 ug(x) = uk(y) for all
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Z,Y € [Dri, Uki), @and fori = I + 1, ugi(x) = ug(y) for all z,y € [pr;, 0:). We consider the last
case in detail. Herejj,; = v. If k has a jump av when she offers; + 1 units, by Lemmadli,
ugi(v) < ug;(v —€) for arbitrary small but positive. If not, using equation’ (4) and continuity
of the price distributions included in that equation, itléals thatu;(v) = ux(pr:). Thus, we
only need to prove that for alt, u;(pri) > ugi(x). We do so by separately considering three
cases: 1i >l + 1 andz € [p,pr;) 2.1 >l + 1 andx € (g, v] 3.7 < Ij.

1)i > lx+1 andx € [p, pr;): The claim follows by vacuity foi = m,. We therefore consider
i < my. Sincedy; = pi ;1 for j > I, + 1, any suchz is in [py,, prg—1) for someg > i. We
prove this claim by induction op, starting with the base case @ i+ 1. Forz € [py.it1, Dki),

1 1
H_—luk,i-l-l(x) - ;Ulm(f) = Akn’—i—l,i(x)

1 N 1 N -
I luk,i+1(pki) - ;Um(pkz) = Ak,z’—i—l,i(pki)

Ug,it1(2) = Upit1(Dri)
Note thatpy; = vx;+1. Subtracting the first and the second equation, we get,

%(u;ﬂ(x) — Uki (Pri)) = Ak,it1,i(Pri) — Akyit1,i(z) <0
Since Ay, ;(x) is non increasing and non positive with respectztdor [ > j. Therefore
k() < ugi(Prs) for o € [Priv1, Pri). We want to prove thaty,(x) < wu(pg;) for o €
[ﬁk,g+17ﬁk9)' knowing thatuki<$) < Ukz(ﬁm) for z € [ﬁkg7ﬁk,g—1) andm; — 1 > g>i1+1
(at the base we hag=1i + 1).

1 1
ﬁuk,gﬂ(f) - ;Uki(f) = Ak,g+1,z‘(f)

1
g+1

Uk g41(Prg) — ;u/ﬂ(ﬁkg) = Akgt1,i(Drg)

Up,g41(T) = Up,g11(Pry)
Note thatp,, = 71 411. Subtracting the first and the second equation, we get,

1 . -
;(uki(l’) — Uki(Prg)) = Ak,g+1,i(Prg) — Ar,g+1,i(x) <0

Thus, uki(z) < ugi(Prg) fOr © € [Prg+1, Prg). The induction hypothesis yields,;(z) < wug;(pri)

3Note that Lemm&]1 holds for any arbitrary price distribusiand not only those that are NE.

October 23, 2018 DRAFT



32

for = € [Pr,g+1; Prg)-

2)i > 1+ 1 andx € (0x, v]: We have just shown thaty;(z) < ug;(pri) for all x € [p, pr:)-
We now show the same for all € (oy;, v]. The claim follows by vacuity foi = [, + 1, since
U; = v. We therefore consider > [, + 1. Sincevy; = py,;—1 for [, +1 < j < my, and
V41 = v, @ny suchx is in (Prg, Prg—1] for somel, + 1 < g < i. We prove this claim by
induction ong, starting with the base case gf=7 — 1. Let x < v.

1 1
7l = 5

1 5 1
;Ukz(pk,i—l) - i—1

Uk,i—1($) = Ak,i,i—1($)

Uk,z—1(13k,i—1) = Ak,z’,i—1(]5k,z—1)

Ugi—1(2) = g i—1(Dr,im1)
Subtracting the first and the second equation, we get,
%(u,ﬂ-(x) = Ui (Pr,i-1)) = Ak,ii—1(2) — Apiim1(Pr,i-1) <0

Thereforeuy;(v) < ug;(Pr,i—1) for x € (Pri—1, Pr.i—2] \ v. The claim is established in the base
case ifpy ;o < v. Else, if px;—o = v, the claim has been shown only fere (px,-1,v) and
we still need to show that;(v) < ug(pr.i—1), Which we proceed to do. Now, let= v. if the
seller k has a jump when it offerg, + 1 units, sincei > [, + 1, for all sufficiently small but
positivee, uy;(v) < ux; (v —€), and for sufficiently small but positive v — e € (pxi—1,v). Since
ugi(v —e€) < ugi(Pri1), the base case follows. If not, that is seltedoes not have a jump when
it offers iz + 1 units, using equatiori[4) and continuity, we can deducedh@t) < wg;(pri—1)-
The base case follows.

Now we want to prove that,;(z) < ug(pr,i—1) for x € (Pg g1, Dr.g—2], knowing thatu;(z) <

Uki (Dr,i—1) fOr @ € (Prg, Drg—1] andg <i—1andg —1 > [, + 1. First, letx < v.
1 1
;u;m(:v) — ﬁUk7g_1(x) = Ap,ig-1(v)
1 1

ki (Prog-1) — ﬁuk,g—l(ﬁk,g—l) = Ak,i,g—1(Pk,g—1)

Up,g—1(x) = Up,g—1(Pk,g—1)
Subtracting the first and the second equation, we get,

1 N N
;(u,ﬂ-(x) — Uki(Ph,g—1)) = Ak,iyg—1(%) — Akig—1(Pr,g-1) <0
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The inequality is because of the fact th&t, ;(x) is non increasing and non positive with
respect tar if [ > j. Thereforeuy;(x) < uk;(pr,g—1). Furthermore we know from the assumption
of induction thatu; (P g—1) < wki(Pri—1), thusug(z) < ug(Pri—1) for = € (Prg—1, Prg—2) \ v-
We can show thaty,;(v) < ugi(Pri—1) if v € (Prg—1.Prg—2] €Xactly as in the base case. The
proof that for each > [, + 1 eachx € [py;, Uy;) IS @ best response when a seller offermits
is therefore complete.

3) i < ly: Now leti < [;. Thus,l, > 0. Consider two cases:

e lp+ 1z =d—1. Therefore: < I, =d — Iz — 1. As we previously mentioned, utility,;(.),

is continuous not only in intervdk, v), but also at price, if i < d — [ — 1. Using [5),
and the fact thatd,; ;(x) is non increasing and non positive with respectstdor [ > j

and a similar argument to case 1, we canwggtr) < uy;(v) for all = € [p,v). The result
follows.

o lp+1; = d. Thereforei <l = d — ;. Sincely, + I +1 > d, neitherdy, . (.) nor &g, 4(.)

have a jump ab, anduy;(.) is continuous inc, v]. The result follows by a similar argument

to that of in the previous case.

APPENDIX C

COMPUTATION OF NE STRATEGIES IN AN ASYMMETRIC SETTING

In this section, we consider the general case in which thingetnay not be symmetric.
First we develop a framework to obtain the strategy profiteg satisfy the properties listed in
Theoreni L (Section_CJA). Then, we compute these strategies simple case of an asymmetric
market in whichm; = my = d = 3 (Section[C-B). In Sectioh_CiC, we show that the system

may have multiple Nash equilibria.

A. Framework for computation

In Theoreni 2, it has been proved that the properties list@th@oreni L are sufficient properties
for a NE whetherd > {my, m;} or d = max{m;, ms}. In this section, we use Theordm 1 to
obtain a framework to identify a set of Nash equilibria foe tipame.

First, fix [; andl, (refer to Property]7). In addition, note that Theorlem 1 djcihe ordering
of support sets for a seller and not the relative orderinguppsrt sets of the two sellers. Thus,
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we fix an ordering ofp;;'s and pg;’s for i € {l; +1,...,m} andj € {lz +1,...,mz} such
that for sellerk and & the lower bounds are ordered with a decreasing relation wihd j
respectively, andy,,, = Pim; = P The unknowns that we should determine for a NE @re
my — I, — 1 andmg — I — 1 number of lower bounds other tharfor sellerk andk respectively,
and the distribution of price over each support set.

For these particulat;, I,, and relative ordering of support sets, based on ThebitemmelNE

is the solution of:

Ui (Pri) = Ui Dy ;1) i€ A
g (Prj) = ug; (Pr ;1) jeA
Ui (Pri) = um‘(ﬁij) i € A, j:Pry € (PrirPrii—1) (12)

ug; (Prj) = i (D) J €A DPri € Prjs Prj-1)
fifa=0

where A = {l, + 1,...,my}. In addition, f; and f, are the magnitude of jump at for the
first and second seller when they offier+ 1 andi; + 1 units, respectively. Note that the first
four sets of equations are derived using the fact that tHigyudf a seller should be equal over
the entire support set. The fifth equation ensures that omdyseller can have a positive jump
at v.

In equation [(IR), the unknowns afe m, + my — I; — I — 2 number of lower-bounds other
thanp, p1, p2, andm; + mo — I3 — lo — 2 number of probability distributions at some specific
points. That is®;;(py;) for i € {lx +1,...,m;} andj such thatpy; € (pri, Pri—1)- BY solving
the system of equations_(12), we can get a candidate NE.

Using the solution®;;(.) for k¥ € {1,2} andi € {1,...,m;} can be found. To find the
distributions of price for prices less than first note that each price € [p,v) which is not
a lower bound for the support set belongs to exactly one ofstifgport sets of each seller.
Therefore, by[(4), the expression of utility of playemwhen it offersi units depends only om
and @;(v), i.e. upi(r) = (v — ¢)G(Pg;(x)), whereG(® (.)) is a decreasing function ab (.),
and therefore its inverse exists. On the other hand, thigiegibt the lower bounds are obtained
from (12) for both sellers. Using Propefty @;;(z) = G—l(w). If the resulting®;,(-) are

r—c

valid probability distribution functions, using Theorémw@ can conclude that they constitute a
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Fig. 3: Structure corresponding tp=1 and/, =1

NE for the givenly, I, and the fixed ordering of lower bounds.

We have shown how to obtain a Nash equilibrium given one &X@ta particular choice of

l1, I3, and a relative ordering between the support sets of the élers. Note that by changing

the choices of the above we can possibly obtain multiple Naghilibria. In the next sections,
we present an example in which there exist at least two duaili

B. Example illustration of computation of Nash Equilibria

Consider the case in which each seller offers up to three anidl the total demand is exactly
three units, i.ed = 3. Without loss of generality we assume that> [; the strategy profiles
in the other casé, < [, can be obtained by swapping the indices of the sellers.

1) First we focus on the case in whiégh+ 1, = d — 1 = 2. In this case/, =, = 1 or

I, =2,l1,b =0.If [; =1, =1, then sellers choose with probability 1, if they offer 1 unit of
commodity. In order to specify the NE, we should find the loweundsp3 = pas = p, P12,

P22, jumps at pricev (f; and f5), and each distributio®,;(.) for all £ = 1,2, andj = 2, 3.

Da2 a8,

First consider the ordering of lower bounds in whigh > p» (Figure[3). The system of
equations is presented in the next page. Using equafiofs (@, (17), and[(18), we can find

_ —0)A
p22:(10 9

2
3 3
A=(2qi0+2q11+q2(1+ f1) — 5120 — 5021

(20)
- 2%2(1 + f2)>
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u13(P) = w13 (P12) = 3(P — ¢) = (3 — 3q23P23(P12)) (P12 — ©) (13)

u2s(P) = u2s(P12) = 3(p — ¢) = (3 — 3q13) (P12 — ©) (14)

u23(P) = u23(P22) = 3(p — ¢) = (3 — 3q13 — 2q12P12(P22)) (P22 — ¢) (15)

u12(v™) = w12(P22) = (v — ¢)(2g20 + 2921 + 2922 f2 + g22(1 — f2)) = (P22 — ¢)(2 — 2¢23) (16)
u12(v™) = w12(P12) = (v — ¢)(2q20 + 2921 + 2g22f2 + g22(1 — f2)) = (P12 — ¢)(2 — 2923 P23 (P12)) 7
u22(v7) = w22(P22) = (v — ¢)(2q10 + 2q11 + 2q12f1 + qu2(1 — f1)) = (P22 — ¢)(2 — 2q13 — q12P12(P22)) (18)
fifo =0 (At most one seller can have a jumpa) (19)

System of equations fdi =l = 1 and psy > P12

On the other hand, froni_(16),

— 2 2 1
fag = (v —¢)(2q20 + 2¢21 + q22(1 + f2)) Le (21)
2 — 2q93

The values ofpy, in (20) and [(21) should be equal. Utilizing this andl(19),

2 1 1
ﬂ — —q22f2A = (q2o + q21 + =¢22) A
I—q3 2 2 22)
_ 4q10 + 4q11 + 2q12 _ B
1 —qs

+ —3 . Therefore,

where A = : )
—q13

1—qa23

fi=fo=0 if B=0
fo>0&f =0 if B<O0

Thereforefi, f2, andps, are uniquely determined. Using (18);2(22) can be derived uniquely,
1 vV —cC

D1o(Pa2) = T (2 —2qi3 — m@ﬁho +2q11 + qu2(1 + fl))) (24)

By (15), p can be derived uniquely, (114) determings uniquely, and[(13) provides W3 (p12)
uniquely. However, we should check whethies;(p12) and ®12(p22) are between zero and one
or not. If not, then this NE candidate is not valid. The dimitions can be found by the process
explained previously.

Another possible ordering of lower bounds is whgn < p,;. The system of equations

corresponding to this case can be obtained by swapping tex iof sellers.
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15t Seller

1511 22512 =

ond Seller D22

¢ 15 = ]513 = 1523 1521 v

Fig. 4: Structure corresponding top= 2 andl, =0

15t Seller
P11 = P12 =V
ond Seller
¢ D = P13 = P23 D22 P21 = U

Fig. 5: Structure corresponding tp= 2 and/, = 1

In the case of; = 2 andl, = 0, Figure[4 illustrates a schematic view of the support sats fo
the unique relative ordering of support sets. Equationsbsanbtained with a similar approach
to the previous case.

2) 1 + I, = 3 = d. Note thatl, = 3 andl; = 0 can be ruled out sinck should be less than
my = 3. Thus,l; = 2 andl, = 1 (Figure[$). The approach to find the equilibria is similarhe t

previous cases.

C. Multiple Nash Equilibria

In Sectiorl ¥, we proved that the symmetric NE uniquely exiBighis section, we show that
an asymmetric market allows for multiple Nash equilibriaasN equilibria are computed using
the above framework withh = 10 andc = 1 and for different values of; andg,. Some lead to

a unique NE and some others to multiple Nash equilibria. Rstance, the NE is unique, if

G = [0.45,0.1,0.4,0.05] @ = [0.2,0.2,0.45,0.15]

In this case, in the NE strategy, = 1, > = 2, p1o = 9.0526, p = 8.65, and ®o3(p12) = 0.3333,

and the second seller has a jump of siz€25 at pricev = 10. However, there are two Nash
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equilibria if:

G =1[0.05,0.1,0.4,0.45] @ =1[0.2,0.2,0.4,0.2]
In both NE,l; = 2, [, = 1, and @13(]522) = 0.4444. In the first NE,f2 = 0.06525, fl = 0,
p = 5.95, andpy, = 7.1875. In the second NEf, = 0, f; = 0.7778, p = 5.8, andp,, = 7.

APPENDIX D

PROOF OFTHEOREM[3

Before going to the proof of Theorelnh 3, we need to prove sommenias and theorems. First
we prove that4, ;(z) is (strictly) decreasing fow > = > p,,_; whend = m (Lemmal4).
Then, in Lemmals, we prove that the minimum of the lower endhigois the lower end point
of ®,,(z), i.e., p = p,. Next, using Lemmasl4 and 5, we prove that¢ [p,,,pm—1) for
i€ {l,...,m—2}. This establishes the ordering fér,(.) and®,,_;(.). After that we proceed
to establish the ordering for the remaining support gets) for j € {1,...,m — 2}, knowing
that for themp,; > p,,,_;. A similar result to the Propertyl 6 is proved in Propérty iy, we
prove Theoreni]3.

Note that a symmetric NE in a symmetric market is considenethis section. Let us define

Apj(x) = qu(r) = Su;(x). Byj(x) is defined such that,

Apj(x) = (& = ) By (@)

where,
1
Bl,j (.%') = —7 q)i(x)%' (Z —d+ l)+
i=d—1+1

m

Y. @i@)aild - i)

i=d—j+1

(25)

~] =
|

(-
N~—

Based on the following lemma4,; ;(x) is (strictly) decreasing fov > x > p,,—; and!l > j,

whend = m.

Lemma 4. For everyl and j, [ > j > 1, A, ;(z) is (strictly) decreasing fov > = > p,,,_; when

d=m.

We argued thaf3; ;(-) is non increasing and non positive with respect to the pricko prove

that 4; ;(.) = (z — ¢) By j(x) is strictly decreasing, it is enough to prove tit;(-) is negative.
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We will prove that®,,_,(z) is included in the summation a8, ;(-) and obviously positive for
x > pm—1. In addition, its coefficient is negative sinde= m > m — 1. Thus, the result follows.

Proof: It is enough to prove thaB, ;(z) is non-increasing for > p,,_; and negative for
x > pm—1 When demand isn. This yields that4, ;(x) = (z — ¢)B;;(z) is strictly decreasing
with respect tar.

Note that in [(25),®;(.)'s are non-negative and non-increasing since they are pilitha
distributions. In addition, they have non-positive weight (i —d — 1) < —1 <0, ; — 7 <0,
andd —i > d —m = 0 (note thatd = m). Thus B, ;(x) is non increasing and non positive
with respect to the price when! > j. To prove thatB; ;(x) is negative forz > p,,_;, since
d—(m—1)=1>0and—(i—d—1) < —1 < 0 (possible coefficients ob,,_;(z)) , it is enough
to prove thatb,,_(.) is included in the summation d§, ;(.) and it is positive, i.e®,,_;(z) > 0
for x > p,,_1. The later follows from the definition agf,,_;.

Now we prove thatb,,_(.) is included in the summation aB; ;(.). Note that/ > j > 1.
Thusi > 2, and the lowest index of thé (P5) is— [+ 1 < m —2+1=m — 1. The result
follows. [ ]

To prove the ordering and disjoint properties in the symioetetting we should alter the
proofs. First we will prove thap = p,,, i.e. the minimum of lower bounds is the lower bound
of ®,,(z). Then we will prove thap; ¢ [P, pm—1) for j € {1,...,m —2}. This proves that the
next lowest support set is the support setbof (.). After that using Lemmal2 will prove that
the support set ob,(.) for [ < m is a subset ofp,,_1, p;| for all integers;j € [1,1). These three

all together establishes the ordering.
Lemma 5. p = p,,, i.e. the minimum of lower end points is the lower end poin®gfx).

Proof: Suppose not and there exists> p such thatr < p,,. By Property 5, there exists an
e > 0 and an availability leve} # m such that]p,, — €, p,,] belongs to the support set &f;(.)
andp; < p,. Thusu;(pn,) = u;(pm—e). In addition,B,, ;(x) is the weighted summation df;(.)
fori e {1,...,m}. Thus, the distributio®;(.) is included in the summation @8, ;(z), and its
coefficient is negative. In additior®;(x) > 0 for x > p;. Thus, A,, ;(z) is strictly decreasing
with respect tar for x > p;. Thus A, ;(pm — €) > A j(Pm). Note thatu;(p,) = w;(pm — €).
Thus, u,, (D) = Ummae < um(Pm — €). This contradicts withp,,, belonging to the support set

of ®,,(.). The result follows.
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Lemma 6. p; & [pm, Pm—1) for i € {1,...,m — 2}.

To prove this, we use a contradiction argument. Supposethieae existsp; € [P, Dm—1)
such thatj € {1,...,m —2}. We will prove that nox € (p;, p,—1] is in the support ofb,,,(.).
Thus there exists € {1,...,m — 2} such thatp,,_; is in the support set ob,(.). We prove
that the payoff of the seller when she offersunits with pricep,,_; + € is strictly greater than
the payoff when offering with price,,_;. This is in contradiction withp,,_; being the best
response for player with availability.

Proof: The lemma follows by vacuity ifn < 2. Takem > 2. Note thatp,, ; < v. If not
there is a jump of sizé at pricev when the seller offers, — 1 units. Since2m —2 > d=m
for m > 2, using Lemmally,, (v —e¢€) > u,,_1(v) for e small enough. This is in contradiction
with assigning a positive probability to prieein the equilibrium when seller offers — 1 units.
Thusp,,—1 < v.

Suppose there exist$; € [pm,Pm—-1) such thatj € {1,....,m — 2}. We will prove that
no x € (pj, pm—1) is in the support of®,,(.). Thus (using this and Property 5), there exists
u € {1,...,m— 2} such thatp,,_, is in the support set ob,(.). ConsiderB,,_, ,(z) which is
the summation of weighted distributiods(z) wheni € {2,...,m — 1}. Thus, the distribution
®,,_1(.) is included in the summation aB,,_;,(z) (note thatm > 2), and its coefficient
is negative (Note thatl > 0). Thus, A,,—1.(z) is strictly decreasing with respect to for
T > Pet. TAUS A, 1 (Pt +€) < Am—1u(Pm—1)- USINQ U1 (Prm-1) = Um—1(DPm—1 + €), WE
can conclude that, (py,—1) = Uumar < wu(Pm—1 + €). This is in contradiction wittp,,,_; being
the best response for player with availability Note thatp,, ; < v, and every price less than
v which belongs to the support set of a distributidy{.) should be a best response for players
when offering: units. The lemma follows.

Now we complete the proof by proving that noc (p;, p,,—1] is in the support ofd,,(.).
Suppose not. We will show that there exist an availabilityelef and two prices); andys,, such
that p, < y1 < pm—1, belongs to the support set df,,(.), and bothy, and y, belong to the
support set ofb;(.). Then we will show that,,(y1) < ., (y2), which contradicts withy; being
in the support set of,,(.).

Using the contradiction assumptiom,is defined as,
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w = inf x
me(ﬁj,ﬁmfl} &z € Supp@m())

Note thatw is in the support set ob,,(.). Now consider two cases:

1) w > p;: Using continuity, the definition of support sets, and Prop®, there exist and
fe{l,...,m—2} such thatv andw — ¢ is in the support set ob;(.). Takey; = w and
Y = W — €.

2) w = p;: Using continuity and the definition of infimum, there existsuch that every
w + € belong to the support set df,,,(.) and®,(.). Take f = j, y1 = w+¢, andy, = w.

Next, we will prove thatu,,(y;) < u,(y2), which contradicts withy; being in the support
set of ®,,(.). Note thaty; < v, and every price less thanwhich belongs to the support set of
a distribution®,(.) should be a best response for players when offeringits. This completes
the proof.

ConsiderB,, ;(x) which is the summation of weighted distributiohgz) wheni € {1,...,m—
1}. Thus, the distributiorb,(.) is included in the summation a8, ;(z), and its coefficient is
negative. ThusA,, ¢(x) is strictly decreasing with respect tofor x > p;. Thus A,, ((y2) >
Ay r(yr). Usinguys(yr) = ur(y2), we can conclude that,,(y1) < un(y2). The contradiction
argument is complete.

[

Therefore we established the ordering fby,(.) and ®,,_;(.). Now we are set to establish
the ordering for the remaining support sétg.) for j € {1,...,m — 2}, knowing that for them

D; > Pm—1. The next is the counterpart of the Propérty 8 in symmetritirge
Property 8. The support set ob,(.) is a subset ofp, p;] U [v] for all integersj € [1,1).

Proof: Consider support sets df,(-), ®,(-), andj < [. We will show thatw;(a) < w/(p;)
for all a € (p;,v). Thus, noa € (p;,v) is a best response for the seller with availability/of
units. Therefore, the support set ®f(-) is a subset ofp, ;] U [v].

We now complete the proof, by showing thata) < w(p;) for all a € (p;, v):
1 1
Jula) - Euj(a) = A;(a)
Note that ifp; > v, property follows by vacuity. Now we considgr < v. Sincej <[ < m,

Jj <m—1.By Lemma®,p,, 1 < p; < a <v, by Lemma#,A,,(a) is decreasing function of
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for a € [p—1,v). Thus,A; ;(a) < A ;(p;) for a € (p;,v). On the other hand;(a) < u;(p;) for
all a > p; , sincep; is a best response of a seller with availabiljtythereforew,;(p,) > w;(a).
u

Now we will prove the Theorernl 3:

Proof: Note that the first place that we used the condition max{m;, ms} (in symmetric
settingd > m) instead ofd = max{m;,my} (d = m) was in Sectior_ I[I-E. Thus all of the
results before that apply also to the case tthat m. Propertyl 8 provides exactly the same
property in the Property]6 for the symmetric scenario. Thes dorollaries after the property
follows. In addition, results in the Section Ill-F followsince they are based on results before
the Sectior IlI-E and Properfy 6 and its corollaries. Thugdrem[ 1 goes through in the case

of a symmetric NE and = m. [ |

APPENDIX E

OLIGOPOLY MARKET

Suppose that the setting is symmetric and there existllers in the market. We consider a
strategy that satisfies the properties identified for a symoME in Sectio V with the difference
that in our proposed strategies the threshole L%J. Note that the algorithm for finding such
a strategy is similar to what is presented in Secfiion| V-B,thatresults would be different. We
now investigate how well this strategy approximates an N&teqgy in an oligopoly market.

We numerically compute the maximum expected utility for aipalar seller, when all other
sellers choose the proposed strategy (best responsg, Wik responge We observe that over a
large set of parameters for all possible availability leyeéhe best response utility is either the
same as the expected utility obtained by following the psggbstrategyproposed Stratedy OF IS
fairly close to this valued.

For instance, consider a market in which the availabilityeath seller follows a binomial
distribution,5(m, p), with binomial probabilityp = 0.4 andm = 3 (m is the maximum possible
available units with each seller). In addition, in this metrithe demand isl = max{n, m},

v = 10, andc = 1. We plot the relative difference, described as followsweaen the best

¥For large sets of parameters, the difference is at rigmrcent of the value of the expected utility resulted by tteppsed
strategy.
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Fig. 6: The relative difference of the best response expegtiity and the expected utility of
the proposed strategy versus different number of sellers

response utility and the expected utility of the proposedtstyy versus different number of
sellers, i.en, for different availability levels in Figurgl6.

i [ Uest R = Up d Strat
Relative Difference= ——2estResponse 7 Proposed Strategy

U Proposed Strategy

Note that the relative difference is zero for all availailievels when there exit, 3, and6
sellers in the market. Thus, the proposed strategy is a NEeofarket in these cases. Although,
in the case of 4 and 5 sellers the proposed strategy is not awinNgg a seller has 1 and 2
units of commaodity available, respectively, the relativifedence in these cases is less than 3
percent. Thus, overall, we can say that the proposed syradeg good approximations of NE

when sellers are not too concerned about optimizing ovetl gyams.
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