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Backstepping control under multi-rate sampling
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Abstract—The paper deals with the design of sampled-data
controllers which preserve the stabilizing performance of a
continuous-time backstepping control strategy. This is achieved
through matching of the control Lyapunov functions evolutions
at the sampling instants. The method is developed for systems
in strict-feedback form. The results are discussed and compared
with similar strategies through simulated examples.

Index Terms—digital backstepping, multi-rate control, nonlin-
ear systems, Lyapunov redesign

I. INTRODUCTION

S well known, the use of digital controllers promoted

the development of design procedures to overcome the
lost of performance issued from sampling, quantization and
computational delays. Disregarding the quantization and com-
putational delays effects and assuming the existence of a
continuous-time stabilizing backstepping controller, we pro-
pose in this work two sampled-data control schemes preserv-
ing stabilization.

Backstepping, introduced in [1] and widely developed in
continuous time [2], [3], is a powerful tool for stabilizing
systems in strict-feedback form. The approach is constructive
and goes through the design of successive control Lyapunov
functions up to the computation of a controller which asymp-
totically stabilizes the full dynamics. Removing the obstruction
of relative degree one, backstepping also relies to the so called
passivity based approach which achieves stabilization through
output feedback and damping injection [4].

In the sampled-data context, backstepping, as other design
techniques which take advantage of properties linked to the
system structure, deserves special attention and ad hoc inves-
tigations because, in general, sampling destroys the structure.

In this paper we assume, as usual, that the controller is fed
by sampled measures and provides piecewise constant signals;
i.e. the input to the plant results from a zero order holding
device - ZOH - of a discrete-time signal computed by the
control algorithm. Following [5], [6], three different sampled-
data control approaches can be distinguished:

e emulation - when the continuous-time control law itself,
evaluated at the sampled time instants t = kd,k > 0, is
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implemented through ZOH over intervals of length J, the
sampling period. Such an approach does not require extra
effort. Improvements can be obtained by setting the design on
a slightly modified model of the plant or taking into account
the sampled-data architecture (redesign techniques);

e discrete-time control - when the controller is designed on
a discrete-time equivalent model of the process defined for a
fixed sampling period. In this case, major difficulties rely on
the possible complexity of the discrete-time equivalent model
which might even be not computable, on the lost through
sampling of suitable structural properties (the strict feedback
triangular form in the present context), on the possible lack of
discrete-time design procedures [7], [8].

e sampled-data control - when the control is designed on a
sampled-data equivalent model which is parametrized by the
sampling period d so that the J-dependency can take part of the
design procedure. Exact or approximate design procedures can
be pursued, based on the exact or approximate sampled model
(e.g. Euler in [9], higher order approximations in [10], [11]).
In these cases, attention should be directed towards the best
trade-off between computational complexity, sampling period
length and performance.

Digital backstepping strategies have been investigated in
several recent papers. In [9], a discrete-time design based
on the Euler approximate discrete-time model is used to get
a solution which achieves semiglobal-practical stability. In
[12], assuming the existence of a continuous-time Lyapunov
design, two sampled-data controllers are proposed: the first one
increases negativity of the Lyapunov function increment, the
second one reduces the mismatches between the continuous
and the sampled Lyapunov evolutions for a given order of
approximations of the Lyapunov function increment. A similar
approach is pursued in [13] (see also [9], [12], [14], [15])
where the authors, with reference to a particular strict-feedback
structure, look for matching the Lyapunov function increment
making use of higher order approximations of the sampled
model.

In the present work we propose to match, under sampled-
data control, the behaviors of the Lyapunov functions used
in the continuous-time design process. The idea of matching
at the sampling times target behaviors which characterize the
continuous-time closed loop dynamics was proposed in [16]
and [17] to get sampled-data solutions to feedback lineariza-
tion and stabilization problems, respectively. An approach,
also pursued in [18], for the stabilization of a single-machine
infinity bus system (SMIB) and in [19], to get stabilization
in the context of Interconnection and Damping Assignment -
Passivity Based Controller - (IDA-PBC) (see [20]).

Regarding properly backstepping, a preliminary solution
proposed in [21] is further developed hereinafter and extended
to a multi-rate scheme to face some typical drawbacks of
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the sampling process. As a matter of fact, apart from the
lost of lower triangular strict-feedback structure, the relative
degree fails to one under sampling so generating unstable zero
dynamics [22]; a phenomenon which is responsible for degra-
dation of internal stability. Matching the continuous Lyapunov
functions evolutions through multi-rate controllers enables us
to preserve, at least in the sense of the first approximation,
the internal stability performance [23]. It must be recalled
that multi-rate digital control, which corresponds to multiple
variations of the control between two measures, has been
introduced in the nonlinear context to overcome the mentioned
degradation of performance [24]. A different multi-rate control
scheme is proposed in [25] where multi-rate sampled-data
measures are used to preserve stability of a slow sampled-data
controller.

Starting from a continuous-time dynamics in strict-feedback
form and assuming that a continuous-time backstepping pro-
cedure has been designed to provide a control Lyapunov
function V' and a stabilizing feedback wu.(.), we show in
Theorem 3, the existence of a piecewise constant control law
u%(.) ensuring global asymptotic stabilization at the sampling
instants. To better understand how the requested Lyapunov
matching influences the internal state dynamics, it is sufficient
to interpret the continuous-time design as a passifying design
with respect to the function V' which exhibits relative degree
one and is locally minimum phase [26]. As a matter of fact,
the sampled-data feedback computed to match the evolution
of V at the sampling instants maintains the minimum phase
property when the relative degree is equal to one [23].

The improvement proposed with the multi-rate solution
takes advantage of the cascade structure of the strict-feedback
dynamics and is thus specific to the backstepping procedure.
Recalling that for m-cascade connected dynamics, m + 1
Lyapunov functions are instrumental tools, the idea is to design
m + 1 sampled-data controllers to match, at the sampling
instants, the behaviors of these m + 1 control Lyapunov
functions. Arguing so, the existence of a multi-rate strategy
of order m + 1 under which global asymptotic stabilization
at the sampling instants is preserved with improved internal
stability is shown in Theorem 16 when m = 1 and in
Theorem 18 for a generic m. To have an insight on the
theoretical issue which is behind such an improvement, it must
be noticed that the successive Lyapunov functions involved
in the design depend on partial state components and have
decreasing relative degrees from m + 1 to 1. Following [27],
the need of a multi-rate design of order m + 1 to maintain
the minimum phase property is a direct consequence of these
relative degree values. It results that the proposed sampled-data
controller achieves both matching of the successive Lyapunov
functions while guaranteeing stability in first approximation
of their respective zero dynamics.

Solutions in closed form of the proposed controllers do
not exist in general. Executable algorithms for computing
approximate solutions at any prefixed order can be described
taking advantage of the dependency in ¢ of the exact controller
representation as a series around the continuous-time solution.
The proposed design procedure can be supported by computer
aided design tools which exploit the combinatoric properties of

the series expansions as proposed in [28] and tested on various
examples in the electrical and mechanical domains [29], [10],
[16], [17], [30], [19].

How to quantify the stabilizing performance under approx-
imate control is a challenging problem. The case of emulated
control with Euler sampled-data model is discussed in the lit-
erature due to its computational simplicity but its performance
remains constrained to small enough sampling period. The for-
malism proposed in [31] to investigate the stability properties
obtained under digital controllers designed on approximated
sampled-data models is adapted to the present context to
prove practical stability under approximate controller under
Lipschitz condition on the Lyapunov control function. In fact,
an important benefit of the here proposed multi-rate schemes
is to guarantee full state matching of the continuous-time
state evolutions in O(63) up to O(6™"3) on partial state
components, a property which can be interpreted as one-
step consistency following the lines in [31]. A first analysis
reported in the present paper for the single-rate control strategy
suggests to investigate the stabilizing properties of approxi-
mate controllers in the context of Input-to-State ISS stability
(see for example in the continuous-time [32], discrete-time
[33] or hybrid [34] contexts) under control error (the neglected
terms). Provided ISS stability of the closed loop continuous-
time design is ensured, ISS stability of the sampled-data
design is verified from which conditions ensuring stability can
be deduced in terms of the order of approximation and the
sampling period length. Work is progressing in this direction
to better quantify the expected advantages of the strategies and
the Maximum Allowable Sampling Period - MASP.

The paper is organized as follows. Section II deals with
notations and a brief recall of backstepping design. Single-
rate and multi-rate control laws are proposed in sections III
and IV, respectively. Simulation results are illustrated and
discussed in sections V where a comparison of the proposed
schemes with similar strategies is also provided. The proposed
controllers are illustrated through two examples; the first
example, used as case study in [12], [9], [13], provides a
meaningful comparative evaluation of the performance.

II. RECALLS AND BASIC FACTS
A. Notations

Throughout the paper, maps and vector fields are assumed
smooth (i.e. infinitely differentiable of class C*°) and the
associated dynamics forward complete to guarantee the exis-
tence of solutions and prevent from finite escape time. Given
a vector field f, Ly denotes the associated Lie derivative
operator, Ly = Y"1, f¢(~)a%i, el (or ef when no confusion
is possible) denotes the associated Lie series operator, el =
1+>° % Given two vector fields f, g on R", their Lie bracket

i>1
is defined as adsg = [f,g9] :==[Ly,Lg):=LyoLy—LgoLy
and in an iterative way, ad’g := [f, ad’g] with ad}g := g. To
simplify the notations when no ambiguity is possible, LyL,
stands for L¢ o L,. For any smooth real valued function h,
the following result holds efh(x) = e/h|, = h(efx) where
el z stands for eXs I;|x with I, the identity function on R"
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and (z) (or equivalently |,) denotes the evaluation at a point
z of a generic map. The evaluation of a function at time
t = k¢ indicated by “|;=xs” is omitted, when it is obvious
from the context. Given two exponential operators e* and
e¥ where X and Y are formal variables which stand for
any two vector fields, the associated Baker-Campbell-Hausdorf
exponent, denoted as BCH?(-), describes the exponent series
of the non-commutative composition of the two operators:

eX oY — BCHA(XY) (1)

— XY+ 3 [ XY 15 (X [X Y[V, [V XD+

This formula can be iteratively generalized to the composi-
tion of m exponential series so defining BCH™ (X1, ..., Xin);
further details can be found in [35]. We notice that all the
manipulations performed over series of operators described
by their asymptotic expansions are formal ones in the sense
that no convergence study is performed.

As usual, |.| indicates the Euclidian norm and ||.|| the
supremum norm of a function, typically an input. Any function
or vector A is said to satisfy the Lipschitz condition if for each
compact set X of R" — {0} there exists a constant M > 0
such that |V(z) — V(z)| < M|z — z| for all z,z € X. .
A positive function p is said of class K if it is continuous,
strictly increasing and zero at zero, it is of class K, when
it is unbounded. A positive function [ is said of class L
if it is continuous and for each s, 3(.,s) € K and for each
r, B(r,.) is decreasing with respect to s and S(r,s) — 0 as
s — o0. A function R(z,0) is of order 07, p > 1 and we write
R(x,5) = O(6P), if whenever R is defined it can be written
as R(z,8) = 6P~ R(z, ) and there exist a function 6 € K,
and 6* > 0 such that for each § < 0*, |R(x, )| < 6(4).

B. The class of strict-feedback dynamics

We consider strict-feedback dynamics [2] with m-cascade
connections of the form:

() = f&)+9(2)&

L) = ai(z&) +bi(z,6)é
. )
Em—1(t) am—1(2,&1/m-1) + bm—1(2,§1/m—-1)&m
ém(t) = am(z7£1/m) + bm(zvfl/m)u(t)

where z € R",& € R,&1/; = (&1,...,&;) and the b;(-) are
assumed different from 0. We also write in a compact way:

L(t) = fe(z) + ge(x)u 3)

with = = (zl, & /m)l € R™™™ and adequately defined vector
fields f. and g..

C. Sampled-data equivalent models

Assuming the control u(t) constant over time intervals of
length 6, u(t+7) = u(t) = up for 0 < 7 < 6, t =k6, k>0,
the discrete-time dynamics which describes the evolutions of
(3) at the sampling instants ¢ = ko defines the equivalent
sampled-data model. 1t takes the form of a map F°(.,uy),

parameterized by §, which admits as asymptotic expansion
the Lie exponential series.

g1 = FO(zy,up) = XUt nde) g, )

Multi-rate sampling of order m - M R™- refers to the actu-
ation of the control variable m-times over each time interval.
More precisely, u(t) is maintained constant at values w;i, over
intervals of length § = 2 forall t € [ké+(i—1)d, ké+id[,i =
1/m. Over time intervals of length § = md, one gets the
equivalent M R™-sampled-data model of (3):

Thyr = F™ (g, ik, Umk) (5)
eSfetuinge) o o eé(fc+u'rrLkgc)mk.
(5) admits an exponential Lie series representation in terms of
the BCH™(...) exponent [35]; i.e. eBCH" () .= ed(Jetuirge) o
... 0 eOetumrge) g0 generalizing (4).
Besides (4) and (5), the so-called exact single-rate (resp. multi-
rate) sampled-data dynamics represented by the pairs (u, F°)
(resp.(Ui=1/m, F™9)), one defines the approximate single-rate
(resp. multi-rate) sampled-data model of degree p as the
truncations of the expansions (4) (resp. (5)) at finite order p
in ¢; i.e.

Fo(z,u) =
Fmé(%“i:l/m) =

FPN(z,u) + O(6711)
FlP (@, uizy jm) + O(PT1).

Remark 1. : For p = 1, one recovers the well known Euler
sampled-data dynamics 1 = x + 0 fe(xr) + oupge(zy)
with the same nonlinearities as the continuous-time ones so
explaining why most of the results set in continuous time are
maintained through Euler sampling.

D. Continuous-time backstepping - recalls

Some instrumental steps are recalled below.
1) one-cascade connection: consider (2) with m = 1:

) = f()+ 9ot ©)
1) = a(z8) +b(z,&u. @)
Theorem 2. [2] - Continuous-time backstepping - Let the

dynamics (6-7) and assume there exist a smooth function ¢(z)
with $(0) = 0 and W (z) > 0, radially unbounded, such that:

TG + 9o <0vz e R/ (0} ®)

then the state feedback control law:

ue = b1 (z,€) <¢(z) - %—I/:g(z) —a(z,8) + v) )

with v = —K, (€ — ¢(2)), K, > 0 and ¢(z) = 22(f(z) +
9(2)&) globally asymptotically stabilizes the origin - GAS.

Proof: Assuming £ = ¢(z), asymptotic stabilization of
the z-dynamics follows from (8). Setting y = £ — ¢(2), (6-7)
rewrite as:

() = f@)+ gy
§1) = alsy)+ bz y)

(10)
(1)
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so that the feedback (9) with v = —K,y, K, > 0 achieves
GAS because of (8) and W (z) radially unbounded; i.e.

0w
V="7-(f(2)+9(2)6(z) = Ky'y <0 (12)
with control Lyapunov function:
1
V(28 = W(z) + 5(€ — 6(2))” (13)
|

A local result does not request radial unboundedness of W
and condition (8) can be relaxed to negative semi-definiteness
under zero state detectability of .

2) multiple cascade connexions: with reference to the gen-
eral form (2), the design procedure can be reduced to the
iterative application of the result recalled in Theorem 2.

o 1tstep: set y; = &1 — ¢(2) and 2! = (2/,y1)’. Under the
assumptions of Theorem 2, the fictitious controller:

o =0 (<G e ~aE ra)  ad

with v1 = —Kjy1, K1 > 0 asymptotically stabilizes the first
cascade connection with control Lyapunov function V;(z1) =
® - -
o itfstep-i > 2sety; =& —di1(271), 2" = (¢, u1/i)"s
the controller:
Vi
OYi—1

oi(=") = 57 (=) bia () — @iz + i) (19)
with v; = —K,y;, K; > 0, asymptotically stabilizes the first ¢
connections with control Lyapunov function:

. . 1 1<
AN g 1—1 T2 - 2
Vi(z') = Vi (") + gl = W(2) + 5 ;yj (16)
® ---
e Final m'"step: the controller u. = ¢,,(z™) with v, =
— K Ym, K > 0 achieves global asymptotic stabilization of
the whole control system with Lyapunov function:

1 m
V(") =W () + 5 > (17)
j=1

In the sequel, we denote by (Vi(z'))i=o/m Wwith Vo(z) :=
W(z), Vi (2™) = V(2™), the family of (m + 1)-control
Lyapunov functions involved in the backstepping design.

III. SAMPLED-DATA BACKSTEPPING UNDER SINGLE-RATE
Given the strict-feedback dynamics (2), we assume that the

continuous-time backstepping procedure has been preliminar-
ily worked out up to the last step to get equations (10-11).

A. Input-Lyapunov matching under piecewise constant control

Consider (10-11) rewritten in compact form with z! = (2, y)":
Zl(t) = fc (Zl) +gc (Zl) s Ue (Zl) .

Given u, in (9) with Lyapunov function V' in (13) satisfying
(12), integration over one sampling interval gives:

(18)

(k+1)5
V(2 iz (rrys) = V(= i=ks) = /5 V(' (r)dr (19)
k

where z!(t) indicates the closed loop continuous-time z!-

dynamics under wu.. More in detail, (19) specifies the one-
step ahead difference assumed by the Lyapunov function
between two successive sampling times under the action of the
continuous-time controller; it describes the target difference
that we will match under piecewise constant control.

Sampled-Data Input-Lyapunov Matching - SD-ILM - means
the design of a piecewise constant control law which assures
one-step matching of the Lyapunov function; i.e. find ui =

u®(z},) so that one-step ahead:

(k+1)5
V(F (4 ud) — V(2)) = / VE()dr Qo)

5
when zi = 2!|4=s. The Lyapunov Matching Error - LME -
Ev(zi,6) - is the one-step mismatch between the values at
time t = (k + 1) of V(2!) under continuous-time u.(t) and
constant controls u’, when z}, = z!|;_ys; i.e.

Ev(z,6) := V(2 imer1)s) — V(zhp) = ZWE@(zi) (21
p>1

with by definition:
V(2 imrrnys) = V(€T 921 1

52,
[L. ctu

=V +0Lftu.V + o7 V)(2Y)],_s + O(8°)

cYc
and

ua‘
V(zhyq) = V(eOUetukoe) 11
2

5
= (V+0Lsus,V + EL? V)(2) + O(6%).

o+us ge

B. Digital backstepping under single-rate for a 1-connection
Theorem 3. Consider a strict-feedback dynamics (6-7) under
the assumptions of Theorem 2, then there exist T* > 0 and
for each § in )0, T*|, a digital feedback u’(z") of the form :

1y _ 07,1 & w2
U6(Z)7U(Z)+izzl(i+1)! (27) (22)

with u®(21) = u.(2') which ensures SD-ILM of V defined in
(13) and guarantees SD-GAS.

Proof: The proof works out showing that there exists a
solution ug to the SD-ILM equality (20). The index ”;” is
omitted when clear from the context. For, one rewrites (20) as
a formal series equality:

5Q(21,6,u0) = Ut sy |, Sfetucg)y| L =0 (23)
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and looks for u® which satisfies for all 2! € R" the equality:

Q(z",5,u’) =0 (24)
with by definition Q(z',4,.) := Q°(z,.) + X 0'Q' (2", ).
At first, it is easily verified that setting quZ;
satisfies (24) for § = 0; i.e.

Q2" u”) = (Ly, +u’Lg )V .1

uc(z1), one

— (Lfc + ’LLCLQC) V|Z1 =0.
Then, provided the rank condition:

0Q(z", 0, u)

ou 70

=0,u=u’

(25)

holds true, one concludes from the Implicit Function Theorem
[36, Th.7.9], the existence of T* > 0 small enough and, for
each ¢ €]0,T*], the existence of a solution to (24) in the form
of an asymptotic expansion (22) around uc(zl). Condition (25)
is anlimmediate consequence of the~strict feedback structure:
QU |5 o = Ly V(2') = y-b(z,y) #0 when y # 0
with b(z,y) = b(z,§). It results that SD-GAS is satisfied
in the absence of finite escape time (forward completeness
assumption) with, by construction, Lyapunov function V; i.e.
(k+1)5
V) -V = [ Ly 4 ueLy V@) <0

kS

since (Ly, 4+ ucLy. )V (21) < 0. [ ]
Remark 4. T, which defines the Maximal Allowable Sam-
pling Period - MASP - exists in a neighborhood of zero but
has to be determined.

Denoting by (u’, F%) for any § €]0, T*] the sampled dynam-
ics (4) under state feedback (22), the following results hold.
Proposition 5. Under the assumptions of Theorem 2, there
exist functions (p1,p2) € Koo, ps € K and control Lyapunov
function V' in (13) such that under u®(z) in (22), the pair
(u‘;, F9) satisfies:

(26)
(27

p1(lzx)) V(z) < p2(lzi])
V(zk11) = Vi(z) —6p3(|2i)-

Proof: The assumptions set in Theorem 2 guarantee [2]
the existence of a continuous-time Lyapunov function V' and
functions (p1, p2) € Koo, p € K such that Vz! € R

(1210 < V(1) < pa(l (1))
V(z'(1) < —p(|z' @)))-

As u9(.) is properly designed to match at the sampling
time instants the evolution of V' under u.(.), condition (26)
immediately follows from (28). Then, from (29) and the
Mean Value Theorem, one firstly deduces the existence of
Tm € [k0, (k + 1)d] so that

<
<

(28)
(29)

(k+1)5
/ V(M (m)dr < —8p(|2! (rm)])
ké

and a positive definite function W, (21) so that:

(k+1)5
/ V(' (1))dr = 75Wa(z,i).
ké

Moreover, from [2, Lemma 4.3], there exist functions ps3, p4 €
K such that:

p3(l2il) < Walzp) < pallzil)
1

and thus (27) follows with z'l;—ys = 2} and since
Eyv(z},8) = 0 under u°. ]

Remark 6. According to Lemma 4 in [31], Proposition 5 can
be reformulated as (3, R*")-stability of the pair (u®, F°);
i.e. there exists § € KL such that

|2e] < B(|25], k0) Vzg € R™™ k> 0.

Remark 7. According to a result in [23] and by construction
of u®(.), the local minimum phase property with respect to V
is maintained under sampling.

C. On approximate solutions

Theorem 3 states the existence of a sampled-data controller
u%(.) ensuring GAS of the equilibrium. However, a closed
form solution does not exist in general and to compute its
asymptotic series expansion is a difficult task. The design
is thus limited to approximate solutions. An insight in the
computation and performance of approximate solutions is
given. For, the p-th approximate controller is denoted by:

P 51‘ )
Pl(,1) .— 00,1 AT |
u (z)—u(z)—i—;(z_’_l)'u(z) (30)
Two interesting results can be proven. A first result refers to
the one-step consistency property accordingly to [31]. In our
context, it prevents from a large mismatch between the state
evolutions of system (18) under digital controller u°(.) and
under continuous-time control u.(.), at the sampling instants.

Proposition 8 (one-step consistency). Under the assumptions
of Theorem 2, the pair (u’, F°) designed in Theorem 3 is one-
step consistent with the continuous-time closed loop dynamics
(Ue, efettede 1) i e there exists a function 01 € Koo such that
for each § in )0, T*], for all z; € R™" ™' with 2} = 2*()|i=ks,
one has:

|F6(zi,ui) — e‘s(f°+”696)zl(t)|t:k5| < 6291(6). 31

Moreover, (31) holds true under p-th approximate controller
with p > 1.

Proof: 1t is enough to recall that one step matching of
any function A : R"*1 — R with relative degree 1, ensures
state matching in O(6?) at least [17]. Since V exhibits relative
degree 1, one immediately verifies:

FO (2, ul) = /Ut ue0e) 21 (1) ooy + O(8°)
and the result follows as soon as p > 1. |

Practical stability under approximate controllers can now be
deduced from the results in [31] according to the definition
below when assuming V' to be Lipschitz.

Definition 9. Let u denote a generic piecewise constant
control, let B € KL and N an open (not necessarily bounded)
set in R™*' containing the origin. The pair (u,F?) is said
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to be (8,N)-practical stable if for each R > 0, there exist
T* > 0 such that for any 6 €]0,T*]

lzi| < B(|2A,k6) + R V2 e N, k>0.

Proposition 10 (Practical stability under p-th approximate
controller). Let u® be designed as in Theorem 3 under SD-
ILM of a Lipschitz control Lyapunov function V', then for
any integer p > 1 the pair (ulP!, F9) is (8, R"1)-practically
stable.

Proof. The proof follows directly from Theorem 2 in [31]
when verifying first that the pair (ul’!, F%) is one-step con-
sistent with (u5, F%) (from Proposition 8 above) and secondly
that the pair (u’, F%) is GAS and satisfies for any § €]0, T*]
Proposition 5 with control Lyapunov function V' assumed
Lipschitz. O

A second result directly specifies Proposition 5 under ul?!(.).

Proposition 11. Under the assumptions of Theorem 2, let
u%(.) designed as in Theorem 3 with control Lyapunov function
V, then for any p > 1, there exists 0, € Ko such that the
pair (ul), F?) satisfies for each & €]0, T*],Vz} € R"*1:

V) = V() < =6(pslzd) — 076,(9)). (32

i.e. ul?)(\) ensures SD-ILM of V in O(6PF2).

Proof. By construction, ulPl(z}) satisfies:

V(e imrns) = V(zto) + BE (2, 0) (33)
with an error E{f'ﬂ](zl,d) = Y50 §IHP T2 EPERHI(51) i
O(67%2) so immediately deducing (32) from (27). O

Remark 12. Condition (32) highlights the interplay between
the length of 6, the order p of approximation and the closeness
to zero of z} when guaranteeing negativity of the Lyapunov
function increment V (z}, ) —V (2). Under p-th approximate
controller, negativity of the Lyapunov difference is ensured
provided by p3(|z}|) > 670,(5). A condition which specifies as
ps(|z]) > 00(8) under emulated control, ps(|z}|) > 6601 (5)
under approximate control at order one (p = 1), and so
on. Such a condition provides a first characterization of the
possible benefit by increasing p to ensure negativity of the
Lyapunov difference.

To better quantify condition (32), we define besides the p-
th approximate controller in (30), the control error variable
ep(21,0) as:

ed(2h) := ul?! (z")

> —u® (z) = 5p+lef,(21)

and rewrite the dynamics (18) under p-th approximate con-
troller as an hybrid dynamics for ¢ € [k, (k + 1)0[;k > 0

) = fe (z1) + ud () 9c (z) + eg(z,i)gc (z")

with stable “drift” term f. + u’ (z,%) g and forced term
weighted by 671

(34)

The result in Proposition 11 can be further specified in the
formalism of input-to-state stability - ISS - of hybrid dynamics
(see for example [32] in continuous-time, [33] in discrete-time
or [34] in the hybrid context). Provided the Lyapunov function
V in Theorem 2 is an ISS Lyapunov function for (18) under the
feedback u.(.) +v(t), it can be easily shown that V' is an ISS
Lyapunov function for the sampled-data dynamics under state
feedback u®(.)+vy, with vy, = v(t) for t € [k6, (k+1)5[,k >0
and u%(.) designed in Theorem 3.

Specifying this result on the dynamics (34), one gets:

V(zie) = V() < —dps(lzl) + 7 2ap(e]) (39)

with 0, € K and p3, assumed to be K, are deduced from
the corresponding functions which specify the ISS property of
(18). Since V' is an ISS Lyapunov function for the sampled-
data system under feedback u®(.) + €5(.) := ul?!(.), the 1SS
stability of the pair (u[P!(.), F%) for any p > 1 follows; i.e.
there exist functions 8 € KL,0 € K such that for all 2§ €
R™*1, for all eg €ly

|2k < B(120), k) + o (|led]]) vk > 0. (36)

Remark 13. As (32), condition (35) highlights the interplay
between the length of 8, the closeness to zero of zi and
the error control variable €, in guaranteeing negativity of
the Lyapunov function increment V. Under p-th approximate
controller negativity of the Lyapunov function increment is
ensured provided ps(|z)]) > 0" o,(|e5(2",0)]). Such a
condition can be rewritten as:

{lz] > 6" au(lea)} = {V(zk41) = V(=) < =0pa(lzxl)}

with G, := p3* 00, € K and limp_ o€l = 0.

Remark 14. Easy computations (see [33] in discrete time)
show that the gain function o in (36) is of the form

o(llepll) = 0" 5(|lepll) with &= pi ' o paop3top oo, €K
with py in Proposition 5, p € Koo such that (I5 — p) € Koo
so qualifying the interest of increasing the order p.

Remark 15. The emulated controller u®(z}) = ue(2')|t=ks
brings to an error on V- matching in O(6?); i.e.
62

——1.LyV(z};) + O(5°)

B (z,0) = -5

so that the Lyapunov difference verifies

52
V(zhg1) = V() < =0ps(l2k]) = GytieLeV (21) + O(5%)

putting in light that its negativity depends on the sign of
ULV (2}); ice. the condition ps(|zi]) > —SicLyV (21) +
O(8?) has to be satisfied.

Further investigations along these lines must be developed for
better quantifying the improvements, in terms of performance
and/or MASP increments, when higher order single/multiple
rate sampled-data controllers are used.
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D. Some computational aspects

By replacing u with its series expansion (22) into the SD-
ILM equality (20) (equivalently (24)) and by equating the
terms of the same power in § in both sides of the equality,
one reduces the computation of each successive term u’ to
solving a linear equality. More in detail, Q(z',d,u%) in 24)
rewrites:

5 i
Q(z',0,u°) = — Z m(fC + Uege)' V] +
i>0 '

675
2 X GG o S Ve

i>0 jo+--+ijo4+1=1

with fo = fe 4+ u%ge; fi>1 = u'g. and the summation
over the indices jo,...,jj+1 = O such that Zf":gljl = i
One easily verifies that @* depends nonlinearly on the terms
u®, ...,u’"! but is affine in u’ (jo = 0,jj,+1 = ) through the
term f;V |1 := u’g.V|.1 # 0 since V has relative degree one.
Thus, each u’ solves a linear equality depending on the previ-
ously computed terms and the algorithm is said constructive.
Based on strong combinatoric properties of the manipulated
exponential series investigated in [35], a computer aided
design algorithm has been developed in [28]. For the first

terms, one computes:

£ = w|

wh= ey = 2 () +
+ 96 )| 37
+ 2 ey o) - d00)|_,

up = iie(2") t_k5+Mad[.f,g]V(zl) s

where 1. and . represent the derivatives with respect to ¢ of
the continuous-time control u.(t) and the function ads 5V is
described in (38).

E. Single rate solution for multiple cascade connexions

The result stated in Theorem 3 can be iteratively applied to
design a SD controller for the m-cascade connections case (2).
For, it is enough to note that the continuous-time backstepping
procedure ends with a dynamics in the form (3) with 2™ =

(=, y1/m) and:

wich
ai(z) + b1(z) (y2 + ¢1(21))
fc =
am—1(z"71) + Bm—lﬁzmz)(ym + dm-1(z"7))
ge = [0 bu(zy (), Ym + Imr ("]

= [0 0 Bm(zm)]T.

where f(z!) = f 2) +9(2)y + 9(2)) and a;(z")

ai(z, .oy + im1(207h) — ¢i_1(2471) for i = 1/m.
Setting further ¢ = 2™"' € R"™ 7l p = y, €
R7 d) = ¢m—1’ b(€7 77) = b(szl’ ym)’ g(C) =

. T .
[0 0 bz Y] al¢m) = a=m ) — 52
one recovers a dynamics of the form of (6-7) which is the
structure assumed in Theorem 3; i.e.

¢t = F(O+a(m (39)
n(t) = a(¢,n) + b mue (40)
with u. = ¢n(2™) and v, = —KpyYm. It follows that

Theorem 3 can be applied to dynamics (39-40), equivalent
to (6-7), to get the result.

F. Example 1

1) Continuous-time design: let the 1-cascade connection
example treated in [9], [13]:

i) =22+¢ €)=

Setting W (z) = 122, ¢(2) = —2— 2% and V(2,y) = W(z) +
%y2 = %(22 +y?) with y = € — ¢(2), one satisfies (8) and
the dynamics take the form (10-11):

2(t) = —z+4vy

9(t) = —(1+22)(z-y)+u
According to Theorem 2, GAS is achieved under the state
feedback (9); i.e. with K, =1

(41)

Ue=¢(2) —z— Ky =2(2"—y—zy). (42

2) Sampled-data design: starting from (41) with:
—z+y

fo= 10

Tl -+22)(z-y) |0 T 1

and u. in (42), the 2”d-approximate controller WhiQCh ensures
(20) in O(53) takes the form ulY) = u® + Sul + 2 u? with:

= 27—y -2y
ut o= Ue(z,y) =2(z+y — 22— y2 + 4zy) (43)
ol e 2
ur = u (2= 3y — 62y +427) —4(z 4 22y — 2y%).
2y
G. Example 2

1) Continuous-time design: adding an integrator to the
previous dynamics, one gets a 2-cascade connection dynamics:

Ht)y=224&, Lt)=&, &) =u
A continuous-time backstepping procedure is firstly applied
to get a state representation in the form (6-7). Setting y; =
51 - ¢(Z)7 ¢(2) =—z— 227y2 = 52 - ¢1(Zvy1), with:

1(z,y1) = ¢(Z) - 87W +u=¢(2) -2+

one obtains (39-40) with ?Z: y2 and n = (z,91)":
) = —z+wn
n) = ¢51.(Z, 1) — 6(2) + 1o (44)
9(t) = —¢i(z,y1) tu

From (15), the stabilizing feedback takes the form:
Ue = <251(Z7y1) — Y1+
= 204zyy — 22—y} —2zya +2) —3ya +y1 (45)
with v; = —y; fori = 1,2 and V = %(22 + 9?2 + y3).
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9b(z,y + ¢(2))

9b(z,y + ¢(2))

oV ()|, = v (6 + 900 + ) + s E oy - 0(2)
(Do) + yW)b(z, y+o()| _ (38)

2) Sampled data design: (44) can be rewritten in compact
form with:

—zZ+
fe = —z—y1+ Y2
—2(42y1 — 22—y — 22 —ya + 2 + 1)
T
ge = [0 0 1]
so getting ul? = w0 + Sul +2 u with:
O = 20z -2 -yl -z +2) -3 +u
ul = Ay, — 3z 4 4ys — 14z,
+ 12zy0 — 6y1ys — 42° + 1247 (46)
u? = 22— 1Ty, — 122y, — y2 (482 — b4y,
— 6zy; + 1227 +4) — 12297 4 142%y,
+ 2927 4 42% — 4197 — 6332
5—1(4,22 + 14zy; + 32 — 1297 — 4y1).
Y2

IV. BACKSTEPPING UNDER MULTI-RATE DESIGN

To motivate the multi-rate approach, let us consider the
simplest strict-feedback form:

W) = G+ o
51 (t) = 52; ;£7n(t) =U

and assume the z-components to be globally asymptotically
stabilizable under a feedback ¢(z), with control Lyapunov
function W (z). Since the relative degree of W (z) with respect
to (47) is m+1, Lyapunov matching of W (z) through a single-
rate strategy would induce internal instability due to critical
m sampling zeroes. To bi-pass this difficulty, the single-rate
controller proposed in section III is designed on the overall

control Lyapunov function V' with relative degree 1.

The difficulty of critical stability up to instability of the
sampling zeroes dynamics is well documented in the lin-
ear literature [22] and has been more recently treated in
the nonlinear context [23], [37]. In [10], with reference to
feedback linearization, multi-rate strategies of order equal to
the relative degree of the output map have been proposed
to preserve input-output performance and internal stability. A
similar reasoning brings in the present context to consider a
multi-rate controller with a number of rates equal to (m + 1)
(the number of connected dynamics), to match at the sampling
instants V' and the other m Lyapunov functions involved in
the continuous design process. More precisely, one requlres
one-step matching of each V;(z7); i.e. denoting by z° = 2

and F(mH)é( ) the z7-component of F(™*+1(), find ), for
t=1,...,m+1 so that:

(47)

(k+1)é
Vi(2' (r))dr

Vi(FH3 (9 08 b)) — Vi) = /
g 48)

8

for j = 0,...,m when 2 = 2™|—xs. Arguing so, the
minimum phase property verified by each V; is maintained
under digital control and the mismatch between the state
evolutions under continuous and digital control is reduced, so
improving internal stability. In the sequel, the result is firstly
detailed for the 1-connection case with a double-rate controller
and then extended to the m-connections case with a multi-rate
of order (m + 1).

A. Double-rate controller for the 1-connection case

Consider first the single-cascade connection (6-7) and its
compact representation (3). The single-rate controller shaped
to mach the evolution of the function V' unavoidably generates
a matching error in 6% on W (2); i.e.

3

5
W (zk41) = W(z| + auCLgULfCWz| +0(6")

t:(k+1)5) t=ks

with LchfCW(Z)|t:k5 # 0 as W(z) has relative degree 2.
As a consequence, a double-rate control (uyy, uoy) defined as:

e wuy) active and constant for ¢ € [k, kd + /2],
e ugy active and constant for ¢ € [kd + 6/2, (k + 1)J]

which generates a two-input equivalent SD dynamics:
1 25,1
Zopr = F7 (2, van, uar)

is proposed to achieve one-step matching of both V' and W.
According to (48), the double-rate LME problem results in
computing w1y, ugy, to satisfy Vzi = z1|t:k5:

i, (k4+1)5
V(F%(z,g,ulk,u%))—V(z;):/M V(e () dr
. (k+1)5
W (FZ° (2, urk, uak)) — W(zk) = /ké W (z(T))dr

Theorem 16 below improves the results in Theorem 3.

Theorem 16. Consider a strict-feedback dynamics (6-7) under
the assumptions of Theorem 2, then there exist T* > 0 and
for each § in |0, T*], a double-rate digital feedback (ug,us3)
of the form:

, 5
6 _,0 J _
u; = u; + E —_u;, =1,2 49)
1 (3 | 1
= G+
with § = 6/2 and u) = ucly—gs, i = 1,2, which ensures

SD-ILM of V' and W and guarantees SD-GAS.

Proof: The proof extends that of Theorem 3. Let
Q(z1, (5u1,ug) be the map defined as (51) so that
one-step Lyapunov matching condition reduces to satisfy
Q(z",6,ul,ul) = 0. For § = 0, one gets (52) which is

satisfied by the choice u{ = u = u.(z1).
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=

Q(Zl’ 57 u(z’ ug) =
62

Then, verlfymg the non singularity of the Jacobian of Q at
6 =0,u’ =u.); ie.

Qi
Q ( ’(0 7J'c>:|

8u]
because of the respective relative degrees of V(2

avg? (£2) +9()y) b(z) # 0

Lg. V(2"

[ Ly V(2" LchhW(z)}#O

3Lg Ly W (2)

1y and W (2)

Lchch(Z) =

for 2! # 0, one deduces the existence of a pair (ul,u3)
of the form (49) in the neighborhood of (uf,u3) satisfying
Q( ,16 u17u6) =0.

|
The following result which extends Proposition 8 specifies
how a double-rate strategy improves the stabilizing perfor-
mance with respect to the internal z-dynamics.

Proposition 17 (double-rate one-step consistency). The pair
(ug,us, F?°) computed in Theorem 16 is one-step consistent
with the continuous-time evolution (u.,efet<9c21) ie. there
exist T* > 0 and K functions 01 and 65 such that for each

§in 10, T*],Vz} € R™! with 2} = 2'(t)|t=ks, one has:

|F20 (2, ulg, udg) — 2ot mee) 2 (4) | o]

< 5%0,(5)
|F20 (21, uly, usy,) — et uesel 2 (b)]ips| <

526, (9)

The same inequalities hold under approxi-

with 2t = (2, y) .
(p] u[;’]) with p > 1.

mate controller (uj

Proof: For, it is sufficient to verify that (uf, ug, F?%) guar-
antees one-step state matching of the closed loop continuous-
time dynamics in O(§*) in the z-component because the
function W (z) has relative degree 2 and in O(83) in the y-
component because the function V' (z!) has relative degree 1.

|
Formally, the controller (uf,u3) := I'(z',6) is the reverse
series satisfying Q (2',6,I'(z1,8)) = 0 with (uf, ud) =
I'(z',0). As in the single-rate case, the successive parts of the
controller can be computed through an executable algorithm
so getting for the first terms :

(u(1)7 u2) (uca uc)|t:k5
2 10
(ULU%) (3 3 — e |i=ks (53)
e (4L Ly, + Ly L3 ) W
u? = —6t.u, + lt=ks

SLgCLfCW

= ?ach:ké + 120cucli=ks-

<630H2 (5o +uige) 3(fotug.)) V(zh) — edlUetucge) 7 (51)

1 (eBCH2 (S(fc+u§gc)75(fc+u§gc)) W(Z) _ eé(fa"!‘ucgc)W(z)

L u?+ugL A7 1
(Ly +=52Lg )V(2)) -

(D

(Lg. +ucly )V (2")

52
de Ly, Ly W(z) 42

B. m + 1-rate digital backstepping of m-cascade connections

According to the Multi-Rate Input Lyapunov Matching -
MR-ILM - requirement (48), Theorem 18 below reformulates
Theorem 16 in the case of m-connected dynamics.

Theorem 18. Consider a dynamics in the strict-feedback m-
cascade connection form (2) and assume the existence of the
continuous-time controller u. ensuring GAS of the equilibrium
with a family of control Lyapunov functions Vj;j = 0,...,m
as in (16), then there exist T* > 0 andfor each 6 in |0, T™),

a(m+1)- rate sampled-data feedback (uly;i=1,...,m + 1)
with § = T which ensures MR-ILM of the ‘/j,j = O

1
and guarantees MR-GAS.

Proof: The proof is similar to the one provided for
Theorem 16 rewriting the MR-ILM vector equality as
Q(z™,8,ud, ..., ud ) = 0 with Q(z™,...) given in (51).

Noting that the MR-digital controller u? = u.(2!) solves
the equality MR-ILM (48) for 6 = 0, one sets the (m + 1)
solutions in the form of asymptotic series around .

&I

5 j .
Uu; = U, —|—Z , t=1,...,m+1. (53)
' Z
= U+
Computing the Jacobian of Q(.) at (§ = 0,ul_, .. ) one

gets (52) where the entries of the matrix Q are defined as
Qi; = j* — (j — 1)". More in detail, one gets
Q(Zm7 07 UCE’ R

5
>um+1) =

(8 whpros = (m o+ ue) Lo, Vin ()

m m-+1

(Z Z Qljum+1 i

1=0 j=

— (m+ 1) ) L, L Vo (2)
so verifying the non singularity of its jacobian; i.e.
112 Ly L'} 'Vi(z") # 0 and the existence of a MR-control
solution in the form (53) follows. |
Again, approximate solutions can be computed through an
executable algorithm working out the reverse series.
Regarding the stabilizing performance of approximated multi-
rate controllers, let us analogously define through truncations
at the order p, the p-th approximate multi-rate digital feedback

ugpz]l,_“’m“ and denote by O(d?) := [O(6PT™), ...,O(6P)]T
the extended error vector. Under uE”:]l ,,,,, m41- Proposition

11 remains true. Moreover, since by construction MR-ILM
of each V; is satisfied in O(0P*?); ie. Ey,(2/,0) €
O(§P*+2+m=3) for j = 0,...,m; Proposition 19 below can
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% <63C7-[m+1 (g(fc+ufgc)7-.. ’g(fc+u§n,+lgc)) Vm(zm) _ eé(fc«‘,»ucgc)vm(zm))
Q(Zm, ) = ) B ) B (51)
(%m (eBch+1(5(fc+u‘fgc),... ,5(f(~,+ufn+lgu)) Vi(z!) — O fetucge) (1)
e <€BCH”H1(5”¥+“§g”“”’Mf”+“%+190)V@(z)-—65Uk+““ga‘6(z)
Ly Vi (z™) 0 0 0
0Qi(+) 0 L. L Vipo1(z™1) - 0 0
l 8;5 |(O,uc)] = [Qij] : : ) 0 0 (52)
i 0 0 LQCL?ZVl(zl) 0
0 0 e 0 Ly LY Vo(z)

be proven so specifying how the multi-rate controller signif-
icantly reduces the mismatch between the sampled-data and
the continuous-time state evolutions as soon as approximated
controllers of order p > 1 are implemented.

Proposition 19 (MR one-step consistency). The multi-rate
controller computed in Theorem 18 is one-step consistent
with the continuous-time evolution (u.., efet%<9¢2™); i.e. there
exist T* > 0 and K functions 0; such that for each ¢ in
10, T*],27 € R*J, j=0,...,m

m 5, . m 5 ctucge) .m—g j
| D0 (g =y pyga) — 290 | ] < 6720,44(6).

m—j

The same inequality holds under approximated controller
Wy g withp > 1.

.

Proof: For, it is sufficient to verify that u‘gzl Jm41 guar-
antees one-step state matching of the closed loop continuous-
time dynamics in O(67*3) with respect to each z™7J-
component (equivalently in O(&3)) because each function
V;(27) has relative degree 1+ m — j. [ ]
It is interesting to note the impact of the cascade strict-
feedback form in a multi-rate design. The mismatch in the state
evolutions is reduced to O(6P*7+2) on the z7-component for
j =0,...,m, which corresponds to faster convergency to the
virtual control variables, typical of the backstepping strategy.
Moreover, multi-rate one-step consistency in O(&%) can be
interpreted as multi-step consistency (see [31]) over m + 1
steps of length § in O(6%) with respect to the full state 2™.

C. 1%t-approximate MR-controller

1%t-approximate multi-rate solution is finally discussed in view
of its performance and computational simplicity.

Proposition 20 (1%‘-approximate MR-controller). The 1%t-
approximate multi-rate feedback, (uglz]lm 41):
T
u'[rr17,]+1 95 (m;UQ
1 .
= Uelps T T [Qis] e s

[1] (m+1)m+2
ul m-+2

ensures MR-ILM of the family of functions Vi—o ..., and one-
step state-matching of the closed loop continuous dynamics in

O(8) = [0(5%™), ..., O(6%)]".

Proof: For, it is sufficient to note that the solution of the
equality Q(z'0,us,...,ud, 1) = 0 in O(6?) reduces to the
solution of the linear equation below:

m+1 2
U1 ( 2 )
Q] : =2 : Ue |y s (55)
ul (m+1)m+2
m+2
For m = 2 and m = 3, one gets respectively
3 .21,
(U%,U;Ué)‘zi = (1’3’1)’&0‘1@6 (56)
332 68 52 28 .
(u%,u%,ué,u}l)tg = (E7Baﬁa£)u0’k§' (57)
|

The efficiency of 1%t-approximate multi-rate controllers is
illustrated through simulated examples.

D. Example 1 (continued)

The single-rate controller SR2 is given in (46) while the
double-rate controller DR2, described in (53), takes the form:

u) = ud = ucli=s
4
u = (' =yt dy2)
20
up = (Y =2yt dyz)
u? = 0
us = 32(3y° —4dyz — 2% — 2).

E. Example 2 (continued)

To highlight the performance of multi-rate controller, let the
3"4-order example given in section III-G which exhibits a
relative degree equal to 3 with respect to z. A 3-rate controller,
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denoted by MR2, is compared with the SR2 given in (46). The

MR? takes the form u/2) = u? + Sul + g—zuf;i =1,2,3 with:
ul = uh = ul Uely_pes (58)
3 .21
TR :
(w1, uz, uz) = <3 ) the (59)
44 t=ks

5 1 ,360(y? + 2?)

“1::16(““““‘*
Y2

Y2(432y1 — 3062 + 27y1 2 — 542% + 360) 4 63y, 22 —

42322
5dydz — 2887 — 5y} + ——— +182%))

Y2

Yo (15482 — 2376y, + 54y1z — 10827 + 1260) — 126y, 2°

1089y,
2

— 1584y; — 297y3 + 10622* — 362°)

t=(k+%)6

1 ,1980(y?+2) 423z 4653y
16( o 22

y2(10152y; — 67862 + 27y, 2 — 542 + 1980) + 63y, 22
933322

ul = — 3402y, 2 +

54122 — 6768y? — 1269y2 + +182°)

t=(k+2)s

V. SIMULATION RESULTS

To better quantify the performance of the proposed controllers
we define the Input-Lyapunov-Index w. 1. to V over a simula-
tion period Tx = NJ, as:

N

S V() = V(™ ())lks)®

k=0

1

I =0y

(60)

i.e. the root of the sum of the squares of the mismatch over NV
steps between the Lyapunov function under continuous-time
and sampled-data controllers, weighted by V/(0).

In the sequel SRi, DRi and MRi will denote the single-
rate, double-rate, and multi-rate, ¢-th approximate controllers
respectively. Different controllers are compared in the sequel;
continuous lines will denote the evolutions of the variable
under the CT controller, circle-lines under the emulated (EM)
one, right triangle and plus-lines under SR1 and SR2 respec-
tively. Finally, the evolutions under DR1 and DR2, will be
denoted by star and triangle-lines respectively.

A. Example 1 - Simulation results

Simulation results are given for Example 1 under CT, EM,
SR and DR controllers described in sections III-F and IV-D.
In Fig. 1, the state evolutions under the single-rate and double-
rate controllers are plotted for a sampling period equal to 0.4s.
Lyapunov matching is achieved in at most 5s by each con-
troller. Comparing the values of Iy, at 0.4s in Fig. 2, it can be
noted that better performance is obtained by increasing the rate
rather than the approximation order (DR1 performs better than
SR2). From a deeper analysis of the results in Fig. 2, where the

errors on V' and W are plotted for sampling periods between
0.01s. and 0.5s, it can be observed that Iy corresponding to
DRI1 at 0.4s is smaller than the one corresponding to SR1 at
0.2s, which implicitly corresponds to a comparison between
the single-rate and double-rate controller acting over a double
period. It can be noted that for smaller sampling periods, all
the proposed strategies are performing better than emulation.
The best performance is obtained under DR1 and DR2 which
exhibit the maximum admissible sampling period - MASP. The
1%t-approximate double-rate controller DR1 represents a good
choice with a good rate of simplicity over performance.

B. Example 1 - Comparison with other approaches

We now discuss Example 1 in a comparative perspective with

the results obtained in [9], [13]. The simulations are worked
_out for & = 0.4s, zp = (0.5,0.5). The results depicted in
Fig. 3 compare DR1 and DR2 with the controllers proposed
in [9], [12] and [13]: the 1-st approximate controller in [9]
(left triangle, “SN1”), the 2nd- approximate controller in [12]
(cross, “SN2”), the first (square, “SB1”’) and 2nd- approximate
(diamond, “SB2”) controllers in [13]. The 1-st approximate
controller described in [12] which coincides with our SR1
solution is not reproduced. Fig. 4 details the total error for
various §’s. The performance obtained under multi-rate control
is clearly evidentiated.
The result of a last test for a very large sampling period § =
0.9s is depicted in Fig. 5. Lyapunov matching is achieved with
performance index [y at 2.85 under DR1 only, as shown by
the phase portrait and the control trajectory.
To better evidence the mismatch between the proposed solu-
tion and those selected from the literature, we compare Fig.
2a), 4a) and subfigure b). The EM solution is plotted in both
figures to make easier the comparison. It can be noticed that
with respect to Lyapunov matching, the proposed algorithm
gives better performance for small sampling periods (in case of
all proposed controllers) and also for larger sampling periods
(in case of DR controllers).

C. Example 2 - Simulation results

Simulation results are given for Example 2 under CT, EM,
SR and MR controllers described in sections III-G and IV-E.
The same initial conditions as for Example 1 are considered.
In Fig. 6, the state evolutions under 15 and 2"¢-approximate
controllers are depicted for a sampling period equal to 0.3s.
Lyapunov matching is achieved in 4s. The 3-rate controller
gives, as expected, lower errors and higher values of the
MASP. Moreover, by comparing these simulations with the
ones obtained for Example 1, it follows that the addition of an
integrator reduces the rise time, which should bring to increase
the gains and consequently to reduce the admissible sampling
period length under emulated control. Since we choose the
same gains for both simulations, a significant reduction of the
MASP can be noticed with respect to the emulated solution
as depicted in Fig. 7. This degradation, which is not present if
a 2"¢_approximate multi-rate controller is used, confirms the
intuition that a multi-rate digital controller could be profitably
used to control dynamics which include integrators chains.
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Fig. 1. Simulation results for the proposed algorithms, 6 = 0.4s, Example 1
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Finally, always with reference to Fig. 7, it can be observed that
the same values of Iy, and Iy correspond to more than double
values of the sampling time under multi-rate controllers, which
implicitly corresponds to a comparison between the single-rate
and double-rate controller acting over a double period.

VI. CONCLUSIONS

Two sampled-data control schemes have been proposed for
stabilizing nonlinear control dynamics which admit contin-
uous backstepping controllers. The solution relies on the
idea of using multiple rates on the control to match, at
the sampling times, the evolutions of each control Lyapunov
function involved in the design of the continuous control law.
The performance of each proposed approach is commented
and compared with other similar design procedures. Multi-
rate approximate controllers at the first order represent a
promising alternative to emulated controllers in view of their
computational facilities and higher stabilizing performance.
The results can be generalized directly to connected structures
with connected parts of dimension greater than one. Work
is progressing to investigate and quantify the performance of
approximate controllers in the ISS formalism.
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